WO2021082506A1 - 一种热湿气候风洞及其多场耦合控制系统 - Google Patents

一种热湿气候风洞及其多场耦合控制系统 Download PDF

Info

Publication number
WO2021082506A1
WO2021082506A1 PCT/CN2020/100092 CN2020100092W WO2021082506A1 WO 2021082506 A1 WO2021082506 A1 WO 2021082506A1 CN 2020100092 W CN2020100092 W CN 2020100092W WO 2021082506 A1 WO2021082506 A1 WO 2021082506A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
wind tunnel
hot
temperature
test
Prior art date
Application number
PCT/CN2020/100092
Other languages
English (en)
French (fr)
Inventor
孟庆林
李令令
毛会军
魏少良
Original Assignee
华南理工大学
广州思弘科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 广州思弘科技有限公司 filed Critical 华南理工大学
Publication of WO2021082506A1 publication Critical patent/WO2021082506A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/08Aerodynamic models
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means

Definitions

  • the invention relates to the field of multi-parameter environment simulation, in particular to a hot and humid climate wind tunnel and its multi-field coupling control system.
  • the existing environmental wind tunnels cannot be applied to extreme hot and humid climates, cannot simulate complex climatic conditions such as high temperature, high humidity, high salt, high radiation, etc., and cannot realize the day and night periodic adjustment and dynamic coupling control of multiple environmental parameters. It is conducive to the fine research of building materials under the coupling influence of complex climate parameters.
  • the existing environmental wind tunnel has a limited scale and only has partial simulation experiment capabilities, and it is impossible to integrate multiple test sections in the same wind tunnel.
  • the purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and provide a hot and humid climate wind tunnel, which can realize seven types of wind speed, temperature, humidity, solar radiation illuminance, effective sky temperature, rainfall, and salt fog in outdoor natural climate. Simulation of the parameter field.
  • the purpose of the present invention is to provide a multi-field coupling control system for a hot and humid climate wind tunnel, which can realize dynamic coupling control between multi-parameter fields.
  • a hot and humid climate wind tunnel in which a fan, temperature changing equipment, humidity changing equipment, salt spray generator, sky background radiant panel, solar radiation lamp array and rainfall are installed in the wind tunnel.
  • the sky background radiation panel is installed in the wind tunnel test section
  • the solar radiation lamp array and the rainfall generator are installed on the sky background radiant plate;
  • the sky background radiant plate includes a heat conducting plate, a stainless steel plate and a copper tube, and a plurality of heat conducting plates are installed in multiple rows on the stainless steel plate.
  • a copper pipe arranged in an "S" shape is laid on the heat conducting plate of the row, and the copper pipe is connected with the external cold and hot water equipment.
  • the wind tunnel body is a vertical back shape, and is provided with a first stable section, a first test section, a diffusion section, a fan section, a transition section, a contraction section, and a second stable section in turn clockwise. Section, the second test section.
  • the first test section and the second test section are integrated in the same wind tunnel, and at the same time, atmospheric boundary layer simulation test and thermal climate simulation test can be done.
  • a guide vane, a blocking air valve, a heater, a guide vane, a salt spray generator, a honeycomb and a damping net are installed clockwise in the first stabilization section, and the guide vane, the resistance
  • the cross-sections of the cut-off valve, heater, salt spray generator, honeycomb and damping net are adapted to the cross-section of the wind tunnel body.
  • the first stable section is provided with an outlet air valve and an inlet air on the wall of the tunnel body. valve. The first stable section can improve the characteristics of the air flow entering the first test section, thereby forming a uniformly distributed flow field in the first test section.
  • the top of the hole in the first test section is provided with a sky background radiant panel, a solar radiation lamp array and a rainfall generator, and the hole is opposite to the sky background radiant panel, the solar radiation lamp array and the rainfall generator.
  • the bottom of the body is provided with a test piece groove and an air-conditioning chamber connected with the test piece groove, the test piece groove is used for placing the test model, and the air-conditioning small room is used for simulating the indoor environment when the model is tested.
  • the first test section can reproduce the complex outdoor climate environment and conduct thermal climate simulation tests.
  • the diffuser section includes a honeycomb device and a first day circle pipe, the honeycomb device is arranged at the junction of the diffuser section and the first test section, and the first day circle pipe is arranged at the entrance of the fan section, Connect with the fan in the fan section.
  • the function of the diffusion section is to reduce the turbulence of the air entering the fan, thereby improving the efficiency of the fan and extending the life of the fan.
  • the second day round pipe, guide vane, surface cooler, heater, humidifier, and guide vane are installed in the transition section clockwise; the second day round pipe outlet is horizontally installed.
  • the cross section and the cross section of the guide vane, the surface cooler, the heater, and the humidifier are compatible with the cross section of the wind tunnel body; the second-day round pipe is set at the outlet of the fan section and is in line with the cross section of the fan section. Fan connection.
  • the role of the transition section is to reduce the split of the airflow and at the same time reduce the airflow resistance.
  • the contraction section is a tapered air duct, and the tapering angle on both sides is 6.6°.
  • the contraction section reduces the section of the wind tunnel to increase the wind speed entering the second test section and meet the wind speed requirements of the air entering the second test section.
  • a honeycomb, a damping net, a temperature stratification device, and a cold and heat radiating plate are installed in the second stabilization section clockwise in sequence.
  • the cross section of the wind tunnel body is adapted, and the cold and heat radiating plate is installed at the bottom of the cave body.
  • the second stabilization section can improve the airflow characteristics and form a uniformly distributed flow field.
  • a suitable temperature field is created for the second test section through the temperature stratification device and the heat and cold radiation plate.
  • a multi-field coupling control system for a hot and humid climate wind tunnel including a data acquisition unit, an execution equipment unit, a central control unit and a computer operating unit, the The data acquisition unit and the execution equipment unit are respectively electrically connected to the central control unit.
  • the computer operating unit and the central control unit are connected through network communication; the data acquisition unit is installed in the wind tunnel and is used to collect environmental parameters in the tunnel. Including wind speed, temperature, humidity, solar illuminance, effective sky temperature, rainfall, and salt fog concentration; the execution equipment unit is used to receive instructions from the central control unit to adjust the environmental parameters in the cave; the computer operating unit is used to input targets Environmental parameters.
  • the central control unit includes an integrated control CPU module, a digital PID control module, a communication module, and a power drive circuit
  • the integrated control CPU module is connected to a computer operating unit through network communication for reading computer operations
  • the target environmental parameters input by the unit store data
  • the integrated control CPU module is connected to the digital PID control module through the communication module, and is used to transmit the target environmental parameters to the digital PID control module
  • the digital PID control module is connected to the power drive circuit , Is used to send control instructions to the power drive circuit
  • the power drive circuit is used to send adjustment analog signals to the execution equipment unit to drive the corresponding equipment to operate.
  • the present invention has the following advantages and beneficial effects:
  • the invention installs a sky background radiant panel and a salt fog generator in the wind tunnel, thereby increasing the effective sky temperature and salt fog environment parameters, can reproduce the extreme salty hot and humid island climate, and improve the environment simulation of the wind tunnel ability.
  • the multi-field coupling control system of the thermal and humid climate wind tunnel of the present invention can realize the periodic adjustment and coupling control of the multi-parameter fields in the wind tunnel, which can more truly and effectively restore the actual natural environmental conditions and ensure the accuracy of the test .
  • the present invention integrates the first test section and the second test section in the same wind tunnel, and constructs the atmospheric boundary layer simulation test section and the thermal climate simulation test section that operate in series in the same loop-type wind tunnel, which can be saved as a building The cost of wind tunnels with different test functions.
  • the present invention breaks through the limitation of the existing wind tunnel size at home and abroad, and expands the test function of the wind tunnel, thereby providing a new experimental platform for the study of complex building physical phenomena in the extreme salty hot and humid climate environment of the mainland and islands. .
  • Figure 1 is a three-dimensional model diagram of a hot and humid climate wind tunnel in an embodiment of the present invention
  • Figure 2 is a plan view of the hot and humid climate wind tunnel in the embodiment of the present invention.
  • Figure 3 is a longitudinal cross-sectional view of a hot and humid climate wind tunnel in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the sky background radiation panel in the embodiment of the present invention.
  • Fig. 5 is a flowchart of a multi-field coupling control system in an embodiment of the present invention.
  • a hot and humid climate wind tunnel includes a wind tunnel body, a control room, a material room, and an equipment area.
  • the wind tunnel body is arranged in the middle position, the control room and the material room are on the same side of the wind tunnel body and adjacent to the left and right, and the equipment area is opposite to the control room and the material room on the other side of the wind tunnel body.
  • the control room is used to place the wind tunnel control system computer and part of the experimental data acquisition unit.
  • the material room is used to store material components and models required for wind tunnel experiments, so that they can be directly accessed and replaced during wind tunnel experiments, saving time and material resources.
  • the equipment area is used to place the refrigeration unit required for temperature control in the wind tunnel, the dehumidifier required for humidity control, and the electrical control system required for electrical control.
  • the refrigeration unit is connected to the cooling tower, the cold water tank, and the hot water tank respectively, and is connected to the heater and the surface cooler in the wind tunnel at the same time to adjust the temperature in the wind tunnel.
  • the dehumidifier is connected with the humidifier in the wind tunnel to adjust the humidity in the wind tunnel.
  • the electric control system is connected with the wind tunnel control system.
  • the hot and humid climate wind tunnel is a reflux vertical wind tunnel, with a total length of 40.3m, a widest point of 4.9m, and a highest point of 10.4m.
  • the outer wall of the wind tunnel body is made of color steel plate, the inner wall is made of 316 stainless steel, and 100mm thick polyurethane insulation material is filled between the inner and outer walls, so as to achieve the purpose of heat preservation, heat insulation, moisture-proof, anti-corrosion and energy saving.
  • the wind tunnel body is provided with a first stable section, a first test section, a diffusion section, a fan section, a transition section, a contraction section, a second stable section, and a second test section in sequence in a clockwise direction.
  • a guide vane, a blocking air valve, a heater 6, a guide vane, a salt spray generator, a honeycomb 9 and a damping net 10 are sequentially installed in a clockwise direction.
  • the cross section of the guide vane, the blocking air valve, the heater 6, the salt spray generator, the honeycomb 9 and the damping net 10 are adapted to the cross section of the wind tunnel body.
  • the guide vane is used to guide the air
  • the blocking air valve is used to adjust the air volume.
  • the heater 6 is used to heat the air.
  • the honeycomb device 9 adopts a hexagonal honeycomb device with a small loss coefficient, which is formed by hot-pressing a honeycomb lattice of a resin structure.
  • the ratio of the length to the diameter is 10, and the length is 300mm.
  • the honeycomb device 9 can direct the air flow and reduce the turbulence, thereby effectively improving the air flow characteristics of the first stable section.
  • the size of the damping net 10 is selected as 20 mesh/inch, and is arranged at the entrance of the first test section, so as to realize a uniformly distributed flow field in the wind tunnel.
  • the salt fog generator is used to generate salt-containing dense fog, thereby simulating the salt fog concentration in the coastal and island climate areas.
  • An outlet air valve and an inlet air valve are also arranged on the wall surface of the cave body of the first stable section.
  • the function of the first stabilization section is mainly to improve the characteristics of the air flow entering the first test section, so as to form a uniformly distributed flow field in the first test section.
  • the top of the cave in the first test section is equipped with an empty background radiant panel, a solar radiation lamp array and a rainfall generator, and the bottom of the cave opposite to the sky background radiant panel, solar radiation lamp array and rainfall generator is provided with a specimen slot and An air-conditioned small room connected to the specimen tank.
  • the sky background radiant panel is installed on the top of the first test section, and the solar radiation lamp array and rainfall generator are installed on the sky background radiant panel.
  • the solar radiation lamp array can simulate solar radiation.
  • the rain generator can spray water from its set raindrop simulating nozzle to simulate the climate of rain.
  • a hemispherical radiometer and a rain gauge are installed in the first test section.
  • the sky background radiation panel is equipped with a sky background radiation temperature sensor.
  • the hemispheric radiometer is used to measure the solar radiation illuminance
  • the sky background radiation temperature sensor is used to measure the sky background radiation panel.
  • Surface temperature, rain gauge is used to measure rainfall.
  • the sky background radiation board includes aluminum heat-conducting plates, stainless steel plates and copper pipes. Twelve aluminum heat-conducting plates are installed in three rows on the stainless steel plate, and each row of aluminum heat-conducting plates is laid with an "S"-shaped arrangement of copper. Pipes, copper pipes are connected with external cold and hot water equipment. The outer surface of the stainless steel plate is flush with the top wall of the wind tunnel, and the copper pipe is filled with cold (hot) water. The temperature of the inner surface of the stainless steel plate can be adjusted by adjusting the water temperature in the copper pipe to achieve a uniform distribution of the effective sky temperature, which is used to simulate the night Effective sky temperature.
  • the specimen slot is used to place test models and material specimens; the area of the specimen slot is 2.5mx2.5m and consists of 5 0.5mx2.5m movable module boards. The number of module boards can be adjusted according to the experimental needs.
  • a 2HP air-cooled compression condensing unit and an electric heater with a power of 6kW are installed in the air-conditioning chamber to adjust the temperature in the air-conditioning chamber.
  • the air supply and air outlets in the air-conditioned small room adopt orifice-type air outlets to ensure the uniformity of the indoor wind field and temperature field.
  • the test model is placed in the specimen slot.
  • the length, width and height dimensions of the first test section are 3mx3mx2.5m, and the main function is to reproduce the complex outdoor climate environment and conduct thermal climate simulation tests.
  • a wind speed sensor, a temperature sensor, a humidity sensor and a salt mist concentration sensor are installed on the cross section 1 meter from the entrance of the first test section.
  • the distance between the sensor and the bottom of the wind tunnel is 1.25 meters.
  • the wind speed sensor is used to measure the wind speed in the first test section
  • the temperature sensor is used to measure the temperature in the first test section
  • the humidity sensor is used to measure the humidity in the first test section
  • the salt spray concentration sensor is used to measure the first test section. The concentration of salt spray within.
  • the diffusion section includes a honeycomb 16 and a first round pipe 17.
  • the honeycomb 16 is arranged at the junction of the diffusion section and the first test section for directing airflow.
  • the first day round pipe 17 is a wind pipe member with a circular outlet at one end and a square outlet at the other end. Because the outlet of the fan selected in the fan section is circular, and the cross-sectional shape of the wind tunnel body is square. Therefore, it is necessary to use the first day round pipe to connect the two ends of the fan to reduce the diversion of air flow. Through numerical simulation calculation, the length of the circular pipe 17 on the first day of this section is set to 1.75m.
  • the function of the diffusion section is to reduce the turbulence of the air entering the fan, thereby improving the efficiency of the fan and extending the life of the fan.
  • the fan section is equipped with a fan.
  • the fan uses a variable-frequency axial flow fan.
  • the air volume range is 13500-270000m 3 /h
  • the motor power is 110kW
  • the diameter is 2m.
  • the airflow with adjustable wind speed of 0.5-10m/s can be realized in the test section of the wind tunnel.
  • the fan can not only drive the gas flow and circulation in the entire wind tunnel space, but also realize the circulation of the heat and cooling capacity of the heat exchanger driven by the airflow in high and low temperature environments, and meet the wind speed requirements in climatic environments such as rainfall.
  • the second day round pipe 19 In the transition section, the second day round pipe 19, guide vanes, surface cooler, heater 21, humidifier, and guide vanes are installed in turn clockwise.
  • the cross section of the outlet of the circular pipe 19 and the cross section of the guide vane, surface cooler, heater 21, and humidifier are compatible with the cross section of the wind tunnel body.
  • the second day round pipe 19 is set at the outlet of the fan section and is connected to the fan in the fan section.
  • the second day round pipe 19 of this section is also set to 1.75m in length.
  • the guide vanes are used to guide the air.
  • the surface cooler and heater 21 are connected to the refrigeration unit outside the wind tunnel for adjusting the temperature inside the tunnel.
  • the humidifier is connected to the dehumidifier outside the wind tunnel to adjust the humidity inside the tunnel.
  • the role of the transition section is to reduce the split of the airflow and at the same time reduce the airflow resistance.
  • the contraction section is a tapered duct, and the tapered angles on both sides are 6.6°.
  • the contraction section reduces the section of the wind tunnel to increase the wind speed entering the second test section and meet the wind speed requirements of the air entering the second test section.
  • the honeycomb 23, the damping net 24, the temperature stratification device, and the heat and cold radiation plate are installed in the second stabilization section clockwise in sequence.
  • the cross section of the honeycomb 23, the damping net 24, and the temperature stratification device are adapted to the cross section of the wind tunnel body, and the cold and heat radiation panels are installed at the bottom of the tunnel body.
  • the second stabilization section can improve the airflow characteristics and form a uniformly distributed flow field. At the same time, a suitable temperature field is created for the second test section through the temperature stratification device and the heat and cold radiation plate.
  • a scaled test model can be placed to simulate the velocity boundary layer and temperature boundary layer of the atmospheric boundary layer of the scaled test model for the study of urban wind, thermal environment and pollutant diffusion.
  • a wind speed sensor and a temperature sensor are installed on the cross section 1 meter from the entrance of the second test section, and the distance between the sensor and the bottom of the wind tunnel is 1.25 meters.
  • the wind speed sensor here is used to measure the wind speed in the second test section, and the temperature sensor is used to measure the temperature in the second test section.
  • the first test section and the second test section are integrated in the same wind tunnel, and the atmospheric boundary layer simulation test section and the thermal climate simulation test section that operate in series in the same loop-type wind tunnel are constructed, which can save the establishment of different The cost of the test function wind tunnel.
  • the two test sections have wind tunnel observation windows.
  • the wind tunnel observation windows are made of heat-preserving and heat-insulating double-layer tempered glass, and the exterior is equipped with a movable heat-preserving door, which not only ensures the observation and avoids the influence of outdoor solar radiation on some experiments.
  • Both the first test section and the second test section are equipped with test section entrances outside the wind tunnel.
  • the multi-field coupling control system of the hot and humid climate wind tunnel includes a data acquisition unit, an execution equipment unit, a central control unit and a computer operating unit.
  • the output end of the data acquisition unit is connected with the input end of the central control unit
  • the output end of the central control unit is connected with the input end of the execution equipment unit
  • the computer operation unit is connected with the central control unit through network communication.
  • the data acquisition unit is installed in the wind tunnel, including wind speed sensor, temperature sensor, humidity sensor, hemispherical radiometer, sky background radiation temperature sensor, rain gauge and salt fog concentration sensor, used to collect environmental parameters in the cave, including wind speed, Temperature, humidity, solar irradiance, effective sky temperature, rainfall and salt fog concentration.
  • Execution equipment units include fans, heaters, surface coolers, humidifiers, solar light arrays, sky background radiant panels, rainfall generators and salt spray generators.
  • the execution equipment unit is used to receive instructions from the central control unit and adjust the environmental parameters in the cave.
  • the computer operating unit is based on programmable software and is used to provide the real-time display function of the operating status of each device of the equipment execution unit, the preset import function of the target environmental parameter data that changes periodically during the day and night, and the export of the collected data.
  • the central control unit is used to receive the target environmental parameter data transmitted by the computer operating unit and the internal environmental parameter data of the cave body collected by the data acquisition unit, compare the two data, output the corresponding adjustment control signal according to the calculation result, and control each execution The operation of the equipment and stabilize the controlled parameters.
  • the central control unit includes integrated control CPU module, digital PID control module, communication module and power drive circuit.
  • the integrated control CPU module is connected with the computer operating unit through network communication, and is used to read the target environmental parameters input by the computer operating unit and store data.
  • the integrated control CPU module is connected to the digital PID control module through the communication module, and is used to transmit the target environmental parameters to the digital PID control module.
  • the digital PID control module is connected with the power drive circuit and is used to send control instructions to the power drive circuit.
  • the power drive circuit is used to send a regulating analog signal to the execution equipment unit to drive the corresponding equipment to operate.
  • the central control unit combines analog closed-loop PID control and equipment logic control to promote the normal operation, adjustment and rapid stability of each control loop to reach the required value of the experimental conditions, laying the foundation for the periodic adjustment and coupling control of multi-parameters in the wind tunnel.
  • the integrated control CPU module is also connected to the power drive circuit, which can be manually set and output electrical signals to control the power drive circuit, so as to implement the regulation of the power of the equipment.
  • the adjustable wind speed range of the hot and humid climate wind tunnel of the present invention 0.5-10m/s; temperature range: 10-40°C; humidity range: 40-98%; solar radiation illuminance range: 0-1000W/m 2 ; sky is effective Temperature range: 7-45°C; rainfall intensity range: 5-200mm/h; salt spray concentration range: 0.3-25mg/m 3 .
  • the digital PID control module reads the time of periodic change and the corresponding air temperature and humidity.
  • the temperature and humidity sensor feeds back the actual air temperature and humidity in the test section to the digital PID control module, and the digital PID control module sets the air temperature and humidity.
  • the difference between the actual value and the actual value is calculated to control the operation of air temperature and humidity adjustment equipment such as surface coolers, heaters, humidifiers, etc., so as to adjust the air temperature and humidity to near the set temperature and humidity and achieve stability.
  • the digital PID control module detects that the temperature of the surface cooler is lower than the air dew point temperature, condensation will occur when the air is directly cooled, which will cause severe fluctuations in air humidity.
  • the digital PID control module firstly drives the surface cooler through the power drive circuit to let the air pass through the surface cooler for preliminary cooling, and then the digital PID control module drives the dehumidifier through the power drive circuit to perform isothermal dehumidification for the air after the initial cooling.
  • the digital PID control module restarts the surface cooler through the power drive circuit, and the dehumidified air is cooled to the set temperature by the surface cooler to reach the set temperature and humidity.
  • the temperature and humidity sensor in the whole process feeds back the actual air temperature and humidity in the test section to the digital PID control module in real time.
  • the digital PID control module detects that the temperature of the surface cooler is higher than the dew point temperature of the air through the information fed back by the temperature and humidity sensor, the digital PID control module starts the surface cooler through the power drive circuit, and directly allows the air to pass through the surface cooler for dry cooling to the set point. Set the temperature without condensation, and then the digital PID control module drives the dehumidifier through the power drive circuit to perform isothermal dehumidification of the cooled air to the humidity setting value to reach the set temperature and humidity.
  • the whole adjustment process fully combines the advantages of cooling dehumidification and rotary dehumidification methods, which is not only convenient for adjustment and stable operation, but also saves energy consumption, equipment investment and operating costs.
  • Wind speed adjustment process First, the digital PID control module reads in the wind speed setting value input by the computer operating unit, and then compares the actual wind speed value (feedback) measured by the wind speed sensor with the setting value, and after the difference calculation, the power drive circuit Automatically adjust the frequency of the inverter, change the speed of the fan motor, and then adjust the wind speed in the test section, and finally stabilize the wind speed in the test section near the set value.
  • the sky effective temperature control process the central control unit reads the periodically changing time-to-time effective sky temperature value input by the computer operating unit, and then compares the temperature value fed back by the temperature sensor with the set value, and performs the difference calculation to control the temperature simulation It controls the mixing ratio of cold and hot water into the copper pipe in the sky background radiant panel, so as to realize the periodic adjustment of the effective sky temperature.

Abstract

一种热湿气候风洞及其多场耦合控制系统。风洞洞体(29)内安装有风机(18)、变温设备、变湿设备、盐雾发生器(8)、天空背景辐射板(11)、太阳辐射灯阵(12)以及降雨发生器(13)。并在试验段安装有风速传感器、温度传感器、湿度传感器、盐雾浓度传感器、背景辐射温度传感器、半球辐射计以及雨量计;天空背景辐射板(11)安装于风洞试验段的顶部,太阳辐射灯阵(12)以及降雨发生器(13)安装于天空背景辐射板(11)上;天空背景辐射板(11)包括导热板(11-2)、不锈钢板(11-3)、铜管(11-1),多个导热板(11-2)分为多排安装于不锈钢板(11-3)上,每排导热板(11-2)上铺设有铜管(11-1)。铜管(11-1)与外部冷热水设备连接。能够实现室外自然气候中风速、温度、湿度、太阳辐射照度、天空有效温度、降雨、盐雾七个参数场的模拟。

Description

一种热湿气候风洞及其多场耦合控制系统 技术领域
本发明涉及多参数环境模拟领域,特别涉及一种热湿气候风洞及其多场耦合控制系统。
背景技术
随着城市的迅速扩张,硬质铺装材料的大量应用,城市热岛效应日益严重,影响了居民生活的区域气候。恶化的气候条件不仅影响了人们的生理健康和热舒适感,更影响了整个城市的健康发展。降低城市热岛强度,改善城市热环境已经引起了各个国家的重视。同时,在当前各国大力发展海岛建设的形势下,海岛建筑的热工物理性能迫切需要深入研究。其中,风洞试验由于具有连续性、可重复性、模拟参数易于控制、不受室外气象变化影响、测试结果准确方便等优点,成为建筑物理环境研究中的重要方法。但是目前国内外风洞,尚不能复现复杂极端含盐热湿海岛气候,因此对风洞的环境模拟能力提出了更高的要求。
现有环境风洞大多不能适用于极端热湿气候,无法模拟高温、高湿、高盐、高辐射等复杂气候条件,且不能实现多环境参数的昼夜周期性逐时调节和动态耦合控制,不利于建筑材料在复杂气候参数耦合影响下的精细研究。此外,现有环境风洞尺度有限,仅具备部分模拟实验能力,无法将多段试验段集成在同一个风洞内。
技术问题
本发明的目的在于克服现有技术的缺陷和不足,提供了一种热湿气候风洞,能够实现室外自然气候中风速、温度、湿度、太阳辐射照度、天空有效温度、降雨、盐雾七个参数场的模拟。
本发明的目的在于提供了一种热湿气候风洞的多场耦合控制系统,能够实现多参数场之间的动态耦合控制。
技术解决方案
本发明的目的可以通过如下技术方案实现:一种热湿气候风洞,风洞洞体内安装有风机、变温设备、变湿设备、盐雾发生器、天空背景辐射板、太阳辐射灯阵以及降雨发生器,并在风洞试验段内安装有风速传感器、温度传感器、湿度传感器、盐雾浓度传感器、背景辐射温度传感器、半球辐射计以及雨量计;所述天空背景辐射板安装于风洞试验段的顶部,太阳辐射灯阵以及降雨发生器安装于天空背景辐射板上;所述天空背景辐射板包括导热板、不锈钢板以及铜管,多个导热板分为多排安装于不锈钢板上,每排导热板上铺设有一根“S”形布置的铜管,所述铜管与外部冷热水设备连接。
作为优选的技术方案,所述风洞洞体为立式的回字型,顺时针依次设置有第一稳定段、第一试验段、扩散段、风机段、过渡段、收缩段、第二稳定段、第二试验段。将第一试验段和第二试验段集成在同一风洞内,同时可做大气边界层模拟试验和热气候模拟试验。
作为优选的技术方案,所述第一稳定段内顺时针依次安装有导流叶片、阻断风阀、加热器、导流叶片、盐雾发生器、蜂窝器以及阻尼网,导流叶片、阻断风阀、加热器、盐雾发生器、蜂窝器以及阻尼网的横截面与风洞洞体横截面相适应,在第一稳定段的洞体壁面上设有出风风阀和进风风阀。第一稳定段能改善进入第一试验段的气流特性,从而在第一试验段内形成均匀分布的流场。
作为优选的技术方案,所述第一试验段的洞体顶部设有天空背景辐射板、太阳辐射灯阵以及降雨发生器,与天空背景辐射板、太阳辐射灯阵以及降雨发生器位置相对的洞体底部设有试件槽以及与试件槽连接的空调小室,所述试件槽用于放置试验模型,所述空调小室用于模拟模型进行试验时的室内环境。第一试验段可以复现室外复杂的气候环境,进行热气候模拟试验。
作为优选的技术方案,所述扩散段包括蜂窝器和第一天圆地方管,蜂窝器设置于扩散段与第一试验段的连接处,第一天圆地方管设置在风机段的入口处,与风机段内的风机连接。扩散段的作用是降低气流进入风机的湍度,从而提高风机效率,延长风机寿命。
作为优选的技术方案,所述过渡段内顺时针依次安装有第二天圆地方管、导流叶片、表冷器、加热器、加湿器、导流叶片;第二天圆地方管出口处横截面以及导流叶片、表冷器、加热器、加湿器的横截面与风洞洞体的横截面相适应;所述第二天圆地方管设置在风机段的出口处,与风机段内的风机连接。过渡段的作用是减小气流的分流,同时减小气流阻力。
作为优选的技术方案,所述收缩段为渐缩风管,两侧渐缩角度均为6.6°。收缩段通过缩小风洞断面,从而提高进入第二试验段的风速,满足进入第二试验段气流的风速要求。
作为优选的技术方案,所述第二稳定段内顺时针依次安装有蜂窝器、阻尼网、温度分层装置以及冷热辐射板,所述蜂窝器、阻尼网、温度分层装置的横截面与风洞洞体横截面相适应,所述冷热辐射板安装在洞体底部。第二稳定段可以改善气流特性,形成均匀分布的流场,同时通过温度分层装置和冷热辐射板为第二试验段营造适宜的温度场。
本发明的另一个目的可以通过如下技术方案实现:一种热湿气候风洞的多场耦合控制系统,所述控制系统包括数据采集单元、执行设备单元、中央控制单元以及电脑操作单元,所述数据采集单元、执行设备单元分别与中央控制单元电连接,所述电脑操作单元与中央控制单元通过网络通讯连接;所述数据采集单元安装于风洞洞体内,用于采集洞体内的环境参数,包括风速、温度、湿度、太阳辐射照度、天空有效温度、降雨以及盐雾浓度;所述执行设备单元用于接收中央控制单元的指令调节洞体内的环境参数;所述电脑操作单元用于输入目标环境参数。
作为优选的技术方案,所述中央控制单元包括集成控制CPU模块、数字PID控制模块、通讯模块以及功率驱动电路,所述集成控制CPU模块与电脑操作单元通过网络通讯连接,用于读取电脑操作单元输入的目标环境参数,储存数据;所述集成控制CPU模块通过通讯模块与数字PID控制模块连接,用于将目标环境参数传输给数字PID控制模块;所述数字PID控制模块与功率驱动电路连接,用于向功率驱动电路发送控制指令;所述功率驱动电路用于向执行设备单元发出调节模拟信号,驱动相应设备运转。
有益效果
本发明与现有技术相比,具有如下优点和有益效果:
1.本发明在风洞中安装天空背景辐射板和盐雾发生器,从而增加天空有效温度和盐雾两个环境参数,能复现极端含盐热湿海岛气候,提高了风洞的环境模拟能力。
2.本发明热湿气候风洞的多场耦合控制系统能够实现风洞内多参数场周期性逐时调节及耦合控制,更加真实有效地还原了实际的自然环境条件,确保了试验的准确性。
3.本发明将第一试验段和第二试验段集成在同一风洞内,构建了在同一回型风洞内串联运行的大气边界层模拟试验段和热气候模拟试验段,可节省为建立不同试验功能风洞的成本。
4.本发明突破了国内外现有风洞尺寸的限制,使风洞的试验功能得到了拓展,从而为大陆及海岛极端含盐热湿气候环境下复杂的建筑物理现象研究提供新的实验平台。
附图说明
图1是本发明实施例中热湿气候风洞的三维模型图;
图2是本发明实施例中热湿气候风洞的平面布置图;
图3是本发明实施例中热湿气候风洞的纵向剖面图;
图4是本发明实施例中天空背景辐射板的结构示意图;
图5是本发明实施例中多场耦合控制系统的流程框图。
其中:1:外壁面,2:聚氨酯保温材料,3:内壁面,4:出风风阀,5:阻断风阀,6:加热器,7:进风风阀,8:盐雾发生器,9:蜂窝器,10:阻尼网,11:天空背景辐射板,11-1:铜管,11-2:铝制导热板,11-3:不锈钢板,12:太阳辐射灯阵,13:降雨发生器,14:试件槽,15:空调小室,16:蜂窝器,17:第一天圆地方管,18:风机,19:第二天圆地方管,20:表冷器,21:加热器,22:加湿器,23:蜂窝器,24:阻尼网,25:温度分层装置,26:冷热辐射板,27:缩尺试验模型,28:导流叶片,29:风洞洞体,30:控制室,31:材料室,32:设备区,32-1:制冷机组,32-2:冷水箱,32-3:热水箱,32-4:冷却塔,32-5:除湿机,32-6:控电系统,33:试验段入口,34:观察窗。
本发明的实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如图1-2所示,一种热湿气候风洞,包括风洞洞体、控制室、材料室以及设备区。风洞洞体设置于中间位置,控制室与材料室在风洞洞体同一侧且左右相邻,设备区在风洞洞体另一侧与控制室以及材料室相对。控制室用于放置风洞控制系统计算机、部分实验数据采集单元。材料室用于存储风洞实验需要的材料构件和模型,以便进行风洞实验时直接取用和更换,节约时间和物力。设备区用于放置风洞控温所需的制冷机组,控湿所需的除湿机以及控电所需的控电系统。制冷机组与冷却塔、冷水箱、热水箱分别连接,并同时与风洞洞体内的加热器、表冷器连接,用于调节风洞洞体内的温度。除湿机与风洞洞体内的加湿器连接,用于调节风洞洞体内的湿度。控电系统与风洞控制系统连接。
本实施例中热湿气候风洞为回流立式风洞,全长40.3m,最宽处为4.9m,最高处为10.4m。风洞洞体的外壁面为彩钢板,内壁面采用316不锈钢,内外壁面之间填充100mm厚度的聚氨酯保温材料,从而达到保温、隔热、防潮、防腐、节能的目的。风洞洞体顺时针依次设置有第一稳定段、第一试验段、扩散段、风机段、过渡段、收缩段、第二稳定段、第二试验段。
第一稳定段内顺时针依次安装有导流叶片、阻断风阀、加热器6、导流叶片、盐雾发生器、蜂窝器9以及阻尼网10。导流叶片、阻断风阀、加热器6、盐雾发生器、蜂窝器9以及阻尼网10的横截面与风洞洞体横截面相适应。导流叶片用于空气导流,阻断风阀用于调节风量。加热器6用于加热空气。蜂窝器9采用损失系数较小的六角形蜂窝器,由树脂结构的蜂窝格子热压而成,长度与口径的比值取10,长度为300mm。蜂窝器9可导直气流,降低紊流度,从而有效改善第一稳定段的气流特性。阻尼网10尺寸选为20目/英寸,布置在第一试验段入口,从而在风洞洞体内实现均匀分布的流场。盐雾发生器用于产生含盐浓雾,从而模拟滨海及海岛气候区环境中的盐雾浓度。在第一稳定段的洞体壁面上还设有出风风阀和进风风阀。第一稳定段的作用,主要是改善进入第一试验段的气流特性,从而在第一试验段内形成均匀分布的流场。
第一试验段的洞体顶部设有空背景辐射板、太阳辐射灯阵以及降雨发生器,与天空背景辐射板、太阳辐射灯阵以及降雨发生器位置相对的洞体底部设有试件槽以及与试件槽连接的空调小室。天空背景辐射板安装于第一试验段的顶部,太阳辐射灯阵和降雨发生器安装于天空背景辐射板上。太阳辐射灯阵可模拟太阳辐射。降雨发生器可从其设置的雨滴模拟喷头喷水,用于模拟降雨的气候。第一试验段内安装有半球辐射计、雨量计,天空背景辐射板上安装有天空背景辐射温度传感器,半球辐射计用于测量太阳辐射照度,天空背景辐射温度传感器用于测量天空背景辐射板的表面温度,雨量计用于测量降雨量。
天空背景辐射板包括铝制导热板、不锈钢板以及铜管,十二个铝制导热板分为三排安装于不锈钢板上,每排铝制导热板上铺设有一根“S”形布置的铜管,铜管与外部冷热水设备连接。不锈钢板外表面与风洞顶部壁面平齐,铜管内通冷(热)水,通过调节铜管内的水温可调节不锈钢板内表面的温度,实现天空有效温度的均匀分布,用于模拟夜晚的天空有效温度。
试件槽用于放置试验模型和材料试件;试件槽的面积为2.5mx2.5m,由5块0.5mx2.5m可移动模块板组成,可根据实验需求调整模块板放置的数量。试件槽正下方设有一个空调小室,空调小室内安装有2HP风冷压缩冷凝机组和功率为6kW的电加热器,用于调节空调小室内的温度。空调小室内的送风和出风口采用孔板型风口,保证室内风场和温度场的均匀性。试验模型放置于试件槽内,模型一侧为风洞模拟的外部环境,另一侧为空调小室模拟的室内环境,从而实现模型内外边界条件与实际所处的室内外热湿边界条件一致,提高实验的精度。第一试验段长宽高尺寸为3mx3mx2.5m,主要作用在于复现室外复杂的气候环境,进行热气候模拟试验。
距离第一试验段入口处1米的横截面上安装有风速传感器、温度传感器、湿度传感器以及盐雾浓度传感器,传感器与风洞洞体底部的距离为1.25米。风速传感器用于测量第一试验段内的风速,温度传感器用于测量第一试验段内的温度,湿度传感器用于测量第一试验段内的湿度,盐雾浓度传感器用于测量第一试验段内的盐雾浓度。
扩散段包括蜂窝器16和第一天圆地方管17,蜂窝器16设置于扩散段与第一试验段的连接处,用于导直气流。第一天圆地方管17是一个风管构件,其一端为圆形出口,另一端为方形出口。因为风机段内选用的风机出口为圆形,而风洞洞体横截面形状为方形。因此需要使用第一天圆地方管连接风机两端,减小气流的分流。通过数值模拟计算,该段的第一天圆地方管17长度设置为1.75m。扩散段的作用是降低气流进入风机的湍度,从而提高风机效率,延长风机寿命。
风机段内设置有风机,风机选用变频轴流风机,风量范围13500-270000m 3/h,电机功率为110kW,直径为2m,在风洞试验段内实现0.5-10m/s风速可调的气流。该风机不仅可带动整个风洞空间内的气体流动及循环,还可实现在高低温环境下气流带动换热器热、冷量的循环,以及满足降雨等气候环境下的风速要求等。
过渡段内顺时针依次安装有第二天圆地方管19、导流叶片、表冷器、加热器21、加湿器、导流叶片。第二天圆地方管19出口处横截面以及导流叶片、表冷器、加热器21、加湿器的横截面与风洞洞体的横截面相适应。第二天圆地方管19设置在风机段的出口处,与风机段内的风机连接,该段的第二天圆地方管19长度也设置为1.75m。导流叶片用于空气导流。表冷器、加热器21与风洞洞体外的制冷机组连接,用于调节洞体内的温度。加湿器与风洞洞体外的除湿机连接,用于调节洞体内的湿度。过渡段的作用是减小气流的分流,同时减小气流阻力。
收缩段为渐缩风管,两侧渐缩角度均为6.6°。收缩段通过缩小风洞断面,从而提高进入第二试验段的风速,满足进入第二试验段气流的风速要求。
第二稳定段内顺时针依次安装有蜂窝器23、阻尼网24、温度分层装置以及冷热辐射板。蜂窝器23、阻尼网24、温度分层装置的横截面与风洞洞体横截面相适应,冷热辐射板安装在洞体底部。第二稳定段可以改善气流特性,形成均匀分布的流场,同时通过温度分层装置和冷热辐射板为第二试验段营造适宜的温度场。
第二试验段可以放置缩尺试验模型,实现缩尺试验模型大气边界层的速度边界层和温度边界层的模拟,用于城市风、热环境及污染物扩散的研究。距离第二试验段入口处1米的横截面上安装有风速传感器和温度传感器,传感器距离风洞洞体底部距离为1.25米。这里的风速传感器用于测量第二试验段内的风速,温度传感器用于测量第二试验段内的温度。
本实施例中第一试验段和第二试验段集成在同一风洞内,构建了在同一回型风洞内串联运行的大气边界层模拟试验段和热气候模拟试验段,可节省为建立不同试验功能风洞的成本。且两试验段均有风洞观察窗,风洞观察窗采用保温、隔热的双层钢化玻璃,且其外部配有移动保温门,既保证观察性又避免室外太阳辐射对部分实验的影响。第一试验段和第二试验段的风洞洞体外都设有试验段入口。
为了实现热湿气候风洞内多参数之间的耦合控制,如图5所示,热湿气候风洞的多场耦合控制系统包括数据采集单元、执行设备单元、中央控制单元以及电脑操作单元。数据采集单元的输出端与中央控制单元的输入端连接,中央控制单元的输出端与执行设备单元的输入端连接,电脑操作单元与中央控制单元通过网络通讯连接。
数据采集单元安装于风洞洞体内,包括风速传感器、温度传感器、湿度传感器、半球辐射计、天空背景辐射温度传感器、雨量计以及盐雾浓度传感器,用于采集洞体内的环境参数,包括风速、温度、湿度、太阳辐射照度、天空有效温度、降雨以及盐雾浓度。执行设备单元包括风机、加热器、表冷器、加湿器、太阳能灯阵、天空背景辐射板、降雨发生器以及盐雾发生器。执行设备单元用于接收中央控制单元的指令并调节洞体内的环境参数。电脑操作单元基于可编程软件,用于提供设备执行单元各设备的操作状态实时显示功能、昼夜周期性变化的目标环境参数数据的预设导入功能以及采集数据的导出。
中央控制单元用于接收电脑操作单元传递的目标环境参数数据和数据采集单元采集到的洞体内部环境参数数据,并将二者数据进行对比,根据运算结果输出相应的调节控制信号,控制各执行设备的运行并稳定被控参数。中央控制单元包括集成控制CPU模块、数字PID控制模块、通讯模块以及功率驱动电路。集成控制CPU模块与电脑操作单元通过网络通讯连接,用于读取电脑操作单元输入的目标环境参数,储存数据。集成控制CPU模块通过通讯模块与数字PID控制模块连接,用于将目标环境参数传输给数字PID控制模块。数字PID控制模块与功率驱动电路连接,用于向功率驱动电路发送控制指令。功率驱动电路用于向执行设备单元发出调节模拟信号,驱动相应设备运转。中央控制单元结合了模拟量闭环PID控制和设备逻辑控制,促使各控制回路正常运行、调节并快速稳定达到实验工况要求值,为风洞内多参数的周期性调节及耦合控制奠定基础。
为了方便人工干预控制,集成控制CPU模块还与功率驱动电路连接,可通过人工设置并输出电信号控制功率驱动电路,从而实现执行设备功率的调控。
本发明的热湿气候风洞可调控的风速范围:0.5-10m/s;温度范围:10-40℃;湿度范围:40-98%;太阳辐射照度范围:0-1000W/m 2;天空有效温度范围:7-45℃;降雨强度范围:5-200mm/h;盐雾浓度范围:0.3-25mg/m 3
以空气温湿度耦合控制流程、风速以及天空有效温度控制流程为例对风洞多场耦合控制系统的工作原理进行说明:
首先数字PID控制模块读入周期性变化的时间及其所对应的空气温湿度,温湿度传感器将试验段内的实际空气温湿度反馈到数字PID控制模块,数字PID控制模块将空气温湿度设定值与实际值进行差值运算,控制表冷器、加热器、加湿器等空气温湿度调节设备的运转,从而将空气温湿度调节至设定温湿度附近并达到稳定。
如降温减湿过程,若数字PID控制模块检测到表冷器温度低于空气露点温度,直接让空气干冷却会出现结露现象,导致空气湿度剧烈波动。此时数字PID控制模块首选通过功率驱动电路驱动表冷器运转,让空气通过表冷器进行初步降温,然后数字PID控制模块再通过功率驱动电路驱动除湿机运转对初步降温后的空气进行等温减湿至湿度设定值,最后数字PID控制模块通过功率驱动电路再启动表冷器工作,减湿后的空气通过表冷器进行二次降温至温度设定值,从而达到设定的温湿度。整个过程温湿度传感器实时将试验段内的实际空气温湿度反馈到数字PID控制模块。
若数字PID控制模块通过温湿度传感器反馈的信息检测到表冷器温度高于空气露点温度,数字PID控制模块则通过功率驱动电路启动表冷器,直接让空气通过表冷器进行干冷却至设定温度且不会出现结露现象,然后数字PID控制模块再通过功率驱动电路驱动除湿机对降温后的空气进行等温减湿至湿度设定值,即可达到设定的温湿度。整个调节过程充分结合了冷却除湿和转轮除湿方法的优点,不仅调节方便,运行平稳,而且节约能耗和设备投资以及运行费用。
风速调节流程:首先数字PID控制模块读入电脑操作单元输入的风速设定值,然后将风速传感器测出的实际风速值(反馈)与设定值进行比较,经过差值运算,通过功率驱动电路自动调节变频器的频率,改变风机电机的转速,进而调节试验段的风速,最终使试验段的风速稳定在设定值附近。
天空有效温度控制流程:中央控制单元读入电脑操作单元输入的周期性逐时变化的天空有效温度数值,然后将温度传感器反馈的温度值与设定值进行比较,经过差值运算,控制温度模拟量的输出,进而控制进入天空背景辐射板内铜管中冷、热水的混合比例,从而实现对天空有效温度的周期性逐时调节。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1、一种热湿气候风洞,其特征在于,风洞洞体内安装有风机、变温设备、变湿设备、盐雾发生器、天空背景辐射板、太阳辐射灯阵以及降雨发生器,并在风洞试验段内安装有风速传感器、温度传感器、湿度传感器、盐雾浓度传感器、背景辐射温度传感器、半球辐射计以及雨量计;所述天空背景辐射板安装于风洞试验段的顶部,太阳辐射灯阵以及降雨发生器安装于天空背景辐射板上;所述天空背景辐射板包括导热板、不锈钢板以及铜管,多个导热板分为多排安装于不锈钢板上,每排导热板上铺设有一根铜管,所述铜管与外部冷热水设备连接。
根据权利要求1所述的一种热湿气候风洞,其特征在于,所述风洞洞体为立式的回字型,顺时针依次设置有第一稳定段、第一试验段、扩散段、风机段、过渡段、收缩段、第二稳定段、第二试验段。
根据权利要求2所述的一种热湿气候风洞,其特征在于,所述第一稳定段内顺时针依次安装有导流叶片、阻断风阀、加热器、导流叶片、盐雾发生器、蜂窝器以及阻尼网,导流叶片、阻断风阀、加热器、盐雾发生器、蜂窝器以及阻尼网的横截面与风洞洞体横截面相适应,在第一稳定段的洞体壁面上设有出风风阀和进风风阀。
根据权利要求2所述的一种热湿气候风洞,其特征在于,所述第一试验段的洞体顶部设有天空背景辐射板、太阳辐射灯阵以及降雨发生器,与天空背景辐射板、太阳辐射灯阵以及降雨发生器位置相对的洞体底部设有试件槽以及与试件槽连接的空调小室,所述试件槽用于放置试验模型,所述空调小室用于模拟模型进行试验时的室内环境。
根据权利要求2所述的一种热湿气候风洞,其特征在于,所述扩散段包括蜂窝器和第一天圆地方管,蜂窝器设置于扩散段与第一试验段的连接处,第一天圆地方管设置在风机段的入口处,与风机段内的风机连接。
根据权利要求2所述的一种热湿气候风洞,其特征在于,所述过渡段内顺时针依次安装有第二天圆地方管、导流叶片、表冷器、加热器、加湿器、导流叶片;第二天圆地方管出口处横截面以及导流叶片、表冷器、加热器、加湿器的横截面与风洞洞体的横截面相适应;所述第二天圆地方管设置在风机段的出口处,与风机段内的风机连接。
根据权利要求2所述的一种热湿气候风洞,其特征在于,所述收缩段为渐缩风管,两侧渐缩角度均为6.6°。
根据权利要求2所述的一种热湿气候风洞,其特征在于,所述第二稳定段内顺时针依次安装有蜂窝器、阻尼网、温度分层装置以及冷热辐射板,所述蜂窝器、阻尼网、温度分层装置的横截面与风洞洞体横截面相适应,所述冷热辐射板安装在洞体底部。
一种热湿气候风洞的多场耦合控制系统,其特征在于,所述控制系统包括数据采集单元、执行设备单元、中央控制单元以及电脑操作单元,所述数据采集单元、执行设备单元分别与中央控制单元电连接,所述电脑操作单元与中央控制单元通过网络通讯连接;所述数据采集单元安装于风洞洞体内,用于采集洞体内的环境参数,包括风速、温度、湿度、太阳辐射照度、天空有效温度、降雨以及盐雾浓度;所述执行设备单元用于接收中央控制单元的指令调节洞体内的环境参数;所述电脑操作单元用于输入目标环境参数。
根据权利要求9所述的一种热湿气候风洞的多场耦合控制系统,其特征在于,所述中央控制单元包括集成控制CPU模块、数字PID控制模块、通讯模块以及功率驱动电路,所述集成控制CPU模块与电脑操作单元通过网络通讯连接,用于读取电脑操作单元输入的目标环境参数,储存数据;所述集成控制CPU模块通过通讯模块与数字PID控制模块连接,用于将目标环境参数传输给数字PID控制模块;所述数字PID控制模块与功率驱动电路连接,用于向功率驱动电路发送控制指令;所述功率驱动电路用于向执行设备单元发出调节模拟信号,驱动相应设备运转。
PCT/CN2020/100092 2019-10-30 2020-07-03 一种热湿气候风洞及其多场耦合控制系统 WO2021082506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911043370.2A CN110702357B (zh) 2019-10-30 2019-10-30 一种热湿气候风洞及其多场耦合控制系统
CN201911043370.2 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021082506A1 true WO2021082506A1 (zh) 2021-05-06

Family

ID=69203855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100092 WO2021082506A1 (zh) 2019-10-30 2020-07-03 一种热湿气候风洞及其多场耦合控制系统

Country Status (2)

Country Link
CN (1) CN110702357B (zh)
WO (1) WO2021082506A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116990202A (zh) * 2023-09-25 2023-11-03 哈尔滨工程大学 一种盐雾浓度在线测量模拟装置及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702357B (zh) * 2019-10-30 2020-06-26 华南理工大学 一种热湿气候风洞及其多场耦合控制系统
CN113209581A (zh) * 2021-04-20 2021-08-06 国家体育总局体育科学研究所 一种体育训练测试风洞系统及其中气流形成和控制方法
CN114323071A (zh) * 2021-12-27 2022-04-12 武汉航空仪表有限责任公司 一种风标传感器加热寿命试验装置及方法
WO2023161676A1 (es) * 2022-02-28 2023-08-31 Escuela Superior Politécnica Del Litoral Espol Túnel de viento para el análisis de fisuras en hormigón bajo diferentes parámetros ambientales.
CN115096536A (zh) * 2022-06-09 2022-09-23 辽宁工程技术大学 一种显微成像的环境降水风洞及其在健康风险评估的应用
CN115394174B (zh) * 2022-09-01 2023-09-19 浙江大学 一种缩尺建筑模型室内外热湿环境营造方法及系统
CN117146906B (zh) * 2023-11-01 2024-02-09 华南理工大学 一种建筑围护结构的综合性能检测系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334319A1 (en) * 2015-05-12 2016-11-17 Croda, Inc. Method of analyzing spray particulates
CN110702357A (zh) * 2019-10-30 2020-01-17 华南理工大学 一种热湿气候风洞及其多场耦合控制系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180296A (ja) * 1998-12-15 2000-06-30 Mitsubishi Heavy Ind Ltd 海塩粒子飛散量予測風洞実験方法
CN101806708A (zh) * 2009-02-17 2010-08-18 总装备部工程设计研究总院 大空间交变式盐雾试验系统
JP2012018035A (ja) * 2010-07-07 2012-01-26 Kitami Institute Of Technology 風洞試験装置
JP2012040454A (ja) * 2010-08-12 2012-03-01 M Hikari Energy Kaihatsu Kenkyusho:Kk 海水の淡水化装置及び含水物の脱水方法
CN102095747B (zh) * 2010-11-19 2013-03-20 南京工业大学 人工气候综合实验系统
CN104280204B (zh) * 2014-09-28 2017-05-03 中车青岛四方机车车辆股份有限公司 一种风洞
CN105651974B (zh) * 2015-12-31 2017-07-28 安徽省煤炭科学研究院 煤矿井下热环境仿真气候室及测试方法
CN206725184U (zh) * 2017-03-28 2017-12-08 西安交通大学 一种高温换热风洞测试系统
CN109506876B (zh) * 2018-11-29 2021-06-29 中国辐射防护研究院 一种大气边界层环境风洞中温度层结模拟装置及方法
CN110057861A (zh) * 2019-04-11 2019-07-26 辽宁工程技术大学 一种地板辐射空调系统的房间热环境特性实验装置及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334319A1 (en) * 2015-05-12 2016-11-17 Croda, Inc. Method of analyzing spray particulates
CN110702357A (zh) * 2019-10-30 2020-01-17 华南理工大学 一种热湿气候风洞及其多场耦合控制系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LI LINGLING: "Development of multi-parameter dynamic hot-humid climate wind tunnel", EXPERIMENTAL TECHNOLOGY AND MANAGEMENT, vol. 36, no. 10, 20 October 2019 (2019-10-20), pages 95 - 99, XP055809156 *
LI, LINGLING ET AL.: "Development of multi-parameter dynamic hot-humid climate wind tunnel", EXPERIMENTAL TECHNOLOGY AND MANAGEMENT, vol. 36, no. 10, 20 October 2019 (2019-10-20), pages 95 - 99, XP055809156 *
LI, LINGLING ET AL.: "Numerical Simulation of Wind Field and Temperature Field in a Non-Neutral Atmospheric Boundary Layer using a Wind Tunnel Test", SOUTH ARCHITECTURE, 31 January 2019 (2019-01-31), pages 107 - 113, XP055809177 *
ZHANG, YU ET AL.: "Development of Dynamic Laboratory of Hot-Humid Climatic Wind Tunnel", JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE EDITION, vol. 36, no. 3, 31 March 2008 (2008-03-31), pages 99 - 103, XP055809162 *
ZHANG, YU ET AL.: "Dynamic Measurement Research of Solar Evaporative Cooling Performance of Building Porous Material", ACTA ENERGIAE SOLARIS SINICA, vol. 38, no. 4, 30 April 2017 (2017-04-30), pages 1130 - 1137, XP055809183 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116990202A (zh) * 2023-09-25 2023-11-03 哈尔滨工程大学 一种盐雾浓度在线测量模拟装置及方法
CN116990202B (zh) * 2023-09-25 2024-01-09 哈尔滨工程大学 一种盐雾浓度在线测量模拟装置及方法

Also Published As

Publication number Publication date
CN110702357B (zh) 2020-06-26
CN110702357A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021082506A1 (zh) 一种热湿气候风洞及其多场耦合控制系统
Zha et al. Experimental and numerical studies of solar chimney for ventilation in low energy buildings
CN102095747B (zh) 人工气候综合实验系统
CN107462430A (zh) 用于建筑围护结构热工性能测试的气候环境舱
Liu et al. Optimizing building envelope dimensions for passive solar houses in the Qinghai-Tibetan region: window to wall ratio and depth of sunspace
Tkachenko et al. Methodology of thermal resistance and cooling effect testing of green roofs.
Shbailat et al. Possible energy saving of evaporative passive cooling using a solar chimney of metal foam porous absorber
Guo et al. Experimental and numerical study on indoor thermal environment of solar Trombe walls with different air-channel thicknesses in plateau
CN101504402A (zh) 一种对于遮阳系统遮阳效果的测试方法
Chen et al. Experimental studies on the energy performance of a novel wavy-shape Trombe wall
CN201903520U (zh) 人工气候综合实验装置
Nakielska et al. Increasing natural ventilation using solar chimney
Abdallah Occupant comfort and indoor temperature reduction by using passive air conditioning system with solar chimney concept in hot arid climate
CN110057861A (zh) 一种地板辐射空调系统的房间热环境特性实验装置及方法
CN206399796U (zh) 一种复合相变板的测试装置
Zhong et al. Performance evaluation of a novel hybrid cooling system combining air source heat pump and urban underground pipe rack
CN204740217U (zh) 一种土壤多孔介质热质传递实验装置
CN208332533U (zh) 一种毛细管网辐射空调系统
CN102607794A (zh) 墙壁-屋顶式太阳能烟囱实验装置
CN202494554U (zh) 墙壁-屋顶式太阳能烟囱实验装置
CN110133111A (zh) 超低温环境下高铁壁板的隔声测试装置及其使用方法
De Carli et al. An innovative building based on active thermal slab systems
CN218297599U (zh) 太阳能热水系统实验室热性能检测设备
CN208139720U (zh) 一种控温阳光晾晒场
CN217277997U (zh) 一种小型制冷平台结霜实验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 120A DATED 11/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20882149

Country of ref document: EP

Kind code of ref document: A1