WO2021082456A1 - 空气冷却系统、风力发电机组及其冷却方法 - Google Patents

空气冷却系统、风力发电机组及其冷却方法 Download PDF

Info

Publication number
WO2021082456A1
WO2021082456A1 PCT/CN2020/095086 CN2020095086W WO2021082456A1 WO 2021082456 A1 WO2021082456 A1 WO 2021082456A1 CN 2020095086 W CN2020095086 W CN 2020095086W WO 2021082456 A1 WO2021082456 A1 WO 2021082456A1
Authority
WO
WIPO (PCT)
Prior art keywords
nacelle
air
cooling system
pipe
generator
Prior art date
Application number
PCT/CN2020/095086
Other languages
English (en)
French (fr)
Inventor
白洛林
瑟琳森彼得·海赛尔伦德
张敬祎
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to EP20883027.3A priority Critical patent/EP4043726A4/en
Priority to AU2020375666A priority patent/AU2020375666B2/en
Priority to CA3156591A priority patent/CA3156591A1/en
Publication of WO2021082456A1 publication Critical patent/WO2021082456A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • B01D46/12Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces in multiple arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • F03D80/55Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/40Flow geometry or direction
    • F05B2210/404Flow geometry or direction bidirectional, i.e. in opposite, alternating directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • F05B2260/64Aeration, ventilation, dehumidification or moisture removal of closed spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/325Air temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This application relates to the field of cooling technology, in particular to an air cooling system, a wind power generator set and a cooling method thereof.
  • Wind power is one of the renewable energy technologies closest to commercialization, and it is the focus of renewable energy development.
  • the motor in the wind turbine generator has heat loss during operation, which mainly includes: electromagnetic loss, that is, Joule heat generated by ohmic impedance in the winding, that is, copper loss; hysteresis loss and eddy current loss in the iron core, that is, iron Loss; and the inevitable stray loss; if it is a permanent magnet motor, it also includes magnetic steel loss.
  • electromagnetic loss that is, Joule heat generated by ohmic impedance in the winding, that is, copper loss
  • hysteresis loss and eddy current loss in the iron core that is, iron Loss
  • the inevitable stray loss if it is a permanent magnet motor, it also includes magnetic steel loss.
  • the purpose of the present application is to provide an air cooling system, a wind power generator set and a cooling method thereof, which can realize multiple functions including a cooling function.
  • this application proposes an air cooling system, which connects the nacelle of the wind power generator set with the generator, and at least includes: two or more sub-systems operating independently, each sub-system including: a dehumidification device, On the wall of the nacelle and connected with the nacelle; the driving equipment is set in the nacelle to introduce the external cooling air into the nacelle through the dehumidification device, mix it with part of the high-temperature air discharged from the air outlet of the generator, and mix with the heating components and the nacelle / Or the generator performs heat exchange; among them, the driving equipment of two or more subsystems operate at the same time to implement the first function of the wind turbine; the driving equipment of two or more subsystems operate alternately for a predetermined period of time, in order to perform the first function on the wind turbine. Implement the second function.
  • the present application also provides a wind power generator set, which includes: a generator; a nacelle connected to the generator; and any air cooling system as described above.
  • this application also provides a method for cooling a wind turbine generator as described above.
  • the cooling method includes: acquiring operation instruction information, where the operation instruction includes a first instruction and a second instruction; When instructed, the drive equipment of the N subsystems are activated at the same time to implement the first function for the wind turbine, where N ⁇ 2; when the second instruction is obtained, the drive equipment of the N subsystems operate alternately for a predetermined period of time to control the wind power.
  • the generator set implements the second function.
  • An air cooling system and a wind power generator set provided by the present application are provided with two or more sub-systems that operate independently of each other between the nacelle of the wind power set and the air inlet of the generator, and drive equipment for the two or more sub-systems
  • the first function can be implemented for the wind turbine; the driving equipment of two or more subsystems can operate alternately for a predetermined time, and the second function can be implemented for the wind turbine, making full use of the waste heat of the generator to coordinate the two subsystems. Function, expand the functionality of the air cooling system.
  • two or more subsystems operate independently.
  • the air cooling system has high cooling efficiency
  • the structure is simple and compact, the space is small, the cost is low, and the maintenance is easy.
  • the method for cooling a wind turbine generator provided by the present application can implement different functions according to different instructions received, thereby improving the reliability of the wind turbine generator.
  • Fig. 1 is a schematic structural diagram of an air cooling system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the pipeline layout structure in the nacelle of the air cooling system shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of another air cooling system provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another air cooling system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the pipeline layout structure in the nacelle of the air cooling system shown in FIG. 4;
  • Fig. 6 is a schematic structural diagram of another air cooling system provided by an embodiment of the present application.
  • Fig. 7 is a flow chart of a method for cooling a wind turbine generator provided by an embodiment of the present application.
  • M-generator C-engine room; In-air inlet; O-air outlet; A-auxiliary air outlet; S-subsystem; F-filter; C1-first cavity; C2-second cavity;
  • the ambient air outside the cabin C of a wind turbine generator generally has a certain relative humidity, especially for offshore wind turbines, the offshore environment is high-salt and humid air, and most of it exists in the form of droplets, so it enters the cabin Before C, the outside cooling air needs to be desalinated and dehumidified.
  • the dehumidification device 2 of the cabin C usually freezes and blocks the passage into the cabin C because the outside cooling air is in a humid and low-temperature environment. , Also need to carry out deicing work.
  • an embodiment of the present application provides an air cooling system, which is arranged between the nacelle C of the wind turbine generator set and the air inlet In of the generator M.
  • the air cooling system includes two or more sub-systems that operate independently. S.
  • Each subsystem S includes at least: a dehumidifying device 2 and a driving device 3.
  • the dehumidifying device 2 is installed on the wall of the cabin C and communicates with the cabin C.
  • the dehumidification device 2 may be, for example, a gas-liquid separator, which may be arranged on the inner wall or the outer wall of the cabin C for separating liquid droplets in the external cooling air.
  • the driving device 3 is arranged in the cabin C to introduce the external cooling air into the cabin C through the dehumidification device 2. Due to the effect of inertia, most of the droplet particles with a diameter of, for example, 12 ⁇ m or more will impact on the blades of the wind turbine, and then flow out of the cabin C. After removing the large-diameter droplet particles, the remaining particles contain a small amount of water and a small amount of salt.
  • the humid air is introduced into the nacelle through the dehumidification device 2 by the driven equipment 3, mixed with part of the high-temperature air discharged from the air outlet O of the generator M, filtered (the re-filtering device is described in detail below), and combined with the heating components of the nacelle C And/or the generator M performs heat exchange.
  • the drive device 3 is a centrifugal fan, which includes a drive motor and fan blades, and the fan blades rotate under the drive of the drive motor.
  • the heating components in the nacelle C include, but are not limited to, various electrical equipment, gearboxes, etc., depending on the specific layout structure of the wind turbine generator set.
  • the drive devices 3 of two or more subsystems S run simultaneously to implement the first function for the wind turbine; the drive devices 3 of two or more subsystems operate alternately for a predetermined time to implement the second function for the wind turbine. .
  • the first function is to perform at least one of cooling, dehumidification, and desalination of the wind power generator, and the second function is to deicer the dehumidification device 2.
  • An air cooling system provided by the present application is provided by providing two or more independent operating subsystems S between the nacelle C of the wind turbine generator and the air inlet In of the generator M, and the driving of the two or more subsystems S
  • the first function can be implemented for the wind turbine; the driving equipment 3 of two or more subsystems S can operate alternately for a predetermined time, and the second function can be implemented on the wind turbine, making full use of the waste heat of the generator.
  • the two subsystems S work together to expand the functionality of the air cooling system.
  • two or more subsystems S operate independently. When one of the subsystems S fails, it will not affect the operation of the other subsystem S, which improves the fault tolerance and reliability of the air cooling system; and the air cooling system cools High efficiency, simple and compact structure, small footprint, low cost and easy maintenance.
  • each subsystem S of the air cooling system can be the same, which saves complicated settings and simplifies the entire air cooling system.
  • the single subsystem S further includes: a first pipe 1 and a second pipe 4.
  • the first pipe 1 has a first end 11 located inside the nacelle C and a second end 12 located outside the nacelle C.
  • the drive device 3 is arranged corresponding to the first end 11 of the first pipe 1, and the dehumidification device 2 corresponds to the first pipe 1.
  • the second end 12 is set on the wall of the cabin C, which can be the inner wall of the cabin C or the outer wall of the cabin C, preferably on the outer wall of the cabin C, so that all the cooling air entering the cabin C passes through the dehumidifier 2, Does not occupy the internal space of cabin C.
  • One end of the second pipe 4 is connected to the air outlet O of the generator M, and the other end is extended to the outside of the nacelle C after intersecting with the first pipe 1 to communicate with the outside cooling air to discharge the part of the air outlet O of the generator M
  • the high-temperature air is mixed with the cooling air entering the first pipe 1.
  • the driving device 3 is arranged in the downstream area of the intersection of the first pipe 1 and the second pipe 4, and the external cooling air is mixed with the high-temperature exhaust of the generator M (the temperature can reach above 90 degrees Celsius), which improves the efficiency of the external cold air.
  • the temperature reduces the humidity of the outside cooling air.
  • the relative humidity of the mixed gas is controlled to be lower than 74%, preferably lower than 60%.
  • the liquid salt contained in the mixed air can be dried and solidified and precipitated automatically.
  • Setting the driving device 3 in the downstream area of the intersection of the first pipe 1 and the second pipe 4 can better drive the gas in the first pipe 1 and the second pipe 4 to fully mix, and realize the control of the relative humidity of the mixed air. Solidification and desalination; it can also prevent the salt in the outside air from corroding the drive equipment 3, thereby entering the engine room C and the generator M. Therefore, the mixed air exchanges heat with the heat generating parts of the nacelle C and/or the generator M. It can make full use of the high-temperature waste heat exhausted by the generator M, reduce energy consumption, and dehumidify and desalt the external cooling air, and can directly cool the heating components in the nacelle C of the wind turbine generator and/or the generator M .
  • the air cooling system adopts the direct cooling method of external cooling air, and the cooling temperature is low, and two or more subsystems S enter the first pipe 1 under the action of the respective driving equipment 3, and are connected to the air outlet O of the generator M. After the high-temperature air discharged to the second duct 4 is mixed, they are merged into the nacelle C, which greatly improves the cooling efficiency of the wind turbine. Since there is no risk of corrosion and leakage, the reliability is higher than that of liquid cooling or air-liquid integrated cooling methods. At the same time, it saves complicated parts such as liquid cooling pipes, pumping stations, heat exchangers, and pressure stabilizing systems. It has a compact structure and takes up space. Small, easy to maintain, and low manufacturing cost.
  • the air cooling system provided by the embodiment of the present application further includes: a temperature sensor and a controller (not shown in the figure) electrically connected to the temperature sensor.
  • a temperature sensor is arranged on the wall of the nacelle C to monitor the ambient temperature outside the nacelle C.
  • the controller controls the driving devices 3 of two or more subsystems S to operate alternately for a predetermined time respectively to deicer the dehumidification device 2 of each subsystem S.
  • the predetermined temperature is, for example, 0°C
  • the predetermined time is, for example, 10 minutes to 30 minutes.
  • the working principle of deicing is as follows: When the driving device 3 of the first subsystem S is running, the pressure in the cabin C increases. Since the driving device 3 of the remaining subsystems S is not turned on, the air with high pressure will pass through the first sub-system S. The drive equipment 3 and the first pipe 1 of the second subsystem S that are not activated are diffused outwards. Since the air temperature in the engine room C is higher than the ambient temperature, the first pipe 1 and the dehumidification device 2 of the second subsystem S can be Deicing.
  • the drive device 3 of the first subsystem S runs for a predetermined time, the drive device 3 of the first subsystem S is turned off, and then the drive device 3 of the second subsystem S is started.
  • the same working principle is that the pressure in the cabin C increases. The air with high pressure and high pressure will diffuse outward through the inactive driving equipment 3 and the first pipe 1 of the remaining subsystems S. Since the air temperature in the engine room C is higher than the ambient temperature, after a predetermined time of operation, the remaining The first pipe 1 and the dehumidifying device 2 of the subsystem S de-icing,
  • the first pipe 1 and the first dehumidification system 2 of each of the two or more subsystems S are deiced. After the deicing work is completed, the first pipes 1 of the two or more subsystems S can be connected with the outside air.
  • each subsystem S further includes a regulating valve 5 which is arranged at the intersection of the first pipe 1 and the second pipe 4 to regulate the flow rate of the high-temperature air entering the first pipe 1 from the second pipe 4.
  • the regulating valve 5 is preferably a three-way valve, which is respectively communicated with the first pipe 1, the second pipe 4 and the outside cooling air. Part of the high temperature air discharged from the air outlet O of the generator M to the second pipe 4 enters the first pipe 1 through the regulating valve 5, and most of the remaining high temperature air is discharged out of the cabin C through the second pipe 4. After the high-temperature air entering the first pipe 1 is mixed with the air containing high salt and high humidity, the temperature rises and becomes an unstable mixture of saturated salt solution particles and air.
  • the relative humidity of the mixed gas is controlled to be less than 74% through the regulating valve 5 , Preferably, less than 60%, the mixture precipitates salt crystals in the form of crystals under the rotation of the driving device 3, most of the salt crystals fall into the storage box (not shown in the figure) of the cabin C, and the other part of the salt crystals It is filtered and removed by the filter device 6, which improves the desalination and dehumidification effects of the external cooling air.
  • a first circulating fan 42 is provided on the second pipe 4 to improve the mixing efficiency of the high-temperature air in the second pipe 4 and the moist air in the first pipe 1 and to improve the desalination and dehumidification effect of the external cooling air.
  • each subsystem S further includes a filter device 6, which divides the internal space of the nacelle C into a first cavity C1 and a second cavity C2, and the first pipe 1 and the driving device 3 are located in the first cavity C1 ,
  • the filtering device 6 is used to remove dust, salt and other particles remaining in the mixed air.
  • the filter device 6 includes an isolation bracket 61 and a filter assembly arranged on the isolation bracket 61.
  • the isolation bracket 61 is connected to the wall of the nacelle C and is arranged tapered along the air flow direction in the first cavity C1.
  • the isolation bracket 61 may have a parabolic surface or a tapered surface structure. For manufacturing convenience, a tapered surface structure is generally selected.
  • the filter assembly includes a first filter element 621 disposed close to the first cavity C1 and a second filter element 622 disposed close to the second cavity C2, and the filter mesh of the second filter element 622 is smaller than the first filter element 621 The pore size of the filter.
  • the function of the first filter element 621 is to remove large particles such as dust remaining in the air
  • the function of the second filter element 622 is to remove remaining salt spray particles having a diameter of, for example, greater than 5 ⁇ m, and further improve the purity of the mixed air.
  • the filtered air can directly cool the heating components in the engine room C and enter the generator M through the filter F at the air inlet In of the generator M.
  • the filter F is used to remove the remaining dust and other impurities in the mixed air , And then absorb heat from heating components such as stator windings, stator cores, magnetic steel, etc., and then enter the second pipe 4 through the air outlet O.
  • a part of the high-temperature air enters the first pipe 1 to continue the next air cooling cycle, and the other part is high-temperature
  • the air is discharged to the outside of cabin C.
  • each subsystem S further includes a plurality of sub-pipes 41 arranged in the nacelle C and communicating with the outside, and the plurality of sub-pipes 41 are arranged downstream of the filter device 6 in the nacelle C. Part, and communicate with the second pipe 4 to discharge the high-temperature air generated by the generator M to the outside of the nacelle C through a plurality of sub-pipes 41.
  • the generator M may have deviations in the manufacturing process, which affects the distribution of the cooling air on the air cooling system in the generator M, in order to maintain the uniformity of the temperature of the generator M in the circumferential direction, multiple sub-systems of the two subsystems S
  • the pipes 41 are alternately distributed in the circumferential direction in the nacelle C.
  • the first subsystem S includes three sub-pipes 41 arranged in the engine room C and connected to the outside world, such as the black pipe shown in FIG. 2, and the second subsystem S includes three sub-pipes 41 arranged in the engine room C and connected to the outside world.
  • Two sub-pipes 41, such as the white pipe shown in Fig. 2 six sub-pipes 41 of the two subsystems S are alternately distributed in the circumferential direction in the nacelle C, which maintains the uniform stability of the heat dissipation of the generator M and improves the operation of the generator M reliability.
  • an embodiment of the present application also provides an air cooling system, which is similar in structure to the air cooling system shown in FIG. 1, except that the second pipes 4 of more than two subsystems S are integrally arranged, thereby The number of the second duct 4 and the first circulation fan 42 can be reduced, the manufacturing cost can be reduced, the space occupied by the engine room can be reduced, and the layout can be compact.
  • the high-temperature gas of the generator M in the single second pipe 4 is intersected and mixed with the first pipes 1 of the two or more subsystems S, and the outside of the two or more subsystems S entering the nacelle C from the first pipe 1 is cooled.
  • the air is dehumidified and desalinated, it is mixed again, filtered, and then enters the engine room C and the generator M, and cools the heating components of the engine room C and/or the generator M.
  • the embodiment of the present application also provides an air cooling system, which is similar in structure to the air cooling system shown in FIG. 1, except that the generator M is also provided with an auxiliary air outlet A.
  • the air cooling system also includes a third pipe 7. One end of the third pipe 7 is connected to the auxiliary air outlet A, and the other end is connected to the outside.
  • a second circulating fan 71 is provided on the third duct 7 to improve the exhaust efficiency of the third duct 7.
  • the function of the auxiliary air outlet A is to divide the high-temperature air discharged from the air outlet of the generator M into two branches: part of the high-temperature air in one branch is mixed with the wet and cold air in the first pipe 1 through the second pipe 4, and the other part It is discharged out of cabin C; the other branch is directly discharged out of cabin C through the third pipe 7.
  • the exhaust resistance of the second duct 4 can be reduced, the power requirement of the first circulating fan 42 can be effectively reduced, and the complexity of the air cooling system can be reduced.
  • the auxiliary air outlet A of the generator M corresponds to the arrangement in the nacelle C, and each subsystem S further includes a plurality of sub-pipes 41 arranged in the nacelle C and communicated with the outside. It communicates with the third duct 7 to discharge the high-temperature air generated by the generator M to the outside of the nacelle C through a plurality of sub ducts 41.
  • the generator M may have deviations in the manufacturing process, which affects the distribution of the cooling air on the air cooling system in the generator M, in order to maintain the uniformity of the temperature of the generator M in the circumferential direction, two or more subsystems S A plurality of sub-pipes 41 are alternately distributed in the circumferential direction in the nacelle C.
  • the first subsystem S includes three sub-pipes 41 arranged in the engine room C and connected to the outside world, such as the black pipe shown in FIG. 2, and the second subsystem S includes three sub-pipes 41 arranged in the engine room C.
  • the six sub-pipes 41 of the two subsystems S are alternately distributed in the circumferential direction in the nacelle C to ensure the uniformity of the temperature of the generator M in the circumferential direction , Improve the operational reliability of the generator M.
  • each subsystem S of the air cooling system provided in the embodiment of the present application may also be different.
  • one of the subsystems S includes a first pipe 1, a dehumidification device 2, a driving device 3, and a second pipe 4.
  • another subsystem S includes a first pipe 1, a dehumidifying device 2, a driving device 3, a second pipe 4 and a dehumidifying device or other devices to realize different functions.
  • an embodiment of the present application also provides an air cooling system, which is similar in structure to the air cooling system shown in Fig. 4, except that the auxiliary air outlet A of the generator M is arranged outside the nacelle C.
  • the second circulation fan 71 at the time is also located outside the cabin C, eliminating the need for multiple sub-pipes 41, reducing the space occupied by the cabin C, making the layout more compact and simple, and reducing manufacturing costs.
  • an embodiment of the present application also provides a wind power generator set, which includes: a generator M, a nacelle C connected to the generator M, and any of the aforementioned air cooling systems, the air cooling system being arranged at Between the nacelle C and the air inlet In of the generator M.
  • the wind turbine is provided with any of the aforementioned air cooling systems between the nacelle and the air inlet of the generator, which includes two or more sub-systems S operating independently, when one of them After subsystem S fails, it will not affect the operation of another subsystem S, which improves the fault tolerance and reliability of the air cooling system, and the air cooling system has a simple and compact structure, which saves the space occupied by engine room C, lowers the cost, and improves Improve the maintainability of wind turbines.
  • an embodiment of the present application also provides a cooling method for a wind power generator set as described above, and the cooling method includes:
  • Step S1 Obtain running instruction information, where the running instruction includes a first instruction and a second instruction;
  • Step S2 When the first instruction is acquired, the drive devices 3 of the N subsystems S are started at the same time, and N ⁇ 2, so as to realize the first function.
  • the first function is to perform at least one of cooling, dehumidification, and desalination of the wind power generator.
  • Step S3 When the second instruction is acquired, the drive devices 3 of the N subsystems S operate alternately for a predetermined time, so as to realize the second function.
  • the second function is to deicer the dehumidification device 2 and the like.
  • the realization of the first function in step S2 includes:
  • Step S21 Simultaneously start the drive equipment 3 of N subsystems S, each subsystem S includes at least a dehumidification device 2 arranged on the wall of the cabin C and connected with the cabin C, and a drive device 3 arranged in the cabin C;
  • Step S22 The external cooling air enters the engine room C through the dehumidification device 2 under the action of the driving equipment 3 of the N subsystems S, mixes with part of the high-temperature air discharged from the air outlet O of the generator M, and mixes with the heating components of the engine room C And/or the generator M performs heat exchange.
  • the realization of the second function in step S3 includes:
  • Step S31 Monitoring whether the ambient temperature outside the engine room C is lower than a predetermined temperature, for example, the predetermined temperature is 0°C.
  • Step S32 If yes, start the drive device 3 of the i-th subsystem S of the N subsystems S, run for a predetermined time, and realize the deicing of the deicing devices 2 of the remaining subsystems S of the N subsystems, 1 ⁇ i ⁇ N.
  • the predetermined time may be 10 minutes to 30 minutes.
  • Step S33 Turn off the driving device 3 of the i-th subsystem S, start the driving device 3 of the i+1-th subsystem S, and run for a predetermined time to realize the deicing of the deicing devices 2 of the remaining subsystems S of the N subsystems.
  • the deicing device 2 does not need to be deiced, and the wind power generator can be directly cooled by air.
  • the cooling method of the wind turbine generator provided by the embodiment of the present application can realize different functions according to different instructions received, and expand the functionality of the air cooling system, especially when it is monitored that the ambient temperature outside the nacelle C is lower than the predetermined temperature At this time, the deicing of the dehumidifying device 2 is performed first, and then the air cooling of the wind power generating set is performed, which improves the cooling effect and service life of the wind power generating set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wind Motors (AREA)

Abstract

一种空气冷却系统、风力发电机组及其冷却方法,空气冷却系统连通风力发电机组的机舱(C)与发电机(M),其包括:各自独立运行的两个以上的子系统(S),每个子系统包括:除湿装置(2),设置于机舱的壁部且与机舱连通;驱动设备(3),设置于机舱内,以将外界冷却空气经除湿装置引入机舱,与由发电机的出气口(O)排放的部分高温空气混合,并与机舱的发热部件和/或发电机进行热交换;其中,两个以上子系统的驱动设备同时运行,以对风力发电机组实施第一功能;两个以上子系统的驱动设备分别交替运行预定时间,以对风力发电机组实施第二功能。该空气冷却系统扩展了空气冷却系统的功能性。

Description

空气冷却系统、风力发电机组及其冷却方法
相关申请的交叉引用
本申请要求享有于2019年11月01日提交的名称为“空气冷却系统、风力发电机组及其冷却方法”的中国专利申请201911060745.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及冷却技术领域,特别是涉及一种空气冷却系统、风力发电机组及其冷却方法。
背景技术
风力发电是最接近商业化的可再生能源技术之一,是可再生能源发展的重点。风力发电机组中的电机在运行过程中存在热损耗,其主要包括:电磁损耗,即绕组中由于欧姆阻抗产生的焦耳热,即铜损;铁芯中的磁滞损耗和涡流损耗等,即铁耗;以及不可避免的杂散损耗;若为永磁电机,则还包括磁钢损耗。这些损耗使电机运行时释放出大量的热量,而这些热量不仅会对电机本身及其绝缘结构造成一定的冲击,导致缩短绝缘寿命甚至绝缘失效,还会导致电机的输出功率不断下降。
随着风力发电机组的快速发展,机组的单机容量不断增加,风力发电机机组的损耗不断提高,冷却系统的设计越来越重要。尤其当风力发电机组处于风沙较大、潮湿低温、高盐等环境恶劣的工况时,对冷却系统的功能要求也更严苛。
发明内容
本申请的目的是提供一种空气冷却系统、风力发电机组及其冷却方法,该空气冷却系统可以实现包括冷却功能的多重功能。
一方面,本申请提出了一种空气冷却系统,该空气冷却系统连通风力发电机组的机舱与发电机,至少包括:各自独立运行的两个以上的子系统,每个子系统包括:除湿装置,设置于机舱的壁部且与机舱连通;驱动设备,设置于机舱内,以将外界冷却空气经除湿装置引入机舱,与由发电机的出气口排放的部分高温空气混合,并与机舱的发热部件和/或发电机进行热交换;其中,两个以上子系统的驱动设备同时运行,以对风力发电机组实施第一功能;两个以上子系统的驱动设备分别交替运行预定时间,以对风力发电机组实施第二功能。
另一方面,本申请还提供了一种风力发电机组,该风力发电机组包括:发电机;机舱,与所述发电机连接;以及如前所述的任一种空气冷却系统。
另一方面,本申请还提供了一种如前所述的风力发电机组的冷却方法,该冷却方法包括:获取运行指令信息,所述运行指令包括第一指令和第二指令;当获取第一指令时,同时启动N个子系统的驱动设备,以对风力发电机组实施第一功能,其中,N≥2;当获取第二指令时,N个子系统的驱动设备分别交替运行预定时间,以对风力发电机组实施第二功能。
本申请提供的一种空气冷却系统及风力发电机组,通过在风力发电机组的机舱与发电机的进气口之间设置各自独立运行的两个以上子系统,且两个以上子系统的驱动设备同时运行时,可以对风力发电机组实施第一功能;两个以上子系统的驱动设备分别交替运行预定时间,可以对风力发电机组实施第二功能,充分利用发电机的余热,将两个子系统协同作用,扩展了空气冷却系统的功能性。另外,两个以上子系统各自独立运行,当其中一个子系统发生故障后,不会影响另一个子系统的运行,提高了空气冷却系统的容错性和可靠性;并且空气冷却系统冷却效率高、结构简单紧凑、占用空间小,成本较低,便于维护。另外,本申请提供的一种风力发电机组的冷却方法,根据接收的不同指令,可以实现不同的功能,提高了风力发电机组的可靠性。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请,其中,通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,相同或相似的附图标记表示相同或相似的特征。
图1是本申请实施例提供的一种空气冷却系统的结构示意图;
图2是图1所示的空气冷却系统的机舱内的管路布局结构示意图;
图3是本申请实施例提供的另一种空气冷却系统的结构示意图;
图4本申请实施例提供的另一种空气冷却系统的结构示意图;
图5是图4所示的空气冷却系统的机舱内的管路布局结构示意图;
图6是本申请实施例提供的另一种空气冷却系统的结构示意图;
图7是本申请实施例提供的一种风力发电机组的冷却方法的流程框图。
附图标记说明:
M-发电机;C-机舱;In-进气口;O-出气口;A-辅助出气口;S-子系统;F-过滤件;C1-第一空腔;C2-第二空腔;
1-第一管道;11-第一端;12-第二端;
2-除湿装置;3-驱动设备;4-第二管道;41-子管道;42-第一循环风机;
5-调节阀;6-过滤装置;61-隔离支架;621-第一过滤件;622-第二过滤件;7-第三管道;71-第二循环风机。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。下面的详细描述中公开了许多具体细节,以便全面理解本申请。但是,对于本领域技术人员来说,很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。本申请决不限于下面所提出的任何具体配置,而是在不脱离本申请的精神的前提下覆盖了元素和部件的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本申请造成不必要的模糊。
为了更好地理解本申请,下面结合图1至图7对本申请实施例的空气 冷却系统、风力发电机组及其冷却方法进行详细描述。
由于风力发电机组的机舱C外的环境空气一般具有一定的相对湿度,尤其对于海上风力发电机组,海上环境为高盐高湿的空气,且大部分以液滴颗粒的形式存在,因此在进入机舱C之前还需要对外界冷却空气进行除盐除湿。当机舱C外的环境温度低于预定温度时,例如在冬季的寒冷地区运行时,由于外界冷却空气处于潮湿、低温环境中,机舱C的除湿装置2通常会结冰,堵塞进入机舱C的通道,还需要进行除冰工作。
参阅图1,本申请实施例提供了一种空气冷却系统,设置于风力发电机组的机舱C与发电机M的进气口In之间,该空气冷却系统包括各自独立运行的两个以上子系统S。每个子系统S至少包括:除湿装置2和驱动设备3。
除湿装置2设置于机舱C的壁部且与机舱C连通。除湿装置2例如可以为气液分离器,其可以设置于机舱C的内壁或者外壁上,用于分离出外界冷却空气中的液滴。
驱动设备3设置于机舱C内,以将外界冷却空气经除湿装置2引入机舱C内。由于惯性的作用,大部分直径为例如12μm以上的液滴颗粒将会撞击在风力发电机组的叶片上,然后流出机舱C外,除去大直径的液滴颗粒后,剩余含有少量水分和少量盐分的潮湿空气经由除湿装置2被驱动设备3引入机舱内,与由发电机M的出气口O排放的部分高温空气混合,经过滤(再次过滤装置在下文中详细说明)后,并与机舱C的发热部件和/或发电机M进行热交换。
可选地,驱动设备3为离心式风机,其包括驱动电机和风机叶片,风机叶片在驱动电机的驱动下转动。机舱C内的发热部件例如包括但不限于各种电气设备、变速箱等,根据风力发电机组的具体布局结构而定。
其中,两个以上子系统S的驱动设备3同时运行,以对风力发电机组实施第一功能;两个以上子系统S的驱动设备3分别交替运行预定时间,以对风力发电机组实施第二功能。
可选地,第一功能为对风力发电机组进行冷却、除湿和除盐中的至少一者,第二功能为对除湿装置2进行除冰。
本申请提供的一种空气冷却系统,通过在风力发电机组的机舱C与发电机M的进气口In之间设置各自独立运行的两个以上子系统S,且两个以上子系统S的驱动设备3同时运行时,可以对风力发电机组实施第一功能;两个以上子系统S的驱动设备3分别交替运行预定时间,可以对风力发电机组实施第二功能,充分利用了发电机的余热,将两个子系统S协同作用,扩展了空气冷却系统的功能性。另外,两个以上子系统S各自独立运行,当其中一个子系统S发生故障后,不会影响另一个子系统S的运行,提高了空气冷却系统的容错性和可靠性;并且空气冷却系统冷却效率高、结构简单紧凑、占用空间小,成本较低,便于维护。
下面结合附图进一步详细描述本申请实施例提供的空气冷却系统的具体结构。
再次参阅图1,空气冷却系统的每个子系统S的结构可以相同,这样省却了复杂的设置,简化了整个空气冷却系统。具体地,单个子系统S还包括:第一管道1和第二管道4。
第一管道1具有位于机舱C内的第一端11和位于机舱C外的第二端12,驱动设备3对应于第一管道1的第一端11设置,除湿装置2对应于第一管道1的第二端12设置于机舱C的壁部,这里可以是机舱C的内壁,也可以是机舱C的外壁,优选设置于机舱C的外壁,使得进入机舱C的冷却空气全部经过除湿装置2,不占用机舱C的内部空间。
第二管道4的一端连接发电机M的出气口O,另一端经与第一管道1交汇后,延伸至机舱C外部,与外界冷却空气连通,以将发电机M的出气口O排放的部分高温空气与进入第一管道1的冷却空气进行混合。
优选地,驱动设备3设置在第一管道1与第二管道4交汇处的下游区域,外界冷却空气与发电机M的高温排气(温度可达90摄氏度以上)混合,提高了外界冷空气的温度而降低了外界冷却空气的湿度。研究证明,在一定相对湿度条件下,例如74%的相对湿度的条件下,盐可以以液体盐的形式存在于空气内,因此,控制混合气体的相对湿度低于74%,优选低于60%,混合空气内含有的液体盐就能够被干燥固化并自动析出。
将驱动设备3设置于第一管道1与第二管道4交汇处的下游区域,可 以更好地驱动第一管道1和第二管道4内的气体充分混合,并实现控制混合空气的相对湿度,固化除盐;也可避免外界空气中的盐侵蚀驱动设备3,从而进入机舱C和发电机M。因此,将混合后的空气与机舱C的发热部件和/或发电机M进行热交换。既可以充分利用发电机M排出的高温废热气,降低能耗,又能对外界冷却空气进行除湿除盐,还可以直接对风力发电机组的机舱C内的发热部件和/或发电机M进行冷却。
由此,该空气冷却系统采用外界冷却空气直接冷却的方式,冷却温度低,并且两个以上子系统S在各自驱动设备3的作用下进入第一管道1,与由发电机M的出气口O排放至第二管道4的高温空气混合后,共同汇合至机舱C内,极大地提高了风力发电机组的冷却效率。由于不存在腐蚀泄漏的风险,可靠性也比液冷或者空液一体的冷却方式要高,同时节省了液冷管道、泵站、热交换器、稳压系统等复杂部件,结构紧凑、占用空间小,便于维护,制造成本较低。
进一步地,本申请实施例提供的空气冷却系统还包括:温度传感器和与温度传感器电连接的控制器(图中未示出)。
可选地,温度传感器设置于机舱C的壁部,用于监测机舱C外的环境温度。当温度传感器监测的外界环境温度低于预定温度时,控制器控制两个以上子系统S的驱动设备3分别交替运行预定时间,以对每个子系统S的除湿装置2进行除冰。该预定温度例如为0℃,预定时间例如为10分钟~30分钟。
除冰的工作原理如下所述:当第一个子系统S的驱动设备3运行时,机舱C内的压力增大,由于没有开启其余子系统S的驱动设备3,压力大的空气会通过第二子系统S未启动的驱动设备3和第一管道1向外扩散,由于机舱C内的空气温度高于外界环境温度,故可以对第二子系统S的第一管道1和除湿装置2进行除冰。
第一个子系统S的驱动设备3运行预定时间之后,关闭第一个子系统S的驱动设备3,再启动第二个子系统S的驱动设备3,同样的工作原理,机舱C内的压力增大,压力大的空气会通过其余子系统S的未启动的驱动设备3和第一管道1向外扩散,由于机舱C内的空气温度高于外界环境温 度,故运行预定时间后,可以对其余子系统S的第一管道1和除湿装置2进行除冰,
以此类推,将两个以上子系统S的每个子系统的第一管道1和第一除湿系统2进行除冰。当除冰工作完成后,两个以上子系统S的第一管道1与外界空气均可连通。
进一步地,每个子系统S还包括调节阀5,调节阀5设置于第一管道1与第二管道4的交汇处,以调节由第二管道4进入第一管道1的高温空气的流量。
该调节阀5优选为三通阀,分别与第一管道1、第二管道4和外界冷却空气连通。发电机M的出气口O排放至第二管道4的一部分高温空气经调节阀5进入第一管道1,剩余的大部分高温空气经过第二管道4排出机舱C外。进入第一管道1的高温空气与含有高盐高湿的空气混合后,温度升高,成为不稳定的饱和盐溶液颗粒与空气的混合物,通过调节阀5控制混合气体的相对湿度低于74%,优选地,低于60%,该混合物在驱动设备3的转动作用下以结晶形式析出盐晶体,大部分盐晶体落入机舱C的储存盒(图中未示出)内,另一部分盐晶体经由过滤装置6过滤除去,这样提高了对外界冷却空气的除盐和除湿效果。
进一步地,第二管道4上设置有第一循环风机42,以提高第二管道4内的高温空气与第一管道1内的潮湿空气的混合效率,提高外界冷却空气的除盐除湿效果。
进一步地,每个子系统S还包括过滤装置6,过滤装置6将机舱C的内部空间分隔为第一空腔C1和第二空腔C2,第一管道1和驱动设备3位于第一空腔C1,过滤装置6用于除掉混合空气中残留的灰尘、盐等颗粒。
可选地,过滤装置6包括隔离支架61和设置于隔离支架61上的过滤组件,隔离支架61与机舱C的壁部连接,且沿第一空腔C1内的空气流动方向渐缩设置。
外界冷却空气被两个以上子系统S的驱动设备3引流至机舱C的过程中,除盐、除湿后的混合空气与隔离支架61的内壁不断发生碰撞产生阻力,压力逐渐降低,流速逐渐升高,从而混合空气以高速被推入至过滤组件。 隔离支架61可以呈抛物面或锥形面结构,为制造方便,一般选用锥形面结构。
进一步地,过滤组件包括靠近第一空腔C1设置的第一过滤件621和靠近第二空腔C2设置的第二过滤件622,且第二过滤件622的滤网孔径小于第一过滤件621的滤网孔径。第一过滤件621的作用是除掉空气中残留的灰尘等大颗粒,第二过滤件622的作用是除掉剩余的直径为例如大于5μm以上的盐雾颗粒,进一步提高混合空气的纯净度。
过滤后的空气可以直接冷却机舱C内的发热部件,并通过发电机M的进气口In处的过滤件F进入发电机M内部,过滤件F用于除掉混合空气中残留的灰尘等杂质,然后吸收定子绕组、定子铁芯、磁钢等发热部件的热量后,再经出气口O进入第二管道4,其中一部分高温空气进入第一管道1继续下一次的空气冷却循环,另一部分高温空气排出至机舱C外。
参阅图2,为了提高对发电机M的冷却效果,每个子系统S还包括设置于机舱C内且与外界连通的多个子管道41,多个子管道41布置于位于机舱C的过滤装置6下游的部分,并与第二管道4连通,以将发电机M产生的高温空气通过多个子管道41排放至机舱C外。
由于发电机M在生产制造工艺上可能存在偏差,影响空气冷却系统上的冷却空气在发电机M内的分配,为了保持发电机M的温度在周向上的均匀性,两个子系统S的多个子管道41在机舱C内沿周向交替分布。例如,第一个子系统S包括设置于机舱C内且与外界连通的3个子管道41,如图2所示的黑色管道,第二个子系统S包括设置于机舱C内且与外界连通的3个子管道41,如图2所示的白色管道,两个子系统S的6个子管道41在机舱C内沿周向交替分布,保持了发电机M散热的均匀稳定性,提高了发电机M的运行可靠性。
参阅图3,本申请实施例还提供了一种空气冷却系统,其与图1所示的空气冷却系统结构类似,不同之处在于,两个以上子系统S的第二管道4一体设置,从而可以减少第二管道4和第一循环风机42的数量,降低制造成本,减少机舱的占用空间,布局紧凑。此时,单个第二管道4内的发电机M的高温气体分别与两个以上子系统S的第一管道1交汇混合,对两 个以上子系统S由第一管道1进入机舱C的外界冷空气除湿除盐后,再次混合,过滤后进入机舱C和发电机M,对机舱C的发热部件和/或发电机M进行冷却。
请一并参阅图4和图5,本申请实施例还提供了一种空气冷却系统,其与图1所示的空气冷却系统结构类似,不同之处在于,发电机M还设置有辅助出气口A,空气冷却系统还包括第三管道7,第三管道7的一端连接辅助出气口A,另一端与外界连通。
进一步地,第三管道7上设置有第二循环风机71,以提高第三管道7的排气效率。
辅助出气口A的作用是将发电机M的出气口排出的高温空气分为两条支路:一个支路的一部分高温空气通过第二管道4与第一管道1内的湿冷空气混合,另一部分排出机舱C外;另外一个支路通过第三管道7直接排出机舱C外。相对于图1所示的空气冷却系统来说,可以减小第二管道4的排气阻力,有效降低对第一循环风机42的功率要求,同时降低空气冷却系统的复杂性。
可选地,如图5所示,发电机M的辅助出气口A对应于机舱C内设置,每个子系统S还包括设置于机舱C内且与外界连通的多个子管道41,多个子管道41与第三管道7连通,以将发电机M产生的高温空气通过多个子管道41排放至机舱C外。
由于发电机M在生产制造工艺上可能存在偏差,影响空气冷却系统上的冷却空气在发电机M内的分配,为了保持发电机M的温度在周向上的均匀性,两个以上子系统S的多个子管道41在机舱C内沿周向交替分布。以两个子系统S为例,第一个子系统S包括设置于机舱C内且与外界连通的3个子管道41,如图2所示的黑色管道,第二个子系统S包括设置于机舱C内且与外界连通的3个子管道41,如图2所示的白色管道,两个子系统S的6个子管道41在机舱C内沿周向交替分布,确保发电机M的温度在周向上的均匀性,提高了发电机M的运行可靠性。
可以理解的是,本申请实施例提供的空气冷却系统的每个子系统S的结构也可以不同,例如,其中一个子系统S包括第一管道1、除湿装置2、 驱动设备3、第二管道4和过滤装置6,另一个子系统S包括第一管道1、除湿装置2、驱动设备3、第二管道4和除湿装置或者其它装置,以实现不同的功能。
参阅图6,本申请实施例还提供了一种空气冷却系统,其与图4所示的空气冷却系统结构类似,不同之处在于,发电机M的辅助出气口A设置于机舱C外,此时的第二循环风机71也处于机舱C外,省去了多个子管道41,减小了机舱C的占用空间,布局更加紧凑、简单,同时降低了制造成本。
另外,本申请实施例还提供了一种风力发电机组,其包括:发电机M、与发电机M连接的机舱C,以及如前所述的任一种空气冷却系统,该空气冷却系统设置于机舱C与发电机M的进气口In之间。
如前所述,该风力发电机组在机舱与发电机的进气口之间设置如前所述的任一种空气冷却系统,其包括各自独立运行的两个以上的子系统S,当其中一个子系统S发生故障后,不会影响另一个子系统S的运行,提高了空气冷却系统的容错性和可靠性,并且空气冷却系统结构简单紧凑,节省机舱C的占用空间,成本较低,提高了风力发电机组的可维护性。
参阅图7,本申请实施例还提供了一种如前所述的风力发电机组的冷却方法,该冷却方法包括:
步骤S1:获取运行指令信息,所述运行指令包括第一指令和第二指令;
步骤S2:当获取所述第一指令时,同时启动N个子系统S的驱动设备3,N≥2,以实现第一功能。可选地,第一功能为对风力发电机组进行冷却、除湿和除盐中的至少一者。
步骤S3:当获取所述第二指令时,N个子系统S的驱动设备3分别交替运行预定时间,以实现第二功能。可选地,第二功能为对除湿装置2等进行除冰。
步骤S2中实现第一功能包括:
步骤S21:同时启动N个子系统S的驱动设备3,每个子系统S至少 包括设置于机舱C的壁部且与机舱C连通的除湿装置2和设置于机舱C内的驱动设备3;
步骤S22:外界冷却空气在N个子系统S的驱动设备3的作用下,经除湿装置2进入机舱C,与由发电机M的出气口O排放的部分高温空气混合,并与机舱C的发热部件和/或发电机M进行热交换。
步骤S3中实现第二功能包括:
步骤S31:监测机舱C外的环境温度是否低于预定温度,该预定温度例如为0℃。
步骤S32:如果是,则启动N个子系统S中第i个子系统S的驱动设备3,运行预定时间,实现对N个子系统S中其余子系统S的除湿装置2进行除冰,1≤i<N。该预定时间可以为10分钟~30分钟。
步骤S33:关闭第i个子系统S的驱动设备3,启动第i+1个子系统S的驱动设备3,运行预定时间,实现对N个子系统S中其余子系统S的除湿装置2进行除冰。
可以理解的是,如果机舱C外的环境温度高于预定温度,则不需要对除湿装置2进行除冰,直接对风力发电机组进行空气冷却即可。
本申请实施例提供的一种风力发电机组的冷却方法,根据接收的不同指令,可以实现不同的功能,扩展了空气冷却系统的功能性,尤其在监测到机舱C外的环境温度低于预定温度时,先对除湿装置2进行除冰、再对风力发电机组进行空气冷却,提高了风力发电机组的冷却效果和使用寿命。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;物品没有使用数量词修饰时旨在包括一个/种或多个/种物品,并可以与“一个/种或多个/种物品”互换使用”;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多 个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (18)

  1. 一种空气冷却系统,连通风力发电机组的机舱与发电机,其中,所述空气冷却系统包括各自独立运行的两个以上的子系统,每个所述子系统至少包括:
    除湿装置,设置于所述机舱的壁部且与所述机舱连通;
    驱动设备,设置于所述机舱内,以将外界冷却空气经所述除湿装置引入所述机舱,与由所述发电机的出气口排放的部分高温空气混合,并与所述机舱的发热部件和/或所述发电机进行热交换;
    其中,两个以上所述子系统的所述驱动设备同时运行,以对所述风力发电机组实施第一功能;两个以上所述子系统的所述驱动设备分别交替运行预定时间,以对所述风力发电机组实施第二功能。
  2. 根据权利要求1所述的空气冷却系统,其中,所述第一功能为对所述风力发电机组进行冷却、除湿和除盐中的至少一者,所述第二功能为对所述除湿装置进行除冰。
  3. 根据权利要求1所述的空气冷却系统,其中,两个以上所述子系统的结构相同。
  4. 根据权利要求2所述的空气冷却系统,其中,每个所述子系统还包括:
    第一管道,具有位于所述机舱内的第一端和位于所述机舱外的第二端,所述驱动设备对应于所述第一管道的所述第一端设置,所述除湿装置对应于所述第一管道的所述第二端设置于所述机舱的壁部;
    第二管道,其一端连接所述发电机的所述出气口,另一端经与所述第一管道交汇后延伸至所述机舱外与外界冷却空气连通,以将所述发电机的所述出气口排放的部分高温空气与进入所述第一管道的冷却空气进行混合。
  5. 根据权利要求2或4所述的空气冷却系统,其中,所述空气冷却系统还包括温度传感器和与所述温度传感器电连接的控制器,当所述温度传 感器监测的外界环境温度低于预定温度时,所述控制器控制两个以上所述子系统的所述驱动设备分别交替运行预定时间,以对每个所述子系统的所述除湿装置进行除冰。
  6. 根据权利要求4所述的空气冷却系统,其中,每个所述子系统还包括调节阀,所述调节阀设置于所述第一管道与所述第二管道的交汇处,以调节由所述第二管道进入所述第一管道的高温空气的流量。
  7. 根据权利要求4所述的空气冷却系统,其中,每个所述子系统还包括过滤装置,所述过滤装置将所述机舱的内部空间分隔为第一空腔和第二空腔,所述第一管道和所述驱动设备位于所述第一空腔。
  8. 根据权利要求7所述的空气冷却系统,其中,所述过滤装置包括隔离支架和设置于所述隔离支架上的过滤组件,所述隔离支架与所述机舱的壁部连接,且沿所述第一空腔内的空气流动方向渐缩设置。
  9. 根据权利要求8所述的空气冷却系统,其中,所述过滤组件包括靠近所述第一空腔设置的第一过滤件和靠近所述第二空腔设置的第二过滤件,且所述第二过滤件的滤网孔径小于所述第一过滤件的滤网孔径。
  10. 根据权利要求4所述的空气冷却系统,其中,每个所述子系统还包括设置于所述机舱内且与外界连通的多个子管道,多个所述子管道与所述第二管道连通,以将所述发电机产生的高温空气通过多个所述子管道排放至所述机舱外。
  11. 根据权利要求1所述的空气冷却系统,其中,所述空气冷却系统还包括第三管道,所述发电机还设置有辅助出气口,所述辅助出气口设置于所述机舱内或者所述机舱外,所述第三管道的一端连接所述辅助出气口,另一端与外界连通。
  12. 根据权利要求11所述的空气冷却系统,其中,所述辅助出气口对应于所述机舱内设置;
    每个所述子系统还包括设置于所述机舱内且与外界连通的多个子管道, 多个所述子管道与所述第三管道连通,以将所述发电机产生的高温空气通过多个所述子管道排放至所述机舱外。
  13. 根据权利要求10或12所述的空气冷却系统,其中,两个以上所述子系统的多个所述子管道在所述机舱内沿周向交替分布。
  14. 根据权利要求4所述的空气冷却系统,其中,两个以上所述子系统的所述第二管道分体设置或者一体设置。
  15. 一种风力发电机组,包括:
    发电机;
    机舱,与所述发电机连接;以及
    如权利要求1至14任一项的空气冷却系统。
  16. 一种如权利要求15所述的风力发电机组的冷却方法,包括:
    获取运行指令信息,所述运行指令包括第一指令和第二指令;
    当获取所述第一指令时,同时启动N个子系统的驱动设备,以对所述风力发电机组实施第一功能,其中,N≥2;
    当获取所述第二指令时,N个所述子系统的所述驱动设备分别交替运行预定时间,以对所述风力发电机组实施第二功能。
  17. 根据权利要求16所述的冷却方法,其中,所述实现第一功能包括:
    同时启动N个子系统的驱动设备,每个子系统至少包括设置于机舱的壁部且与所述机舱连通的除湿装置和设置于所述机舱内的驱动设备;
    外界冷却空气在N个子系统的驱动设备的作用下,经所述除湿装置进入所述机舱,与由所述发电机的出气口排放的部分高温空气混合,并与所述机舱的发热部件和/或所述发电机进行热交换。
  18. 根据权利要求16所述的冷却方法,其中,所述实现第二功能包括:
    监测机舱外的环境温度是否低于预定温度;
    如果是,则启动N个子系统中第i个子系统的驱动设备,运行预定时间,实现对N个子系统中其余子系统的所述除湿装置进行除冰,其中,1 ≤i<N;
    关闭第i个子系统的驱动设备,启动第i+1个子系统的驱动设备,运行预定时间,实现对N个子系统中其余子系统的所述除湿装置进行除冰。
PCT/CN2020/095086 2019-11-01 2020-06-09 空气冷却系统、风力发电机组及其冷却方法 WO2021082456A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20883027.3A EP4043726A4 (en) 2019-11-01 2020-06-09 AIR COOLING SYSTEM, WIND TURBINE GENERATOR UNIT AND COOLING METHOD THEREOF
AU2020375666A AU2020375666B2 (en) 2019-11-01 2020-06-09 Air cooling system, wind turbine generator unit and cooling method therefor
CA3156591A CA3156591A1 (en) 2019-11-01 2020-06-09 Air cooling system, wind turbine generator unit and cooling method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911060745.6A CN110725779B (zh) 2019-11-01 2019-11-01 空气冷却系统、风力发电机组及其冷却方法
CN201911060745.6 2019-11-01

Publications (1)

Publication Number Publication Date
WO2021082456A1 true WO2021082456A1 (zh) 2021-05-06

Family

ID=69223656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095086 WO2021082456A1 (zh) 2019-11-01 2020-06-09 空气冷却系统、风力发电机组及其冷却方法

Country Status (5)

Country Link
EP (1) EP4043726A4 (zh)
CN (1) CN110725779B (zh)
AU (1) AU2020375666B2 (zh)
CA (1) CA3156591A1 (zh)
WO (1) WO2021082456A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110725779B (zh) * 2019-11-01 2022-10-25 新疆金风科技股份有限公司 空气冷却系统、风力发电机组及其冷却方法
CN112780509B (zh) * 2019-11-01 2023-07-28 新疆金风科技股份有限公司 空气冷却系统、风力发电机组及其冷却方法
CN113775487A (zh) 2020-06-09 2021-12-10 新疆金风科技股份有限公司 冷却系统及风力发电机组
CN113775489A (zh) * 2020-06-09 2021-12-10 新疆金风科技股份有限公司 冷却系统及风力发电机组
CN112160865A (zh) * 2020-11-11 2021-01-01 杨志林 一种风力发电叶片
CN112922796B (zh) * 2021-03-02 2021-11-30 中国华能集团清洁能源技术研究院有限公司 一种用于风力发电机组的冷却装置
EP4372227A1 (en) * 2022-11-15 2024-05-22 Siemens Gamesa Renewable Energy A/S Air duct comprising a pressure-relief section

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105736258A (zh) * 2016-03-02 2016-07-06 新疆金风科技股份有限公司 一种流体输运装置及多相流分离装置
CN206329458U (zh) * 2016-12-29 2017-07-14 江苏金风科技有限公司 用于冷却风力发电机的机舱的冷却系统
EP3279469A1 (en) * 2016-08-05 2018-02-07 Siemens Aktiengesellschaft Wind turbine with improved cooling
CN108894934A (zh) * 2018-03-27 2018-11-27 江苏金风科技有限公司 一种具有除湿结构的装置
CN109642553A (zh) * 2016-09-30 2019-04-16 西门子股份公司 冷却风力涡轮机发电机
CN110725779A (zh) * 2019-11-01 2020-01-24 新疆金风科技股份有限公司 空气冷却系统、风力发电机组及其冷却方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118121A1 (de) * 2001-04-11 2002-10-24 Karlsruhe Forschzent Mikrowellentechnische Einrichtung zur Eisfreihaltung und Enteisung formstabiler Hohlkörper-Strukturen an der Oberfläche und Verfahren zum Betreiben der Einrichtung
US20100111695A1 (en) * 2008-11-05 2010-05-06 General Electric Company Apparatus and method for detecting solid water build-up
US8118536B2 (en) * 2009-10-30 2012-02-21 General Electric Company Method and system for operating a wind turbine
US8992171B2 (en) * 2011-09-01 2015-03-31 Gamesa Innovation & Technology, S.L. Energy efficient climate control system for an offshore wind turbine
CN103726997B (zh) * 2014-01-17 2016-08-17 广东明阳风电产业集团有限公司 一种海上风力发电机组的机舱冷却装置
EP3222849A1 (en) * 2016-03-24 2017-09-27 Siemens Aktiengesellschaft Cooling, de-icing and cleaning method for a wind turbine
CN109751205A (zh) * 2019-02-25 2019-05-14 东北农业大学 风力机叶片防除冰机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105736258A (zh) * 2016-03-02 2016-07-06 新疆金风科技股份有限公司 一种流体输运装置及多相流分离装置
EP3279469A1 (en) * 2016-08-05 2018-02-07 Siemens Aktiengesellschaft Wind turbine with improved cooling
CN109642553A (zh) * 2016-09-30 2019-04-16 西门子股份公司 冷却风力涡轮机发电机
CN206329458U (zh) * 2016-12-29 2017-07-14 江苏金风科技有限公司 用于冷却风力发电机的机舱的冷却系统
CN108894934A (zh) * 2018-03-27 2018-11-27 江苏金风科技有限公司 一种具有除湿结构的装置
CN110725779A (zh) * 2019-11-01 2020-01-24 新疆金风科技股份有限公司 空气冷却系统、风力发电机组及其冷却方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4043726A4 *

Also Published As

Publication number Publication date
EP4043726A1 (en) 2022-08-17
CN110725779B (zh) 2022-10-25
AU2020375666B2 (en) 2024-03-21
EP4043726A4 (en) 2022-11-30
AU2020375666A1 (en) 2022-05-26
CN110725779A (zh) 2020-01-24
CA3156591A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
WO2021082456A1 (zh) 空气冷却系统、风力发电机组及其冷却方法
WO2021082455A1 (zh) 空气冷却系统、风力发电机组及其冷却方法
CN108683108B (zh) 一种配电柜防尘散热的方法
CN106523282B (zh) 风力发电机组的环境控制系统及其控制方法
CN109642553A (zh) 冷却风力涡轮机发电机
CN207967691U (zh) 一种水驱动双重散热变电箱
CN107420273B (zh) 海上风力发电机组环境控制机构、系统及应用
CN202468176U (zh) 一种风力发电机组的冷却系统
CN103522892B (zh) 车辆散热系统及散热控制方法
CN103334863A (zh) 一种冷却塔节能助力发电水轮机
CN105066494A (zh) 一种核级直接蒸发组合式空气处理机组及其控制方法
CN210130051U (zh) 一种机电一体化设备用高效散热装置
CN205048777U (zh) 一种核级直接蒸发组合式空气处理机组
CN202444407U (zh) 空调器和空调器中离心机组变频器的冷却系统
CN206187321U (zh) 自带发电功能的水源热泵船用空调
CN104390291A (zh) 用于海上升压站的正压通风系统
CN205872425U (zh) 一种船舶中央空调制冷系统
CN211830468U (zh) 一种基于空气膨胀透平发电系统的发电机冷却结构
CN203177354U (zh) 一种风冷机房空调室外机的水冷系统
CN204041498U (zh) 风机系统及空调系统
CN206291365U (zh) 一种智能型节能中央空调系统
CN202911535U (zh) 电动汽车电机专用无能耗冷却系统
CN219454609U (zh) 一种烘干安装系统
CN102570717A (zh) 具有自循环冷却功能的干式-湿式两用充水式电机
CN203020059U (zh) 混合动力工程机械用散热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3156591

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020883027

Country of ref document: EP

Effective date: 20220512

ENP Entry into the national phase

Ref document number: 2020375666

Country of ref document: AU

Date of ref document: 20200609

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE