WO2021082147A1 - 一种模块化毫米波雷达 - Google Patents

一种模块化毫米波雷达 Download PDF

Info

Publication number
WO2021082147A1
WO2021082147A1 PCT/CN2019/121200 CN2019121200W WO2021082147A1 WO 2021082147 A1 WO2021082147 A1 WO 2021082147A1 CN 2019121200 W CN2019121200 W CN 2019121200W WO 2021082147 A1 WO2021082147 A1 WO 2021082147A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
receiving
transmitting
module
linear array
Prior art date
Application number
PCT/CN2019/121200
Other languages
English (en)
French (fr)
Inventor
汤新宜
伍小军
Original Assignee
惠州市德赛西威汽车电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市德赛西威汽车电子股份有限公司 filed Critical 惠州市德赛西威汽车电子股份有限公司
Publication of WO2021082147A1 publication Critical patent/WO2021082147A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • This application relates to the technical field of vehicle assisted driving, and in particular to a three-engine four-broadband antenna.
  • MIMO multiple input multiple output
  • a virtual channel is formed between the receiving end and the transmitting end, which further improves the angular resolution of the radar under the condition of a certain number of radar channels, which is a high-precision radar for vehicles.
  • the development of the company laid the foundation.
  • the chips can be cascaded based on the integration of multiple channels on a single chip.
  • cascading Under the traditional overall design conditions, the chip placement position and the antenna placement position are strongly coupled. Due to the complexity of the wiring, the more cascaded chips, the longer the wiring distance between the chip and the antenna, which introduces a large insertion loss in the millimeter wave band, which reduces the energy efficiency of the system.
  • the present application provides a modular millimeter-wave radar, which includes a plurality of radar modules, the radar module includes a radar chip, and a receiving linear array and a transmitting linear array connected to the radar chip, wherein The distance between the receiving linear array and the transmitting linear array from the edge of the radar module is less than half of the virtual array formed, and the modular cascading of multiple radar modules includes the following steps:
  • the physical cascading of multiple radar modules according to the arrangement of the receiving linear array and the transmitting linear array of each radar module includes:
  • the multiple radar modules are arranged according to the receiving antenna and the transmitting antenna to obtain a virtual array.
  • the arranging a plurality of the radar modules according to the receiving antennas and the transmitting antennas to obtain a virtual array includes:
  • the total length of the receiving linear array and the distance between the two transmitting antennas are both N, that is, the transmitting antenna and the last receiving antenna coincide in the X-axis direction;
  • the receiving antennas of one radar module and the next radar module are 3N.
  • the arranging a plurality of the radar modules according to the receiving antennas and the transmitting antennas to obtain a virtual array includes:
  • the total length of the receiving linear array is N; then the distance between the transmitting antennas is 4N/3;
  • the receiving antennas of one radar module and the next radar module are 11N/4.
  • the multiple receiving antennas of the receiving linear array are arranged in an evenly spaced array.
  • the receiving linear array includes 4 receiving antennas; the transmitting linear array includes 3 transmitting antennas.
  • the performing inter-module calibration on the multiple radar modules that are physically cascaded includes LO frequency synchronization calibration and RF channel calibration.
  • the LO frequency synchronization calibration includes:
  • the LO frequency is time-delayed and synchronized through the digital extension cable.
  • the judging whether the LO frequency is synchronized by receiving the signal transmitted from the transmitting line array includes:
  • Signals are transmitted sequentially through the transmitting line arrays of different radar chips, and it is detected whether the frequency of the intermediate frequency signals obtained by the receiving line arrays of each radar chip is the same, so as to determine whether the same target appears at the same distance in the receiving line arrays of different radar chips. .
  • the RF channel calibration includes:
  • the radome and the antenna are coupled with each other.
  • the calibration angle iron is placed at the normal line of the radar to collect the amplitude of the receiving linear array of each radar chip.
  • Phase data is stored in the database; the transmitter line array of the calibrated radar module, under the condition of LO frequency synchronization, the first transmitter antenna continues to transmit the point frequency signal, and the other calibrated transmitter transmits simultaneously with the first antenna, using the digital shift
  • the phaser will be calibrated and the antenna phase will be rotated 360 degrees, and the zero point sweep will be used for calibration.
  • the performing intra-module calibration on one of the radar modules includes:
  • the multiple transmitting antennas of the transmitting linear array are used to transmit signals to a known target in time sharing, and the phase received by the receiving antennas of the receiving linear array is calculated to complete the calibration in the module.
  • the modular millimeter-wave radar of the present application arranges the transmitting linear arrays and receiving linear arrays of multiple radar modules to be physically cascaded. After the physical cascading is completed, one of the radar modules is Perform intra-module calibration, and perform inter-module calibration on multiple radar modules that are physically cascaded; realize the modularization of millimeter-wave radar; its beneficial effect is that it is easier to construct virtual arrays through modular vehicle-mounted radars . Modules can be cascaded only by installing the modules on the base plate before and after. Make high-precision radar design more flexible and easier to implement.
  • FIG. 1 is a schematic diagram of the millimeter wave radar cascade steps of this application.
  • Figure 2 is the method of constructing a MIMO modular radar in this application, and the adjacent transmitting linear arrays correspond end to end with the receiving linear arrays;
  • Fig. 3 is the method of constructing MIMO modular radar in this application.
  • the adjacent transmitting linear array is an extension of the receiving linear array;
  • Figure 4 shows the modular MIMO radar back feed mode of the application
  • Fig. 5 shows the synchronization mode of the back-fed local oscillator signal of the modular MIMO radar of this application
  • Fig. 6 is a modular construction method of two cascades of this application.
  • the present application provides a modular millimeter-wave radar, which makes it easier to construct a virtual array through a modular vehicle-mounted radar. Modules can be cascaded only by installing the modules on the base plate before and after. Make high-precision radar design more flexible and easier to implement.
  • the present application provides a modular millimeter-wave radar, which includes a plurality of radar modules, the radar module includes a radar chip, and a receiving linear array and a transmitting linear array connected to the radar chip, Among them, the distance between the receiving linear array and the transmitting linear array from the edge of the radar module is less than half of the virtual array formed;
  • the modular cascade of multiple radar modules includes the following steps:
  • the receiving linear array is arranged on the substrate along the X-axis direction, and the arrangement can be equidistant or sparse array form, while the transmitting linear array uses an equidistant form on the horizontal axis X
  • the direction is lined up.
  • the arrangement of the receiving linear array and the transmitting linear array on the Y axis is based on the radio frequency of the radar chip and the wiring of the baseband and power; this application is not limited to the arrangement of the receiving linear array and the transmitting linear array on the Y axis.
  • the multi-radar module cascade realized by the technical solution disclosed in the application falls into the protection scope of this application.
  • the receiving linear array can be distributed in the form of an equally spaced array, and the receiving linear array can also be distributed in the form of a sparse array. If the total length of the receiving linear array is N, the spacing of the transmitting antennas should also be It is N, see Figure 2; that is, the transmitting antenna and the last receiving antenna coincide in the X-axis direction.
  • the receiving linear array includes 4 receiving antennas; the transmitting linear array includes 3 transmitting antennas, the transmitting antennas are represented by the horizontal stripes shown in FIG. 2, and the receiving antennas are represented by the diagonal stripes shown in FIG. 2.
  • the cascading between the modules can be realized by placing them directly on the substrate; in this embodiment, the distance between the first receiving antenna of the next radar module and the first receiving antenna of the previous one is 3N.
  • the size of the radar module should be as consistent as possible with the physical size of the receiving antenna or the transmitting antenna, so that each newly added transmitting antenna will correspond to a virtual receiving array, and this length-size relationship can be extended indefinitely as shown in the figure. Its function is to directly use multiple radar chips to further expand the virtual array and realize a larger virtual array.
  • the receiving linear array may be an equally spaced array, and its total length is N, so that the distance between the two transmitting antennas is 4N/3, as shown in FIG. 3. If the receiving linear array is arranged in a sparse array, N will increase accordingly; after the modules are completed, the cascade between the modules can be realized by direct placement.
  • the receiving linear array includes 4 receiving antennas; the transmitting linear array includes 3 transmitting antennas, the transmitting antennas are represented by the horizontal stripes shown in FIG. 3, and the receiving antennas are represented by the diagonal stripes shown in FIG. 3.
  • the distance between the left receiving antenna of the next module and the left receiving antenna of the previous module is N/34*11.
  • FIG. 4 Its cross-sectional view is shown in Figure 4.
  • the size of the radar module should be as consistent as possible with the physical size of the receiving antenna or the transmitting antenna, so that each newly added transmitting antenna will correspond to a virtual receiving array, and this length-size relationship can be extended indefinitely as shown in Figure 6.
  • Its function is to directly use multiple radar chips to further expand the virtual array and realize a larger virtual array.
  • the layout methods listed in this embodiment result in a relatively larger array size. Since the size of a single radar module is designed, that is, the size of the radar module is equivalent to the antenna size, multiple chips can be directly placed in an appropriate position to expand the virtual array.
  • the in-module calibration of a radar module is included in a radar module, and the multiple transmitting antennas of the transmitting line array are used to transmit signals to a known target in a time-sharing manner. Calculate the phase received by the receiving antenna of the array to complete the calibration in the module.
  • the inter-module calibration of multiple radar modules that are physically cascaded includes LO frequency synchronization calibration and RF channel calibration.
  • the LO frequency synchronization calibration includes: coupling the LO signal to the base plate of the radar module by coupling; inputting the synchronized LO signal to the radar chip of different radar modules through the transmission line; judging whether the LO frequency is by receiving the signal emitted from the transmitting line array Synchronization; if the LO frequency is not synchronized, the time delay adjustment of the LO frequency is performed through the digital extension cable.
  • RF channel calibration includes: calibrating the receiving linear array of the radar module. In the radar module, the radome and the antenna are coupled to each other, and the amplitude and phase data of each receiving end is collected at 0.2-0.8 degrees within the field of view and stored in the database; Calibrate the transmitting linear array of the radar module.
  • the first transmitting antenna continues to transmit the spot frequency signal, and the other calibrated transmitting terminal transmits at the same time as the first antenna, and the phase of the calibrated antenna is rotated by the digital phase shifter 360 degrees, using zero scan for reverse calibration.
  • the multiple radar modules are physically arranged, they are calibrated by the FMCW modulation signal calibration, so as to realize the cascading of multiple radar modules.
  • the FMCW radar system transmits a series of continuous frequency modulation millimeter waves through the antenna, and receives the reflected signal of the target. The frequency of the transmitted wave changes in the time domain according to the law of the modulation voltage.
  • the transmit signal of FMCW millimeter wave radar adopts frequency modulation. Commonly used modulation signals are: sine wave signal, sawtooth wave signal and triangle wave signal, etc.
  • the radar module of this embodiment may be a single-chip module or a dual-chip module; as shown in Figure 5.
  • the receiving antenna is placed in the middle, which can be equidistant or sparse array form.
  • the arrangement of the transmitting antenna and the module is similar to the two arrangements of the receiving linear array and the transmitting linear array of the above-mentioned radar module.
  • a modular millimeter-wave radar of the present application by arranging the transmitting linear array and receiving linear array of multiple radar modules to make them physically cascaded, after the physical cascading is completed, the FMCW modulation signal calibration is used to achieve Modularization of millimeter-wave radar; through modular vehicle-mounted radar, it becomes easier to construct a virtual array.
  • Modules can be cascaded only by installing the modules on the base plate before and after. Make high-precision radar design more flexible and easier to implement.
  • physically cascading multiple radar modules according to the arrangement of the receiving linear array and the transmitting linear array of each radar module includes:
  • the receiving linear array is arranged on the substrate along the X-axis direction, and the arrangement can be equidistant or sparse array form, while the transmitting linear array uses an equidistant form on the horizontal axis X
  • the direction is lined up.
  • the arrangement of the receiving linear array and the transmitting linear array on the Y axis is based on the radio frequency of the radar chip and the wiring of the baseband and power; this application is not limited to the arrangement of the receiving linear array and the transmitting linear array on the Y axis.
  • the multi-radar module cascade realized by the technical solution disclosed in the application falls into the protection scope of this application.
  • the receiving antennas of the receiving linear array of the present application can be arranged in an evenly spaced array or in a sparse array. The specific arrangement method can be customized according to the desired effect.
  • multiple radar modules are arranged according to receiving antennas and transmitting antennas to obtain a virtual array, including:
  • the total length of the receiving linear array and the distance between the two transmitting antennas are both N, that is, the transmitting antenna and the last receiving antenna coincide in the X-axis direction;
  • the receiving antennas of one radar module and the next radar module are 3N.
  • the receiving linear array can be distributed in the form of an equally spaced array, and the receiving linear array can also be distributed in the form of a sparse array. If the total length of the receiving linear array is N, the spacing of the transmitting antennas should also be It is N, see Figure 2; that is, the transmitting antenna and the last receiving antenna coincide in the X-axis direction.
  • the receiving linear array includes 4 receiving antennas; the transmitting linear array includes 3 transmitting antennas, the transmitting antennas are represented by the horizontal stripes shown in FIG. 2, and the receiving antennas are represented by the diagonal stripes shown in FIG. 2.
  • the cascading between the modules can be realized by placing them directly on the substrate; in this embodiment, the distance between the first receiving antenna of the next radar module and the first receiving antenna of the previous one is 3N.
  • the size of the radar module should be as consistent as possible with the physical size of the receiving antenna or the transmitting antenna, so that each newly added transmitting antenna will correspond to a virtual receiving array, and this length-size relationship can be extended indefinitely as shown in the figure. Its function is to directly use multiple radar chips to further expand the virtual array and realize a larger virtual array.
  • multiple radar modules are arranged according to receiving antennas and transmitting antennas to obtain a virtual array, including:
  • the total length of the receiving linear array is N; the distance between the transmitting antennas is 4N/3;
  • the receiving antennas of one radar module and the next radar module are 11N/4.
  • the multiple receiving antennas of the receiving linear array are arranged in an evenly spaced array.
  • the receiving linear array may be an equally spaced array with a total length of N, so that the distance between the two transmitting antennas is 4N/3, as shown in FIG. 3. If the receiving linear array is arranged in a sparse array, N will increase accordingly; after the modules are completed, the cascade between the modules can be realized by direct placement.
  • the receiving linear array includes 4 receiving antennas; the transmitting linear array includes 3 transmitting antennas, the transmitting antennas are represented by the horizontal stripes shown in FIG. 3, and the receiving antennas are represented by the diagonal stripes shown in FIG. 3.
  • the distance between the left receiving antenna of the next module and the left receiving antenna of the previous module is N/34*11.
  • FIG. 4 Its cross-sectional view is shown in Figure 4.
  • the size of the radar module should be as consistent as possible with the physical size of the receiving antenna or the transmitting antenna, so that each newly added transmitting antenna will correspond to a virtual receiving array, and this length-size relationship can be extended indefinitely as shown in Figure 6.
  • Its function is to directly use multiple radar chips to further expand the virtual array and realize a larger virtual array.
  • the layout methods listed in this embodiment result in a relatively larger array size. Since the size of a single radar module is designed, that is, the size of the radar module is equivalent to the antenna size, multiple chips can be directly placed in an appropriate position to expand the virtual array.
  • inter-module calibration is performed on a plurality of the radar modules that are physically cascaded, including LO frequency synchronization calibration and RF channel calibration.
  • the LO frequency synchronization calibration includes: coupling the LO signal to the substrate of the radar module by coupling; inputting the synchronized LO signal to the radar chips of different radar modules through the transmission line; Signals from different transmission line arrays are used to determine whether the LO frequency is synchronized; if the LO frequency is not synchronized, the time delay synchronization of the LO frequency is performed through the digital extension cable.
  • judging whether the LO frequency is synchronized by receiving the signal emitted from the transmitting line array includes: transmitting the signal sequentially through the transmitting line array of different radar chips, and detecting whether the frequency of the intermediate frequency signal obtained by each radar chip receiving the line array is the same, thereby Judge whether the same target appears at the same distance in the receiving line arrays of different radar chips. Since the LO frequency is usually much lower than the RF frequency, the signal can be coupled to a lower-cost substrate in the form of coupling, and then the synchronized LO signal can be input to different chips through a transmission line. The calibration is performed with a fixed angle iron in the far field. Different chips transmit in turn.
  • the digital extension cable is used to adjust the time delay of the LO, so that the target falls into the same FFT Range Bin.
  • the bandwidth can be increased to improve the accuracy of each FFT Range Bin.
  • the RF channel calibration includes: calibrating the receiving linear array of the radar module.
  • the radome and the antenna are coupled to each other.
  • the calibration angle The iron is placed at the normal line of the radar to collect the amplitude and phase data of the receiving linear array of each radar chip and store it in the database; among them, the amplitude and phase data of the receiving linear array of each radar module is collected once within the field of view at 0.2-0.8 degrees.
  • the off-chip calibration which includes the calibration of the chip itself and the antenna and RF traces, can be divided into two steps. The first step is to calibrate the receiving end.
  • the second step is to calibrate the transmitter.
  • the first transmitter antenna continuously emits point-frequency signals, and the other calibrated transmitter transmits simultaneously with the first antenna.
  • the phase of the calibrated antenna is rotated by a digital phase shifter. 360 degrees, use the zero point scan, that is, find the phase setting of the 180 degree phase difference and calibrate it.
  • performing intra-module calibration on a radar module includes:
  • multiple transmitting antennas of the transmitting linear array are time-sharing to send signals to a known target, and the phase received by the receiving antenna of the receiving linear array is calculated to complete the calibration in the module.
  • the angle of arrival from the target to the receiving antenna array can be calculated, and then the phase of the corresponding signal can be calculated from the angle of arrival and the antenna placement distance of the receiving array.
  • the phase and the corresponding amplitude are used to form a calibration matrix to calibrate the actual arbitrary signal.
  • the modular millimeter-wave radar of the present application arranges the transmitting linear arrays and receiving linear arrays of multiple radar modules to be physically cascaded. After the physical cascading is completed, one of the radar modules is Perform intra-module calibration, and perform inter-module calibration on a plurality of the radar modules that have completed physical cascade; realize the modularization of millimeter-wave radar; through modular vehicle-mounted radar, it becomes easier to construct a virtual array. Modules can be cascaded only by installing the modules on the base plate before and after. Make high-precision radar design more flexible and easier to implement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种模块化毫米波雷达,包括多个雷达模块,雷达模块包括雷达芯片、以及连接在雷达芯片的接收线阵和发射线阵,其中,接收天线阵和发射天线阵距离雷达模块边缘小于所形成一个虚拟阵的一半;多个雷达模块进行模块化级联包括以下步骤:根据每个雷达模块的接收线阵和发射线阵的排布,将多个雷达模块进行物理级联;对一个雷达模块进行模块内校准,且对完成物理级联的多个雷达模块进行模块间校准。有益效果在于:通过模块化的车载雷达,构建虚拟阵变得更加容易。只需要将模块前后装在基板上就可以进行模块级联。让高精度雷达设计更加灵活,也更加易于实现。

Description

一种模块化毫米波雷达 技术领域
本申请涉及汽车辅助驾驶技术领域,尤其涉及一种三发四收宽波束天线。
背景技术
随着汽车工业的飞速发展,在毫米波汽车雷达设计中,多输入多输出(MIMO)技术正在广泛应用。通过在时序上,空间上或者编码上的正交,使接收端和发射端之间形成了虚拟通道,进一步在雷达通道数一定的情况下提高了雷达的角度分辨率,为车载高精度雷达的发展奠定了基础。同时,为了增加雷达通道数本身,在单芯片集成多通道的基础上可以对芯片进行级联。对于级联有多种方式,在传统的整体设计条件下,芯片摆放位置与天线摆放位置强耦合。由于走线复杂,级联芯片越多,芯片到天线之间的走线距离就越远,在毫米波段引入很大的插入损耗,降低了系统的能量效率。
发明内容
本申请为了解决上述技术问题,本申请提供一种模块化毫米波雷达,包括多个雷达模块,所述雷达模块包括雷达芯片、以及连接在所述雷达芯片的接收线阵和发射线阵,其中,接收线阵和发射线阵距离雷达模块边缘小于所形成一个虚拟阵的一半,多个所述雷达模块进行模块化级联包括以下步骤:
根据所述雷达模块的接收线阵和发射线阵的排布,将多个雷达模块进行物理级联;
对一个所述雷达模块进行模块内校准,且对完成物理级联的多个所述雷达模块进行模块间校准。
可选地,所述根据每个所述雷达模块的接收线阵和发射线阵的排布,将多个雷达模块进行物理级联,包括:
将所述接收线阵的接收天线沿基板X轴,以等间距阵或稀疏阵形式排布;
将所述发射线阵的发射天线沿基板X轴,以等间距阵排布;
将多个所述雷达模块,根据所述接收天线和发射天线排布,获得虚拟阵。
可选地,所述将多个所述雷达模块,根据所述接收天线和发射天线排布,获得虚拟阵,包括:
所述接收线阵总长度与两所述发射天线的间距均为N,即所述发射天线与最后一个接收天线在X轴方向重合;
将多个所述雷达模块进行排布时,一所述雷达模块与下一雷达模块的接收天线为3N。
可选地,所述将多个所述雷达模块,根据所述接收天线和发射天线排布,获得虚拟阵,包括:
所述接收线阵总长度为N;则所述发射天线间距为4N/3;
将多个所述雷达模块进行排布时,一所述雷达模块与下一雷达模块的接收天线为11N/4。
其中,所述接收线阵的多个接收天线为等间距阵排布。
可选地,所述接收线阵包括4个接收天线;所述发射线阵包括3个发射天线。
可选地,所述对完成物理级联的多个所述雷达模块进行模块间校准,包括LO频率同步校准和RF信道校准。
可选地,所述LO频率同步校准,包括:
将LO信号通过耦合方式耦合至所述雷达模块的基板中;
通过传输线将同步LO信号输入到不同雷达模块的雷达芯片;
通过接收来自不同的发射线阵的信号,判断LO频率是否同步;
若LO频率不同步,则通过数字延长线对LO频率进行时延调解同步。
可选地,所述通过接收来自发射线阵发射的信号,判断LO频率是否同步,包括:
通过不同的雷达芯片的发射线阵依次发射信号,检测所述各雷达芯片接收线阵得到的中频信号的频率是否相同,从而判断同样的目标在不同的雷达芯片的接收线阵出现的距离是否相同。
可选地,所述RF信道校准,包括:
校准雷达模块的接收线阵,在雷达模块中,天线罩与天线间相互耦合,在盖有天线罩的情况下,将校准角铁放置在雷达法线处采集各雷达芯片的接收线阵的幅相数据,存储到数据库中;校准雷达模块的发射线阵,在LO频率同步条件下,第一个发射天线继续发射点频信号,另一被校准发射端与第一天线同时发射,利用数字移相器将被校准天线相位旋转360度,使用零点扫描进行校准。
可选地,所述对一个所述雷达模块进行模块内校准,包括:
在一个雷达模块内,通过所述发射线阵的多个发射天线分时对已知目标发送信号,并对接收线阵的接收天线接收的相位进行计算,完成模块内校准。
本申请的一种模块化毫米波雷达,通过对多个雷达模块的发射线阵和接收线阵进行排布,使其进行物理级联,在物理级联完成之后,通过对一个所述雷达模块进行模块内校准,且对完成物理级联的多个所述雷达模块进行模块间校准;实现毫米波雷达的模块化;其有益效果在于:通过模块化的车载雷达,构建虚拟阵变得更加容易。只需要将模块前后装在基板上就可以进行模块级联。让高精度雷达设计更加灵活,也更加易于实现。
附图说明
图1为本申请的毫米波雷达级联步骤示意图;
图2为本申请的构建MIMO模块化雷达的方式,相邻发射线阵与接收线阵首尾对应;
图3为本申请的构建MIMO模块化雷达的方式,相邻发射线阵是接收线阵的延伸;
图4为本申请的模块化MIMO雷达背部馈电方式;
图5为本申请的模块化MIMO雷达背部馈电本振信号同步方式;
图6为本申请的两片级联的模块化构建方式。
具体实施方式
下面结合附图对本申请的较佳实施例进行详细阐述,以使本申请的优点和特征更易被本领域技术人员理解,从而对本申请的保护范围作出更为清楚的界定。
本申请提供一种模块化毫米波雷达,通过模块化的车载雷达,构建虚拟阵变得更加容易。只需要将模块前后装在基板上就可以进行模块级联。让高精度雷达设计更加灵活,也更加易于实现。
在如图1-6所示的实施例中,本申请提供一种模块化毫米波雷达,包括多个雷达模块,雷达模块包括雷达芯片、以及连接在雷达芯片的接收线阵和发射线阵,其中,接收线阵和发射线阵距离雷达模块边缘小于所形成一个虚拟阵的一半;多个雷达模块进行模块化级联包括以下步骤:
根据雷达模块的接收线阵和发射线阵的排布,将多个雷达模块进行物理级联;
在本实施例的一种实施方式中,接收线阵在基板沿X轴方向排开,排开的方式可以是等距也可以是稀疏阵形式,而发射线阵使用等间距形式在横轴X方向排开。接收线阵和发射线阵在Y轴的排布根据雷达芯片的射频以及基带与电源走线,进行排布;本申请不限于接收线阵和发射线阵在Y轴的排布方式,根据本申请所公开的技术方案而实现的多雷达模块级联,均落入本申请的保护范围。
在上述实施例的一个具体实施方式中,接收线阵可采用等间距阵形式分布,接收线阵也可采用稀疏阵形式分布,令接收线阵的总长度为N,则发射天线的间距也应为N,参见图2;即发射天线与最后一个接收天线在X轴方向重合。其中,接收线阵包括4个接收天线;发射线阵包括3个发射天线,发射天线为图2所示的横纹表示,接收天线为图2所示的斜纹表示。在完成了模块以后,模块间的级联可通过在基板上直接摆放实现;其中,本实施方式,下一雷达模块的第一个接收天线与前一个的第一个接收天线距离为3N。雷达模块大小应该尽量与接收天线或发射天线物理尺寸尽量一致,使得每一个新添加的发射天线将对应一个虚 拟接收阵列,并且这种长度尺寸关系可以按照如图的方法无限延展下去。其作用是直接使用多个雷达芯片进一步将虚拟阵扩展,实现更大的虚拟阵列。
在上述实施例的另一个具体实施方式中,接收线阵可以是等间距阵,其总长度为N,令两发射天线间距为4N/3,如图3所示。若接收线阵为稀疏阵列排布,N会相应的增大;在完成了模块以后,模块间的级联可以通过直接摆放实现。其中,接收线阵包括4个接收天线;发射线阵包括3个发射天线,发射天线为图3所示的横纹表示,接收天线为图3所示的斜纹表示。根据本实施方式,则下一个模块的左接收天线与前一个模块的左接收天线距离为N/34*11。其截面图如图4所示。如此通过模块化的雷达排布可以得到可以延展的虚拟阵。雷达模块大小应该尽量与接收天线或发射天线物理尺寸尽量一致,使得每一个新添加的发射天线将对应一个虚拟接收阵列,并且这种长度尺寸关系可以按照如图6的方法无限延展下去。其作用是直接使用多个雷达芯片进一步将虚拟阵扩展,实现更大的虚拟阵列。且本实施方式所列举的摆布方式,得到的阵列尺寸相对更大,由于单雷达模块尺寸设计即雷达模块尺寸与天线尺寸相当,可以直接将多芯片通过合适的位置摆放扩展虚拟阵。
对一个所述雷达模块进行模块内校准,且对完成物理级联的多个所述雷达模块进行模块间校准。
在本实施例的一种实施方式中,对一个雷达模块进行模块内校准包括在一个雷达模块内,通过所述发射线阵的多个发射天线分时对已知目标发送信号,并对接收线阵的接收天线接收的相位进行计算,完成模块内校准。对完成物理级联的多个雷达模块进行模块间校准包括LO频率同步校准和RF信道校准。LO频率同步校准,包括:将LO信号通过耦合方式耦合至雷达模块的基板中;通过传输线将同步LO信号输入到不同雷达模块的雷达芯片;通过接收来自发射线阵发射的信号,判断LO频率是否同步;若LO频率不同步,则通过数字延长线对LO频率进行时延调解。RF信道校准,包括:校准雷达模块的接收线阵,在雷达模块中,天线罩与天线间相互耦合,在视场角内在0.2-0.8度采集一次各接收端的幅相数据,存储到数据库中;校准雷达模块的发射线阵,在LO频率同步条件下,第一个发射天线继续发射点频信号,另一被校准发射端与第一天线同时发射,利用数字移相器将被校准天线相位旋转360度,使用零点扫描进行反向校准。使得多个雷达模块在进行物理排布后,由FMCW调制信号校准进行校准,从而实现多个雷达模块的级联。其中,FMCW雷达系统通过天线向外发射一列连续调频毫米波,并接收目标的反射信号。发射波的频率在时域中按调制电压的规律变化。FMCW毫米波雷达的发射信号采用的是频率调制,常用的调制信号有:正弦波信号、锯齿波信号和三角波信号等
此外,本实施例的雷达模块可以为单片模块,也可以设计成双片模块;如图五所示。为了减小走线长度,使用尽量对称的排布。接收天线摆在中间,可以是等间距也可以是稀疏阵形式。发射天线与模块间排布在上述雷达模块的接收线阵和发射线阵的排布的两种排布类似。本申请的一种模块化毫米波雷达,通过对多个雷达模块的发射线阵和接收线阵进行排布,使其进行物理级联,在物理级联完成之后,通过FMCW调制信号校准,实现毫米波雷达的模块化;通过模块化的车载雷达,构建虚拟阵变得更加容易。只需要将模块前后装在基板上就可以进行模块级联。让高精度雷达设计更加灵活,也更加易于实现。
在一些实施例中,根据每个雷达模块的接收线阵和发射线阵的排布,将多个雷达模块进行物理级联,包括:
将接收线阵的接收天线沿基板X轴,以等间距阵或稀疏阵形式排布;
将发射线阵的发射天线沿基板X轴,以等间距阵排布;
将多个雷达模块,根据接收天线和发射天线排布,获得虚拟阵。
在本实施例的一种实施方式中,接收线阵在基板沿X轴方向排开,排开的方式可以是等距也可以是稀疏阵形式,而发射线阵使用等间距形式在横轴X方向排开。接收线阵和发射线阵在Y轴的排布根据雷达芯片的射频以及基带与电源走线,进行排布;本申请不限于接收线阵和发射线阵在Y轴的排布方式,根据本申请所公开的技术方案而实现的多雷达模块级联,均落入本申请的保护范围。本申请的接收线阵的接收天线可进行等间距阵排布,也可进行稀疏阵形式排布,其具体排布方式根据所需获得的效果,进行定制化设置。
在一些实施例中,将多个雷达模块,根据接收天线和发射天线排布,获得虚拟阵,包括:
接收线阵总长度与两发射天线的间距均为N,即发射天线与最后一个接收天线在X轴方向重合;
将多个雷达模块进行排布时,一雷达模块与下一雷达模块的接收天线为3N。
在上述实施例的一个具体实施方式中,接收线阵可采用等间距阵形式分布,接收线阵也可采用稀疏阵形式分布,令接收线阵的总长度为N,则发射天线的间距也应为N,参见图2;即发射天线与最后一个接收天线在X轴方向重合。其中,接收线阵包括4个接收天线;发射线阵包括3个发射天线,发射天线为图2所示的横纹表示,接收天线为图2所示的斜纹表示。在完成了模块以后,模块间的级联可通过在基板上直接摆放实现;其中,本实施方式,下一雷达模块的第一个接收天线与前一个的第一个接收天线距离为3N。雷达模块大小应该尽量与接收天线或发射天线物理尺寸尽量一致,使得每一个新添加的发射天线将对应一个虚 拟接收阵列,并且这种长度尺寸关系可以按照如图的方法无限延展下去。其作用是直接使用多个雷达芯片进一步将虚拟阵扩展,实现更大的虚拟阵列。
在一些实施例中,将多个雷达模块,根据接收天线和发射天线排布,获得虚拟阵,包括:
接收线阵总长度为N;则发射天线间距为4N/3;
将多个雷达模块进行排布时,一雷达模块与下一雷达模块的接收天线为11N/4。
其中,接收线阵的多个接收天线为等间距阵排布。
在上述实施例的一个具体实施方式中,接收线阵可以是等间距阵,其总长度为N,令两发射天线间距为4N/3,如图3所示。若接收线阵为稀疏阵列排布,N会相应的增大;在完成了模块以后,模块间的级联可以通过直接摆放实现。其中,接收线阵包括4个接收天线;发射线阵包括3个发射天线,发射天线为图3所示的横纹表示,接收天线为图3所示的斜纹表示。根据本实施方式,则下一个模块的左接收天线与前一个模块的左接收天线距离为N/34*11。其截面图如图4所示。如此通过模块化的雷达排布可以得到可以延展的虚拟阵。雷达模块大小应该尽量与接收天线或发射天线物理尺寸尽量一致,使得每一个新添加的发射天线将对应一个虚拟接收阵列,并且这种长度尺寸关系可以按照如图6的方法无限延展下去。其作用是直接使用多个雷达芯片进一步将虚拟阵扩展,实现更大的虚拟阵列。且本实施方式所列举的摆布方式,得到的阵列尺寸相对更大,由于单雷达模块尺寸设计即雷达模块尺寸与天线尺寸相当,可以直接将多芯片通过合适的位置摆放扩展虚拟阵。
在一些实施例中,对完成物理级联的多个所述雷达模块进行模块间校准,包括LO频率同步校准和RF信道校准。
在本实施例的一种实施方式中,LO频率同步校准,包括:将LO信号通过耦合方式耦合至雷达模块的基板中;通过传输线将同步LO信号输入到不同雷达模块的雷达芯片;通过接收来自不同发射线阵的信号,判断LO频率是否同步;若LO频率不同步,则通过数字延长线对LO频率进行时延同步。其中,通过接收来自发射线阵发射的信号,判断LO频率是否同步,包括:通过不同的雷达芯片的发射线阵依次发射信号,检测各雷达芯片接收线阵得到的中频信号的频率是否相同,从而判断同样的目标在不同的雷达芯片的接收线阵出现的距离是否相同。由于LO频率通常远低于RF频率,因此可以通过耦合的形式将信号耦合至去成本较低的基板,然后通过传输线将同步LO信号输入不同芯片。校准通过远场固定角铁进行。不同芯片轮流发射,如果LO频率不同步,则各芯片接收端得到的中频信号频率不同,导致同样目标在不同芯片接收端出现的距离不一样。此时使用数字延长线对LO进行时延调 解,使目标落入同样的FFT Range Bin当中。可以增大带宽,使每个FFT Range Bin的精度提高。
在本实施例的一种实施方式中,RF信道校准,包括:校准雷达模块的接收线阵,在雷达模块中,天线罩与天线间相互耦合,在盖有天线罩的情况下,将校准角铁放置在雷达法线处采集各雷达芯片的接收线阵的幅相数据,存储到数据库中;其中,在视场角内在0.2-0.8度采集一次各雷达模块的接收线阵的幅相数据,存储到数据库中;校准雷达模块的发射线阵,在LO频率同步条件下,第一个发射天线继续发射点频信号,另一被校准发射端与第一天线同时发射,利用数字移相器将被校准天线相位旋转360度,使用零点扫描进行反向校准。在本实施方式中,由于大多数芯片具备芯片内信道校准,在此主要描述芯片外校准的部分。芯片外的校准,即包含芯片本身以及天线和RF走线的校准,可以分成两个步骤。第一个步骤校准接收端,由于存在天线罩与天线间的互相耦合,在FoV内将目标每隔0.5度采集一次各接收端的幅相数据,保存至数据库中。第二个步骤校准发射端,在LO同步条件下,第一个发射天线持续发射点频信号,另一个被校准发射端与第一个天线同时发射,利用数字移相器将被校准天线相位旋转360度,使用零点扫描,即找到180度相位差的相位设置,进行校准。
在一些实施例中,对一个雷达模块进行模块内校准,包括:
在一个雷达模块内,通过发射线阵的多个发射天线分时对已知目标发送信号,并对接收线阵的接收天线接收的相位进行计算,完成模块内校准。在本实施例中,由于目标的位置为已知位置,因此可以计算出目标到接收天线阵的到达角度,再由到达角度和接收阵的天线摆放距离计算出对应信号的相位。利用相位和相应的幅度组成校准矩阵,对实际任意信号进行校准。
本申请的一种模块化毫米波雷达,通过对多个雷达模块的发射线阵和接收线阵进行排布,使其进行物理级联,在物理级联完成之后,通过对一个所述雷达模块进行模块内校准,且对完成物理级联的多个所述雷达模块进行模块间校准;实现毫米波雷达的模块化;通过模块化的车载雷达,构建虚拟阵变得更加容易。只需要将模块前后装在基板上就可以进行模块级联。让高精度雷达设计更加灵活,也更加易于实现。
上面结合附图对本申请的实施方式作了详细说明,但是本申请并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。

Claims (10)

  1. 一种模块化毫米波雷达,其特征在于,包括多个雷达模块,所述雷达模块包括雷达芯片、以及连接在所述雷达芯片的接收线阵和发射线阵,其中,接收线阵和发射线阵距离雷达模块边缘小于所形成一个虚拟阵的一半;多个所述雷达模块进行模块化级联包括以下步骤:
    根据所述雷达模块的接收线阵和发射线阵的排布,将多个雷达模块进行物理级联;
    对一个所述雷达模块进行模块内校准,且对完成物理级联的多个所述雷达模块进行模块间校准。
  2. 根据权利要求1所述的一种模块化毫米波雷达,其特征在于,所述根据每个所述雷达模块的接收线阵和发射线阵的排布,将多个雷达模块进行物理级联,包括:
    将所述接收线阵的接收天线沿基板X轴,以等间距阵或稀疏阵形式排布;
    将所述发射线阵的发射天线沿基板X轴,以等间距阵排布;
    将多个所述雷达模块,根据所述接收天线和发射天线排布,获得虚拟阵。
  3. 根据权利要求2所述的一种模块化毫米波雷达,其特征在于,所述将多个所述雷达模块,根据所述接收天线和发射天线排布,获得虚拟阵,包括:
    所述接收线阵总长度与两所述发射天线的间距均为N,即所述发射天线与最后一个接收天线在X轴方向重合;
    将多个所述雷达模块进行排布时,一所述雷达模块与下一雷达模块的接收天线为3N。
  4. 根据权利要求2所述的一种模块化毫米波雷达,其特征在于,所述将多个所述雷达模块,根据所述接收天线和发射天线排布,获得虚拟阵,包括:
    所述接收线阵总长度为N;则所述发射天线间距为4N/3;
    将多个所述雷达模块进行排布时,一所述雷达模块与下一雷达模块的接收天线为11N/4;
    其中,所述接收线阵的多个接收天线为等间距阵排布。
  5. 根据权利要求3或4任一项所述一种模块化毫米波雷达,其特征在于,所述接收线阵包括4个接收天线;所述发射线阵包括3个发射天线。
  6. 根据权利要求1所述的一种模块化毫米波雷达,其特征在于,所述对完成物理级联的多个所述雷达模块进行模块间校准,包括LO频率同步校准和RF信道校准。
  7. 根据权利要求6所述的一种模块化毫米波雷达,其特征在于,所述LO频率同步校准,包括:
    将LO信号通过耦合方式耦合至所述雷达模块的基板中;
    通过传输线将同步LO信号输入到不同雷达模块的雷达芯片;
    通过接收来自不同发射线阵的信号,判断LO频率是否同步;
    若LO频率不同步,则通过数字延长线对LO频率进行时延同步。
  8. 根据权利要求7所述的一种模块化毫米波雷达,其特征在于,所述通过接收来自发射线阵发射的信号,判断LO频率是否同步,包括:
    通过不同的雷达芯片的发射线阵依次发射信号,检测所述各雷达芯片接收线阵得到的中频信号的频率是否相同,从而判断同样的目标在不同的雷达芯片的接收线阵出现的距离是否相同。
  9. 根据权利要求6所述的一种模块化毫米波雷达,其特征在于,所述RF信道校准,包括:
    校准雷达模块的接收线阵,在雷达模块中,天线罩与天线间相互耦合,在盖有天线罩的情况下,将校准角铁放置在雷达法线处采集各雷达芯片的接收线阵的幅相数据,存储到数据库中;
    校准雷达模块的发射线阵,在LO频率同步条件下,第一个发射天线继续发射点频信号,另一被校准发射端与第一天线同时发射,利用数字移相器将被校准天线相位旋转360度,使用零点扫描进行校准。
  10. 根据权利要求1所述的一种模块化毫米波雷达,其特征在于,所述对一个所述雷达模块进行模块内校准,包括:
    在一个雷达模块内,通过所述发射线阵的多个发射天线分时对已知目标发送信号,并对接收线阵的接收天线接收的相位进行计算,完成模块内校准。
PCT/CN2019/121200 2019-10-28 2019-11-27 一种模块化毫米波雷达 WO2021082147A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911033502.3A CN110940957B (zh) 2019-10-28 2019-10-28 一种模块化毫米波雷达
CN201911033502.3 2019-10-28

Publications (1)

Publication Number Publication Date
WO2021082147A1 true WO2021082147A1 (zh) 2021-05-06

Family

ID=69906253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121200 WO2021082147A1 (zh) 2019-10-28 2019-11-27 一种模块化毫米波雷达

Country Status (2)

Country Link
CN (1) CN110940957B (zh)
WO (1) WO2021082147A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466810A (zh) * 2021-07-28 2021-10-01 中汽创智科技有限公司 一种车载雷达的天线参数确定方法
CN114204282A (zh) * 2021-12-07 2022-03-18 中国电子科技集团公司第十四研究所 一种基于虚拟阵列的大规模阵列天线
CN115238633A (zh) * 2022-06-06 2022-10-25 珠海微度芯创科技有限责任公司 一种毫米波芯片的数据输出方法和芯片

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112666543B (zh) * 2020-12-01 2023-10-27 安徽隼波科技有限公司 一种稀疏阵列tdm-mimo雷达及其校正方法
WO2022184239A1 (de) * 2021-03-02 2022-09-09 Vega Grieshaber Kg Radarmessgerät mit einer anordnung kaskadierbarer radarelemente
EP4302124A1 (de) * 2021-03-02 2024-01-10 VEGA Grieshaber KG Kaskadierbares radarelement mit sendeantenne und empfangsantenne
CN113204013A (zh) * 2021-04-19 2021-08-03 珠海上富电技股份有限公司 一种基于fpga的高分辨率毫米波雷达及信号处理方法
WO2022225804A1 (en) * 2021-04-23 2022-10-27 Nuro, Inc. Radar system for an autonomous vehicle
CN113219456A (zh) * 2021-05-25 2021-08-06 北京京东方技术开发有限公司 毫米波雷达系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207946522U (zh) * 2018-03-23 2018-10-09 加特兰微电子科技(上海)有限公司 一种毫米波雷达系统
US20180292510A1 (en) * 2017-04-07 2018-10-11 Texas Instruments Incorporated Calibration of a cascaded radar system
CN109244681A (zh) * 2018-10-11 2019-01-18 上海莫吉娜智能信息科技有限公司 基于77GHz毫米波雷达的微带阵列天线系统
CN110082768A (zh) * 2019-04-12 2019-08-02 惠州市德赛西威汽车电子股份有限公司 一种77Ghz车载前向高分辨率雷达的散热方法及雷达
CN110098468A (zh) * 2019-04-09 2019-08-06 惠州市德赛西威智能交通技术研究院有限公司 一种三发四收宽波束天线

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264862A (en) * 1991-12-10 1993-11-23 Hazeltine Corp. High-isolation collocated antenna systems
US5559519A (en) * 1995-05-04 1996-09-24 Northrop Grumman Corporation Method and system for the sequential adaptive deterministic calibration of active phased arrays
JP2004077399A (ja) * 2002-08-22 2004-03-11 Hitachi Ltd ミリ波レーダ
JP5091651B2 (ja) * 2007-12-14 2012-12-05 日立オートモティブシステムズ株式会社 レーダ装置及びターゲットの方位角計測方法
US20100117744A1 (en) * 2008-11-10 2010-05-13 Matsushita Electric Industrial Co., Ltd. Phase error correction in rotary traveling wave oscillators
AU2010364993B2 (en) * 2010-12-01 2015-06-11 Telefonaktiebolaget L M Ericsson (Publ) Method, antenna array, computer program and computer program product for obtaining at least one calibration parameter
CN102288989B (zh) * 2011-05-17 2012-08-29 中国科学院地质与地球物理研究所 单舱球组合式宽频带海底地震仪
CN103399305B (zh) * 2013-06-28 2015-06-17 四川九洲空管科技有限责任公司 数字阵二次雷达射频通道和天线阵子的幅相校准方法
US9733340B2 (en) * 2014-11-21 2017-08-15 Texas Instruments Incorporated Techniques for high arrival angle resolution using multiple nano-radars
SE541664C2 (en) * 2015-10-23 2019-11-19 Qamcom Tech Ab MIMO radar system and calibration method thereof
CN108169750A (zh) * 2018-02-07 2018-06-15 惠州市德赛西威汽车电子股份有限公司 一种车载毫米波雷达系统
CN108919271A (zh) * 2018-03-23 2018-11-30 加特兰微电子科技(上海)有限公司 一种毫米波雷达系统
CN109444891B (zh) * 2019-01-08 2024-07-23 浙江力邦合信智能制动系统股份有限公司 一种毫米波雷达天线系统及解耦方法
CN110034382A (zh) * 2019-03-04 2019-07-19 惠州市德赛西威汽车电子股份有限公司 一种雷达用毫米波天线
CN109991582B (zh) * 2019-03-13 2023-11-03 上海交通大学 硅基混合集成激光雷达芯片系统
CN110113046B (zh) * 2019-04-16 2022-04-05 天津大学 用于高分辨率雷达阵列系统的频率源无线同步与校准方法
CN110266421A (zh) * 2019-06-20 2019-09-20 武汉能钠智能装备技术股份有限公司 多通道同步采集相位校准系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180292510A1 (en) * 2017-04-07 2018-10-11 Texas Instruments Incorporated Calibration of a cascaded radar system
CN207946522U (zh) * 2018-03-23 2018-10-09 加特兰微电子科技(上海)有限公司 一种毫米波雷达系统
CN109244681A (zh) * 2018-10-11 2019-01-18 上海莫吉娜智能信息科技有限公司 基于77GHz毫米波雷达的微带阵列天线系统
CN110098468A (zh) * 2019-04-09 2019-08-06 惠州市德赛西威智能交通技术研究院有限公司 一种三发四收宽波束天线
CN110082768A (zh) * 2019-04-12 2019-08-02 惠州市德赛西威汽车电子股份有限公司 一种77Ghz车载前向高分辨率雷达的散热方法及雷达

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BILIK, IGAL ET AL.: "Automotive Multi-mode Cascaded Radar Data Processing Embedded System", 2018 IEEE RADAR CONFERENCE (RADARCONF18), 23 April 2018 (2018-04-23), pages 372 - 376, XP033356234, ISSN: 2375-5318, DOI: 10.1109/RADAR.2018.8378587 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466810A (zh) * 2021-07-28 2021-10-01 中汽创智科技有限公司 一种车载雷达的天线参数确定方法
CN113466810B (zh) * 2021-07-28 2023-08-22 中汽创智科技有限公司 一种车载雷达的天线参数确定方法
CN114204282A (zh) * 2021-12-07 2022-03-18 中国电子科技集团公司第十四研究所 一种基于虚拟阵列的大规模阵列天线
CN114204282B (zh) * 2021-12-07 2024-02-06 中国电子科技集团公司第十四研究所 一种基于虚拟阵列的大规模阵列天线
CN115238633A (zh) * 2022-06-06 2022-10-25 珠海微度芯创科技有限责任公司 一种毫米波芯片的数据输出方法和芯片
CN115238633B (zh) * 2022-06-06 2023-03-21 珠海微度芯创科技有限责任公司 一种毫米波芯片的数据输出方法和芯片

Also Published As

Publication number Publication date
CN110940957B (zh) 2022-03-22
CN110940957A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2021082147A1 (zh) 一种模块化毫米波雷达
CN102360077B (zh) 用于检测方位角的方法和装置
US10816641B2 (en) Imaging radar sensor with synthetic enlargement of the antenna aperture and two-dimensional beam sweep
CN1985187B (zh) 单脉冲雷达装置及天线切换开关
US11177567B2 (en) Antenna array calibration systems and methods
JP7369852B2 (ja) レーダシステム及び車両
US8049662B2 (en) Systems and methods for antenna calibration
CN103558594B (zh) 基于机载设备的相控阵波束合成方法
JP3393204B2 (ja) マルチビームレーダ装置
JP5763684B2 (ja) レーダセンサ
CN106450796B (zh) 一种阵列天线系统及天线的校准方法
CN104067143A (zh) 具有窄天线波瓣和宽的角探测范围的成像雷达传感器
US20200256947A1 (en) Electronic device, rader device and rader control method
CN111656213B (zh) 雷达和内置在雷达中的天线
US20160104946A1 (en) Radar apparatus
WO2007083479A1 (ja) レーダ装置
JP2004198312A5 (zh)
CN113014294B (zh) 一种两维相控阵微波前端校准网络及方法
US20200227824A1 (en) Antenna apparatus with switches for antenna array calibration
CN110376552B (zh) 一种低成本环形相控阵雷达系统及工作方法
CN112864622B (zh) 一种基于弧形阵列天线的波束方向的控制方法及装置
WO2012057655A1 (en) A radar station, featuring broadband, linear- frequency-modulated, continuous-wave emission
JP2011226794A (ja) レーダ装置
CN115728722A (zh) 4d雷达的天线阵列、数据探测方法及4d雷达
JP2012168194A (ja) レーダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951187

Country of ref document: EP

Kind code of ref document: A1