WO2021082105A1 - 一种海工掺合料 - Google Patents

一种海工掺合料 Download PDF

Info

Publication number
WO2021082105A1
WO2021082105A1 PCT/CN2019/119595 CN2019119595W WO2021082105A1 WO 2021082105 A1 WO2021082105 A1 WO 2021082105A1 CN 2019119595 W CN2019119595 W CN 2019119595W WO 2021082105 A1 WO2021082105 A1 WO 2021082105A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
marine
concrete
weight
admixture
Prior art date
Application number
PCT/CN2019/119595
Other languages
English (en)
French (fr)
Inventor
康明
曹黎颖
Original Assignee
上海宝田新型建材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海宝田新型建材有限公司 filed Critical 上海宝田新型建材有限公司
Priority to SG11202011435VA priority Critical patent/SG11202011435VA/en
Publication of WO2021082105A1 publication Critical patent/WO2021082105A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2015Sulfate resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/22Carbonation resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/24Sea water resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical field of marine engineering materials, in particular to a marine admixture.
  • the seawater environment has a huge impact on the corrosion resistance and durability of marine engineering facilities.
  • the development of land reclamation and infrastructure construction in coastal areas is faced with harsh climate environments such as high temperature, high humidity, high salt spray, deep water and large waves.
  • Very high requirements are put forward for the performance of marine engineering building materials.
  • ordinary Portland cement has poor corrosion resistance and high heat of hydration, and because the early concrete tensile strength is very low, the elastic modulus is small, which can easily lead to serious temperature cracks in concrete, especially large-volume concrete, significantly affect the strength and durability of marine engineering structures.
  • the hydrated products of Portland cement, calcium hydroxide (CH) and hydrated calcium silicate (CSH) gel are both easy to dissolve or corrode in seawater media. Adjusting the composition of the clinker and introducing a large amount of auxiliary cementing materials are important ways to reduce the heat of hydration, improve the corrosion resistance and block Cl - , but still cannot overcome the problem of product stability.
  • CH calcium hydroxide
  • CSH hydrated calcium silicate
  • the core is to increase the stable products and composite chlorine resistance in seawater media, and develop high-corrosion, high-strength, long-term stable marine Portland cement to meet the ocean
  • the purpose of the present invention is to provide a marine admixture that uses a large amount of metallurgical industrial wastes, such as slag powder, fly ash, desulfurized gypsum, etc., in a certain proportion
  • a suitable amount of activator material is compounded, which can effectively reduce the heat of hydration of concrete and improve the durability of marine engineering concrete.
  • the marine admixture of the present invention includes the following raw materials in parts by weight: 50 to 90 parts of slag powder, 10 to 50 parts of fly ash, or 1 to 10 parts of stimulant, and the above raw materials After compounding according to the proportion, stir evenly to obtain.
  • the marine admixture includes raw materials in parts by weight: 55-80 parts of slag powder, 15-40 parts of fly ash, and 1-8 parts of stimulant.
  • the reasonable ratio of slag powder and fly ash used in the concrete for marine engineering can effectively reduce the heat of hydration of the concrete, reduce the temperature cracks of the concrete, and improve the durability of the concrete.
  • the addition of stimulant can stimulate activity and improve early strength.
  • the slag powder of the present invention is S95 grade, with a specific surface area of 400-450 m 2 /kg, preferably its specific surface area is 420 m 2 /kg.
  • the fly ash of the present invention meets the relevant technical indicators of GB/T1596-2017 "Fly Ash Used in Cement and Concrete", the water content is ⁇ 1.0%, and the SO 3 content is ⁇ 3.0%.
  • the stimulant of the present invention is selected from one or a mixture of two or more of triisopropanolamine, triethanolamine, ethylene glycol, desulfurized gypsum, calcium oxide, and sodium sulfate.
  • the desulfurized gypsum is power plant desulfurized gypsum or sintered desulfurized gypsum.
  • the marine admixture is composed of 60 parts by weight of S95 grade slag powder with a specific surface area of 420 m 2 /kg, 35 parts of fly ash and 5 parts of desulfurized gypsum.
  • the marine admixture is composed of 65 parts by weight of S95 grade slag powder with a specific surface area of 420 m 2 /kg, 32 parts of fly ash and 3 parts of sodium sulfate.
  • the marine admixture comprises 70 parts by weight of S95 grade slag powder with a specific surface area of 420m 2 /kg, 22 parts of fly ash, 5 parts of desulfurized gypsum and 3 parts of sodium sulfate. composition.
  • the marine engineering concrete of the present invention is C30 grade, contains any of the above-mentioned marine admixtures, and its addition accounts for 30% to 35% of the total weight of the concrete, and also includes cement and medium sand , Stones, admixtures and water.
  • the added amount of the marine admixture accounts for 33% of the total weight of the concrete.
  • the present invention has the following beneficial effects:
  • the marine admixture of the present invention is made of metallurgical solid waste such as slag powder, fly ash, etc. as the main raw material, and is compounded by adding an appropriate amount of activator materials according to a certain proportion. On the one hand, it reduces the amount of cement and effectively reduces The heat of hydration of concrete is also beneficial to reduce the temperature cracks of concrete and improve the durability of marine engineering concrete such as resistance to sulfuric acid and chloride ions.
  • the marine admixture of the present invention can increase the density of concrete materials, form a low-permeability, high-density, and low-defect concrete structure, fundamentally improve the anti-corrosion ability of the concrete structure in the ocean, and improve the concrete's anti-carbonization and resistance Penetration and frost resistance.
  • the invention can increase the early strength and improve the working performance of concrete by adding an activator.
  • the marine admixture of the present invention uses solid waste as the main raw material, which has positive significance for resource regeneration and environmental protection, and the product processing technology is controllable and easy to implement.
  • the marine admixture prepared in the following examples includes the following raw materials in parts by weight: 50 to 90 parts of slag powder, 10 to 50 parts of fly ash, 1 to 10 parts of stimulant, and the above-mentioned raw materials are compounded according to the ratio Stir evenly to get;
  • the slag powder is S95 grade, and the specific surface area is 400-450m 2 /kg.
  • the stimulant is selected from one or a mixture of two or more of triisopropanolamine, triethanolamine, ethylene glycol, desulfurized gypsum, calcium oxide, and sodium sulfate.
  • Desulfurization gypsum is power plant desulfurization gypsum or sintered desulfurization gypsum.
  • the concrete test is carried out with the configured marine admixture.
  • the concrete design is C30 grade.
  • the mix ratio is commonly used pumped concrete mix ratio.
  • the water consumption is basically unchanged.
  • the concrete slump is controlled to 180 ⁇ 30mm by adjusting the admixture amount.
  • the matching ratio of C30 grade concrete is shown in Table 1, where:
  • Comparative Example 1 is the reference concrete.
  • Comparative Example 2 is to add S95 grade slag powder with a specific surface area of 420 m 2 /kg to the raw material composition of the reference concrete, while correspondingly reducing the amount of cement used.
  • Effect examples 1 to 3 are the addition of the marine admixtures obtained in Examples 1 to 3 to the raw material composition of the reference concrete, and the addition amount is 33% of the cementitious material, while correspondingly reducing the amount of cement used.
  • the compressive strength of the concrete mixed with marine admixtures (Effect Examples 1 to 3) is basically slightly lower than the benchmark concrete (Comparative Example 1) in the early stage, and gradually exceeds the benchmark concrete in the later period.
  • the flexural strength is less than the benchmark concrete.
  • the concrete is close.
  • Table 6 Compressive strength and flexural strength ratio of mortar specimens after immersion in sulfate solution

Abstract

一种海工掺合料,以重量份计包括:矿渣微粉50~90份、粉煤灰10~50份,或还包括激发剂1~10份,经上述原料按比例复配后搅拌均匀得到。该海工掺合料可以提高混凝土材料的致密度,形成低渗透、高密实和低缺陷的混凝土结构,改善混凝土结构在海洋中的防腐能力,提高混凝土抗碳化、抗渗透和抗冻能力。

Description

一种海工掺合料 技术领域
本发明涉及海洋工程材料技术领域,尤其涉及一种海工掺合料。
背景技术
海水环境对海洋工程设施耐腐蚀和耐久性的影响是巨大的,在沿海地区开展填海造陆和基础工程建设,面临着高温、高湿、高盐雾、水深浪大等恶劣的气候环境,这对海洋工程建筑材料性能提出了非常高的要求。然而,普通硅酸盐水泥的抗蚀性差,水化热高,而且由于混凝土早期抗拉强度很低,弹性模量小,这很容易导致混凝土,尤其是大体积混凝土出现严重的温度裂缝,从而严重影响海洋工程构筑物的强度和耐久性。
海洋环境下温度场、湿度场、有害离子侵蚀、超强台风等多因素耦合作用,对混凝土结构的安全服役和耐久性造成了严重的损害,导致混凝土建筑物服役寿命远低于规范设计的预期值。国内外海工水泥混凝土面临的最严重和普遍的耐久性问题是水泥基材料溶蚀、腐蚀和氯致钢筋锈蚀。水化产物在海水介质中不稳定是当前海洋工程结构用硅酸盐水泥(OPC)在研究及应用中存在的难题。
硅酸盐水泥水化产物氢氧化钙(CH)和水化硅酸钙(CSH)凝胶在海水介质中均易溶蚀或腐蚀。调整熟料组成、大量引入辅助性胶凝材料是降低水化热、提升抗蚀性和阻滞Cl -的重要途径,但仍然无法克服产物稳定性问题。加州伯克利大学早期的研究表明,减少水泥产物中CH比例,同时在CSH凝胶中引入铝质组分生成硅酸铝钙(CASH)凝胶,可显著提高其抗海水侵蚀性能。欧洲对古罗马具有千年历史的海工建筑物的研究表明,胶结物中形成海水中稳定的沸石类产物是其长期抗侵蚀的重要原因。这些研究启示设计引入在海水介质中稳定的产物,是开发高抗蚀胶凝材料的重要途径,目前挪威、美国、拉法基、我国都建立了海工水泥标准,并生产和工程应用。海洋施工环境恶劣及缺少专用水泥外加剂,导致施工质量不良,服役中缺少Cl -快速在线检测技术导致海洋工程耐久性差。因此,发展专用外加剂、现场无损Cl -测量、钢筋锈蚀早期诊断技术和长期服役性能检测是本领域的主要趋势。
发明内容
基于国内外水泥基海工材料现有的研发经验和启示,以增加海水介质中稳 定型产物和复合阻氯为核心,开发高抗蚀、高强、长期性能稳定的海工硅酸盐水泥满足海洋工程耐久性能的要求,本发明的目的在于提供一种海工掺合料,该海工掺合料使用大量冶金工业废弃物,如矿渣微粉、粉煤灰、脱硫石膏等,按照一定比例,添加适量的激发剂材料复配而成,可以有效地降低混凝土水化热、改善海洋工程混凝土耐久性能。
本发明的上述目的通过以下技术方案实现:
第一方面,本发明的海工掺合料,以重量份计包括以下原料:矿渣微粉50~90份,粉煤灰10~50份,或还包括激发剂1~10份,且经上述原料按配比复配后搅拌均匀得到。
在某些实施方案中,所述海工掺合料以重量份计包括原料:矿渣微粉55~80份,粉煤灰15~40份,激发剂1~8份。矿渣微粉和粉煤灰的合理配比,用于海洋工程用混凝土,可以有效降低混凝土水化热,减少混凝土温度裂缝,提高混凝土耐久性能。激发剂的加入,可以起到激发活性,提高早期强度等效果。
本发明所述矿渣微粉为S95级,比表面积为400~450m 2/kg,优选其比表面积为420m 2/kg。
本发明所述粉煤灰满足GB/T1596-2017《用于水泥和混凝土中的粉煤灰》相关技术指标,含水量为≤1.0%,SO 3含量≤3.0%。
本发明所述激发剂选自三异丙醇胺、三乙醇胺、乙二醇、脱硫石膏、氧化钙、硫酸钠中的一种或两种以上混合物。
进一步,所述的脱硫石膏为电厂脱硫石膏或烧结脱硫石膏。
在某一实施方案中,所述的海工掺合料按照重量份计,由60份比表面积420m 2/kg的S95级矿渣微粉、35份粉煤灰和5份脱硫石膏组成。
在某一实施方案中,所述的海工掺合料按照重量份计,由65份比表面积420m 2/kg的S95级矿渣微粉、32份粉煤灰和3份硫酸钠组成。
在某一实施方案中,所述的海工掺合料按照重量份计,由70份比表面积420m 2/kg的S95级矿渣微粉、22份粉煤灰、5份脱硫石膏和3份硫酸钠组成。
第二方面,本发明的海洋工程用混凝土为C30等级,包含上述任一所述海工掺合料,且其添加量占所述混凝土总重量的30%~35%,还包括水泥、中砂、石子、外加剂和水。
在某一实施方案中,所述海工掺合料的添加量占所述混凝土总重量的33%。
与现有技术相比,本发明的有益效果在于:
1、本发明的海工掺合料以冶金固废如矿渣微粉、粉煤灰等为主要原料,按照一定的比例,添加适量的激发剂材料复配而成,一方面减少水泥用量,有效降低混凝土水化热,同时有利于减少混凝土的温度裂痕,提高海洋工程混凝土抗硫酸、抗氯离子等耐久性能。
2、本发明的海工掺合料可以提高混凝土材料的致密度,形成低渗透、高密实、低缺陷的混凝土结构,从根本上改善混凝土结构在海洋中的防腐能力,提高混凝土抗碳化、抗渗透、抗冻能力。
3、本发明通过添加激发剂可以提高早期强度,改善混凝土的工作性能。
4、本发明的海工掺合料以固体废弃物为主要原料,对于资源再生和环境保护具有积极意义,产品加工工艺可控,便于实施。
具体实施方式
下面结合实施例,对本发明作进一步说明:
以下实施例中制备的海工掺合料,以重量份计包括以下原料:矿渣微粉50~90份,粉煤灰10~50份,激发剂1~10份,且经上述原料按配比复配后搅拌均匀得到;
矿渣微粉为S95级,比表面积为400~450m 2/kg。
粉煤灰满足GB/T1596-2017《用于水泥和混凝土中的粉煤灰》相关技术指标,含水量为≤1.0%,SO 3含量≤3.0%。
激发剂选自三异丙醇胺、三乙醇胺、乙二醇、脱硫石膏、氧化钙、硫酸钠中的一种或两种以上的混合物。
脱硫石膏为电厂脱硫石膏或烧结脱硫石膏。
以下通过实施例1~3进一步解释说明,原料按以下配比投入搅拌设备,搅拌4分钟,混合均匀得到海工掺合料,不同之处在于:
实施例1
按照重量份计,比表面积420m 2/kg的S95级矿渣微粉60份,粉煤灰35份,脱硫石膏5份。
实施例2
按照重量份计,比表面积420m 2/kg的S95级矿渣微粉65份,粉煤灰32份,硫酸钠3份。
实施例3
按照重量份计,比表面积420m 2/kg的S95级矿渣微粉70份,粉煤灰22份,脱硫石膏5份,硫酸钠3份。
测试数据
以配置的海工掺合料进行混凝土试验,混凝土设计为C30等级,配合比选用常用泵送混凝土配合比,用水量基本不变,通过调整外加剂掺量控制混凝土坍落度为180±30mm,C30等级混凝土的配合比如表1所示,其中:
对比例1是基准混凝土。
对比例2是在基准混凝土的原料组成上添加比表面积420m 2/kg的S95级矿渣微粉,同时相应减少水泥使用量。
效果例1~3是在基准混凝土的原料组成上分别添加实施例1~3得到的海工掺合料,且添加量均为胶凝材料的33%,同时相应减少水泥使用量。
混凝土力学性能见表2,按照GB/T 50082-2009《普通混凝土长期性能和耐久性能试验方法标准》测算混凝土耐久性能,结果见表3~6。
表1:C30等级混凝土配合比/kg
Figure PCTCN2019119595-appb-000001
表2:混凝土力学性能
Figure PCTCN2019119595-appb-000002
由表2可以看出,掺加海工掺合料的混凝土(效果例1~3)抗压强度基本早期略低于基准混凝土(对比例1),后期逐渐超过基准混凝土,抗折强度与基准混凝土接近。
按照GB/T50082-2009对混凝土抗干缩性能进行测试,分别测试不同龄期的混凝土干缩值,结果如表3所示。
表3:混凝土抗干缩性能
干缩率/×10 -6 对比例1 对比例2 效果例1 效果例2 效果例3
1d 65.23 53.26 34.93 34.85 35.65
3d 126.12 112.70 91.55 88.04 82.15
7d 174.95 164.94 122.04 130.82 135.69
14d 216.28 194.77 173.75 172.10 173.66
28d 246.73 214.82 203.08 204.75 211.04
45d 263.48 226.56 208.66 208.87 221.95
60d 276.67 238.14 215.68 214.01 225.96
从表3可以看出,掺加海工掺合料的混凝土(效果例1~3)干缩率明显低于基准混凝土(对比例1),并略优于同掺量矿渣微粉混凝土(对比例2),说明海工掺合料对于降低混凝土早期收缩有利。
参照GB/T50082-2009对标准养护28d的试件进行碳化试验。碳化箱内CO 2浓度为20%,温度为20℃±3℃,相对湿度为70%±5%。试验结果如表4所示。
表4:C30混凝土抗碳化试验结果
试验项目 对比例1 对比例2 效果例1 效果例2 效果例3
14d碳化深度(mm) 3.2 2.9 3.0 2.7 2.7
28d碳化深度(mm) 5.7 5.1 5.2 4.2 4.9
60d碳化深度(mm) 8.2 7.0 5.9 5.4 6.0
由表4可知,相比基准混凝土(对比例1),掺海工掺合料的混凝土(效果例1~3)碳化深度有不同程度的降低,并随着碳化时间的延续,这种降低趋势愈发明显,表明掺入海工掺合料可以在一定程度上改善混凝土抗碳化性能。
混凝土养护28d后,试件抗水深度及氯离子电通量试验结果如表5所示。
表5:混凝土抗水渗试验及抗氯离子渗透结果
试验项目 对比例1 对比例2 效果例1 效果例2 效果例3
水渗透高度(mm) 7.2 6.9 5.6 5.2 6.4
电通量(C) 2244 2062 1550 1201 1892
由表5可以看出,掺入海工掺合料后,混凝土抗渗性能得到明显改善。
胶砂试块在10%硫酸盐溶液中浸泡相应龄期后,试件抗压及抗折强度比见 表6。
表6:胶砂试件硫酸盐溶液浸泡后抗压及抗折强度比
试验项目 对比例1 对比例2 效果例1 效果例2 效果例3
3d抗压强度比% 104 105 102 109 107
3d抗折强度比% 104 105 116 120 114
7d抗压强度比% 109 113 108 122 118
7d抗折强度比% 109 115 120 120 128
28d抗压强度比% 102 102 106 101 103
28d抗折强度比% 113 110 124 116 119
60d抗压强度比% 103 101 107 102 105
60d抗折强度比% 100 103 109 108 102
从表6可知,浸泡在硫酸盐溶液中的胶砂试件,抗压、抗折强度均比在自来水中养护的相同配比试件要高。
以上所述为本发明的较佳实施例而已,但本发明不应该局限于该实施例所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (10)

  1. 一种海工掺合料,其特征在于,所述掺合料以重量份计包括:矿渣微粉50~90份,粉煤灰10~50份,或还包括激发剂1~10份,经上述原料按比例复配后搅拌均匀得到;其中,所述矿渣微粉为S95级,比表面积为400~450m 2/kg。
  2. 根据权利要求1所述的海工掺合料,其特征在于,所述掺合料以重量份计包括:矿渣微粉55~80份,粉煤灰15~40份,激发剂1~8份。
  3. 根据权利要求1或2所述的海工掺合料,其特征在于,所述矿渣微粉为S95级,比表面积为420m 2/kg。
  4. 根据权利要求1或2所述的海工掺合料,其特征在于,所述粉煤灰满足GB/T1596-2017《用于水泥和混凝土中的粉煤灰》规定的技术指标,含水量为≤1.0%,SO 3含量≤3.0%。
  5. 根据权利要求1或2所述的海工掺合料,其特征在于,所述激发剂选自三异丙醇胺、三乙醇胺、乙二醇、脱硫石膏、氧化钙、硫酸钠中的一种或两种以上混合物;其中,所述脱硫石膏为电厂脱硫石膏或烧结脱硫石膏。
  6. 根据权利要求1~5任一项所述的海工掺合料,其特征在于,按照重量份计,由60份比表面积420m 2/kg的S95级矿渣微粉、35份粉煤灰和5份脱硫石膏组成。
  7. 根据权利要求1~5任一项所述的海工掺合料,其特征在于,按照重量份计,由65份比表面积420m 2/kg的S95级矿渣微粉、32份粉煤灰和3份硫酸钠组成。
  8. 根据权利要求1~5任一项所述的海工掺合料,其特征在于,按照重量份计,由70份比表面积420m 2/kg的S95级矿渣微粉、22份粉煤灰、5份脱硫石膏和3份硫酸钠组成。
  9. 一种海洋工程用混凝土,其特征在于,所述混凝土为C30等级,包含权利要求1~8任一项所述海工掺合料,且其添加量占所述混凝土总重量的30%~35%,还包括水泥、中砂、石子、外加剂和水。
  10. 根据权利要求9所述的海洋工程用混凝土,其特征在于,权利要求1~8任一项所述海工掺合料的添加量占所述混凝土总重量的33%。
PCT/CN2019/119595 2019-10-31 2019-11-20 一种海工掺合料 WO2021082105A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11202011435VA SG11202011435VA (en) 2019-10-31 2019-11-20 Marine engineering admixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911054264.4 2019-10-31
CN201911054264.4A CN110698102A (zh) 2019-10-31 2019-10-31 一种海工掺合料

Publications (1)

Publication Number Publication Date
WO2021082105A1 true WO2021082105A1 (zh) 2021-05-06

Family

ID=69203294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119595 WO2021082105A1 (zh) 2019-10-31 2019-11-20 一种海工掺合料

Country Status (3)

Country Link
CN (1) CN110698102A (zh)
SG (1) SG11202011435VA (zh)
WO (1) WO2021082105A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816642A (zh) * 2021-09-16 2021-12-21 中建西部建设新疆有限公司 一种硅粉基混凝土粉质增效剂及其制备方法和应用
CN115572093A (zh) * 2022-08-29 2023-01-06 江苏金木土科技有限公司 一种蒸养混凝土用超细矿物掺合料的制备方法
CN115677312A (zh) * 2022-11-30 2023-02-03 南通市建设混凝土有限公司 一种多目标控制的特种混凝土配合比设计方法
CN115974449A (zh) * 2022-12-29 2023-04-18 中铁上海工程局集团有限公司 用于铁尾矿机制砂石混凝土的调节剂及其制备方法、使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1403400A (zh) * 2002-10-14 2003-03-19 上海市建筑科学研究院 高性能海工混凝土专用掺合料
CN101786820A (zh) * 2009-12-24 2010-07-28 同济大学 一种干混抹灰砂浆专用矿粉基掺合料及其应用
KR100975358B1 (ko) * 2010-01-29 2010-08-11 쌍용양회공업(주) 이산화탄소 저감을 위한 차염성 시멘트를 이용한 친환경적 인공어초와 소파블록을 포함하는 해양 구조체 조성물 및 이 조성물에 의해 제조된 인공어초와 소파블록을 포함하는 해양 구조체
CN102092970A (zh) * 2010-12-30 2011-06-15 济南鲁新新型建材有限公司 一种海工专用掺合料
CN104860622A (zh) * 2015-05-08 2015-08-26 新疆天山水泥股份有限公司 一种混凝土掺合料及所构成的混凝土预混料
CN104891842A (zh) * 2015-05-20 2015-09-09 上海市建筑科学研究院 一种s115级钢矿粉复合掺合料及其制备方法
CN105000856A (zh) * 2015-07-21 2015-10-28 山东宏艺科技股份有限公司 一种海工混凝土用胶凝材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491664A (zh) * 2011-11-24 2012-06-13 上海宝田新型建材有限公司 改性钢矿渣复合掺合料及其制备方法
CN106277881A (zh) * 2015-06-09 2017-01-04 上海宝田新型建材有限公司 一种复合矿物掺和料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1403400A (zh) * 2002-10-14 2003-03-19 上海市建筑科学研究院 高性能海工混凝土专用掺合料
CN101786820A (zh) * 2009-12-24 2010-07-28 同济大学 一种干混抹灰砂浆专用矿粉基掺合料及其应用
KR100975358B1 (ko) * 2010-01-29 2010-08-11 쌍용양회공업(주) 이산화탄소 저감을 위한 차염성 시멘트를 이용한 친환경적 인공어초와 소파블록을 포함하는 해양 구조체 조성물 및 이 조성물에 의해 제조된 인공어초와 소파블록을 포함하는 해양 구조체
CN102092970A (zh) * 2010-12-30 2011-06-15 济南鲁新新型建材有限公司 一种海工专用掺合料
CN104860622A (zh) * 2015-05-08 2015-08-26 新疆天山水泥股份有限公司 一种混凝土掺合料及所构成的混凝土预混料
CN104891842A (zh) * 2015-05-20 2015-09-09 上海市建筑科学研究院 一种s115级钢矿粉复合掺合料及其制备方法
CN105000856A (zh) * 2015-07-21 2015-10-28 山东宏艺科技股份有限公司 一种海工混凝土用胶凝材料

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816642A (zh) * 2021-09-16 2021-12-21 中建西部建设新疆有限公司 一种硅粉基混凝土粉质增效剂及其制备方法和应用
CN115572093A (zh) * 2022-08-29 2023-01-06 江苏金木土科技有限公司 一种蒸养混凝土用超细矿物掺合料的制备方法
CN115677312A (zh) * 2022-11-30 2023-02-03 南通市建设混凝土有限公司 一种多目标控制的特种混凝土配合比设计方法
CN115974449A (zh) * 2022-12-29 2023-04-18 中铁上海工程局集团有限公司 用于铁尾矿机制砂石混凝土的调节剂及其制备方法、使用方法
CN115974449B (zh) * 2022-12-29 2024-02-23 中铁上海工程局集团有限公司 用于铁尾矿机制砂石混凝土的调节剂及其制备方法、使用方法

Also Published As

Publication number Publication date
CN110698102A (zh) 2020-01-17
SG11202011435VA (en) 2021-06-29

Similar Documents

Publication Publication Date Title
Zuquan et al. Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones
WO2021082105A1 (zh) 一种海工掺合料
CN107572958B (zh) 超低粘度水泥浆体及其制备方法
CN106007469B (zh) 一种高效渗透型钢筋混凝土防腐剂
CN104478286B (zh) 一种复合型混凝土防腐阻锈剂
Alaghebandian et al. Durability of self-consolidating concrete and mortar mixtures containing ternary and quaternary cement blends exposed to simulated marine environment
WO2022007062A1 (zh) 一种滨海结构连接用防腐型混凝土灌浆料及其制备方法
CN112745054B (zh) 一种抗盐侵蚀的海工混凝土外加剂及其制备方法
CN110845212A (zh) 一种耐渗流冲刷混凝土及其制备方法
Huang et al. Diffusion behavior of chloride in coral aggregate concrete in marine salt-spray environment
Pham et al. Effects of Shirasu natural pozzolan and limestone powder on the strength and aggressive chemical resistance of concrete
CN111333403A (zh) 一种磷镁基水泥混凝土涂层防护材料制备方法及应用
CN115403291B (zh) 一种海港混凝土抗蚀增强剂及其制备方法
CN108117289B (zh) 一种磷铝酸盐基海工胶凝材料
CN107902991A (zh) 高性能混凝土拌合物
CN111978036B (zh) 一种c50级海洋高性能混凝土
Ramezanianpour et al. Influence of silica fume on chloride diffusion and corrosion resistance of concrete-a review
CN106242353A (zh) 一种海洋工程混凝土用外加剂
Ramezanianpour et al. Effect of four Iranian natural pozzolans on concrete durability against chloride penetration and sulfate attack
CN110451840B (zh) 一种复合式密实剂
CN115849762B (zh) 一种抗渗、抗侵蚀的海工混凝土复合外加剂及其制备方法
Saravanakumar et al. Some durability aspects of ambient cured bottom ash geopolymer concrete
CN114956733A (zh) 一种高强度抗侵蚀海工混凝土及其制备方法
Li et al. Mechanical Properties and Corrosion Resistance of Cement Concrete Containing Sea Sand or Sea Water
CN106608721B (zh) 一种输电线路杆塔基础用防腐砂浆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950603

Country of ref document: EP

Kind code of ref document: A1