WO2021082051A1 - 微纳米结构组件制造方法、以及以该法制造的微纳米结构组件 - Google Patents

微纳米结构组件制造方法、以及以该法制造的微纳米结构组件 Download PDF

Info

Publication number
WO2021082051A1
WO2021082051A1 PCT/CN2019/116565 CN2019116565W WO2021082051A1 WO 2021082051 A1 WO2021082051 A1 WO 2021082051A1 CN 2019116565 W CN2019116565 W CN 2019116565W WO 2021082051 A1 WO2021082051 A1 WO 2021082051A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pattern
photoresist layer
filter membrane
micro
Prior art date
Application number
PCT/CN2019/116565
Other languages
English (en)
French (fr)
Inventor
林育菁
Original Assignee
潍坊歌尔微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊歌尔微电子有限公司 filed Critical 潍坊歌尔微电子有限公司
Publication of WO2021082051A1 publication Critical patent/WO2021082051A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers

Definitions

  • the present disclosure mainly relates to a method for manufacturing a micro-nano structure component, and a micro-nano structure component manufactured by the method.
  • particle filters also known as PB chips, micro filters
  • PB chips micro filters
  • the dust-proof membrane in the particle filter often adopts a wire mesh made of fine metal wires, or a porous structure formed from a silicon substrate with multiple through holes.
  • the formation of the fine pattern of the metal mesh film is performed by photolithography, which is a complicated process that requires expensive exposure equipment and photomasks. Therefore, there is an urgent need for a method for manufacturing a micro-nano structure component that forms a fine pattern on the filter membrane, which preferably does not increase the transfer area.
  • An object of the present disclosure is to provide a new technical solution for a method of manufacturing a micro-nano structure component.
  • a method of manufacturing a micro-nano structure component comprising: providing a filter membrane, providing a MEMS sensor, the MEMS sensor has an opening and can be sensed through the opening; and The filter membrane is coupled to the MEMS sensor so that the filter membrane covers the opening.
  • Providing a filter film includes: covering a substrate with a filter material layer, and then covering the filter material layer with a photoresist layer; heating the substrate to soften the photoresist layer; and applying a mold to the substrate Pressing, the mold is composed of a pattern layer and a back layer that are laminated together, wherein the back layer is pressed so that the pattern layer contacts the photoresist layer; While the photoresist layer is pressurized, cool the photoresist layer to solidify the photoresist layer, thereby forming a pattern on the photoresist layer that matches the pattern layer; remove the mold Remove the remaining photoresist on the pattern by dry etching; use the photoresist layer as a mask to dry or wet etch the filter material layer to remove the pattern on the photoresist layer Transfer to the filter membrane material layer.
  • heating the substrate is performed at a temperature of 120°C to 150°C.
  • the pressure range of the pressure is 5Mpa to 10MPa.
  • the filter membrane material layer is an amorphous metal material layer.
  • the amorphous metal material layer is a metallic glass layer.
  • the filter membrane is formed with a thickness of 5 nm to 5 ⁇ m.
  • the filter membrane is formed with a thickness of 20 nm to 1000 nm.
  • the pattern layer and the back layer are rollers coaxial with each other, the outer surface of the back layer contacts the inner surface of the pattern layer, and the outer surface of the pattern layer is patterned.
  • a micro-nano structure component which is manufactured using the method according to the first aspect of the present disclosure.
  • the micro-nano structure component is used in a microphone module or a microphone chip.
  • the method for manufacturing a micro-nano structure component provided by an embodiment of the present invention does not require a photolithography manufacturing process, and does not require an expensive exposure device and a photomask.
  • the method according to the present disclosure can greatly improve the yield rate and reduce the manufacturing cost.
  • Fig. 1 schematically shows an embodiment of a method for manufacturing a micro-nano structure component according to the present disclosure, in which Fig. 1A, Fig. 1B, Fig. 1C, Fig. 1D, Fig. 1E, and Fig. 1F each show the process of manufacturing a filter membrane The corresponding stage.
  • Fig. 2 is a flowchart of a filter membrane manufacturing process according to an embodiment of the present disclosure.
  • Fig. 3 schematically shows a filter membrane manufacturing process according to an alternative solution of the present disclosure.
  • the present disclosure provides a method for manufacturing a micro-nano structure component and a micro-nano structure component manufactured by the method.
  • the micro-nano structure component can be used in an acoustic device, for example, in a microphone chip or a microphone module.
  • the micro-nano structure component can also be used in other types of equipment, and will not be described in detail here.
  • Fig. 1 schematically shows an embodiment of a method for manufacturing a micro-nano structure component according to the present disclosure, wherein Fig. 1A, Fig. 1B, Fig. 1C, Fig. 1D, Fig. 1E and Fig. 1F each show the membrane manufacturing The corresponding stage in the process.
  • Fig. 1A shows the initial state during the manufacturing process of the filter membrane.
  • the upper part of Fig. 1A shows a mold composed of the back layer 102 and the pattern layer 104, and the back layer 102 and the pattern layer 104 are laminated together.
  • the back layer 102 is formed of silicon
  • the pattern layer 104 is formed of silicon dioxide, but those skilled in the art will understand that the materials of the back layer and the pattern layer are not limited thereto.
  • a mold pattern (that is, a pattern to be formed on the filter membrane) is formed on the pattern layer 104. Those skilled in the art can understand that forming the mold pattern on the pattern layer can be performed by electron beam.
  • the substrate 108 is covered with a filter material layer 107, and the filter material layer 107 is covered with a photoresist layer 106.
  • the filter material layer 107 and the photoresist layer 106 may be formed by coating, but are not limited thereto.
  • the substrate 108 may be a silicon substrate, but is not limited thereto.
  • the filter material layer 107 may be an amorphous metal material layer, preferably a metallic glass layer.
  • the photoresist layer 106 may be a PMMA layer.
  • PMMA is the abbreviation of poly(methyl methacrylate), also known as Acrylic. It has the advantages of high transparency, low cost, and easy machining. It is a commonly used glass substitute material.
  • the substrate 108 is heated to soften the photoresist layer 106.
  • the heating temperature may be 120°C to 150°C.
  • FIG. 1B shows that the substrate 108 covered with the photoresist layer 106 is pressurized with a mold, thereby forming a pattern in the photoresist layer 106.
  • the silicon back layer 102 is directly pressurized so that the pattern layer 104 contacts the photoresist layer 106. In this way, the pressure is transferred to the pattern layer 104 through the silicon back layer 102, and then transferred to the photoresist layer 106 through the pattern layer 104.
  • the available pressure range can be from 5MPa to 10MPa.
  • FIG. 1C shows the process of curing the photoresist layer 106. While maintaining the pressurized state, the photoresist layer 106 is cooled to solidify it.
  • FIG. 1D shows the removal of the mold from the substrate 108.
  • a pattern is formed on the photoresist layer 106 while removing the mold.
  • the pressing of the mold on the photoresist layer 106 cannot completely remove the photoresist in the pressed area (that is, the area constituting the pattern), and a certain thickness of residual film 110 is still left in the pressed area. That is, the photoresist remaining on the pattern).
  • FIG. 1E shows the process of removing the residual film 110.
  • a dry etching process for example, oxygen RIE (reactive ion etching) may be used to remove the residual film 110 as shown in FIG. 1D.
  • oxygen RIE reactive ion etching
  • FIG. 1F shows the process of finally forming a filter film after the photoresist layer is peeled off.
  • dry etching or wet etching is performed on the filter material layer 107 to transfer the pattern of the photoresist layer 106 to the filter material layer 107, thereby forming a filter material layer 107.
  • membrane is formed on the filter material layer 107 to transfer the pattern of the photoresist layer 106 to the filter material layer 107, thereby forming a filter material layer 107.
  • membrane The finally formed filter film 107 has a micro-nano structure having a pattern transferred from the photoresist 106.
  • the filter membrane has a thickness of 5 nm to 5 ⁇ m, preferably 20 nm to 1000 nm.
  • metallic glass is isotropic and uniform, there are basically no defects such as grain boundaries and segregation caused by polycrystalline structure, and its size effect is small. Therefore, when designing the micro filter, it is not necessary to consider the changes in physical properties due to anisotropy and size, which facilitates the structural design of the micro filter. In addition, because metallic glass is an alloy composed of multiple elements, the range of material selection in the design of microfilters is widened, and higher performance PB chips can be designed and manufactured.
  • Fig. 2 is a flowchart of a filter membrane manufacturing process according to an embodiment of the present disclosure.
  • the filter film manufacturing process according to the present disclosure first includes, in step 202, covering the substrate 108 with a filter material layer 107, and then covering the filter material layer 107 with a photoresist layer 106, The substrate 108 is heated to soften the photoresist layer 106.
  • a mold is used to pressurize the substrate 108.
  • the mold is composed of a pattern layer 104 and a back layer 102 laminated together, wherein the back layer 102 is pressurized so that the pattern layer 104 contacts the photoresist layer. 106.
  • step 206 while continuing to press the photoresist layer 106 with a mold, the photoresist layer 106 is cooled to solidify the photoresist layer 106, thereby forming the pattern layer on the photoresist layer 106. 104 matching patterns.
  • step 208 the mold is removed, and the photoresist remaining on the pattern is removed by dry etching.
  • step 210 the filter material layer 107 is dry-etched or wet-etched using the photoresist layer 106 as a mask, so as to transfer the pattern of the photoresist layer 106 to the filter material layer 107.
  • Fig. 3 schematically shows a filter membrane manufacturing process according to another aspect of the present disclosure.
  • a roller-type mold as shown in FIG. 3 can also be used to perform nano-compression.
  • the functions of the back layer 402, the pattern layer 404, the photoresist layer 406, and the substrate 408 shown in FIG. 3 correspond to the back layer 102, the pattern layer 104, the photoresist layer 106, and the substrate 408 shown in FIGS. 1A to 1F, respectively.
  • the base 108 is therefore omitted here. As shown in FIG.
  • the pattern layer 404 and the back layer 402 are rollers coaxial with each other, the outer surface of the back layer 402 contacts the inner surface of the pattern layer 404, and the outer surface of the pattern layer 404 is patterned.
  • the area of the substrate is much larger than the area of action of the roller on the substrate. Pressing the substrate with the mold refers to rolling the roller mold onto a part of the substrate. Pressing this part and removing the mold from the substrate refers to rolling the roll mold away from that part of the substrate, for example, rolling onto another part of the substrate (and pressing the part).
  • Roller nanoimprint has the advantages of high resolution, low cost and high productivity, and solves the problem of increasing transfer area. It is especially suitable for the production of large-area periodic nanostructures.
  • the filter membrane provided in the manner shown in FIGS. 1 to 3 can be bonded to a MEMS sensor (not shown), thereby forming a micro-nano structure component.
  • the MEMS sensor has an opening, and the object to be measured can be contacted through the opening for sensing.
  • the process of providing the MEMS sensor is well known to those skilled in the art, and will not be repeated here.
  • Combining the filter membrane to the MEMS sensor can include making the filter membrane cover the opening of the sensor, so that the filter membrane can play a filtering role, and prevent particles, water and other debris from entering the micro-nano structure without affecting the sensor's sensing function. Component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Micromachines (AREA)

Abstract

制造微纳米结构组件的方法,包括:提供滤膜;提供MEMS传感器,MEMS传感器上具有开口且能够经其进行感测;将滤膜结合到MEMS传感器上使滤膜覆盖开口。提供滤膜包括:将基板(108)覆以滤膜材料层(107),在滤膜材料层上再覆以光刻胶层(106);对基板(108)加热以软化光刻胶层;用模具对基板(108)加压,模具由叠合的图案层(104)和背层(102)组成,背层受到加压以使得图案层接触光刻胶层;在持续用模具对光刻胶层加压的同时冷却光刻胶层以使其固化,在光刻胶层上形成与图案层相符的图案;移除模具;通过干蚀刻移除在图案上残留的光刻胶;以光刻胶层为掩模,对滤膜材料层(107)进行干蚀刻或湿蚀刻以将光刻胶层的图案转移到滤膜材料层上。

Description

微纳米结构组件制造方法、以及以该法制造的微纳米结构组件 技术领域
本公开内容主要涉及用于制造微纳米结构组件的方法,以及以该方法制造的微纳米结构组件。
背景技术
现今,诸如笔记本电脑、平板电脑之类的便携式计算设备十分普遍,诸如智能手机之类的便携式通信设备也是如此。然而,这样的设备中留给麦克风或扬声器的内部空间十分有限。因此,麦克风和扬声器尺寸越来越小,并且变得越来越紧凑。此外,由于麦克风和扬声器部署在紧凑的便携式设备中,它们通常需要靠近设备的相关的声学输入或输出端口,故而容易因颗粒和水的进入而造成其中的MEMS传感器的故障。
在现有技术中,颗粒过滤器(又称为PB芯片、微型过滤器)常常被部署在微纳米结构组件中来防止某些类型的碎屑进入其中。
当前,颗粒过滤器中的防尘膜常常采用由细金属丝制成的丝网,或是由具有多个通孔的硅基板来形成的多孔结构。金属丝网薄膜的精细图案的形成是通过光刻法来进行的,这是一种需要昂贵的曝光设备和光掩模的复杂工艺。因此,亟需一种在滤膜上形成精细图案的微纳米结构组件制造方法,其优选地不增加转印面积。
发明内容
本公开内容的一个目的是提供一种制造微纳米结构组件的方法的新技术方案。
根据本发明的一个方面,提供了一种制造微纳米结构组件的方法,所述方法包括:提供滤膜,提供MEMS传感器,所述MEMS传感器上具有开口并且能够经由该开口进行感测;以及将所述滤膜结合到所述MEMS传 感器上,使得所述滤膜覆盖所述开口。提供滤膜包括:将基板覆以滤膜材料层,在所述滤膜材料层上再覆以光刻胶层;对所述基板加热以软化所述光刻胶层;用模具对所述基板加压,所述模具由叠合在一起的图案层和背层组成,其中所述背层受到加压以使得所述图案层接触所述光刻胶层;在保持用所述模具对所述光刻胶层加压的同时,冷却所述光刻胶层以使得所述光刻胶层固化,从而在所述光刻胶层上形成与所述图案层相符的图案;移除所述模具;通过干蚀刻移除在图案上残留的光刻胶;以所述光刻胶层作为掩模,对所述滤膜材料层进行干蚀刻或湿蚀刻以将所述光刻胶层上的图案转移到所述滤膜材料层上。
可选地,加热所述基板是以120℃至150℃的温度进行的。
可选地,所述压力的压强的范围为5Mpa至10MPa。
可选地,所述滤膜材料层是非晶金属材料层。
可选地,所述非晶金属材料层是金属玻璃层。
可选地,所述滤膜是以5nm至5μm的厚度形成的。
可选地,所述滤膜是以20nm至1000nm的厚度形成的。
可选地,所述图案层和背层是彼此共轴的辊,所述背层的外表面接触所述图案层的内表面,所述图案层的外表面是图案化的。
根据本公开内容的第二方面,提供了一种微纳米结构组件,其是采用根据本公开内容的第一方面的方法来制造的。
可选地,所述微纳米结构组件是用在麦克风模组或麦克风芯片中的。
本发明一个实施例提供的微纳米结构组件制造方法不需要光刻制造工艺,也不需要昂贵的曝光装置和光掩模。在一个实施例中,根据本公开内容的方法能够使得良率大为提高并降低制造成本。
通过以下参照附图对本公开内容的示例性实施例的详细描述,本公开内容的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本公开内容的实施例,并且连同其说明一起用于解释本公开内容的原理。
图1概略示出了根据本公开内容的微纳米结构组件制造方法的一个实施方案,其中图1A、图1B、图1C、图1D、图1E和图1F各自示出了滤膜制造过程中的相应阶段。
图2是根据本公开内容的一个实施方案的滤膜制造过程的流程图。
图3概略示出了根据本公开内容一个替代方案的滤膜制造工艺。
具体实施方式
现在将参照附图来详细描述本公开内容的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开内容的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开内容及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本公开内容提供了一种微纳米结构组件制造方法、以及以该法制造的微纳米结构组件。该微纳米结构组件可以用在声学设备中,例如用在麦克风芯片或麦克风模组中。当然,对于本领域技术人员而言,该微纳米结构组件也可以用在其它类型的设备中,在此不再具体说明。
图1概略示出了根据本公开内容的用于制造微纳米结构组件的方法的一个实施方案,其中图1A、图1B、图1C、图1D、图1E和图1F各自示出了滤膜制造过程中的相应阶段。
图1A示出了滤膜制造过程中的初始状态,其中图1A上方示出了由背层102和图案层104构成的模具,并且其中背层102和图案层104叠合 在一起。在一个实施例中,背层102由硅形成,图案层104由二氧化硅形成,但本领域技术人员可以理解,背层和图案层的材料不限于此。在图案层104上形成有模具图案(也即将要形成在滤膜上的图案)。本领域技术人员可以理解,在图案层上形成模具图案可以通过电子束来进行。
在图1A下方示出了在基板108上覆有滤膜材料层107,并且在滤膜材料层107上再覆有光刻胶层106。滤膜材料层107和光刻胶层106可以是通过涂覆形成的,但不限于此。基板108可以是硅基板,但不限于此。滤膜材料层107可以是非晶金属材料层,优选地是金属玻璃层。光刻胶层106可以是PMMA层。PMMA是聚甲基丙烯酸甲酯(poly(methyl methacrylate))的缩写,又称为亚克力(Acrylic),具有高透明度,低成本,易于机械加工等优点,是常用的玻璃替代材料。
在滤膜制造过程的开始,对基板108加热以使光刻胶层106软化。加热温度可以为120℃至150℃。
图1B示出了用模具对覆有光刻胶层106的基板108进行加压,藉此在光刻胶层106中形成图案。硅背层102受到直接加压,使得图案层104接触光刻胶层106。这样,压力通过硅背层102传递到图案层104,再通过图案层104传递给光刻胶层106。可选用的压力范围可以从5MPa到10MPa。
图1C示出了使得光刻胶层106固化的过程。在保持加压的状态下,使得光刻胶层106冷却,从而使之固化。
图1D示出了将模具从基板108上移除。如图1D所示,在移除模具的同时在光刻胶层106上形成了图案。然而,模具对光刻胶层106的加压并不能将受压区域(也即构成所述图案的区域)的光刻胶完全去除,在受压区域仍然留下了一定厚度的残膜110(也即残留在图案上的光刻胶)。
图1E示出了除去残膜110的过程。可以采用干蚀刻(dry etching)工艺(例如氧气RIE(反应离子刻蚀,reactive ion etching))除去如图1D中所示的残膜110。
图1F示出在将光刻胶层剥离后最终形成滤膜的过程。在除去残膜110之后,以光刻胶层106作为掩模,对滤膜材料层107进行干蚀刻或湿蚀刻以将光刻胶层106的图案转移到滤膜材料层107上,从而形成滤膜。最终 形成的滤膜107上具有微纳米结构,该微纳米结构具有从光刻胶106转移而来的图案。在一个实施例中,滤膜具有5nm至5μm,优选20nm至1000nm的厚度。
由于金属玻璃是各向同性和均匀的,故而基本上不存在由于多晶结构引起的缺陷诸如晶粒边界和偏析等,并且其尺寸效应小。因此,在设计微型过滤器时,不必考虑由于各向异性和尺寸引起的物理性质的变化,这方便了微型过滤器的结构设计。另外,由于金属玻璃是由多种元素组成的合金,因此微型过滤器设计中材料选择的范围变宽,并且可以设计和制造更高性能的PB芯片。
图2是根据本公开内容的一个实施方案的滤膜制造过程的流程图。如图2所示,根据本公开内容的滤膜制造过程首先包括,在步骤202,将基板108覆以滤膜材料层107,在滤膜材料层107上再覆以光刻胶层106,对基板108加热以软化光刻胶层106。接下来,在步骤204,用模具对基板108加压,模具由叠合在一起的图案层104和背层102组成,其中背层102受到加压以使得图案层104接触所述光刻胶层106。接下来在步骤206,在持续用模具对光刻胶层106加压的同时,冷却光刻胶层106以使得光刻胶层106固化,从而在光刻胶层106上形成与所述图案层104相符的图案。在步骤208,移除模具,通过干蚀刻移除在图案上残留的光刻胶。在步骤210,以光刻胶层106为掩模对滤膜材料层107进行干蚀刻或湿蚀刻,以将光刻胶层106的图案转移到滤膜材料层107上。
图3概略示出了根据本公开内容的另一个方案的滤膜制造工艺。除了图1B中示出的平板模具以外,本领域技术人员理解,当需要压印的基板面积比较大时,也可以采用如图3所示的辊型模具(roller-type mold)来进行纳米压印。图3中示出的背层402、图案层404、光刻胶层406和基底408的作用分别对应于图1A~图1F中所示的背层102、图案层104、光刻胶层106和基底108,因而在此不再赘述。如图3中所示,图案层404和背层402是彼此共轴的辊,背层402的外表面接触图案层404的内表面,图案层404的外表面是图案化的。本领域技术人员可以理解,当使用辊型模具进行纳米压印时,基板面积远大于辊在基板上的作用面积,用模具对基板 加压指的是将辊型模具滚动到基板的一部分上并对该部分加压,而从基板移除模具指的是使辊型模具滚动离开基板的该部分,例如滚动到基板的另一部分上(并对该部分加压)。
辊型纳米压印具有高分辨率、低成本和高生产率的优点,解决了转印面积增大的问题,尤其适用于生产大面积的有周期性的纳米结构。
按照如图1至3所示的方式提供的滤膜可被结合到MEMS传感器(未示出)上,由此形成微纳米结构组件。MEMS传感器上具有开口,并且能够经由该开口接触待测物从而进行感测。提供MEMS传感器的工艺为本领域技术人员熟知,在此不再赘述。将滤膜结合到MEMS传感器上可以包括使得滤膜覆盖传感器的开口,从而使得滤膜能够起到过滤作用,在不影响传感器的感测功能的前提下防止颗粒、水等碎屑进入微纳米结构组件中。
虽然已经通过例子对本公开内容的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本公开内容的范围。本领域的技术人员应该理解,可在不脱离本公开内容的范围和精神的情况下,对以上实施例进行修改。本公开内容的范围由所附权利要求来限定。

Claims (10)

  1. 一种制造微纳米结构组件的方法,其特征在于,包括:
    提供滤膜;
    提供MEMS传感器,所述MEMS传感器上具有开口并且能够经由该开口进行感测;以及
    将所述滤膜结合到所述MEMS传感器上,使得所述滤膜覆盖所述开口;
    其中,提供滤膜包括:
    将基板覆以滤膜材料层,在所述滤膜材料层上再覆以光刻胶层;
    对所述基板加热以软化所述光刻胶层;
    用模具对所述基板加压,所述模具由叠合在一起的图案层和背层组成,其中所述背层受到加压以使得所述图案层接触所述光刻胶层;
    在保持用所述模具对所述光刻胶层加压的同时,冷却所述光刻胶层以使得所述光刻胶层固化,从而在所述光刻胶层上形成与所述图案层相符的图案;
    移除所述模具;
    通过干蚀刻移除在所述图案上残留的光刻胶;以及
    以所述光刻胶层作为掩模,对所述滤膜材料层进行干蚀刻或湿蚀刻以将所述光刻胶层上的图案转移到所述滤膜材料层上。
  2. 根据权利要求1所述的方法,其中加热所述基板是以120℃至150℃的温度进行的。
  3. 根据权利要求2所述的方法,其中所述压力的压强的范围为5Mpa至10MPa。
  4. 根据权利要求1所述的方法,其特征在于,
    所述滤膜材料层是非晶金属材料层。
  5. 根据权利要求4所述的方法,其特征在于,
    所述非晶金属材料层是金属玻璃层。
  6. 根据权利要求1所述的方法,其特征在于,所述滤膜是以5nm至5μm的厚度形成的。
  7. 根据权利要求6所述的方法,其特征在于,所述滤膜是以20nm至1000nm的厚度形成的。
  8. 根据权利要求1所述的方法,其特征在于,所述图案层和背层是彼此共轴的辊;所述背层的外表面接触所述图案层的内表面,所述图案层的外表面是图案化的。
  9. 一种采用根据权利要求1所述的方法来制造的微纳米结构组件。
  10. 根据权利要求9所述的微纳米结构组件,其特征在于,所述微纳米结构组件是用在麦克风模组或麦克风芯片中的。
PCT/CN2019/116565 2019-10-31 2019-11-08 微纳米结构组件制造方法、以及以该法制造的微纳米结构组件 WO2021082051A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911056423.4 2019-10-31
CN201911056423.4A CN110775939A (zh) 2019-10-31 2019-10-31 微纳米结构组件制造方法、以及以该法制造的微纳米结构组件

Publications (1)

Publication Number Publication Date
WO2021082051A1 true WO2021082051A1 (zh) 2021-05-06

Family

ID=69388529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116565 WO2021082051A1 (zh) 2019-10-31 2019-11-08 微纳米结构组件制造方法、以及以该法制造的微纳米结构组件

Country Status (2)

Country Link
CN (1) CN110775939A (zh)
WO (1) WO2021082051A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080248333A1 (en) * 2007-03-30 2008-10-09 Fujifilm Corporation Mold structure, imprinting method using the same, magnetic recording medium and production method thereof
CN102740207A (zh) * 2012-06-15 2012-10-17 歌尔声学股份有限公司 一种集成硅微麦克风与cmos集成电路的芯片及其制作方法
CN104760924A (zh) * 2015-04-20 2015-07-08 歌尔声学股份有限公司 一种mems麦克风芯片及其封装结构、制造方法
CN105359552A (zh) * 2013-05-29 2016-02-24 罗伯特·博世有限公司 用于微机械麦克风的网格套网格式背板
CN106744664A (zh) * 2016-11-22 2017-05-31 歌尔股份有限公司 在mems传感器上形成过滤网的方法以及mems传感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001001A (zh) * 2006-12-20 2007-07-18 武汉光迅科技股份有限公司 低成本dfb激光器制作方法
CN105565253B (zh) * 2014-10-17 2019-06-28 中芯国际集成电路制造(上海)有限公司 一种mems器件及其制备方法、电子装置
CN109541885A (zh) * 2019-01-14 2019-03-29 京东方科技集团股份有限公司 纳米图案的拼接方法、纳米压印板、光栅及制作方法
CN110267173B (zh) * 2019-06-28 2021-01-22 潍坊歌尔微电子有限公司 一种微型过滤器及声学设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080248333A1 (en) * 2007-03-30 2008-10-09 Fujifilm Corporation Mold structure, imprinting method using the same, magnetic recording medium and production method thereof
CN102740207A (zh) * 2012-06-15 2012-10-17 歌尔声学股份有限公司 一种集成硅微麦克风与cmos集成电路的芯片及其制作方法
CN105359552A (zh) * 2013-05-29 2016-02-24 罗伯特·博世有限公司 用于微机械麦克风的网格套网格式背板
CN104760924A (zh) * 2015-04-20 2015-07-08 歌尔声学股份有限公司 一种mems麦克风芯片及其封装结构、制造方法
CN106744664A (zh) * 2016-11-22 2017-05-31 歌尔股份有限公司 在mems传感器上形成过滤网的方法以及mems传感器

Also Published As

Publication number Publication date
CN110775939A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
US8894871B2 (en) Lithography method using tilted evaporation
TWI505336B (zh) 金屬光柵的製備方法
WO2015078227A1 (zh) 电容式硅麦克风及其制备方法
TWI466814B (zh) 微機電系統裝置及製程
WO2021082051A1 (zh) 微纳米结构组件制造方法、以及以该法制造的微纳米结构组件
AU2018262130B2 (en) Methods for micro and nano fabrication by selective template removal
WO2021082054A1 (zh) 微纳米结构组件制造方法、以及以该法制造的微纳米结构组件
TWI305474B (en) Method of fabricating a diaphragm of a capacitive microphone device
TWI264823B (en) Thin film transistor manufacture method and structure therefor
US20150368096A1 (en) Mems pressure sensor and method of manufacturing the same
TWI486109B (zh) 元件基板之製造方法
JP2016002665A (ja) モールド製造用構造体の製造方法、およびモールドの製造方法
US7585417B2 (en) Method of fabricating a diaphragm of a capacitive microphone device
WO2021082055A1 (zh) Mems传感器组件制造方法、以及以该法制造的mems传感器组件
TWI508148B (zh) 金屬光柵的製備方法
CN113573526A (zh) 壳体的制备方法、壳体及电子设备
CN112198759A (zh) 压印模具、压印模具的制作方法、纳米压印方法
WO2020082245A1 (zh) 单片集成baw谐振器制作方法
TW200524820A (en) Method of fabricating a stamper with microstructure patterns
TWI374514B (en) Truss structure and manufacturing method thereof
KR20020088146A (ko) 초소형 렌즈 어레이 제조방법
TWI512803B (zh) 金屬光柵
US10035701B2 (en) Composite cavity and forming method thereof
WO2022161427A1 (zh) 光学器件的制备方法和光学器件
US11261085B2 (en) Methods for micro and nano fabrication by selective template removal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951108

Country of ref document: EP

Kind code of ref document: A1