WO2021082007A1 - 设备开合盖检测的方法、触摸控制器、触控板和电子设备 - Google Patents

设备开合盖检测的方法、触摸控制器、触控板和电子设备 Download PDF

Info

Publication number
WO2021082007A1
WO2021082007A1 PCT/CN2019/115141 CN2019115141W WO2021082007A1 WO 2021082007 A1 WO2021082007 A1 WO 2021082007A1 CN 2019115141 W CN2019115141 W CN 2019115141W WO 2021082007 A1 WO2021082007 A1 WO 2021082007A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection signal
electronic device
signal
opening
output
Prior art date
Application number
PCT/CN2019/115141
Other languages
English (en)
French (fr)
Inventor
黄海泉
鲁旭
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP19920632.7A priority Critical patent/EP4053671B1/en
Priority to PCT/CN2019/115141 priority patent/WO2021082007A1/zh
Priority to CN201980004015.6A priority patent/CN111052034A/zh
Priority to TW109106749A priority patent/TWI736157B/zh
Priority to US17/014,761 priority patent/US20210132730A1/en
Publication of WO2021082007A1 publication Critical patent/WO2021082007A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1677Miscellaneous details related to the relative movement between the different enclosures or enclosure parts for detecting open or closed state or particular intermediate positions assumed by movable parts of the enclosure, e.g. detection of display lid position with respect to main body in a laptop, detection of opening of the cover of battery compartment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/169Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated pointing device, e.g. trackball in the palm rest area, mini-joystick integrated between keyboard keys, touch pads or touch stripes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • G06F1/3218Monitoring of peripheral devices of display devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the embodiments of the present application relate to the field of information technology, and more specifically, to a method for detecting opening and closing of a device cover, a touch controller, a touch panel, and an electronic device.
  • the embodiment of the present application provides a method for detecting the opening and closing of a device cover, a touch controller, a touch panel, and an electronic device, which can effectively detect the opening and closing state of the device.
  • a method for detecting opening and closing of a device cover includes: acquiring a detection signal output by an output channel of the touch panel; and determining the status of the electronic device according to a change in the detection signal. Whether the status of the opening and closing cover changes.
  • the detection signal is a detection signal of the self-capacitance of the touch panel.
  • the determining whether the opening and closing state of the electronic device has changed according to the change of the detection signal includes: if the amount of change of the detection signal output by at least N output channels is , Is greater than the first preset value, it is determined that the opening and closing state of the electronic device has changed, and N is a positive integer.
  • the determining whether the opening and closing state of the electronic device has changed according to the change of the detection signal includes: if the detection output by each output channel of the touch panel is If the change of the average value of the signal is greater than the second preset value, it is determined that the opening and closing state of the electronic device has changed.
  • the detection signal is a detection signal of the mutual capacitance of the touch panel.
  • the obtaining the detection signal output by the output channel of the touch panel includes: collecting the detection signal based on a first sampling frequency, where the first sampling frequency is located in the Within the noise frequency range of the display screen of the electronic device.
  • the determining whether the opening and closing state of the electronic device has changed according to the change of the detection signal includes: if the detection on the sensing node corresponding to at least M output channels If the amount of change of the signal is greater than the third preset value, it is determined that the opening and closing state of the electronic device has changed, and M is a positive integer.
  • the detection signal is a noise detection signal.
  • the acquiring the detection signal output by the output channel of the touch panel includes: collecting the detection signal based on a second sampling frequency in the case that no drive signal is input, wherein: The second sampling frequency is within the noise frequency range of the display screen of the electronic device.
  • the determining whether the opening and closing state of the electronic device has changed according to the change of the detection signal includes: if the amount of change of the detection signal at a specific frequency point is greater than the first Three preset values, it is determined that the opening and closing state of the electronic device has changed, and M is a positive integer.
  • the detection signal is a detection signal of a signal with a specific frequency emitted by the display screen of the electronic device.
  • the acquiring the detection signal output by the output channel of the touch panel includes: collecting the detection signal based on a third sampling frequency in the case that no drive signal is input, wherein: The third sampling frequency is within the range of the specific frequency.
  • the determining whether the opening and closing state of the electronic device has changed according to the change of the detection signal includes: if the signal value of the detection signal is greater than a fourth preset value, It is determined that the electronic device enters the closed state; if the signal value of the detection signal is less than the fourth preset value, it is determined that the electronic device enters the open state.
  • the determining whether the opening and closing state of the electronic device has changed according to the change of the detection signal includes: if the change rule of the detection signal conforms to the signal of the specific frequency If the change rule of the electronic device is determined to enter the closed state; if the change rule of the detection signal does not conform to the change rule of the signal of the specific frequency, it is determined that the electronic device enters the open state.
  • the touch controller is a touch chip.
  • a touch controller including: a signal acquisition unit for acquiring a detection signal output by an output channel of a touch panel of the electronic device; a processing unit for detecting a change in the detection signal To determine whether the opening and closing state of the electronic device has changed.
  • the detection signal is a detection signal of the self-capacitance of the touch panel.
  • the processing unit is specifically configured to: if the amount of change of the detection signal output by the at least N output channels is greater than a first preset value, determine the opening and closing cover of the electronic device The state changes, and N is a positive integer.
  • the processing unit is specifically configured to: if the variation of the average value of the detection signal output by each output channel of the touch panel is greater than a second preset value, determine the The state of opening and closing the cover of the electronic device changes.
  • the detection signal is a detection signal of the mutual capacitance of the touch panel.
  • the signal collection unit is specifically configured to collect the detection signal based on a first sampling frequency, where the first sampling frequency is in the noise frequency range of the display screen of the electronic device Inside.
  • the processing unit is specifically configured to: if the amount of change of the detection signal on the sensing node corresponding to at least M output channels is greater than a third preset value, determine that the electronic device The opening and closing state of the lid changes, and M is a positive integer.
  • the detection signal is a noise detection signal.
  • the signal collection unit is specifically configured to collect the detection signal based on a second sampling frequency when no drive signal is input, where the second sampling frequency is located in the Within the noise frequency range of the display screen of the electronic device.
  • the processing unit is specifically configured to: if the amount of change of the detection signal at a specific frequency point is greater than a third preset value, determine that the opening and closing state of the electronic device has changed , M is a positive integer.
  • the detection signal is a detection signal of a signal with a specific frequency emitted by the display screen of the electronic device.
  • the signal collection unit is specifically configured to collect the detection signal based on a third sampling frequency when no drive signal is input, wherein the third sampling frequency is located in the Within a specific frequency range.
  • the processing unit is specifically configured to: if the signal value of the detection signal is greater than a fourth preset value, determine that the electronic device enters the closed state; if the signal of the detection signal is If the value is less than the fourth preset value, it is determined that the electronic device enters the open state.
  • the processing unit is specifically configured to: if the change rule of the detection signal conforms to the change rule of the signal of the specific frequency, determine that the electronic device enters the closed state; If the change rule of the detection signal does not conform to the change rule of the signal of the specific frequency, it is determined that the electronic device enters the open state.
  • the touch controller is a touch chip.
  • a touch panel including: an output channel for outputting a detection signal; and, the aforementioned second aspect and the touch controller in any one of the possible implementations of the second aspect.
  • an electronic device including the aforementioned third aspect and the touch panel in any possible implementation manner of the third aspect; and a display screen.
  • the display screen of the electronic device since the display screen of the electronic device is close to the touch pad when the cover is closed, the display screen will affect the detection signal output by the output channel of the touch pad. Therefore, it can be determined whether the electronic device has performed an opening or closing operation according to the change of the detection signal output by the touch panel.
  • FIG. 1 is a schematic flowchart of a method for detecting opening and closing of a device cover according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a self-capacitance touch panel.
  • Fig. 3 is a schematic diagram of a mutual capacitance touch panel.
  • Fig. 4 is the value of the detection signal of each capacitance node on the mutual capacitance touch panel in the state of opening the cover.
  • Fig. 5 is the value of the detection signal of each capacitance node on the mutual capacitance touch panel in the closed state.
  • Fig. 6 is a spectrum diagram of the detection signal output by the touch panel when the cover is opened.
  • FIG. 7 is a spectrum diagram of the detection signal output by the touch panel in the closed state.
  • 8A and 8B are schematic diagrams of signals of specific frequencies emitted by electronic devices.
  • FIG. 9 is a spectrum diagram of the detection signal output by the touch panel in the state of opening the cover.
  • FIG. 10 is a spectrum diagram of the detection signal output by the touch panel when the cover is closed.
  • Fig. 11 is a schematic block diagram of a touch controller according to an embodiment of the present application.
  • the upper cover of the notebook computer is usually provided with a magnet, and the corresponding position of the lower cover is provided with a Hall sensor.
  • a Hall sensor In this way, when the notebook computer is in an open state and a closed state, the magnetic field intensity detected by the Hall sensor is different. Based on this, the detection of the opening and closing state of the notebook computer can be realized.
  • Hall sensors and magnets have led to increased costs.
  • the embodiment of the application provides a method for detecting the opening and closing of the cover of the device.
  • the touchpad (TouchPad) in the electronic device is used to detect the cover opening and closing state of the electronic device, without increasing additional costs. It can realize the effective detection of the opening and closing state of the equipment.
  • Fig. 1 is a schematic flow chart of detecting the opening and closing of the device cover according to an embodiment of the present application.
  • the method 100 is executed by a touch panel of an electronic device.
  • the touchpad includes a touch controller, and the method 100 may be specifically executed by the touch controller.
  • the touch controller may be a touch chip.
  • the electronic device may be, for example, a notebook computer, and the touch pad is a touch pad used for finger touch operations on the notebook computer.
  • the method 100 includes the following steps.
  • the detection signal output by the output channel of the touch panel is acquired.
  • the touch controller can determine whether the electronic device has performed an opening or closing operation according to the change of the detection signal.
  • the embodiment of the present application does not make any limitation on the time for the touch controller to detect the opening and closing of the cover.
  • the touch controller may periodically perform the detection of opening and closing the cover of the device, that is, execute the above solution according to a preset period.
  • the period can be fixed or variable.
  • the touch controller can perform lid opening and closing detection in a cycle of 8 ms, that is, opening and closing lid detection every 8 ms; for another example, when the touch controller periodically performs device opening and closing lid detection, the length of each cycle can be Different, for example, the first cycle is 8ms, the second cycle is 10ms, the third cycle is 8ms, the fourth cycle is 10ms,...; for another example, the touch controller performs a cycle of 8ms within a period of time Open and close lid detection, and perform opening and closing lid detection in a period of 10ms in the next period of time, such as opening and closing lid detection every 8ms in T1 period, and opening and closing lid every 10ms in T2 period afterwards Detection.
  • the embodiment of the application does not make any limitation on the cycle for the touch controller to perform device opening and closing detection; for another example, the cycle can be changed within a certain range, can be changed according to the law or not according to the law, for example, the cycle can be 8ms- Change within 10ms, that is, the time interval between two adjacent opening and closing lid detections randomly changes within 8ms-10ms or changes according to the law.
  • the touch controller may not perform the detection of opening and closing the cover of the device according to the cycle.
  • a touch controller can perform device opening and closing detection when a certain event occurs or when a certain condition is met.
  • a touch controller detects no finger touch, it can perform device opening and closing detection, because usually the user is performing When opening or closing the upper cover of the device, the finger does not touch the touchpad.
  • the embodiments of the present application provide four ways of using the touch panel to detect the opening and closing of the cover of the device, which will be described separately below.
  • the detection signal output by the output channel of the touch panel is a detection signal of the self-capacitance of the touch panel.
  • the touchpad may be a self-capacitance touchpad, that is, the touchpad may detect a finger touch based on self-capacitance detection.
  • the detection signal output by the output channel of the touch panel is a self-capacitance detection signal.
  • Fig. 2 is a schematic diagram of self-capacitance detection.
  • the touch panel includes multiple horizontal and vertical channels.
  • the horizontal channel is represented by RX
  • the vertical channel is represented by TX.
  • the detection principle of each channel in the horizontal and vertical directions is the same. Taking channel TX0 as an example, when the electronic device is in an open state, the self-capacitance of channel TX0 is C1. When the electronic device is in the closed state, the upper cover will incorporate an additional capacitance on the channel TX0. Therefore, the detection result of the self-capacitance of the channel TX0 will change significantly. Based on this change in the detection signal output by each channel, it can be determined whether the opening and closing state of the electronic device has changed.
  • the finger touch When the finger touches the touchpad, the finger also introduces additional capacitance, which causes the detection result of the self-capacitance to change.
  • the finger touch is usually only at a local position of the touchpad, and the detection result of the self-capacitance output on the channel touched by the finger changes.
  • the top cover of the electronic device When the top cover of the electronic device is closed, the display screen of the top cover will cover the entire touch panel, so additional capacitance will be introduced on most or even all channels, causing the detection results of the self-capacitance output of these channels to change.
  • finger touch cannot achieve a full-channel starting value similar to that caused by closing the cover. Therefore, by counting the signal values output by each channel of the touch panel, it can be determined whether it is a finger touch or an opening and closing operation.
  • the opening and closing state of the electronic device has changed.
  • N is a positive integer, and N ⁇ K.
  • both the horizontal channel and the vertical channel in the touch panel can be used as output channels to output detection signals.
  • K may be the total number of all output channels of the touch panel, or the number of horizontal output channels, or the number of vertical output channels.
  • the electronic device if a certain number or a certain proportion of output channels are exceeded, and the amount of change in the detection signal is greater than the first preset value, then it can be considered that the electronic device has performed an opening or closing operation. For example, when N/K is greater than 60%, it is considered that the lid is opened or closed.
  • the touch controller obtains the signal value of the detection signal output by the channel TX0 as S1; when the cover is closed, the drive signal is input to each channel, and the touch controller obtains the signal value of the detection signal output by the channel TX0 S2.
  • the change amount of the detection signal of the channel TX0 is
  • the variation of the average value of the detection signals output by the multiple output channels of the touch panel is greater than the second preset value, it is determined that the opening and closing state of the electronic device has changed.
  • the average value of the collected detection signals output by each output channel can be calculated, and if the average value changes significantly, it is considered that an opening or closing operation has been performed.
  • the lid opening operation it is also possible to determine whether the lid is opened or closed according to the signal value of the detection signal. For example, if the average value of the detection signal becomes larger, it can be determined that the lid closing operation has been performed; if the average value of the detection signal becomes smaller, it can be determined that the lid opening operation has been performed.
  • the detection signal output by each output channel of the touch panel is the detection signal of the self-capacitance of each output channel.
  • the signal value of the detection signal can reflect the self-capacitance of the output channel. Therefore, according to the amount of change in the signal value of the detection signal, the opening and closing state of the device can be determined.
  • the detection signal may be a voltage signal, and the opening and closing state of the device can be judged according to the amount of change of the voltage signal.
  • the touch controller needs to detect the touch of the finger in real time. Therefore, in the process of detecting the touch of the finger, optionally, the touch controller detects the opening and closing of the cover at a certain frequency. That is, according to a preset cycle, the detection of the opening and closing state of the lid is performed at intervals. In the rest of the time, the touchpad still detects finger touches.
  • the frequency of lid opening and closing detection can be very high, for example, the frequency is within 120KHz-140KHz.
  • the detection signal output by the output channel of the touch panel is a detection signal of the mutual capacitance of the touch panel.
  • the touchpad may be a mutual capacitance touchpad, that is, the touchpad may detect a finger touch based on mutual capacitance detection.
  • the detection signal output by the output channel of the touch panel is the detection signal of mutual capacitance.
  • FIG. 3 is a schematic diagram of mutual capacitance detection.
  • the touch panel includes multiple horizontal and vertical channels.
  • the vertical channel is represented by TX
  • the horizontal channel is represented by RX.
  • TX is the driving channel
  • RX is the sensing channel.
  • C2 there is a capacitance C2 between each sensing channel RX and each driving channel TX, which is called mutual capacitance.
  • the sensing channel RX will generate an induction signal after receiving the driving signal.
  • the driving channel TX1 and the sensing channel RX1 as an example, as shown in Figure 3, there is a mutual capacitance C2 at the sensing node between the two channels.
  • the touch controller sequentially inputs driving signals to the driving channel TX.
  • driving signal is input to each driving channel TX, all the sensing channels RX simultaneously output a detection signal, which is also called a sensing signal, so as to obtain the mutual capacitance at each sensing node corresponding to the driving channel TX.
  • the finger touches the touchpad
  • the finger introduces additional capacitance, which causes the detection result of the mutual capacitance on the sensing node touched by the finger to change.
  • the upper cover of the electronic device is closed, the upper cover will also affect the mutual capacitance on the sensing node it covers. Similar to method 1, it can be determined whether the lid is opened or closed according to the number of sensing nodes whose detection signal changes or the signal value. For the related process, please refer to the related description in the aforementioned mode 1. For the sake of brevity, it will not be repeated here.
  • the influence on the mutual capacitance at each sensing node after the upper cover is closed may not be obvious. Therefore, in the embodiment of the present application, the influence of the noise of the display screen of the upper cover on the touch panel can be further used to detect whether the opening and closing state of the electronic device has changed.
  • the detection signal output by the output channel of the touch panel may be collected based on the first sampling frequency.
  • the touch controller needs to collect the signal output by the output channel according to a certain frequency, and this frequency is the sampling frequency.
  • the signal output by the output channel is sampled based on the sampling frequency, and the signal value of the output signal can be obtained according to the data obtained by the sampling.
  • the first sampling frequency is within the noise frequency range of the display screen of the electronic device.
  • the LCD screen as an example to detect the frequency range of the noise signal of the LCD screen. And set the sampling frequency used to collect the detection signal within the frequency range of the noise signal of the LCD screen.
  • the touch panel can also detect the noise signal of the LCD screen.
  • the noise of the LCD screen radiates to the touch panel, which affects the mutual capacitance of the touch panel. Therefore, the detection signal on the sensing node of the touch panel will change. Based on the amount of change in the detection signal, it can be determined whether the opening and closing state of the electronic device has changed.
  • the output channel in the touch panel may be the channel TX shown in FIG. 3 for outputting the detection signal.
  • the noise frequency of the display is the noise inside the display, for example, it can be detected by an oscilloscope.
  • the display screen can be scanned row by row or column by column. Taking Figure 4 and Figure 5 as an example, the display screen scans column by column. When the inside of the display screen scans to which column, noise will be generated on that column.
  • Figure 4 shows the value of the detection signal on each sensor node detected in the open state.
  • Figure 5 shows the value of the detection signal on each sensing node detected in the closed state. It can be seen that, compared to FIG. 4, the signal values on the corresponding sensing nodes on the channels TX2, TX3, and TX5 in FIG. 5 have changed significantly. At this time, it can be considered that the electronic device has performed the lid closing operation.
  • the signal value on each column of sensing nodes randomly appears to fluctuate greatly throughout the column, and it is considered that an opening or closing operation has occurred.
  • the position where the signal value with larger fluctuations randomly appears is related to the position scanned in the display screen at that time.
  • the detection signal output by each output channel of the touch panel is the detection signal of the mutual capacitance on the sensing node corresponding to each output channel.
  • the signal value of the detection signal can reflect the magnitude of the mutual capacitance of the sensing node on the output channel. Therefore, according to the amount of change in the signal value of the detection signal, the opening and closing state of the device can be determined.
  • the detection signal may be a voltage signal, and the opening and closing state of the device can be judged according to the amount of change of the voltage signal.
  • the touch controller needs to detect the touch of the finger in real time. Therefore, in the process of detecting the touch of the finger, optionally, the touch controller detects the opening and closing of the cover at a certain frequency. That is, according to a preset cycle, the detection of the opening and closing state of the lid is performed at intervals. In the rest of the time, the touchpad still detects finger touches.
  • the frequency of lid opening and closing detection can be very high, for example, the frequency is within 120KHz-140KHz.
  • the detection signal output by the output channel of the touch panel is a noise detection signal.
  • the touch panel may be a self-capacitance touch panel or a mutual-capacitance touch panel.
  • the detection signal output by the output channel of the touch panel is a noise detection signal.
  • the detection signal output by the output channel of the touch panel may be detected based on the second sampling frequency.
  • the second sampling frequency is within the noise frequency range of the display screen of the electronic device.
  • the touch panel is used to detect noise when no driving signal is input.
  • the noise signal of the display screen can be considered as some form of driving signal.
  • the touch panel can receive the noise signal radiated by the display screen. Therefore, the output channel of the touch panel will output a corresponding detection signal.
  • the output channel used to output the detection signal may be a horizontal channel or a vertical channel in the touch panel.
  • the touch controller determines whether the opening and closing state of the device has changed according to the change of the detection signal output by the output channel.
  • the noise of the display screen is still used.
  • an oscilloscope can be used to detect the frequency range of the noise signal of the display.
  • the sampling frequency used to collect the detection signal output by the output channel of the touch panel is set within the frequency range of the noise signal of the display screen.
  • the touch controller can collect and analyze the noise signal of the display screen.
  • the noise of the display screen is radiated to the touch panel, so the detection signal output by the touch panel will change. Based on the amount of change in the detection signal, it can be determined whether the opening and closing state of the electronic device has changed.
  • the touch controller collects the detection signal output by the output channel based on the second sampling frequency, and processes the collected detection signal to obtain the frequency spectrum of the signal, as shown in the figure 6 shown. It can be seen that the distribution of the noise collected in the open state is relatively uniform.
  • the touch panel collects the detection signal output by the output channel based on the second sampling frequency, and processes the collected detection signal to obtain a spectrum diagram of the detection signal, as shown in FIG. 7. It can be seen that after the cover is closed, the amplitude of the collected noise signal at specific frequency points such as 130KHz, 160KHz, 200KHz, 270KHz increases significantly. For different display screens, the characteristic frequency point may be different. Select appropriate characteristic frequency points, and according to the change of the amplitude of the detection signal of the touch screen at these frequency points, it can be determined whether the opening and closing state of the electronic device has changed.
  • Mode 3 does not impose any limitation on the specific hardware implementation mode.
  • the output channel can be switched to connect multiple output channels in the touch panel in parallel to form one output channel.
  • the detection signal output by this output channel is collected, and then according to the spectrum information of the detection signal, it is judged whether the state of opening and closing the lid has changed.
  • the detection signal output by a specific output channel among the multiple output channels can also be used to detect the opening and closing state of the lid.
  • the detection signal of the output channel of the touch panel is a detection signal of noise.
  • the signal value of the detection signal can reflect the current noise level of the touch panel.
  • the opening and closing state of the device can be determined.
  • the detection signal may be a voltage signal, and the opening and closing state of the device can be judged according to the amount of change of the voltage signal.
  • the touch controller needs to detect the touch of the finger in real time. Therefore, in the process of detecting the touch of the finger, optionally, the touch controller detects the opening and closing of the cover at a certain frequency. That is, according to a preset cycle, the detection of the opening and closing state of the lid is performed at intervals. In the rest of the time, the touchpad still detects finger touches.
  • the frequency of lid opening and closing detection can be very high, for example, the frequency is within 120KHz-140KHz.
  • the detection signal output by the output channel of the touch panel is a detection signal of a signal with a specific frequency emitted by the display screen.
  • the touch panel may be a self-capacitance touch panel or a mutual-capacitance touch panel.
  • the detection signal output by the output channel of the touch panel is the detection signal of the specific frequency signal.
  • the detection signal output by the output channel of the touch panel may be collected based on the third sampling frequency.
  • the third sampling frequency is within the range of the specific frequency. Specifically, the third sampling frequency is equal to the specific frequency.
  • a driving signal may not be input, so that when no driving signal is input, the touch panel is used to detect the signal of the specific frequency emitted by the display screen.
  • the signal of the specific frequency can be regarded as some form of driving signal.
  • the touch panel can receive the signal of the specific frequency radiated by the display screen. Therefore, the output channel of the touchpad will output the corresponding detection signal.
  • the output channel used to output the detection signal may be a horizontal channel or a vertical channel in the touch panel.
  • the touch controller determines whether the opening and closing state of the device has changed according to the change of the detection signal output by the output channel.
  • the display screen needs to actively send out a signal
  • the signal is a signal for detecting the opening and closing of the device cover.
  • the signal may have a specific frequency, or may also have a certain changing law. Set the sampling frequency of the touch panel's detection signal to be equal to the specific frequency. In this way, the touch panel can collect and analyze the signal of the specific frequency emitted by the display screen.
  • the signal emitted by the display screen is radiated to the touch panel, so the detection signal output by the output channel of the touch panel will change. Based on the change of the detection signal, it can be determined whether the opening and closing state of the electronic device has changed.
  • the display screen 811 on the upper cover sends out a signal 812, and the signal 812 basically does not reach the touchpad 821 on the lower cover 820 .
  • the intensity of the signal 812 received by the touch panel 821 is increasing. Therefore, the touch panel 821 detects the signal 812 to determine the opening and closing state of the electronic device.
  • the signal of the specific frequency emitted by the display screen may have one or more fixed frequencies.
  • the touch controller collects the detection signals output by the output channels according to these frequencies, so as to determine the opening and closing state of the device according to the changes of the detection signals.
  • the electronic device For example, if the signal value of the detection signal is greater than the fourth preset value, it is determined that the electronic device enters the closed state; if the signal value of the detection signal is less than the fourth preset value, it is determined that the electronic device enters the open state.
  • the intensity of the signal at the specific frequency collected by the touch controller is less than the fourth preset value; while in the closed state, due to the display screen and the touchpad.
  • the control board is basically attached, and the intensity of the signal of the specific frequency collected by the touch controller is greater than the fourth preset value.
  • the touch controller collects the detection signal output by the output channel based on the sampling frequency of 160KHz, and processes the detection signal to obtain the frequency spectrum of the signal, as shown in FIG. 9. It can be seen that the distribution of the detection signals collected in the open state is relatively uniform.
  • the touch controller collects the detection signal output by the output channel based on the sampling frequency of 160KHz, and processes the detection signal to obtain the frequency spectrum of the signal, as shown in FIG. 10. It can be seen that the amplitude of the detection signal collected by the touch controller at 160KHz has increased significantly, indicating that the distance between the display screen and the touchpad is very small, and it can be considered that the electronic device has entered the closed state.
  • the signal of the specific frequency emitted by the display screen may also have a fixed changing law.
  • the change rule may be, for example, a change rule of frequency, a change rule of intensity, or a change rule of other parameters.
  • the change rule of the detection signal output by the output channel of the touchpad conforms to the change rule of the signal of the specific frequency, it is determined that the electronic device enters the closed state; if the change rule of the detection signal does not conform to the specific frequency The change rule of the signal of the electronic device determines that the electronic device enters the open state.
  • the strength of the signal collected by the touch controller should also change according to the same rule.
  • the display screen of an electronic device changes the intensity of the signal sent every time unit, using 1 for high intensity and 0 for low intensity, then the intensity change law of the signal of the specific frequency is 101010... If the change rule of the signal value of the detection signal collected by the touch controller is also 101010..., it is considered that the electronic device enters the closed state; if the change rule of the signal value of the detection signal collected by the touch controller is not 101010... , The electronic device is considered to be in an open state.
  • Protocols can also be agreed between the display screen and the touchpad, and the signal of the specific frequency sent by the display screen can be detected according to the protocol.
  • the touch panel receives the signal sent by the display screen, and the touch controller judges the opening and closing state of the device according to whether the collected signal meets the protocol.
  • the signal emitted by the display screen has a specific frequency, and the specific frequency may include one or more frequencies, or may be a frequency range.
  • the method 4 uses the display screen to actively send out a specific frequency signal for opening and closing lid detection. Because it is more targeted, this method is more stable and has a more accurate detection effect. .
  • Mode 4 does not impose any limitation on the specific hardware implementation mode.
  • the output channel can be switched to connect multiple output channels in the touch panel in parallel to form one output channel.
  • the detection signal output by this channel is collected, and then according to the spectrum information of the detection signal, it is judged whether the state of opening and closing the lid has changed.
  • the detection signal output by a specific output channel among the multiple output channels can also be used to detect the opening and closing state of the lid.
  • a transmitter can be installed on the display to transmit the signal of the specific frequency; or, for a touchable display, since the display also has a touch controller inside, the touch controller can be used to send it directly A signal of that specific frequency
  • the detection signal output by the output channel of the touch panel is the detection signal of the signal of the specific frequency.
  • the signal value of the detection signal may reflect the magnitude of the signal of the specific frequency received by the touch panel and emitted by the display screen.
  • the cover is closed, since the distance between the display screen and the touchpad is very close, the amplitude of the detection signal output by the output channel of the touchpad at the specific frequency will increase significantly.
  • the opening and closing state of the device can be determined.
  • the detection signal may be a voltage signal, and the opening and closing state of the device can be judged according to the change of the voltage signal.
  • the touch controller needs to detect the touch of the finger in real time. Therefore, in the process of detecting the touch of the finger, optionally, the touch controller detects the opening and closing of the cover at a certain frequency. That is, according to a preset cycle, the detection of the opening and closing state of the lid is performed at intervals. In the rest of the time, the touchpad still detects finger touches.
  • the frequency of lid opening and closing detection can be very high, for example, the frequency is within 120KHz-140KHz.
  • the operations performed by the touch panel may be performed by the display screen, and at the same time, the operations performed by the display screen may be performed by the touch panel.
  • the display screen that can realize the touch function that is, the touch screen
  • it also has a touch controller it can input a specific frequency signal into each channel of the touch panel, and the display screen detects the touch panel.
  • the specific frequency signal is used to determine the status of opening and closing the lid according to the detection result; for example, since the keyboard will affect the detection signal output by the output channel of the display after the lid is closed, the touch controller in the display can detect The status of the opening and closing of the lid is judged by the change of the signal.
  • the operations performed between the touchpad and the display screen can be interchanged, and the detection of opening and closing the cover of the device can still be realized.
  • the detection method please refer to the above-mentioned related description.
  • the existing touch panel of the electronic device can be used to detect the opening and closing of the device cover, and there is no need to additionally provide a Hall sensor and magnet, which reduces the cost of the device.
  • the influence of the display on the touchpad can disappear.
  • the embodiment of the present application also provides a touch controller.
  • the touch controller 1100 may be, for example, a touch chip.
  • the touch controller 1100 includes:
  • the signal acquisition unit 1110 is configured to acquire the detection signal output by the output channel of the touch panel 1100 of the electronic device;
  • the processing unit 1120 is configured to determine whether the opening and closing state of the electronic device has changed according to the change of the detection signal.
  • the signal acquisition unit 1110 may include multiple output channels, for example, including the horizontal channel and the vertical channel shown in FIG. 2 and FIG. 3.
  • the output channel is used to output the detection signal of self-capacitance, the detection signal of mutual capacitance, or the detection signal of noise.
  • the display screen of the electronic device Since the display screen of the electronic device is close to the touch pad when the cover is closed, the display screen will affect the detection signal output by the output channel of the touch pad. Therefore, according to the change of the detection signal output by the output channel of the touch panel, it can be determined whether the electronic device has been opened or closed.
  • the detection signal is a detection signal of the self-capacitance of the touch panel.
  • the processing unit 1120 is specifically configured to: if the amount of change of the detection signal output by at least N output channels is greater than a first preset value, determine that the opening and closing state of the electronic device has changed, and N is Positive integer.
  • the processing unit 1120 is specifically configured to: if the variation of the average value of the detection signal output by each output channel of the touch panel is greater than a second preset value, determine the opening and closing of the electronic device The state of the lid changes.
  • the detection signal is a detection signal of the mutual capacitance of the touch panel.
  • the signal collection unit 1110 is specifically configured to collect the detection signal based on a first sampling frequency, where the first sampling frequency is within the noise frequency range of the display screen of the electronic device.
  • the processing unit 1120 is specifically configured to: if the amount of change of the detection signal on the sensing node corresponding to at least M output channels is greater than a third preset value, determine that the opening and closing state of the electronic device occurs Change, M is a positive integer.
  • the detection signal is a noise detection signal.
  • the signal collection unit 1110 is specifically configured to collect the detection signal based on a second sampling frequency when there is no input driving signal, where the second sampling frequency is located at the display screen of the electronic device. Within the noise frequency range.
  • the processing unit 1120 is specifically configured to: if the amount of change of the detection signal at a specific frequency point is greater than a third preset value, determine that the opening and closing state of the electronic device has changed, and M is a positive integer.
  • the detection signal is a detection signal of a signal of a specific frequency emitted by the display screen of the electronic device.
  • the signal collection unit 1110 is specifically configured to collect the detection signal based on a third sampling frequency when no driving signal is input, wherein the third sampling frequency is within the range of the specific frequency.
  • the processing unit 1120 is specifically configured to: if the signal value of the detection signal is greater than a fourth preset value, determine that the electronic device enters the closed state; if the signal value of the detection signal is less than the fourth preset value, The preset value determines that the electronic device enters the open state.
  • the processing unit 1120 is specifically configured to: if the change rule of the detection signal conforms to the change rule of the signal of the specific frequency, determine that the electronic device enters the closed state; if the change rule of the detection signal is not According to the change law of the signal of the specific frequency, it is determined that the electronic device enters the open state.
  • the embodiments of the present application also provide a touch panel, which includes: an output channel for outputting a detection signal; and the touch controller in the above-mentioned various embodiments of the present application.
  • An embodiment of the present application also provides an electronic device, which includes: the touch pad in the foregoing various embodiments of the present application; and a display screen.
  • the display screen may be an ordinary non-folding display screen, or may be a foldable display screen or called a flexible display screen.
  • the electronic devices in the embodiments of the present application may be portable or mobile computing devices such as terminal devices, mobile phones, tablet computers, notebook computers, desktop computers, game devices, in-vehicle electronic devices or wearable smart devices, and Electronic databases, automobiles, bank automated teller machines (Automated Teller Machine, ATM) and other electronic equipment.
  • the wearable smart device includes full-featured, large-sized, complete or partial functions that can be realized without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones. Use, such as various types of smart bracelets, smart jewelry and other equipment for physical sign monitoring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Position Input By Displaying (AREA)
  • Electronic Switches (AREA)
  • Telephone Function (AREA)

Abstract

本申请提供一种设备开合盖检测的方法,能够有效地检测设备的开合盖状态。所述方法由电子设备的触控板中的触摸控制器执行,所述方法包括:获取所述触控板的输出通道输出的检测信号;根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化。

Description

设备开合盖检测的方法、触摸控制器、触控板和电子设备 技术领域
本申请实施例涉及信息技术领域,并且更具体地,涉及一种设备开合盖检测的方法、触摸控制器、触控板和电子设备。
背景技术
对于笔记本电脑来说,需要能够检测用户是否执行了开盖或者合盖操作,从而在检测到用户合盖时执行息屏等操作以降低笔记本电脑的功耗,并在检测到用户开盖时恢复相应的功能,从而不对用户操作带来影响。因此,如何有效地检测设备的开合盖状态,成为亟待解决的问题。
发明内容
本申请实施例提供了一种设备开合盖检测的方法、触摸控制器、触控板和电子设备,能够有效地检测设备的开合盖状态。
第一方面,提供了一种设备开合盖检测的方法,所述方法包括:获取所述触控板的输出通道输出的检测信号;根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化。
在一种可能的实现方式中,所述检测信号为所述触控板的自电容的检测信号。
在一种可能的实现方式中,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:若至少N个输出通道输出的所述检测信号的变化量,大于第一预设值,则确定所述电子设备的开合盖状态发生变化,N为正整数。
在一种可能的实现方式中,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:若所述触控板的各个输出通道输出的所述检测信号的平均值的变化量,大于第二预设值,则确定所述电子设备的开合盖状态发生变化。
在一种可能的实现方式中,所述检测信号为所述触控板的互电容的检测信号。
在一种可能的实现方式中,所述获取所述触控板的输出通道输出的检测 信号,包括:基于第一采样频率,采集所述检测信号,其中,所述第一采样频率位于所述电子设备的显示屏的噪声频率范围内。
在一种可能的实现方式中,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:若至少M个输出通道对应的感应节点上的所述检测信号的变化量,大于第三预设值,则确定所述电子设备的开合盖状态发生变化,M为正整数。
在一种可能的实现方式中,所述检测信号为噪声的检测信号。
在一种可能的实现方式中,所述获取所述触控板的输出通道输出的检测信号,包括:在没有输入驱动信号的情况下,基于第二采样频率,采集所述检测信号,其中,所述第二采样频率位于所述电子设备的显示屏的噪声频率范围内。
在一种可能的实现方式中,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:若所述检测信号在特定频点上的变化量大于第三预设值,则确定所述电子设备的开合盖状态发生变化,M为正整数。
在一种可能的实现方式中,所述检测信号为所述电子设备的显示屏发出的特定频率的信号的检测信号。
在一种可能的实现方式中,所述获取所述触控板的输出通道输出的检测信号,包括:在没有输入驱动信号的情况下,基于第三采样频率,采集所述检测信号,其中,所述第三采样频率位于所述特定频率的范围内。
在一种可能的实现方式中,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:若所述检测信号的信号值大于第四预设值,则确定所述电子设备进入合盖状态;若所述检测信号的信号值小于所述第四预设值,则确定所述电子设备进入开盖状态。
在一种可能的实现方式中,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:若所述检测信号的变化规律符合所述特定频率的信号的变化规律,则确定所述电子设备进入合盖状态;若所述检测信号的变化规律不符合所述特定频率的信号的变化规律,则确定所述电子设备进入开盖状态。
在一种可能的实现方式中,所述触摸控制器为触控芯片。
第二方面,提供了一种触摸控制器,包括:信号采集单元,用于获取所 述电子设备的触控板的输出通道输出的检测信号;处理单元,用于根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化。
在一种可能的实现方式中,所述检测信号为所述触控板的自电容的检测信号。
在一种可能的实现方式中,所述处理单元具体用于:若至少N个输出通道输出的所述检测信号的变化量,大于第一预设值,则确定所述电子设备的开合盖状态发生变化,N为正整数。
在一种可能的实现方式中,所述处理单元具体用于:若所述触控板的各个输出通道输出的所述检测信号的平均值的变化量,大于第二预设值,则确定所述电子设备的开合盖状态发生变化。
在一种可能的实现方式中,所述检测信号为所述触控板的互电容的检测信号。
在一种可能的实现方式中,所述信号采集单元具体用于:基于第一采样频率,采集所述检测信号,其中,所述第一采样频率位于所述电子设备的显示屏的噪声频率范围内。
在一种可能的实现方式中,所述处理单元具体用于:若至少M个输出通道对应的感应节点上的所述检测信号的变化量,大于第三预设值,则确定所述电子设备的开合盖状态发生变化,M为正整数。
在一种可能的实现方式中,所述检测信号为噪声的检测信号。
在一种可能的实现方式中,所述信号采集单元具体用于:在没有输入驱动信号的情况下,基于第二采样频率,采集所述检测信号,其中,所述第二采样频率位于所述电子设备的显示屏的噪声频率范围内。
在一种可能的实现方式中,所述处理单元具体用于:若所述检测信号在特定频点上的变化量大于第三预设值,则确定所述电子设备的开合盖状态发生变化,M为正整数。
在一种可能的实现方式中,所述检测信号为所述电子设备的显示屏发出的特定频率的信号的检测信号。
在一种可能的实现方式中,所述信号采集单元具体用于:在没有输入驱动信号的情况下,基于第三采样频率,采集所述检测信号,其中,所述第三采样频率位于所述特定频率的范围内。
在一种可能的实现方式中,所述处理单元具体用于:若所述检测信号的 信号值大于第四预设值,则确定所述电子设备进入合盖状态;若所述检测信号的信号值小于所述第四预设值,则确定所述电子设备进入开盖状态。
在一种可能的实现方式中,所述处理单元具体用于:若所述检测信号的变化规律符合所述特定频率的信号的变化规律,则确定所述电子设备进入合盖状态;若所述检测信号的变化规律不符合所述特定频率的信号的变化规律,则确定所述电子设备进入开盖状态。
在一种可能的实现方式中,所述触摸控制器为触控芯片。
第三方面,提供了一种触控板,包括:输出通道,用于输出检测信号;以及,前述第二方面以及第二方面的任一种可能的实现方式中的触摸控制器。
第四方面,提供了一种电子设备,包括前述第三方面以及第三方面的任一种可能的实现方式中的触控板;以及,显示屏。
基于上述技术方案,由于电子设备合盖时,其显示屏与触控板靠近,该显示屏会对触控板的输出通道输出的检测信号造成影响。因此,可以根据触控板输出的该检测信号的变化情况,判断该电子设备是否执行了开盖或者合盖操作。
附图说明
图1是本申请实施例的设备开合盖检测的方法的示意性流程图。
图2是自电容触控板的示意图。
图3是互电容触控板的示意图。
图4是开盖状态下互电容触控板上各个电容节点的检测信号的值。
图5是合盖状态下互电容触控板上各个电容节点的检测信号的值。
图6是开盖状态下触控板输出的检测信号的频谱图。
图7是合盖状态下触控板输出的检测信号的频谱图。
图8A和图8B是电子设备发出的特定频率的信号的示意图。
图9是开盖状态下触控板输出的检测信号的频谱图。
图10是合盖状态下触控板输出的检测信号的频谱图。
图11是本申请实施例的触摸控制器的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
笔记本电脑的上盖上通常设置有磁铁,而下盖的对应位置上设置有霍尔传感器。这样,当笔记本电脑处于开盖状态和合盖状态时,霍尔传感器所检测到的磁场强度存在差异。基于此,可以实现对笔记本电脑的开合盖状态的检测。但是霍尔传感器和磁铁导致了成本增加。
本申请实施例了提供一种设备开合盖检测的方法,通过电子设备中的触控板(TouchPad),对电子设备的开盖与合盖状态进行检测,在不增加额外成本的情况下,能够实现对设备开合盖状态的有效检测。
图1是本申请实施例的设备开合盖检测的示意性流程图。该方法100由电子设备的触控板执行。该触控板包括触摸控制器,方法100具体可以由该触摸控制器执行。其中,该触摸控制器可以是触控芯片。该电子设备例如可以是笔记本电脑,该触控板为笔记本电脑上的用于手指进行触控操作的触控板。
如图1所示,该方法100包括以下步骤。
在110中,获取触控板的输出通道输出的检测信号。
在120中,根据该检测信号的变化情况,确定电子设备的开合盖状态是否变化。
由于电子设备合盖时,其显示屏与触控板靠近,该显示屏会对触控板的输出通道输出的检测信号造成影响。因此,该实施例中,触摸控制器可以根据该检测信号的变化情况,确定该电子设备是否执行了开盖或者合盖操作。
本申请实施例对触摸控制器进行开合盖检测的时间不做任何限定。
可选地,触摸控制器可以周期性进行设备开合盖的检测,即按照预先设定的周期执行上述方案。该周期可以是固定的,也可以是变化的。举例来说,触摸控制器可以按照8ms的周期进行开合盖检测,即每8ms进行一次开合盖检测;又例如,触摸控制器周期性进行设备开合盖检测时,每个周期的长度可以不同,比如第一个周期是8ms,第二个周期是10ms,第三个周期是8ms,第四个周期是10ms,…….;又例如,触摸控制器在一段时长内按照8ms的周期进行开合盖检测,而在接下来的一段时长内按照10ms的周期进行开合盖检测,比如在T1时长内每8ms进行一次开合盖检测,在之后的T2时长内每10ms进行一次开合盖检测。本申请实施例对触摸控制器执行设备开合盖检测的周期不做任何限定;又例如,该周期可以在一定范围内变化,可以按照规律变化或者不按照规律变化,比如该周期可以在8ms-10ms内变 化,即,相邻两次开合盖检测之间的时间间隔在8ms-10ms内随机变化或者按照规律变化。
当然,触摸控制器也可以不按照周期进行设备开合盖的检测。例如,触摸控制器可以在出现某个事件或者满足某个条件时进行设备开合盖检测,比如触摸控制器在检测到没有手指触摸时,可以进行设备开合盖的检测,因为通常用户在执行打开或者闭合设备上盖的操作时,手指是不触摸触控板的。
本申请实施例提供了四种利用触控板检测设备开合盖的方式,下面分别进行描述。
方式1
触控板的输出通道输出的该检测信号为该触控板的自电容的检测信号。
该方式中,触控板可以是自电容触控板,即该触控板可以基于自电容检测的方式检测手指触摸。这时,触控板的输出通道输出的检测信号为自电容的检测信号。
图2是自电容检测的示意图,触控板上包括横向和纵向的多个通道。以下,将横向的通道用RX表示,将纵向的通道用TX表示。其中,每个通道与地之间存在电容,称为自电容。横向和纵向的每个通道的检测原理相同。以通道TX0为例,在电子设备处于开盖状态时,通道TX0的自电容为C1。而电子设备处于合盖状态时,上盖会在通道TX0上并入附加电容,因此,通道TX0的自电容的检测结果会发生明显改变。基于各个通道输出的检测信号的这种变化,能够判断电子设备的开合盖状态是否变化。
手指触摸触控板时,手指也会引入附加电容,导致自电容的检测结果发生变化。但是,手指触摸通常只是在触控板的局部位置,手指触摸到的通道上输出的自电容的检测结果才会发生变化。而电子设备的上盖闭合时,上盖的显示屏会覆盖整个触控板,因此会在大部分甚至全部通道上引入附加电容,导致这些通道输出的自电容的检测结果均发生变化。也就是说,手指触摸无法实现类似合盖后引起的全通道起值。因此,通过对触控板的各个通道输出的信号值进行统计,可以判断是手指触摸还是开合盖操作。
在一种实现方式中,可以根据其检测信号发生变化的输出通道的数量,判断是否进行了开盖或合盖操作。
例如,若触控板中的至少N个输出通道输出的检测信号的变化量,大于第一预设值,则确定电子设备的开合盖状态发生变化。
其中,N为正整数,N≤K。对于自电容检测方式来说,触控板中的横向通道和纵向通道均可以作输出通道用来输出检测信号。这里,K可以是触控板的全部输出通道的总数,或者是横向的输出通道的数量,或者是纵向的输出通道的数量。
该实施例中,如果超过一定数量或者一定比例的输出通道,其检测信号的变化量均大于第一预设值,那么可以认为电子设备进行了开盖或者合盖操作。例如,N/K大于60%时,认为进行了开盖或者合盖操作。
如图2所示,在开盖状态下,向每个通道输入驱动信号,该驱动信号也可以称为打码信号。以通道TX0为例,触摸控制器获取通道TX0输出的检测信号的信号值为S1;在合盖状态下,向每个通道输入驱动信号,触摸控制器获取通道TX0输出的检测信号的信号值为S2。其中,通道TX0的检测信号的变化量为|S2-S1|,|S2-S1|大于或等于第一预设值。如果N个以上的通道输出的检测信号的变化量均大于或等于该第一预设值,那么可以确定执行了开盖或者合盖操作。
在另一种实现方式中,可以根据输出通道输出的检测信号的信号值,判断是否进行了开盖或合盖操作。
例如,若触控板的多个输出通道输出的检测信号的平均值的变化量,大于第二预设值,则确定电子设备的开合盖状态发生变化。
也就是说,可以计算采集到的各个输出通道输出的检测信号的平均值,如果该平均值发生了明显变化,则认为进行了开盖或者合盖操作。
进一步地,还可以根据该检测信号的信号值,判断进行了开盖还是合盖操作。例如,如果该检测信号的平均值变大了,可以确定进行了合盖操作;如果该检测信号的平均值变小了,可以确定进行了开盖操作。
在方式1中,触控板的每个输出通道输出的检测信号,为每个输出通道的自电容的检测信号。该检测信号的信号值可以反映该输出通道的自电容的大小。因此,根据该检测信号的信号值的变化量,可以确定设备的开合盖状态。例如,该检测信号可以是电压信号,根据该电压信号的变化量,可以判断设备的开合盖状态。
触摸控制器需要实时地对手指触摸进行检测,因此,在对手指触摸进行检测的过程中,可选地,触摸控制器按照一定的频率进行开合盖的检测。即,按照预先设定的周期,每隔一段时间进行一次开合盖状态的检测。而其余时 间触控板仍进行手指触摸的检测。开合盖检测的频率可以很高,例如该频率位于120KHz-140KHz内。
方式2
触控板的输出通道输出的该检测信号为该触控板的互电容的检测信号。
该方式中,触控板可以是互电容触控板,即该触控板可以基于互电容检测的方式检测手指触摸。这时,触控板的输出通道输出的检测信号为互电容的检测信号。
图3是互电容检测的示意图,触控板上包括横向和纵向的多个通道。以下,纵向的通道用TX表示,横向的通道用RX表示。其中,TX为驱动通道,RX为感应通道。每个感应通道RX和每个驱动通道TX之间存在电容C2,称为互电容。向驱动通道TX输入驱动信号时,由于互电容的存在,感应通道RX接收该驱动信号后会产生感应信号。以驱动通道TX1和感应通道RX1为例,如图3所示,在这两个通道之间的感应节点处存在互电容C2。在进行互电容检测时,触摸控制器依次向驱动通道TX输入驱动信号。在向每个驱动通道TX输入驱动信号时,所有感应通道RX同时输出检测信号,也称为感应信号,从而得到该驱动通道TX上对应的各个感应节点处的互电容。
手指触摸触控板时,手指会引入附加电容,导致手指触摸到的感应节点上的互电容的检测结果发生变化。电子设备的上盖闭合时,上盖也会对其覆盖的感应节点上的互电容造成影响。类似于方式1,可以根据检测信号发生变化的感应节点的数量或者信号值,判断是否进行了开盖或合盖操作。其相关过程可以参考前述方式1中的相关描述,为了简洁,这里不再赘述。
但是,对于互电容检测的触控板来说,上盖闭合后对各个感应节点处的互电容的影响可能并不明显。因此,本申请实施例中,可以进一步利用上盖的显示屏的噪声对触控板的影响,检测电子设备的开合盖状态是否变化。
在一种实现方式中,在110中,可以基于第一采样频率,采集触控板的输出通道输出的检测信号。
应理解,触摸控制器需要按照一定的频率去采集输出通道输出的信号,这个频率即采样频率。基于该采样频率对输出通道输出的信号进行采样,根据采样得到的数据就可以得到输出信号的信号值。
其中,该第一采样频率位于电子设备的显示屏的噪声频率范围内。
例如,以LCD屏为例,检测LCD屏的噪声信号的频率范围。并将用于采集检测信号的采样频率设置在LCD屏的噪声信号的频率范围内。这样,触控板就可以将LCD屏的噪声信号也检测出来。在合盖状态下,LCD屏的噪声辐射至触控板,从而对触控板上的互电容带来影响,因此,触控板的感应节点上的检测信号会发生变化。基于该检测信号的变化量,可以确定电子设备的开合盖状态是否发生变化。
在一种实现方式中,在120中,若至少M个输出通道对应的感应节点上的该检测信号的变化量,大于第三预设值,则确定电子设备的开合盖状态发生变化。
其中,M为正整数,M≤K。K是触控板的输出通道的数量。对于互电容检测方式来说,触控板中的输出通道可以是图3中所示的用于输出检测信号的通道TX。
显示屏的噪声频率为显示屏内部的噪声,例如可以通过示波器进行检测。显示屏可以逐行或者逐列进行扫描,以图4和图5为例,显示屏逐列进行扫描,显示屏内部扫描至哪一列时,该列上就会产生噪声。图4所示为开盖状态下检测到的各个感应节点上的检测信号的值。图5所示为合盖状态下检测到的各个感应节点上的检测信号的值。可以看出,相比于图4,图5中的通道TX2、TX3和TX5上对应的感应节点上的信号值发生了明显变化,这时,可以认为电子设备进行了合盖操作。可见,各列感应节点上的信号值随机出现整列起伏较大,则认为发生了开盖或者合盖操作。其中,起伏较大的信号值所随机出现的位置,就与显示屏内当时扫描到的位置有关。
在方式2中,该触控板的每个输出通道输出的检测信号,为每个输出通道对应的感应节点上的互电容的检测信号。该检测信号的信号值可以反映该输出通道上的感应节点的互电容的大小。因此,根据该检测信号的信号值的变化量,可以确定设备的开合盖状态。例如,该检测信号可以为电压信号,根据该电压信号的变化量,可以判断设备的开合盖状态。
触摸控制器需要实时地对手指触摸进行检测,因此,在对手指触摸进行检测的过程中,可选地,触摸控制器按照一定的频率进行开合盖的检测。即,按照预先设定的周期,每隔一段时间进行一次开合盖状态的检测。而其余时间触控板仍进行手指触摸的检测。开合盖检测的频率可以很高,例如该频率位于120KHz-140KHz内。
方式3
触控板的输出通道输出的该检测信号为噪声的检测信号。
该方式中,触控板可以是自电容触控板或者互电容触控板。在进行噪声检测时,可以不输入驱动信号。这时,触控板的输出通道输出的检测信号为噪声的检测信号。
在一种实现方式中,在110中,可以基于第二采样频率,检测触控板的输出通道输出的该检测信号。
其中,该第二采样频率位于电子设备的显示屏的噪声频率范围内。
应理解,在110中,可以不输入驱动信号,从而在没有输入驱动信号的情况下,利用触控板来检测噪声。这时,显示屏的噪声信号可以认为是某种形式的驱动信号。当显示屏与触控板接触时,触控板可以接收到显示屏辐射的噪声信号。因此,该触控板的输出通道会输出相应的检测信号。这里,用于输出检测信号的输出通道,可以是触控板中的横向通道或者纵向通道。触摸控制器根据输出通道输出的该检测信号的变化,判断设备的开合盖状态是否变化。
该实施例中,仍利用显示屏的噪声。例如可以使用示波器检测显示屏的噪声信号的频率范围。并将用于采集该触控板的输出通道输出的检测信号的采样频率设置在显示屏的噪声信号的频率范围内。这样,触摸控制器就可以将显示屏的噪声信号采集出来,并进行分析。在合盖状态下,显示屏的噪声辐射至触控板,因此触控板输出的该检测信号会发生变化。基于该检测信号的变化量,可以确定电子设备的开合盖状态是否发生变化。
在一种实现方式中,在120中,若该检测信号在特定频点上的变化量大于第三预设值,则确定电子设备的开合盖状态发生变化,M为正整数。
以图6和图7为例,在开盖状态下,触摸控制器基于第二采样频率采集输出通道输出的检测信号,并对采集到的检测信号进行处理,得到该信号的频谱图,如图6所示。可以看出,开盖状态下采集到的噪声的分布比较均匀。在合盖状态下,触控板基于第二采样频率采集输出通道输出的检测信号,并对采集到的检测信号进行处理,得到检测信号的频谱图,如图7所示。可以看出,合盖后,采集到的噪声信号在特定频点例如130KHz、160KHz、200KHz、270KHz上的幅值明显增加。对于不同的显示屏,该特征频点可能不同。选择合适的特征频点,并根据触控屏的该检测信号在这些频点上的幅值的变化 情况,可以确定电子设备的开合盖状态是否发生变化。
方式3中对具体的硬件实现方式不做任何限定。例如,可以在进行开合盖检测时,进行输出通道切换,以将触控板中的多个输出通道并联成一个输出通道。采集这一个输出通道输出的检测信号,从而根据该检测信号的频谱信息,判断开合盖状态是否发生变化。又例如,也可以采用多个输出通道中的某一特定输出通道输出的检测信号,进行开合盖状态的检测。
在方式3中,在不输入驱动信号的情况下,该触控板的输出通道的检测信号为噪声的检测信号。该检测信号的信号值可以反映触控板当前的噪声的大小。当合盖时,由于显示屏向触控板引入了更大的噪声,因此触控板的输出通道输出的检测信号在对应的特征频点上的幅值就会明显增加。根据该检测信号的信号值的变化量,可以确定设备的开合盖状态。例如,该检测信号可以为电压信号,根据该电压信号的变化量,可以判断设备的开合盖状态。
触摸控制器需要实时地对手指触摸进行检测,因此,在对手指触摸进行检测的过程中,可选地,触摸控制器按照一定的频率进行开合盖的检测。即,按照预先设定的周期,每隔一段时间进行一次开合盖状态的检测。而其余时间触控板仍进行手指触摸的检测。开合盖检测的频率可以很高,例如该频率位于120KHz-140KHz内。
方式4
触控板的输出通道输出的该检测信号为显示屏发出的特定频率的信号的检测信号。
该方式中,该触控板可以是自电容触控板或者互电容触控板。在进行该特定频率信号的检测时,可以不输入驱动信号。这时,触控板的输出通道输出的检测信号是该特定频率信号的检测信号。
在一种实现方式中,在110中,可以基于第三采样频率,采集触控板的输出通道输出的该检测信号。
其中,该第三采样频率位于该特定频率的范围内。具体地,该第三采样频率等于该特定频率。
应理解,在110中,可以不输入驱动信号,从而在没有输入驱动信号的情况下,利用触控板来检测显示屏发出的该特定频率的信号。这时,该特定频率的信号可以认为是某种形式的驱动信号。当显示屏与触控板接触时,触控板可以接收到显示屏辐射的该特定频率的信号。因此,该触控板的输出通 道会输出相应的检测信号。这里,用于输出检测信号的输出通道,可以是触控板中的横向通道或者纵向通道。触摸控制器根据输出通道输出的该检测信号的变化,判断设备的开合盖状态是否变化。
该实施例中,显示屏需要主动发出信号,该信号是用于进行设备开合盖检测的信号。该信号可以具有特定频率,或者还可以具有一定的变化规律。将触控板对其检测信号的采样频率设置为等于该特定频率。这样,触控板就可以将显示屏发出的该特定频率的信号采集出来,并进行分析。在合盖状态下,显示屏发出的该信号辐射至触控板,因此触控板的输出通道输出的该检测信号会发生变化。基于该检测信号的变化情况,可以确定电子设备的开合盖状态是否发生变化。
例如图8A和图8B所示,其中,图8A中的电子设备的上盖810打开,上盖上的显示屏811发出信号812,信号812基本上不会达到下盖820上的触控板821。如图8B所示,电子设备上盖810在闭合过程中,触控板821接收到的信号812的强度越来越大。因此,触控板821对该信号812进行检测,就可以判断电子设备的开合盖状态。
显示屏发出的该特定频率的信号可以具有一个或者多个固定频率。触摸控制器按照这些频率采集输出通道输出的检测信号,从而根据检测信号的变化情况判断设备的开合盖状态。
例如,若该检测信号的信号值大于第四预设值,则确定电子设备进入合盖状态;若该检测信号的信号值小于该第四预设值,则确定电子设备进入开盖状态。
也就是说,开盖状态下,由于显示屏距离触控板很远,触摸控制器采集到该特定频率的信号的强度小于该第四预设值;而合盖状态下,由于显示屏与触控板基本贴合,触摸控制器采集到该特定频率的信号的强度大于该第四预设值。
以图9和图10为例,假设该特定信号的频率为160KHz。在开盖状态下,触摸控制器基于160KHz的采样频率采集输出通道输出的检测信号,并对该检测信号进行处理,得到该信号的频谱图,如图9所示。可以看出,开盖状态下采集到的检测信号的分布比较均匀。而在合盖状态下,触摸控制器基于160KHz的采样频率采集输出通道输出的检测信号,并对该检测信号进行处理,得到该信号的频谱图,如图10所示。可以看出,触摸控制器采集到的 检测信号在160KHz上的幅值明显增加,说明显示屏与触控板之间的距离很小了,这时可以认为电子设备已经进入合盖状态。
显示屏发出的该特定频率的信号还可以具有固定的变化规律。该变化规律例如可以是频率的变化规律、强度的变化规律、或者其他参数的变化规律。
例如,若触控板的输出通道输出的该检测信号的变化规律,符合该特定频率的信号的变化规律,则确定电子设备进入合盖状态;若该检测信号的变化规律,不符合该特定频率的信号的变化规律,则确定电子设备进入开盖状态。
以信号强度的变化规律为例,如果电子设备发出该特定频率的信号,其强度按照时间有规律地变化,那么合盖时,触摸控制器采集到的信号的强度也应按照相同规律变化。例如,电子设备的显示屏每个时间单位改变一次发出信号的强度,用1表示高强度,用0表示低强度,那么该特定频率的信号的强度变化规律为101010……。如果触摸控制器采集到的该检测信号的信号值的变化规律也是101010……,则认为电子设备进入合盖状态;如果触摸控制器采集到的该检测信号的信号值的变化规律不是101010……,则认为电子设备为开盖状态。
显示屏与触控板之间还可以约定其他协议,并按照该协议检测显示屏发出的该特定频率的信号。触控板接收显示屏发出的信号,触摸控制器根据其采集到的信号是否满足该协议,来判断设备的开合盖状态。
该实施例中,显示屏发出的信号具有特定频率,该特定频率可以包括一个或者多个频率,也可以是一个频率范围。相比于方式3中采用的检测噪声的方式,方式4中通过显示屏主动发出特定频率的信号进行开合盖检测,由于更加具有针对性,因此该方式的稳定性更好,检测效果更准确。
方式4中对具体的硬件实现方式不做任何限定。例如,可以在进行开合盖检测时,进行输出通道切换,以将触控板中的多个输出通道并联成一个输出通道。采集这一个通道输出的检测信号,从而根据该检测信号的频谱信息,判断开合盖状态是否发生变化。又例如,也可以采用多个输出通道中的某一特定输出通道输出的检测信号,进行开合盖状态的检测。
显示屏上可以安装发射器,用来发射该特定频率的信号;或者,对于可触控的显示屏来说,由于显示屏内部本身也具有一个触摸控制器,因此可以直接利用该触摸控制器发出该特定频率的信号。
在方式4中,在不输入驱动信号的情况下,该触控板的输出通道输出的检测信号,是该特定频率的信号的检测信号。该检测信号的信号值可以反映触控板接收到的由显示屏发出的该特定频率的信号的大小。当合盖时,由于显示屏与触控板距离很近,因此触控板的输出通道输出的检测信号在该特定频率上的幅值就会明显增加。根据检测信号的幅值变化量,可以确定设备的开合盖状态。例如,该检测信号可以为电压信号,根据该电压信号的变化情况,可以判断设备的开合盖状态。
触摸控制器需要实时地对手指触摸进行检测,因此,在对手指触摸进行检测的过程中,可选地,触摸控制器按照一定的频率进行开合盖的检测。即,按照预先设定的周期,每隔一段时间进行一次开合盖状态的检测。而其余时间触控板仍进行手指触摸的检测。开合盖检测的频率可以很高,例如该频率位于120KHz-140KHz内。
上述各种实现方式中,触控板执行的操作可以由显示屏执行,且同时显示屏执行的操作可以由触控板执行。例如,对于可以实现触控功能的显示屏,即触摸屏,由于其也具有触摸控制器,因此可以向触控板的各个通道中输入特定频率的信号,而由显示屏来检测触控板发出的该特定频率的信号,并根据检测结果判断开合盖状态;又例如,由于合盖后键盘对显示屏的输出通道输出的检测信号会有影响,因此显示屏内的触摸控制器可以根据该检测信号的变化情况,判断开合盖状态。也就是说,上述各个实施例中,触控板和显示屏之间所执行的操作可以互换,仍可以实现设备开合盖的检测。相应的检测方式具体可以参考上述相关描述,为了简洁,这里不在赘述。
基于上述四种方式,利用电子设备已有的触控板就可以实现设备开合盖的检测,无需另外设置霍尔传感器和磁铁,降低了设备成本。
通常,在显示屏与触控板之间的距离大于约5mm时,显示屏对触控板带来的影响就可以消失。
本申请实施例还提供一种触摸控制器。如图11所示,触摸控制器1100例如可以是触控芯片。触摸控制器1100包括:
信号采集单元1110,用于获取所述电子设备的触控板1100的输出通道输出的检测信号;
处理单元1120,用于根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化。
其中,信号采集单元1110可以包括多个输出通道,例如包括图2和图3所示的横向通道和纵向通道。该输出通道用于输出自电容的检测信号、互电容的检测信号、或者噪声的检测信号。
由于电子设备合盖时,其显示屏与触控板靠近,该显示屏会对触控板的输出通道输出的检测信号造成影响。因此,根据该触控板的输出通道输出的检测信号的变化情况,可以确定该电子设备是否进行了开盖或者合盖操作。
可选地,所述检测信号为所述触控板的自电容的检测信号。
可选地,处理单元1120具体用于:若至少N个输出通道输出的所述检测信号的变化量,大于第一预设值,则确定所述电子设备的开合盖状态发生变化,N为正整数。
可选地,处理单元1120具体用于:若所述触控板的各个输出通道输出的所述检测信号的平均值的变化量,大于第二预设值,则确定所述电子设备的开合盖状态发生变化。
可选地,所述检测信号为所述触控板的互电容的检测信号。
可选地,信号采集单元1110具体用于:基于第一采样频率,采集所述检测信号,其中,所述第一采样频率位于所述电子设备的显示屏的噪声频率范围内。
可选地,处理单元1120具体用于:若至少M个输出通道对应的感应节点上的所述检测信号的变化量,大于第三预设值,则确定所述电子设备的开合盖状态发生变化,M为正整数。
可选地,所述检测信号为噪声的检测信号。
可选地,信号采集单元1110具体用于:在没有输入驱动信号的情况下,基于第二采样频率,采集所述检测信号,其中,所述第二采样频率位于所述电子设备的显示屏的噪声频率范围内。
可选地,处理单元1120具体用于:若所述检测信号在特定频点上的变化量大于第三预设值,确定所述电子设备的开合盖状态发生变化,M为正整数。
可选地,所述检测信号为所述电子设备的显示屏发出的特定频率的信号的检测信号。
可选地,信号采集单元1110具体用于:在没有输入驱动信号的情况下,基于第三采样频率,采集所述检测信号,其中,所述第三采样频率位于所述 特定频率的范围内。
可选地,处理单元1120具体用于:若所述检测信号的信号值大于第四预设值,则确定所述电子设备进入合盖状态;若所述检测信号的信号值小于所述第四预设值,则确定所述电子设备进入开盖状态。
可选地,处理单元1120具体用于:若所述检测信号的变化规律符合所述特定频率的信号的变化规律,则确定所述电子设备进入合盖状态;若所述检测信号的变化规律不符合所述特定频率的信号的变化规律,则确定所述电子设备进入开盖状态。
应理解,图11所示本申请实施例的触摸控制器的各个单元的上述和其它操作和/或功能分别为了实现图1中的开合盖检测的方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种触控板,该触控板包括:输出通道,用于输出检测信号;以及,上述本申请各种实施例中的触摸控制器。
本申请实施例还提供了一种电子设备,该电子设备包括:上述本申请各种实施例中的触控板;以及,显示屏。
所述显示屏可以为普通的非折叠显示屏,也可以为可折叠显示屏或称为柔性显示屏。
作为示例而非限定,本申请实施例中的电子设备可以为终端设备、手机、平板电脑、笔记本电脑、台式机电脑、游戏设备、车载电子设备或穿戴式智能设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。该穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等设备。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形均落在本申请的保护范围内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种设备开合盖检测的方法,其特征在于,所述方法由电子设备的触控板中的触摸控制器执行,所述方法包括:
    获取所述触控板的输出通道输出的检测信号;
    根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化。
  2. 根据权利要求1所述的方法,其特征在于,所述检测信号为所述触控板的自电容的检测信号。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:
    若至少N个输出通道输出的所述检测信号的变化量,大于第一预设值,则确定所述电子设备的开合盖状态发生变化,N为正整数。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:
    若所述触控板的各个输出通道输出的所述检测信号的平均值的变化量,大于第二预设值,则确定所述电子设备的开合盖状态发生变化。
  5. 根据权利要求1所述的方法,其特征在于,所述检测信号为所述触控板的互电容的检测信号。
  6. 根据权利要求5所述的方法,其特征在于,所述获取所述触控板的输出通道输出的检测信号,包括:
    基于第一采样频率,采集所述检测信号,其中,所述第一采样频率位于所述电子设备的显示屏的噪声频率范围内。
  7. 根据权利要求5或6所述的方法,其特征在于,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:
    若至少M个输出通道对应的感应节点上的所述检测信号的变化量,大于第三预设值,则确定所述电子设备的开合盖状态发生变化,M为正整数。
  8. 根据权利要求1所述的方法,其特征在于,所述检测信号为噪声的检测信号。
  9. 根据权利要求8所述的方法,其特征在于,所述获取所述触控板的输出通道输出的检测信号,包括:
    在没有输入驱动信号的情况下,基于第二采样频率,采集所述检测信号, 其中,所述第二采样频率位于所述电子设备的显示屏的噪声频率范围内。
  10. 根据权利要求8或9所述的方法,其特征在于,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:
    若所述检测信号在特定频点上的变化量大于第三预设值,则确定所述电子设备的开合盖状态发生变化,M为正整数。
  11. 根据权利要求1所述的方法,其特征在于,所述检测信号为所述电子设备的显示屏发出的特定频率的信号的检测信号。
  12. 根据权利要求11所述的方法,其特征在于,所述获取所述触控板的输出通道输出的检测信号,包括:
    在没有输入驱动信号的情况下,基于第三采样频率,采集所述检测信号,其中,所述第三采样频率位于所述特定频率的范围内。
  13. 根据权利要求11或12所述的方法,其特征在于,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:
    若所述检测信号的信号值大于第四预设值,则确定所述电子设备进入合盖状态;
    若所述检测信号的信号值小于所述第四预设值,则确定所述电子设备进入开盖状态。
  14. 根据权利要求11或12所述的方法,其特征在于,所述根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化,包括:
    若所述检测信号的变化规律符合所述特定频率的信号的变化规律,则确定所述电子设备进入合盖状态;
    若所述检测信号的变化规律不符合所述特定频率的信号的变化规律,则确定所述电子设备进入开盖状态。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述触摸控制器为触控芯片。
  16. 一种触摸控制器,其特征在于,包括:
    信号采集单元,用于获取所述电子设备的触控板的输出通道输出的检测信号;
    处理单元,用于根据所述检测信号的变化情况,确定所述电子设备的开合盖状态是否变化。
  17. 根据权利要求16所述的触摸控制器,其特征在于,所述检测信号 为所述触控板的自电容的检测信号。
  18. 根据权利要求17所述的触摸控制器,其特征在于,所述处理单元具体用于:
    若至少N个输出通道输出的所述检测信号的变化量,大于第一预设值,则确定所述电子设备的开合盖状态发生变化,N为正整数。
  19. 根据权利要求17所述的触摸控制器,其特征在于,所述处理单元具体用于:
    若所述触控板的各个输出通道输出的所述检测信号的平均值的变化量,大于第二预设值,则确定所述电子设备的开合盖状态发生变化。
  20. 根据权利要求16所述的触摸控制器,其特征在于,所述检测信号为所述触控板的互电容的检测信号。
  21. 根据权利要求20所述的触摸控制器,其特征在于,所述信号采集单元具体用于:
    基于第一采样频率,采集所述检测信号,其中,所述第一采样频率位于所述电子设备的显示屏的噪声频率范围内。
  22. 根据权利要求20或21所述的触摸控制器,其特征在于,所述处理单元具体用于:
    若至少M个输出通道对应的感应节点上的所述检测信号的变化量,大于第三预设值,则确定所述电子设备的开合盖状态发生变化,M为正整数。
  23. 根据权利要求16所述的触摸控制器,其特征在于,所述检测信号为噪声的检测信号。
  24. 根据权利要求23所述的触摸控制器,其特征在于,所述信号采集单元具体用于:
    在没有输入驱动信号的情况下,基于第二采样频率,采集所述检测信号,其中,所述第二采样频率位于所述电子设备的显示屏的噪声频率范围内。
  25. 根据权利要求23或24所述的触摸控制器,其特征在于,所述处理单元具体用于:
    若所述检测信号在特定频点上的变化量大于第三预设值,则确定所述电子设备的开合盖状态发生变化,M为正整数。
  26. 根据权利要求16所述的触摸控制器,其特征在于,所述检测信号为所述电子设备的显示屏发出的特定频率的信号的检测信号。
  27. 根据权利要求26所述的触摸控制器,其特征在于,所述信号采集单元具体用于:
    在没有输入驱动信号的情况下,基于第三采样频率,采集所述检测信号,其中,所述第三采样频率位于所述特定频率的范围内。
  28. 根据权利要求26或27所述的触摸控制器,其特征在于,所述处理单元具体用于:
    若所述检测信号的信号值大于第四预设值,则确定所述电子设备进入合盖状态;
    若所述检测信号的信号值小于所述第四预设值,则确定所述电子设备进入开盖状态。
  29. 根据权利要求26或27所述的触摸控制器,其特征在于,所述处理单元具体用于:
    若所述检测信号的变化规律符合所述特定频率的信号的变化规律,则确定所述电子设备进入合盖状态;
    若所述检测信号的变化规律不符合所述特定频率的信号的变化规律,则确定所述电子设备进入开盖状态。
  30. 根据权利要求16至29中任一项所述的触摸控制器,其特征在于,所述触摸控制器为触控芯片。
  31. 一种触控板,其特征在于,包括:
    输出通道,用于输出检测信号;以及,
    前述权利要求16至30中任一项所述的触摸控制器。
  32. 一种电子设备,其特征在于,包括:
    前述权利要求31所述的触控板;以及,
    显示屏。
PCT/CN2019/115141 2019-11-01 2019-11-01 设备开合盖检测的方法、触摸控制器、触控板和电子设备 WO2021082007A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19920632.7A EP4053671B1 (en) 2019-11-01 2019-11-01 Device opening/closing cover detection method, touch controller and touchpad
PCT/CN2019/115141 WO2021082007A1 (zh) 2019-11-01 2019-11-01 设备开合盖检测的方法、触摸控制器、触控板和电子设备
CN201980004015.6A CN111052034A (zh) 2019-11-01 2019-11-01 设备开合盖检测的方法、触摸控制器、触控板和电子设备
TW109106749A TWI736157B (zh) 2019-11-01 2020-03-02 設備蓋的開合檢測的方法、觸摸控制器和觸控板
US17/014,761 US20210132730A1 (en) 2019-11-01 2020-09-08 Method for device cover opening and closing detection, touch controller, touch pad and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115141 WO2021082007A1 (zh) 2019-11-01 2019-11-01 设备开合盖检测的方法、触摸控制器、触控板和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/014,761 Continuation US20210132730A1 (en) 2019-11-01 2020-09-08 Method for device cover opening and closing detection, touch controller, touch pad and electronic device

Publications (1)

Publication Number Publication Date
WO2021082007A1 true WO2021082007A1 (zh) 2021-05-06

Family

ID=70244793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115141 WO2021082007A1 (zh) 2019-11-01 2019-11-01 设备开合盖检测的方法、触摸控制器、触控板和电子设备

Country Status (5)

Country Link
US (1) US20210132730A1 (zh)
EP (1) EP4053671B1 (zh)
CN (1) CN111052034A (zh)
TW (1) TWI736157B (zh)
WO (1) WO2021082007A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113867550A (zh) * 2020-06-30 2021-12-31 北京小米移动软件有限公司 电子设备的姿态检测方法及装置、存储介质
US11579679B2 (en) 2021-05-12 2023-02-14 Microsoft Technology Licensing, Llc Determining opening/closing of computing device
CN115145366B (zh) * 2022-09-01 2022-12-06 深圳贝特莱电子科技股份有限公司 一种设备的合盖确认方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633034A (zh) * 2003-12-23 2005-06-29 明基电通股份有限公司 翻盖式电子装置及检测翻盖打开关闭状态的方法
US20090016003A1 (en) * 2004-08-25 2009-01-15 Chris Ligtenberg Lid-closed detector
CN103139355A (zh) * 2011-11-22 2013-06-05 索尼爱立信移动通讯有限公司 折叠式电子设备及其开闭模式检测方法
CN103257777A (zh) * 2013-05-14 2013-08-21 深圳市汇顶科技股份有限公司 触摸屏状态的控制方法及触摸屏、便携式触摸终端
CN105700626A (zh) * 2015-12-29 2016-06-22 联想(北京)有限公司 一种控制方法和电子设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807276B2 (en) * 2000-06-06 2004-10-19 Pioneer Corporation Portable telephone
US8149000B2 (en) * 2007-08-31 2012-04-03 Standard Microsystems Corporation Detecting closure of an electronic device using capacitive sensors
CN102609036A (zh) * 2011-01-24 2012-07-25 鸿富锦精密工业(深圳)有限公司 便携式电子装置
TWI574157B (zh) * 2012-12-04 2017-03-11 華碩電腦股份有限公司 可攜式電子系統及其觸碰功能控制方法
KR101312487B1 (ko) * 2012-12-28 2013-10-14 에이큐 주식회사 제어기능을 구비한 스마트폰 보호 케이스 및 그 제어방법
KR102059825B1 (ko) * 2013-04-24 2019-12-27 삼성전자주식회사 보호 커버를 구비한 휴대형 전자장치 및 그 구동 방법
US9307129B2 (en) * 2013-05-07 2016-04-05 Lg Electronics Inc. Terminal case, mobile terminal, and mobile terminal assembly including the terminal case and the mobile terminal
KR102108118B1 (ko) * 2013-05-13 2020-05-11 삼성전자주식회사 커버장치를 구비하는 휴대용 단말기
TW201502966A (zh) * 2013-07-01 2015-01-16 Wistron Corp 兩用型電子裝置及控制兩用型電子裝置的方法
TWI510996B (zh) * 2013-10-03 2015-12-01 Acer Inc 控制觸控面板的方法以及使用該方法的可攜式電腦
TWI502442B (zh) * 2013-10-08 2015-10-01 Wistron Corp 掀蓋式電子裝置及其校正方法
CN203838674U (zh) * 2014-05-21 2014-09-17 合肥联宝信息技术有限公司 一种笔记本电脑的触摸装置硬件
US10228721B2 (en) * 2014-05-26 2019-03-12 Apple Inc. Portable computing system
US10725595B2 (en) * 2018-04-24 2020-07-28 Apple Inc. Electronic devices with covers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633034A (zh) * 2003-12-23 2005-06-29 明基电通股份有限公司 翻盖式电子装置及检测翻盖打开关闭状态的方法
US20090016003A1 (en) * 2004-08-25 2009-01-15 Chris Ligtenberg Lid-closed detector
CN103139355A (zh) * 2011-11-22 2013-06-05 索尼爱立信移动通讯有限公司 折叠式电子设备及其开闭模式检测方法
CN103257777A (zh) * 2013-05-14 2013-08-21 深圳市汇顶科技股份有限公司 触摸屏状态的控制方法及触摸屏、便携式触摸终端
CN105700626A (zh) * 2015-12-29 2016-06-22 联想(北京)有限公司 一种控制方法和电子设备

Also Published As

Publication number Publication date
TW202119193A (zh) 2021-05-16
US20210132730A1 (en) 2021-05-06
EP4053671B1 (en) 2023-09-27
EP4053671A1 (en) 2022-09-07
CN111052034A (zh) 2020-04-21
TWI736157B (zh) 2021-08-11
EP4053671A4 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
TWI736157B (zh) 設備蓋的開合檢測的方法、觸摸控制器和觸控板
US9645690B1 (en) Method and apparatus to improve noise immunity of a touch sense array
US8723827B2 (en) Predictive touch surface scanning
US9547399B2 (en) Injected touch noise analysis
US9778742B2 (en) Glove touch detection for touch devices
US8723825B2 (en) Predictive touch surface scanning
US9069405B2 (en) Dynamic mode switching for fast touch response
CN103718141B (zh) 用于触摸位置检测的峰值检测方案
US20130176270A1 (en) Object classification for touch panels
CN103620537A (zh) 使用同步振荡器的正交信号接收器
US10620012B2 (en) Step counting method, device, and terminal
TW201335793A (zh) 使用鄰近感應之做手勢架構
US10216322B2 (en) Capacitive touch sense unit computation power reduction using keypad electrodes crosstalk
CN104699288A (zh) 电子装置及其噪声检测与操作模式设定方法
Ni et al. Uncovering user interactions on smartphones via contactless wireless charging side channels
CN103257773B (zh) 基于电容触摸屏的脸部靠近识别方法
CN102436333B (zh) 兼容电容定位和电磁定位的输入装置及其输入方法
CN109478115A (zh) 噪声感测电路及触控装置
TW202038072A (zh) 以數位至類比控制器為參考之觸控感測系統以及相關系統、方法及裝置
US9170322B1 (en) Method and apparatus for automating noise reduction tuning in real time
US20140145965A1 (en) Touch device and driving method of touch panel thereof
CN109643191A (zh) 触碰检测方法及触碰检测装置
CN106468980A (zh) 触控装置及其触控检测方法
KR101531841B1 (ko) 정전용량 터치센서에서 효과적인 노이즈 레벨 측정 방법 및 노이즈 레벨 측정 모듈
US20190187828A1 (en) Location detection for a touch system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019920632

Country of ref document: EP

Effective date: 20220601