WO2021081748A1 - Capteur autonome pouvant être utilisé pour tester en temps réel une résistance latérale et une résistance d'extrémité d'un pieu de tuyau marin et dispositif de test - Google Patents

Capteur autonome pouvant être utilisé pour tester en temps réel une résistance latérale et une résistance d'extrémité d'un pieu de tuyau marin et dispositif de test Download PDF

Info

Publication number
WO2021081748A1
WO2021081748A1 PCT/CN2019/113959 CN2019113959W WO2021081748A1 WO 2021081748 A1 WO2021081748 A1 WO 2021081748A1 CN 2019113959 W CN2019113959 W CN 2019113959W WO 2021081748 A1 WO2021081748 A1 WO 2021081748A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
self
resistance
pile
ring
Prior art date
Application number
PCT/CN2019/113959
Other languages
English (en)
Chinese (zh)
Inventor
王立忠
国振
李雨杰
李玲玲
洪义
李佳豪
芮圣洁
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to PCT/CN2019/113959 priority Critical patent/WO2021081748A1/fr
Priority to JP2020079309A priority patent/JP6778346B1/ja
Publication of WO2021081748A1 publication Critical patent/WO2021081748A1/fr

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/06Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers for observation while placing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload

Definitions

  • the invention relates to a sensor, in particular to a self-driving sensor and a testing device that can be used for real-time testing of side resistance and end resistance of marine pipe piles.
  • a self-driving sensor without external functions, it can directly and accurately measure the side resistance and end resistance of the inner and outer walls of the pipe pile during penetration and long-term service, and then used to evaluate the impact of soil plug generation height on the side friction resistance of the pile and the bearing capacity of the pile foundation Impact.
  • soil plug effect In ocean engineering, steel pipe piles are widely used due to their wide application range, short construction time, reusability and low cost. During the construction process, soil will be squeezed into the bottom of the steel pipe pile to form a soil column, that is, the "soil plug effect". According to previous studies, the properties of soil plugs are directly related to the bearing capacity of pile ends, pile sinking resistance, and pile side friction. At present, there is no test method for accurately measuring pile side friction and pile tip resistance, nor can it accurately assess the influence of soil plugging effect on pile side friction.
  • the triboelectric nanogenerator is an energy harvester that can convert the tiny mechanical energy of the external environment into electrical energy based on the nano-level triboelectric effect. Its main working principle is: under the action of triboelectricity, the inner surfaces of two polymer sheets (dielectrics) carry opposite triboelectric charges through periodic contact-separation. When mechanical energy is applied to the device, the inner surfaces of the two polymers are in close contact and charge transfer occurs, so that the inner surface of one polymer is positively charged and the inner surface of the other polymer is negatively charged. When the deformation is released, the opposite frictional charge will generate an electric field between the two surfaces, thereby forming a potential difference between the electrodes. In order to shield this potential difference, electrons will be driven to flow from one electrode to the other through an external circuit, generating electrical signals.
  • the existing TENG is mostly used for the collection of small energy, such as wave energy, vibration energy, and human running energy lights. In terms of sensors, it only measures pressure, and is generally aimed at the overall structure, for the pile-soil interaction in the geotechnical field. The measurement of interface friction and pile tip resistance has not been reported yet.
  • the present invention proposes a self-driving sensor that can be used for real-time testing of the side resistance and end resistance of marine pipe piles. It does not require external energy supply and can directly and accurately measure the side resistance of the inner and outer walls of the pipe pile during penetration and long-term service. End resistance.
  • combined with the soil plug measurement module can be used to evaluate the impact of soil plug effect on pile side friction and pile foundation bearing capacity.
  • the purpose of the present invention is to provide a self-driving sensor and testing device that can be used for real-time testing of the side resistance and end resistance of marine pipe piles in view of the above-mentioned shortcomings of the prior art, which can realize the self-driving accurate measurement of pile side friction and end resistance. , Can study the influence of soil plugging effect on the exertion of pile side friction resistance.
  • a self-driving sensor that can be used for real-time testing of side resistance and end resistance of marine pipe piles, including a self-driving sensor for side resistance measurement and a self-driving sensor for end resistance measurement;
  • the self-driving sensor used for lateral resistance measurement includes a curved inner plate, a curved outer plate, a curved electrode, a curved dielectric material, and an insulating elastic connector.
  • the curved inner plate and the curved outer plate are made of insulating materials.
  • the curved inner plate and the curved outer plate are parallel to each other and can only undergo relative tangential displacement; the curved electrode and the curved dielectric material are bonded to form a single-sided sensor board, and the adjacent single-sided sensor board is formed by The insulating elastic connector is connected, and the two single-sided sensors are respectively arranged vertically on the curved inner plate and the curved outer plate;
  • the self-driving sensor for end resistance measurement includes, from top to bottom, a ring-shaped upper electrode plate, a ring-shaped upper layer dielectric, a ring-shaped lower layer dielectric, and a ring-shaped lower electrode plate; the shape of the ring-shaped upper layer dielectric is zigzag or wavy .
  • the present invention also provides a measuring device based on the above-mentioned self-driving sensor, which can be used for real-time testing of the side resistance and end resistance of marine pipe piles.
  • the test device includes a TENG friction measurement module, a soil plug generation height measurement module, and a TENG terminal. Resistance measurement module and friction pile body; the friction pile body is provided with a friction measurement slot on the side, and a sleeve hole is provided on the upper part of the friction pile body;
  • the TENG friction measurement module includes several self-driving sensors, wires, oscilloscopes and rigid balls for lateral resistance measurement; the curved inner plate is embedded in the friction measurement slot and rigidly bonded to the friction pile wall; through the wires Connect multiple self-driving sensors for side resistance measurement in parallel, and use an oscilloscope to collect electrical signal changes in real time to reverse the pile side friction; the rigid ball is arranged between any two complete sensors to ensure that the curve is There is no relative normal displacement between the outer plates;
  • the soil plug generation height measurement module includes a weight, a steel strand, pulley A, pulley B, a sleeve, and a displacement meter; the sleeve is welded to the friction pile body through the sleeve hole; one end of the steel strand is connected to the displacement meter. Connected, the other end is connected to the heavy hammer through pulley B, sleeve, and pulley A in turn to measure the height of the soil plug;
  • the TENG end resistance measurement module includes a self-driving sensor for end resistance measurement, a wire, and an oscilloscope.
  • the self-driving sensor for end resistance measurement is provided at the end of the friction pile body at the bottom of the pile.
  • the upper electrode plate and the ring-shaped lower electrode plate are connected with an oscilloscope through a wire for real-time monitoring of the end resistance of the pipe pile during penetration and service.
  • the TENG friction measurement module can be evenly arranged in the inner and outer sides of the friction pile body in the circumferential direction at different depths to accurately measure the friction force inside and outside the pile.
  • Each TENG friction measurement is The modules are sealed with a silicone layer to ensure that the sensor will not come into contact with water during testing.
  • the pile head on the top of the friction pile body is provided with a circular groove, and a buckle ring is arranged in the circular groove.
  • the buckle ring is located inside the circular groove, and the pile soil directly contacts the compression equipment for resistance. Compression test; in the pull test, connect the cable directly to the buckle to test.
  • the TENG end resistance measurement module is sealed with a silica gel layer, the ring-shaped upper electrode plate is just connected to the ring-shaped upper layer dielectric, and the ring-shaped lower electrode plate is just connected to the ring-shaped lower layer dielectric.
  • the curved outer plate is in contact with the soil.
  • the curved outer plate and the curved inner plate of the sensor are given a relatively large relative tangential displacement to make the curved dielectric material contact Separate after charging.
  • the pile and soil have relative displacement, because the friction between the soil and the curved outer plate is greater than the elastic force of the curved inner plate on the curved outer plate, the curved inner and outer plates have a relative tangential displacement at this time.
  • An electrical signal is generated; as the shear displacement continues to increase, when the elastic force of the curved inner plate on the curved outer plate reaches the maximum static friction between the soil and the curved outer plate, the electrical signal reaches the maximum value, and then The elastic connector will rebound a little, causing the electric signal to fluctuate; then, the elastic force of the curved inner plate to the curved outer plate is balanced with the friction between the soil and the curved outer plate, and the curved inner and outer plates are balanced. Whether there is tangential displacement, no electrical signal is generated at this time.
  • the zigzag or wave-shaped structure of the ring-shaped upper dielectric material will produce a relative normal displacement with the ring-shaped lower dielectric material, thereby generating electrical signals.
  • the TENG sensor can be calibrated through indoor interface direct shear test and compression test to obtain the relationship between force and electrical signal; then it can be applied to the measurement of side resistance and end resistance of pipe piles. Finally, Substituting the measured electrical signal into the corresponding relationship previously calibrated, the corresponding sidewall friction and pile tip resistance can be obtained.
  • the self-driving sensor of the present invention can be used for real-time testing of the side resistance and end resistance of marine pipe piles.
  • the friction nano generator (TENG) is introduced into the measurement of the side resistance and end resistance of marine pile foundations, which effectively improves the test performance. Accuracy.
  • the sensor does not require external energy supply and directly outputs electrical signals, which is suitable for long-term monitoring of side resistance and end resistance of pipe piles during service.
  • the invention uses TENG to accurately measure the sidewall friction force of the pile-soil (loose body) and the pile tip resistance by cleverly designing the structure.
  • the senor has an extraordinar structure and is convenient to install, and can measure the friction resistance at different positions of the pipe pile and the pile end resistance. Moreover, the sensor can measure the lower end resistance and side resistance of the pipe pile during the whole life cycle without an external power supply.
  • the upper dielectric material of the TENG end resistance measurement module adopts a circular sawtooth or wavy shape, and the electrical signal can effectively reflect the change of the relative normal contact area of the upper and lower dielectric materials, thereby accurately measuring the end resistance;
  • the TENG friction measurement module converts the friction force between the pile and soil into the elastic force between the curved inner and outer plates, which is reflected by electrical signals, and then the sidewall friction force is obtained; through the TENG friction/end resistance measurement module
  • a silica gel layer is set on the outside to ensure that the sensor will not contact the water body during testing, thereby overcoming its sensitivity to the environment.
  • FIG. 1 is a schematic diagram of TENG
  • Figure 2 is the layout of TENG along the pile shaft
  • Figure 3 is a cross-sectional view of the overall device
  • Figure 4 is a top view of the overall device
  • FIG. 5 is a detailed diagram of the TENG friction measurement module
  • FIG. 6 is a detailed diagram of the TENG end resistance measurement module.
  • 1 TENG friction measurement module 1 soil plug generation height measurement module, 3 TENG end resistance measurement module, 4 friction pile body, 5 curved inner plate, 6 curved outer plate, 7 curved electrode, 8 curved dielectric Materials, 9 insulated elastic connectors, 10 wires, 11 oscilloscopes, 12 rigid balls, 13 heavy hammers, 14 steel strands, 15 pulleys A, 16 pulleys B, 17 sleeves, 18 displacement meters, 19 sleeve holes, 20 rings Upper plate, 21 ring-shaped upper dielectric, 22 ring-shaped lower layer dielectric, 23 ring-shaped lower plate, 24 silica gel layer, 25 circular groove, 26 buckle ring.
  • FIG 1 shows the working principle diagram of TENG in the present invention.
  • Figures 4 and 5 show the self-driving sensor for side resistance measurement and the self-driving sensor for end resistance measurement of the present invention, respectively.
  • a self-driving sensor for side resistance measurement includes a curved inner plate 5, a curved outer plate 6, a curved electrode 7, a curved dielectric material 8, an insulating elastic connector 9, a curved inner plate 5 and a curved outer plate.
  • the plates 6 are made of insulating materials, and the curved inner plate 5 and the curved outer plate 6 are parallel to each other and can only undergo relative tangential displacement; the curved electrode 7 and the curved dielectric material 8 are bonded to form a single-sided sensing plate ,
  • the adjacent single-sided sensor boards are connected by an insulating elastic connecting piece 9, and two single-sided sensors are arranged vertically on the curved inner plate 5 and the curved outer plate 6 respectively.
  • a self-driving sensor for end resistance measurement includes, from top to bottom, a ring-shaped upper electrode plate 20, a ring-shaped upper layer dielectric 21, a ring-shaped lower layer dielectric 22, and a ring-shaped lower plate 23; the shape of the ring-shaped upper layer dielectric 21 is sawtooth Shaped or wavy.
  • FIGS 2-6 are diagrams of the measuring device based on the self-driving sensor of the present invention, which can be used for real-time testing of the side resistance and end resistance of marine pipe piles.
  • the test device includes a TENG friction measurement module 1, a soil plug generation height measurement module 2, a TENG end resistance measurement module 3, and a friction pile body 4.
  • the TENG friction measurement module 1 includes a curved inner plate 5, a curved outer plate 6, a curved electrode 7, a curved dielectric material 8, an insulating elastic connector 9, a wire 10, an oscilloscope 11, and Rigid ball 12; the curved inner plate 5 and the curved outer plate 6 are made of insulating materials.
  • the curved inner plate 5 and the curved outer plate 6 are parallel to each other and can only undergo relative tangential displacement.
  • the adjacent single-sided sensor boards are connected by insulating elastic connectors 9, and the two single-sided sensors are arranged vertically on the curved inner plate 5 and the curved outer plate 6, respectively, to form a complete sensor;
  • the two sensors are connected in parallel, and the oscilloscope 11 is used to collect electrical signal changes in real time to reverse the pile side friction; the rigid ball 12 is arranged between any two complete sensors to ensure that there is no relative normal displacement of the curved inner and outer plates.
  • the soil plug generation height measuring module 2 includes a weight 13, a steel strand 14, a pulley A15, a pulley B16, a sleeve 17, and a displacement meter 18; one end of the steel strand 14 is connected to the displacement meter 18, and the other end is in turn
  • the pulley B16, the sleeve 17, the pulley A15 are connected to the weight 13 for measuring the height of the soil plug;
  • the sleeve 17 is welded to the friction pile body 4 through the sleeve hole 19, and the pulley A15 and the pulley B16 are installed in Both ends of the sleeve 17.
  • the TENG end resistance measurement module 3 is set at the end of the pile at the bottom of the friction pile body 4, and includes a ring-shaped upper electrode plate 20, a ring-shaped upper layer dielectric 21, a ring-shaped lower layer dielectric 22, and a ring-shaped lower plate 23 from top to bottom;
  • the shape of the ring-shaped upper dielectric 21 is zigzag or wavy.
  • the ring-shaped upper plate 20 and the ring-shaped lower plate 23 are connected to the oscilloscope 11 through wires for real-time monitoring of the end of the pipe pile during penetration and service. resistance.
  • the TENG friction measurement module 1 can be evenly arranged on the inside and outside of the friction pile body in the circumferential direction at different depths to accurately measure the friction force inside and outside the pile.
  • Each TENG friction measurement module uses a silica gel layer 24 for measurement. Sealed to ensure that the sensor will not come into contact with water during testing.
  • a circular groove 25 is opened on the pile head at the top of the friction pile body 4, and a buckle 26 is provided in the circular groove 25.
  • the buckle 26 is located inside the circular groove 25, and the pile soil is directly connected to the compression equipment.
  • Contact compression test; in the pull test, the cable is directly connected to the buckle 26 to test.
  • the TENG end resistance measurement module 3 is sealed with a silica gel layer 24, the ring-shaped upper electrode plate 20 is just connected to the ring-shaped upper layer dielectric 21, and the ring-shaped lower electrode plate 23 is just connected to the ring-shaped lower layer dielectric 22.
  • a complete TENG friction measurement sensor includes two single-sided sensing plates on the upper side and the other on the lower side.
  • the upper single-sided sensing plate is located on the curved inner plate 5 and can be connected elastically through insulation.
  • the piece 9 exerts a vertical pulling force on the curved outer plate 6.
  • the material of the dielectric in this embodiment can be selected by looking up the table and combining specific requirements to select a dielectric that meets the requirements of use.
  • the working principle of the device of the present invention is:
  • the curved outer plate is in contact with the soil.
  • the curved outer plate and the curved inner plate of the self-driving sensor are given a relatively large relative tangential displacement, so that the curved dielectric material is contacted and charged. After separation.
  • the pile and soil have relative displacement, because the friction between the soil and the curved outer plate is greater than the elastic force of the curved inner plate on the curved outer plate, the curved inner and outer plates have a relative tangential displacement at this time.
  • An electrical signal is generated; as the shear displacement continues to increase, when the elastic force of the curved inner plate on the curved outer plate reaches the maximum static friction between the soil and the curved outer plate, the electrical signal reaches the maximum value, and then The elastic connector will rebound a little, causing the electric signal to fluctuate; after that, the elastic force of the curved inner plate to the curved outer plate and the friction between the soil and the curved outer plate balance each other, and the curved inner and outer plates There will be no tangential displacement, and no electrical signals are generated at this time.
  • the serrations of the upper ring dielectric will produce a relative normal displacement with the lower dielectric material of the ring, and the relative contact area of the two will change greatly, thereby generating electrical signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

La présente invention porte sur un capteur autonome pouvant être utilisé pour tester en temps réel une résistance latérale et une résistance d'extrémité d'un pieu de tuyau marin, ainsi que sur un dispositif de test, le capteur autonome comprenant un capteur autonome qui est utilisé pour mesurer une résistance latérale et un capteur autonome qui est utilisé pour mesurer une résistance d'extrémité ; et un dispositif de test basé sur un capteur comprenant un module de mesure de résistance au frottement TENG (1), un module de mesure de hauteur de génération de bouchon de sol (2), un corps principal de pile de frottement (4) et un module de mesure de résistance d'extrémité de TENG (3). Le dispositif de test utilise des principes de triboélectrification et d'induction électrostatique pour introduire un TENG dans les mesures de résistance au frottement et de résistance d'extrémité d'un pieu tubulaire. La résistance latérale et la résistance d'extrémité des parois interne et externe d'un pieu tubulaire en cours de pénétration et de service à long terme peuvent être mesurées directement et avec précision sans avoir besoin d'une énergie externe et l'effet de la hauteur de génération de bouchon de sol sur la résistance au frottement côté pile et la force d'appui d'une fondation de pieu peuvent être évalués.
PCT/CN2019/113959 2019-10-29 2019-10-29 Capteur autonome pouvant être utilisé pour tester en temps réel une résistance latérale et une résistance d'extrémité d'un pieu de tuyau marin et dispositif de test WO2021081748A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/113959 WO2021081748A1 (fr) 2019-10-29 2019-10-29 Capteur autonome pouvant être utilisé pour tester en temps réel une résistance latérale et une résistance d'extrémité d'un pieu de tuyau marin et dispositif de test
JP2020079309A JP6778346B1 (ja) 2019-10-29 2020-04-28 海洋管杭の側面抵抗と端部抵抗のリアルタイム計測に使用可能な自己駆動センサおよび計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/113959 WO2021081748A1 (fr) 2019-10-29 2019-10-29 Capteur autonome pouvant être utilisé pour tester en temps réel une résistance latérale et une résistance d'extrémité d'un pieu de tuyau marin et dispositif de test

Publications (1)

Publication Number Publication Date
WO2021081748A1 true WO2021081748A1 (fr) 2021-05-06

Family

ID=72916097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113959 WO2021081748A1 (fr) 2019-10-29 2019-10-29 Capteur autonome pouvant être utilisé pour tester en temps réel une résistance latérale et une résistance d'extrémité d'un pieu de tuyau marin et dispositif de test

Country Status (2)

Country Link
JP (1) JP6778346B1 (fr)
WO (1) WO2021081748A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518739B (zh) * 2019-01-22 2024-02-02 东华理工大学 一种沉渣厚度检测仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102359982A (zh) * 2011-07-19 2012-02-22 东南大学 一种地下气体探测的多功能探头
CN204781019U (zh) * 2015-03-12 2015-11-18 河南工业大学 一种多功能模型试验桩
US9816988B1 (en) * 2016-08-10 2017-11-14 Multerra Bio, Inc. Apparatuses and methods for detecting molecules and binding energy
CN108253881A (zh) * 2018-01-18 2018-07-06 华侨大学 一种海洋石油平台桩基冲刷坑形态测量装置及使用方法
CN108344901A (zh) * 2018-01-15 2018-07-31 中铁大桥科学研究院有限公司 一种海上平台钢桩保护电位自动检测系统及检测方法
CN109541180A (zh) * 2018-12-06 2019-03-29 青岛海洋地质研究所 一种水合物储层专用静力触探探头

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629844B2 (ja) * 1986-08-29 1994-04-20 英明 岸田 杭の鉛直載荷試験方法
JP2774056B2 (ja) * 1993-11-09 1998-07-09 英明 岸田 杭の鉛直載荷試験装置
JP4124342B2 (ja) * 2003-03-18 2008-07-23 独立行政法人港湾空港技術研究所 コーン貫入試験を用いた開端杭先端閉塞状況の評価手法
JP4390670B2 (ja) * 2004-09-17 2009-12-24 ジャパンパイル株式会社 杭の水平方向の地盤の剛性算出方法
CN102710166B (zh) * 2012-04-13 2015-01-07 纳米新能源(唐山)有限责任公司 一种摩擦发电机
CN103364460B (zh) * 2013-02-05 2015-11-18 北京纳米能源与系统研究所 一种基于摩擦纳米发电机的分子传感器
CN104242723B (zh) * 2013-06-13 2019-06-04 北京纳米能源与系统研究所 单电极摩擦纳米发电机、发电方法和自驱动追踪装置
US9444031B2 (en) * 2013-06-28 2016-09-13 Samsung Electronics Co., Ltd. Energy harvester using mass and mobile device including the energy harvester
EP3133375B1 (fr) * 2014-04-18 2021-09-15 Beijing Institute of Nanoenergy and Nanosystems Capteur et générateur d'énergie à base d'induction électrostatique, procédé de détection et procédé de génération d'énergie
CN106013269B (zh) * 2016-06-21 2018-03-13 中国电建集团华东勘测设计研究院有限公司 管桩内外侧壁摩阻力测试方法
CN207457264U (zh) * 2017-09-11 2018-06-05 浙江大学 摩擦式发电加速度传感器
CN108532651A (zh) * 2018-04-19 2018-09-14 东南大学 一种检测钢管桩内外摩阻力的装置
CN109653262B (zh) * 2019-01-22 2020-10-16 浙江大学 一种可用于测定桩阻力及评估内部土塞的多层套管开口桩
CN110173007A (zh) * 2019-05-17 2019-08-27 浙江大学 三层套管吸力桶试验装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102359982A (zh) * 2011-07-19 2012-02-22 东南大学 一种地下气体探测的多功能探头
CN204781019U (zh) * 2015-03-12 2015-11-18 河南工业大学 一种多功能模型试验桩
US9816988B1 (en) * 2016-08-10 2017-11-14 Multerra Bio, Inc. Apparatuses and methods for detecting molecules and binding energy
CN108344901A (zh) * 2018-01-15 2018-07-31 中铁大桥科学研究院有限公司 一种海上平台钢桩保护电位自动检测系统及检测方法
CN108253881A (zh) * 2018-01-18 2018-07-06 华侨大学 一种海洋石油平台桩基冲刷坑形态测量装置及使用方法
CN109541180A (zh) * 2018-12-06 2019-03-29 青岛海洋地质研究所 一种水合物储层专用静力触探探头

Also Published As

Publication number Publication date
JP2021071042A (ja) 2021-05-06
JP6778346B1 (ja) 2020-10-28

Similar Documents

Publication Publication Date Title
CN105605078B (zh) 一种用于监测螺栓连接界面的智能垫片装置
CN102410893B (zh) 一种埋入式混凝土结构动力损伤全过程空间应力传感器
CN204156750U (zh) 振动摩擦发电机以及振动传感器
CN111059995B (zh) 一种基于摩擦纳米发电机的自驱动位移传感器
WO2021081748A1 (fr) Capteur autonome pouvant être utilisé pour tester en temps réel une résistance latérale et une résistance d'extrémité d'un pieu de tuyau marin et dispositif de test
CN202305348U (zh) 一种埋入式混凝土动力损伤全过程剪应力传感器
CN103940893A (zh) 一种拉索锚固段锈蚀缺陷监测装置及方法
CN200993573Y (zh) 一种用于公路路面结构应变的测量装置
KR101252268B1 (ko) 이중 중공관 구조를 가진 지반 수평 저항력 측정용 콘 관입 시험장치
CN102384802A (zh) 一种埋入式混凝土动力损伤全过程剪应力传感器
CN214277982U (zh) 智能灌浆套筒及其饱和度和损伤位置检测装置
CN103207037A (zh) 一种光纤光栅测力锚杆装置
CN102322986A (zh) 一种埋入式混凝土动力损伤全过程压应力传感器
CN105651605B (zh) 离心机试验的微型压电伸缩元件、压缩波测量装置及方法
CN207408040U (zh) 压力传感器校准用力传感器
CN116106414A (zh) 一种用于沥青路面结构监测的自供电埋入式压电智能骨料
CN202166495U (zh) 一种埋入式混凝土杆件动力损伤三向应力传感器
CN206035999U (zh) 一种用于监测螺栓连接状况的智能螺母装置
CN211147908U (zh) 一种大量程压电薄膜三维力传感器
CN207866232U (zh) 一种电力杆塔基础非均匀沉降监测装置
CN208333368U (zh) 球形载荷应变检测传感器、球形载荷应变检测装置
CN206891625U (zh) 一种简易土压力计
CN108398180B (zh) 一种测量粗粒土剪切波速的试验装置、系统及试验方法
CN202216782U (zh) 一种埋入式混凝土结构动力损伤全过程空间应力传感器
CN207263106U (zh) 一种四分量钻孔应变仪探头

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019564922

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950864

Country of ref document: EP

Kind code of ref document: A1