WO2021080003A1 - Gas component detection device - Google Patents

Gas component detection device Download PDF

Info

Publication number
WO2021080003A1
WO2021080003A1 PCT/JP2020/039963 JP2020039963W WO2021080003A1 WO 2021080003 A1 WO2021080003 A1 WO 2021080003A1 JP 2020039963 W JP2020039963 W JP 2020039963W WO 2021080003 A1 WO2021080003 A1 WO 2021080003A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
gas
flow rate
heat flow
pressure
Prior art date
Application number
PCT/JP2020/039963
Other languages
French (fr)
Japanese (ja)
Inventor
芳彦 白石
長谷川 直樹
万織 柴田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021080003A1 publication Critical patent/WO2021080003A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Definitions

  • This disclosure relates to a gas component detector.
  • Patent Document 1 proposes a method of calculating the concentration of one type of gas contained in a mixed gas based on the correlation between the amount of change in the heat flow rate of the mixed gas and the amount of change in pressure. The amount of change in the heat flow rate is calculated based on the detection result of the heat flow rate sensor, and the heat flow rate sensor is arranged in a state where the portion for detecting the heat flow rate is exposed to the mixed gas.
  • the heat flow sensor is arranged in a state of being exposed to the mixed gas as described above. Therefore, if there is a possibility that sparks or the like may occur when the heat flow sensor fails, safety is a concern.
  • An object of the present disclosure is to provide a gas component detection device capable of improving safety.
  • the gas component detection device outputs a heat flow sensor that outputs a detection signal according to the heat flow rate in the gas flow path and a detection signal according to the pressure in the gas flow path.
  • the amount of change in the heat flow rate when the heat flow rate of the pressure sensor and the mixed gas changes periodically in the gas flow path is calculated based on the detection signal of the heat flow rate sensor, and the pressure of the mixed gas is in the gas flow path.
  • the amount of change in pressure when it changes periodically in is calculated based on the detection signal of the pressure sensor, and based on the correlation between the calculated amount of change in heat flow and the amount of change in pressure, the specific gas of the mixed gas
  • the heat flow sensor includes a control unit for calculating the concentration, and the heat flow sensor has a sensor unit that outputs a detection signal according to the heat flow of the mixed gas in a state where the current is cut off.
  • the heat flow rate sensor is configured to output a detection signal according to the heat flow rate in a state where the current is cut off. Therefore, even if the heat flow rate sensor fails, it is possible to suppress the generation of sparks and the like. Therefore, the safety can be improved.
  • the first embodiment will be described with reference to the drawings.
  • the fuel cell system of the present embodiment is preferably applied to a fuel cell vehicle which is a kind of electric vehicle.
  • the fuel cell system of the present embodiment is a control system including the fuel cell 10.
  • the fuel cell 10 outputs electric energy by utilizing an electrochemical reaction between hydrogen gas and oxygen gas contained in air.
  • a polymer electrolyte fuel cell is used as the fuel cell 10.
  • the fuel cell 10 mainly supplies the DC power generated by the power generation to an electric load such as a vehicle traveling electric motor or a secondary battery via a DC-DC converter (not shown).
  • the fuel cell 10 of the present embodiment has a stack structure in which a plurality of fuel cell cells 10a, which are the smallest units, are stacked, and is configured as a series connection body in which a plurality of fuel cell cells 10a are electrically connected in series. ..
  • the plurality of fuel cell cells 10a are arranged on both sides of the membrane electrode assembly 100 and the membrane electrode assembly 100 formed by sandwiching both sides of the electrolyte membrane 101 between a pair of catalyst layers 102a and 102b. It is composed of a pair of diffusion layers 103a and 103b, and a separator 110 that sandwiches them.
  • the electrolyte membrane 101 is a proton-conducting ion exchange membrane formed of a water-containing polymer material such as a fluorine-based hydrocarbon or a hydrocarbon-based material.
  • the pair of catalyst layers 102a and 102b each constitute an electrode, and is composed of an anode-side catalyst layer 102a constituting an anode electrode and a cathode-side catalyst layer 102b constituting a cathode electrode.
  • each of the catalyst layers 102a and 102b includes a substance 102c such as platinum particles that exerts a catalytic action, a supported carbon 102d that supports the substance 102c, and an ionomer that coats the supported carbon 102d. It is composed of an electrolyte polymer) 102e.
  • the diffusion layers 103a and 103b diffuse the reaction gas into the catalyst layers 102a and 102b, and are composed of a porous member having gas permeability and electron conductivity.
  • a porous member having gas permeability and electron conductivity.
  • the porous member for example, carbon paper, carbon cloth, or the like is used.
  • the separator 110 is made of, for example, a conductive base material such as carbon or metal.
  • a hydrogen flow path 111 through which hydrogen gas flows is formed in a portion facing the anode side catalyst layer 102a, and an air flow path 112 through which air flows is formed in a portion facing the cathode side catalyst layer 102b. ing.
  • each fuel cell 10a hydrogen gas is supplied into the hydrogen flow path 111, and air is supplied to the air flow path 112.
  • each of the plurality of fuel cell 10a outputs electric energy by the electrochemical reaction of the hydrogen gas in the hydrogen flow path 111 and the oxygen gas in the air flow path 112, respectively, as shown below.
  • the fuel cell 10 is provided with an air inlet portion and an air outlet portion.
  • the air inlet portion constitutes a gas inlet portion that supplies air to the air flow paths 112 of the plurality of fuel cell 10a.
  • the air outlet portion constitutes a gas outlet portion that discharges generated water and impurities together with air from the air flow paths 112 of the plurality of fuel cell 10a.
  • An air supply pipe 20 for supplying air to the air inlet portion is connected to the fuel cell 10, and an air discharge pipe 21 for discharging generated water and impurities together with air from the air outlet portion is connected to the fuel cell 10. ing.
  • the air supply pipe 20 is provided with an air pump 22 at its most upstream portion for pumping air sucked from the atmosphere to the fuel cell 10.
  • the air pump 22 is an electric pump including a compression mechanism for pumping air and an electric motor for driving the compression mechanism.
  • An air pressure regulating valve 23 for adjusting the pressure of the air supplied to the fuel cell 10 is provided between the air pump 22 and the fuel cell 10 in the air supply pipe 20.
  • the air pressure regulating valve 23 includes a valve body that adjusts the opening degree of the air flow path through which air flows in the air supply pipe 20, and an electric actuator that drives the valve body.
  • the air discharge pipe 21 is provided with a solenoid valve 24 for discharging the generated water, impurities, etc. existing inside the fuel cell 10 to the outside together with the air.
  • the solenoid valve 24 includes a valve body that adjusts the opening degree of an air discharge path through which air is discharged from the air discharge pipe 21, and an electric actuator that drives the valve body.
  • the fuel cell 10 is provided with a hydrogen inlet portion 12a and a hydrogen outlet portion 12b.
  • the hydrogen inlet portion 12a constitutes a gas inlet portion that supplies hydrogen gas to the hydrogen flow paths 111 of the plurality of fuel cell 10a.
  • the hydrogen outlet portion 12b constitutes a gas outlet portion for discharging unreacted hydrogen gas or the like from the hydrogen flow paths 111 of the plurality of fuel cell 10a.
  • the unreacted hydrogen gas is the remaining hydrogen gas other than the hydrogen gas subjected to the electrochemical reaction among the hydrogen gases supplied to the fuel cell 10.
  • a hydrogen supply pipe 30 having a hydrogen supply flow path for supplying hydrogen to the hydrogen inlet portion 12a is connected to the fuel cell 10, and a small amount of unreacted hydrogen or the like is discharged to the outside from the hydrogen outlet portion 12b.
  • a hydrogen discharge pipe 31 including the hydrogen discharge flow path of the above is connected.
  • a high-pressure hydrogen tank (that is, a supply device) 32 filled with high-pressure hydrogen is provided at the uppermost stream of the hydrogen supply pipe 30.
  • the high-pressure hydrogen tank 32 stores hydrogen gas to be supplied to the fuel cell 10.
  • a hydrogen pressure regulating valve 33 for adjusting the pressure of hydrogen supplied to the fuel cell 10 is provided as a gas flow rate adjusting unit between the high pressure hydrogen tank 32 and the fuel cell 10 in the hydrogen supply pipe 30.
  • the hydrogen pressure regulating valve 33 is a solenoid valve composed of a valve body that adjusts the opening degree of the hydrogen supply flow path in the hydrogen supply pipe 30, and an electric actuator that drives the valve body.
  • the hydrogen discharge pipe 31 is provided with a solenoid valve 34 for discharging a small amount of unreacted hydrogen or the like to the outside.
  • the solenoid valve 34 includes a valve body that adjusts the opening degree of the hydrogen discharge flow path in the hydrogen discharge pipe 31, and an electric actuator that drives the valve body.
  • a gas-liquid separator 35 is provided between the solenoid valve 34 and the fuel cell 10 in the hydrogen discharge pipe 31.
  • the configuration of the gas-liquid separator 35 of the present embodiment will be described.
  • the gas-liquid separator 35 constitutes an exhaust gas flow path 35a for circulating exhaust gas between the hydrogen discharge pipes 31a and 31b.
  • the exhaust gas of this embodiment is a mixed gas containing at least hydrogen gas and nitrogen gas.
  • the upstream side of the hydrogen discharge pipe 31 in the flow direction of the exhaust gas with respect to the gas-liquid separator 35 is the hydrogen discharge pipe 31a, and the downstream side of the hydrogen discharge pipe 31 with respect to the gas-liquid separator 35 in the flow direction of the exhaust gas. Is a hydrogen discharge pipe 31b.
  • the inlet of the gas-liquid separator 35 connected to the hydrogen discharge pipe 31a is arranged on the lower side in the vertical direction with respect to the outlet of the gas-liquid separator 35 connected to the hydrogen discharge pipe 31b.
  • the bottom 35j of the gas-liquid separator 35 is provided with a discharge port 31c for discharging wastewater.
  • baffle plates 35b, 35c, 35d, 35e are provided inside the gas-liquid separator 35.
  • the baffle plates 35b, 35c, 35d, 35e are formed so as to meander the exhaust gas flow path 35a.
  • baffle plates 35b, 35c, 35d, and 35e are arranged offset in the vertical direction, respectively.
  • the baffle plates 35b and 35d are formed so as to project from the right side wall 35f, respectively.
  • the baffle plates 35c and 35e are formed so as to project from the left side wall 35g, respectively.
  • the gas-liquid separator 35 flows into the gas-liquid separator 35 from the hydrogen discharge pipe 31a in a state where the exhaust gas is mixed with the exhaust gas.
  • the baffle plates 35b, 35c, 35d, 35e are arranged in the gas-liquid separator 35, the drainage is discharged from the discharge port 31c provided on the floor side along the baffle plates 35b, 35c, 35d, 35e. It is discharged.
  • the exhaust gas passes through the exhaust gas flow path 35a and flows into the hydrogen discharge pipe 31b. That is, the exhaust gas and the drainage are separated by the baffle plates 35b, 35c, 35d, 35e, and the exhaust gas is discharged from the discharge port 31c while flowing to the hydrogen discharge pipe 31b.
  • a heat flow rate sensor 36, a pressure sensor 37, and a temperature sensor 38 are provided in the gas-liquid separator 35.
  • the heat flow rate sensor 36, the pressure sensor 37, and the temperature sensor 38 are arranged on the most downstream side of the gas-liquid separator 35 between the baffle plate 35b and the ceiling 35h in the flow direction of the exhaust gas. That is, the heat flow rate sensor 36, the pressure sensor 37, and the temperature sensor 38 are arranged on the right side wall 35f orthogonal to the flow direction of the exhaust gas in this embodiment.
  • the heat flow rate sensor 36 is a sensor that detects the heat flow rate in the exhaust gas flow path 35a.
  • the heat flow rate sensor 36 of the present embodiment is configured to include a mold member 300, a connector case 800, a housing 900, and the like.
  • the mold member 300 includes a sensor unit 310, a circuit unit 500, a lead frame 600, a mold resin 700 for sealing these, and the like.
  • the sensor unit 310 has a sensor substrate 320 having one side 320a and another side 320b, and is made of a rectangular plate-shaped semiconductor substrate such as silicon.
  • a recess 321 is formed in the sensor substrate 320 from the other surface 320b side. In the present embodiment, the recess 321 is formed so as to reach the base film 330, which will be described later.
  • the protective film 420 and the like, which will be described later, are omitted and are shown on one side 320a of the sensor substrate 320.
  • a base film 330 is formed on one surface 320a of the sensor substrate 320.
  • the base film 330 is configured by sequentially laminating a first insulating film 331 composed of an oxide film or the like and a second insulating film 332 composed of a nitride film or the like.
  • the sensor substrate 320 is formed with a recess 321 so as to reach the base film 330. Therefore, the portion of the base film 330 exposed from the recess 321 functions as the diaphragm portion 340.
  • thermocouples 350 formed by connecting two different types of metals and semiconductors are arranged on the base film 330.
  • a plurality of first wiring layers 360 composed of polysilicon or the like doped with p-type impurities are partitioned along a predetermined direction on the base film 330. More specifically, each first wiring layer 360 is located on the diaphragm portion 340 and on the diaphragm portion 340 in the normal direction with respect to one surface 320a of the sensor substrate 320 (hereinafter, also simply referred to as the normal direction). It is formed so as to have a located portion and a different portion. Each of the first wiring layers 360 is formed substantially radially around the diaphragm portion 340 in the normal direction.
  • each of the first wiring layers 360 is arranged in the circumferential direction with the diaphragm portion 340 as the center in the normal direction.
  • the normal direction of the sensor substrate 320 with respect to one surface 320a means that the sensor board 320 is viewed from the normal direction.
  • being located on the diaphragm portion 340 in the normal direction means, in other words, being located on the bottom surface of the recess 321 in the normal direction.
  • a first interlayer insulating film 370 composed of an oxide film or the like is formed so as to cover the first wiring layer 360.
  • a second wiring layer 380 is partitioned on the first interlayer insulating film 370.
  • the second wiring layer 380 is made of polysilicon doped with n-type impurities, and has a portion located on the diaphragm portion 340 and a portion different from the portion located on the diaphragm portion 340 in the normal direction. It is configured to have.
  • each of the second wiring layers 380 has a portion located on the first wiring layer 360.
  • the portion of the first wiring layer 360 located on the diaphragm portion 340 is defined as one end side of the first wiring layer 360, which is different from the portion of the first wiring layer 360 on the diaphragm portion 340.
  • the portion located in the portion will be described as the other end side of the first wiring layer 360.
  • the portion of the second wiring layer 380 located on the diaphragm portion 340 is on one end side of the second wiring layer 380, and the portion of the second wiring layer 380 located on the diaphragm portion 340 is different from the portion located on the diaphragm portion 340. Will be described as the other end side of the second wiring layer 380.
  • a second interlayer insulating film 390 composed of an oxide film or the like is formed so as to cover the second wiring layer 380.
  • the second interlayer insulating film 390 is formed with a contact hole 391 that exposes the other end side of each second wiring layer 380 and a contact hole 392 that exposes one end side.
  • the second interlayer insulating film 390 and the first interlayer insulating film 370 are formed with contact holes 393 that expose the other end side of each first wiring layer 360.
  • the second interlayer insulating film 390 and the first interlayer insulating film 370 are formed with contact holes in which one end side of each first wiring layer 360 is exposed in a cross section different from that of FIG. 7.
  • a first connection wiring layer 401, a second connection wiring layer 402, and a third connection wiring layer formed in a cross section different from that of FIG. 7 are formed on the second interlayer insulating film 390.
  • the first connection wiring layer 401, the second connection wiring layer 402, and the third connection wiring layer formed in a cross section different from that of FIG. 7 are contact holes 391 and 392 formed in the second interlayer insulating film.
  • 393 and FIG. 7 are formed so as to alternately connect the first wiring layer 360 and the second wiring layer 380 in series through a contact hole formed in a cross section different from that of FIG.
  • the first connection wiring layer 401 is formed so as to connect the other end side of the first wiring layer 360 and the other end side of the second wiring layer 380 through the contact hole 391 and the contact hole 393. ing.
  • the second connection wiring layer 402 is located in one direction in the circumferential direction with respect to one end side of the second wiring layer 380 and the first wiring layer 360 located below the second wiring layer 380 through the contact hole 392. It is formed so as to connect to the first wiring layer 360.
  • the third connection wiring layer includes one end of the first wiring layer 360 and the second wiring layer 380 located in the other direction in the circumferential direction with respect to the second wiring layer 380 located above the first wiring layer 360. Is formed to connect.
  • the sensor unit 310 is in a state in which a thermopile formed by connecting a plurality of thermocouples 350 in series is formed.
  • a stress relaxation film 410 composed of BPSG (abbreviation of Borophosphosilicate Glass) or the like is formed on the first connection wiring layer 401 and the second connection wiring layer 402.
  • a protective film 420 is formed on the second interlayer insulating film 390 so as to cover the first wiring layer 360 and the second wiring layer 380.
  • the protective film 420 is made of a nitride film or the like having low moisture permeability.
  • a part of the second connection wiring layer 402 extends to a portion of the sensor substrate 320 that is sealed with the mold resin 700 described later.
  • the protective film 420 is formed with an opening 421 that exposes a part of the second connection wiring layer 402.
  • the portion of the second wiring layer 380 exposed from the opening 421 functions as a pad portion 381 and is electrically connected to the circuit portion 500 via the bonding wire 611.
  • the above is the configuration of the sensor unit 310 in this embodiment.
  • a portion exposed from the mold resin 700 is exposed to exhaust gas (that is, a mixed gas).
  • exhaust gas that is, a mixed gas.
  • the heat capacity of the diaphragm portion 340 becomes small, and the heat capacity of the portion different from the diaphragm portion 340 becomes large. That is, the temperature of the diaphragm portion 340 is likely to change, and the temperature of the portion different from the diaphragm portion 340 is difficult to change.
  • thermocouple 350 the portion located on the diaphragm portion 340 in the normal direction becomes a hot contact, and the portion located on a portion different from the diaphragm portion 340 becomes a cold contact. Then, the sensor unit 310 outputs an electromotive voltage corresponding to the temperature difference (that is, heat flow rate) between the hot contact and the cold contact as a detection signal due to the Seebeck effect. In this case, the sensor unit 310 outputs a detection signal according to the temperature difference in a state where the current is cut off. In other words, the sensor unit 310 outputs a detection signal according to the temperature difference even if no current flows.
  • the temperature difference that is, heat flow rate
  • the circuit unit 500 is electrically connected to the sensor unit 310 and performs predetermined processing or the like on the detection signal output from the sensor unit 310.
  • the circuit unit 500 an IC chip or the like in which a semiconductor integrated circuit is formed on a silicon substrate or the like is used.
  • the lead frame 600 includes an island unit 601 on which a circuit unit 500 and a sensor unit 310 are mounted via an adhesive (not shown), and a terminal unit 602 that electrically connects to the outside.
  • the lead frame 600 is made of a metal having excellent conductivity such as general copper (Cu) or 42 alloy, and is processed into a predetermined shape by etching or pressing.
  • the island portion 601 has a planar rectangular shape, and the terminal portion 602 is arranged around the island portion 601.
  • the sensor unit 310 has a sensor substrate 320 having a flat rectangular shape as described above. Then, the sensor portion 310 is connected to the island portion 601 via a joining member 610 so that the portion where the recess 321 is formed protrudes from the island portion 601 and the other surface 320b of the sensor substrate 320 faces the island portion 601. Is prepared.
  • the circuit unit 500 and the pad unit 381 formed on the sensor unit 310 are electrically connected via a bonding wire 611. Further, the circuit unit 500 and one end of the terminal unit 602 are electrically connected via a bonding wire 612.
  • the bonding wires 611 and 612 are made of gold, aluminum, or the like.
  • the mold resin 700 is made of a general epoxy resin or the like, and is formed by a transfer molding method or the like using a mold. Specifically, the mold resin 700 is formed so that the sensor unit 310, the circuit unit 500, the lead frame 600, and the bonding wires 611 and 612 are sealed. The mold resin 700 is formed so that the peripheral portion of the sensor portion 310 including the diaphragm portion 340 is exposed. However, in the present embodiment, as shown in FIG. 6, the mold resin 700 is formed so as to seal the side surface between the one side 320a and the other side 320b of the sensor unit 310.
  • the connector case 800 is made by molding a resin such as PPS (polyphenylene sulfide) or PBT (polybutylene terephthalate), for example.
  • the connector case 800 has a columnar body portion 801 and a columnar connector portion 802 extending from the body portion 801 and having a diameter smaller than that of the body portion 801 at a connecting portion with the body portion 801. ing.
  • a recess 803 is formed on the outer peripheral side surface of the portion on the connecting side with the body portion 801 and an opening 804 is formed at the end on the side opposite to the body portion 801 side. Then, the body portion 801 is formed with a through hole 805 that communicates with the space in the recess 803 from the end portion on the side opposite to the connector portion 802 side.
  • the connector case 800 is provided with a plurality of metal rod-shaped terminals 810 for electrically connecting the sensor unit 310 and an external circuit or the like. Each of these terminals 810 is held in the connector case 800 by being integrally molded with the connector case 800 by insert molding.
  • each terminal 810 is held by the connector case 800 so that one end is exposed in the recess 803 of the connector case 800 and the other end is projected into the opening 804 of the connector case 800. There is. The other end of the terminal 810 protruding into the opening 804 is electrically connected to an external circuit or the like via an external wiring member such as a wire harness (not shown).
  • an external wiring member such as a wire harness (not shown).
  • the mold member 300 is press-fitted into the through hole 805.
  • the connector case so that the other end of the terminal portion 602 exposed from the mold resin 700 is exposed in the recess 803 and the sensor portion 310 protrudes from the connector case 800. It is press-fitted into the through hole 805 formed in 800.
  • one end of the terminal 810 and the other end of the terminal 602 are electrically connected by welding or the like.
  • the sensor unit 310 is electrically connected to the terminal 810 via the circuit unit 500 and the terminal unit 602, and the sensor unit 310 and the external circuit are connected to each other.
  • a potting material 820 that protects the welded portion between one end of the terminal 810 and the other end of the terminal 602 is arranged.
  • an annular groove portion 830 is formed so as to surround the through hole 805 at the end portion of the body portion 801 opposite to the connector portion 802 side, and the O-ring 831 is arranged in the groove portion 830. ing.
  • a potting material 840 is arranged between the mold member 300 and the connector case 800 so as to seal the gap between the mold member 300 and the connector case 800.
  • the housing 900 is formed by cutting or cold forging a metal material such as stainless steel, SUS, or aluminum, and has an extension portion 903 in which an accommodation recess 901 and an introduction hole 902 communicating with the accommodation recess 901 are formed. And have.
  • the body portion 801 of the connector case 800 is inserted into the accommodating recess 901 so that the sensor portion 310 is located in the introduction hole 902.
  • the housing 900 is assembled and integrated with the connector case 800 by crimping the open end portion 901a of the accommodating recess 901 to the body portion 801.
  • the O-ring 831 arranged in the groove 830 of the connector case 800 is crushed by the caulking pressure of the connector case 800 and the housing 900. As a result, the exhaust gas introduced into the introduction hole 902 is prevented from leaking from the gap between the connector case 800 and the housing 900.
  • the extension portion 903 has a bottomed cylindrical shape having a bottom portion at the tip portion in the protruding direction (that is, the tip portion on the side opposite to the connector case 800 side).
  • the extension portion 903 is formed with a screw portion 904 for fixing the housing 900 to the mounted member on the outer peripheral side surface, and an opening 905 is formed on the side opposite to the connector case 800 side of the screw portion 904. It is formed.
  • the gas-liquid separator 35 is the mounted member. As a result, the exhaust gas is introduced from the opening 905 into the introduction hole 902, and the exhaust gas flows along the surface direction of the sensor unit 310.
  • the heat flow rate sensor 36 outputs a detection signal according to the heat flow rate.
  • the pressure sensor 37 outputs pressure information indicating the pressure of the exhaust gas in the exhaust gas flow path 35a of the gas-liquid separator 35 as a detection signal.
  • the temperature sensor 38 outputs the temperature inside the gas-liquid separator 35 as a detection signal.
  • the fuel cell 10 controls the air pressure regulating valve 23, the hydrogen pressure regulating valve 33, the solenoid valves 24 and 34, and the air pump 22, and as a specific gas contained in the exhaust gas, 1
  • a control unit 40 for calculating the gas concentration of each type is provided.
  • the control unit 40 of the present embodiment calculates the concentration of hydrogen gas contained in the exhaust gas.
  • the control unit 40 is composed of a CPU (not shown), a microcomputer or the like including a storage unit composed of a non-transitional substantive storage medium such as a ROM, RAM, flash memory, or HDD.
  • CPU is an abbreviation for Central Processing Unit
  • ROM is an abbreviation for Read Only Memory
  • RAM is an abbreviation for Random Access Memory
  • HDD is an abbreviation for Hard Disk Drive.
  • Various data (for example, initial values, lookup tables, maps, etc.) used when executing the program are stored in advance in the ROM or the like, and in the present embodiment, the test lines Ka1 and Ka2 described later are stored. Is stored in advance. Further, the storage medium such as ROM is a non-transitional substantive storage medium.
  • control unit 40 calculates the concentration of hydrogen gas based on each input detection signal.
  • the control unit 40 of the present embodiment together with the pressure sensor 37 and the heat flow rate sensor 36, constitutes a gas component detection device 50 that calculates the concentration of hydrogen gas.
  • the hydrogen gas concentration calculation process of the present embodiment will be described.
  • the calculation process of the present embodiment is the same as that of JP-A-2017-90317, which has already been filed by the applicants, and thus will be briefly described.
  • the exhaust gas will be referred to as a mixed gas and will be described.
  • control unit 40 controls the hydrogen pressure regulating valve 33 to periodically supply hydrogen gas from the high-pressure hydrogen tank 32 to the fuel cell 10.
  • the high-pressure hydrogen tank 32 is controlled to alternately repeat opening and closing the valve of the high-pressure hydrogen tank 32.
  • the valve opening of the high-pressure hydrogen tank 32 is a state in which hydrogen gas is supplied from the high-pressure hydrogen tank 32 to the plurality of fuel cell cells 10a.
  • the valve closing of the high-pressure hydrogen tank 32 is a state in which the high-pressure hydrogen tank 32 and the plurality of fuel cell cells 10a are closed.
  • control unit 40 obtains the amount of change a of the heat flow rate in the hydrogen discharge pipe 31 based on the detected value of the heat flow rate sensor 36. Further, the control circuit obtains the amount of change b of the pressure in the hydrogen discharge pipe 31 based on the detected value of the pressure sensor 37.
  • the detected value of the heat flow sensor 36 at the time point T1 is R (t1)
  • the detected value of the pressure sensor 37 is A (t1).
  • the detected value of the heat flow sensor 36 at the time point T2 is R (t2)
  • the detected value of the pressure sensor 37 is A (t2).
  • the time point T2 is a time point after the time point T1.
  • the amount of change a and the amount of change b are calculated by the following formulas 1 and 2.
  • the heat flow rate sensor 36 and the pressure sensor 37 are arranged on the downstream side of the hydrogen flow path 111 of the plurality of fuel cell 10a in the gas flow direction. Therefore, the amount of change in the heat flow rate a is substantially the same as the amount of change in the heat flow rate in the hydrogen flow path 111, and the amount of change in pressure b is substantially the same as the amount of change in the pressure in the hydrogen flow path 111.
  • control unit 40 calculates the ratio of the change amount a to the change amount b (that is, "a / b"). That is, the heat flow rate change rate showing the correlation between the change amount a and the change amount b is calculated.
  • the thermal conductivity of hydrogen gas is higher than that of nitrogen gas. Therefore, as shown in FIG. 8, the rate of change in heat flow rate increases as the concentration of hydrogen gas increases. Moreover, the thermal conductivity of hydrogen gas and the thermal conductivity of nitrogen gas change depending on the temperature. Therefore, the rate of change in heat flow rate also changes depending on the temperature of the mixed gas.
  • the test line Ka1 and the test line Ka2 in FIG. 8 are derived by experiments in advance and are stored in a RAM or the like.
  • test lines Ka1 and Ka2 change the mixing ratio of hydrogen gas in the mixed gas and change the temperature, and the mixing ratio of each temperature is based on the detection results of the heat flow sensor 36, the pressure sensor 37, and the temperature sensor 38. It is derived by obtaining the rate of change in heat flow rate a / b for each time.
  • the test line Ka1 at 25 ° C. and the test line Ka2 at 60 ° C. are shown as examples, but in reality, further subdivided test lines for each temperature are derived and the ROM or the like is derived. Is remembered in.
  • control unit 40 selects the corresponding test line from the detection result of the temperature sensor 38, compares the calculated heat flow rate change rate with the test line, and calculates the hydrogen gas concentration.
  • the concentration of hydrogen gas is calculated based on the detection results of the heat flow rate sensor 36, the pressure sensor 37, and the temperature sensor 38. Therefore, the gas component detection device 50 having a simple structure can be configured.
  • the heat flow rate sensor 36 is configured to output a detection signal (that is, an electromotive voltage) according to the heat flow rate in a state where the current is cut off. Therefore, even if the heat flow rate sensor 36 fails, it is possible to suppress the generation of sparks and the like. Therefore, the safety can be improved.
  • a detection signal that is, an electromotive voltage
  • the sensor unit 310 in the heat flow sensor 36 has a diaphragm unit 340, and is composed of a portion where the heat capacity is increased and a portion where the heat capacity is decreased.
  • the sensor unit 310 has a thermocouple 350 having a portion located on the diaphragm portion 340 and a portion located on a portion different from the diaphragm portion 340 in the normal direction. Therefore, it becomes easy to form a temperature difference between the hot contact and the cold contact in the thermocouple 350, and the sensitivity can be improved.
  • the sensor unit 310 of the present embodiment is configured such that the protective member 430 is arranged on one side 320a side of the sensor substrate 320.
  • FIG. 9 omits the configuration of the thermocouple 350 and the like formed on one surface 320a of the sensor substrate 320.
  • the protective member 430 has a protective substrate 440 having one surface 440a and another surface 440b and made of a semiconductor substrate such as silicon, and the sensor so that the other surface 440b faces the one surface 32a of the sensor substrate 320. It is arranged on one side 320a side of the substrate 320.
  • the protective substrate 440 is formed with a recess 441 in a portion of the other surface 440b facing the diaphragm portion 340, and a through hole in the bottom surface of the recess 441 is used to communicate the space inside the recess 441 with the outside. 442 is formed. In the present embodiment, a plurality of through holes 442 are formed so that the bottom surface of the recess 441 has a mesh shape.
  • the protective member 430 is formed with a through hole that penetrates the protective member 430 and the sensor portion 310 in the stacking direction to expose the pad portion 381, and is electrically connected to the pad portion in the through hole.
  • the wiring portion to be formed is formed. Then, in the sensor unit 310, this wiring unit is connected to the circuit unit 500.
  • the sensor unit 310 since the sensor unit 310 has a configuration in which the protective member 430 is arranged on the sensor substrate 320, the overall strength is increased. Therefore, it is possible to prevent the sensor unit 310 from being destroyed.
  • the through hole 442 is formed in the protective member 430, and the portion located on the diaphragm portion 340 is exposed to the mixed gas that has passed through the through hole 442.
  • the flow direction of the mixed gas changes when passing through the through hole 442. Therefore, the portion located on the diaphragm portion 340 is exposed to the mixed gas having a weakened flow. Therefore, the influence of the flow velocity of the mixed gas can be reduced, and the detection accuracy can be improved.
  • FIG. 10 A modified example of the second embodiment will be described.
  • the recess 441 is not formed in the protective substrate 440, and the through hole 442 may be formed so as to open the portion located on the diaphragm portion 340 as a whole.
  • FIG. 10 omits the configuration of the thermocouple 350 and the like formed on one surface 320a of the sensor substrate 320.
  • the temperature sensor 38 is arranged on the sensor substrate 320. Specifically, the temperature sensor 38 is formed in a portion of the sensor substrate 320 that is sealed with the mold resin 700, and is formed on the base film 330 in the present embodiment.
  • the temperature sensor 38 is electrically connected to the circuit unit 500 via a bonding wire or the like in a cross section different from that of FIG.
  • the temperature sensor 38 of the present embodiment is composed of a temperature-sensitive resistor whose resistance value changes according to the temperature, and the voltage changes when the resistance value changes in the energized state. Then, the temperature sensor 38 outputs the temperature based on the change in voltage as a detection signal.
  • the temperature sensor 38 is formed on the sensor board 320, the number of parts can be reduced. That is, by integrating the heat flow rate sensor 36 and the temperature sensor 38, the number of parts can be reduced.
  • the temperature sensor 38 is configured to output a detection signal in a state of being energized, but is arranged in a portion sealed with the mold resin 700. Therefore, even if the temperature sensor 38 fails, sparks are suppressed from being generated in the mixed gas. Therefore, it is possible to further improve the safety while widening the configuration that can be adopted as the temperature sensor 38.
  • the temperature sensor 38 may be formed on, for example, the first interlayer insulating film 370. That is, the location of the temperature sensor 38 is appropriately changed as long as it is a portion sealed with the mold resin 700.
  • the sensor unit 310 has an insulating base material 450, a front surface protection member 451 and a back surface protection member 452 integrated, and inside the integrated body, the first and second interlayer connection members 461,
  • the structure is such that 462s are alternately connected in series.
  • the insulating base material 450, the front surface protection member 451 and the back surface protection member 452 are in the form of a film and are made of a flexible resin material such as a thermoplastic resin.
  • a via hole penetrating in the thickness direction is formed in the insulating base material 450, and the first and second interlayer connection members 461 and 462 made of different thermoelectric materials such as metal and semiconductor are formed in the via hole. It is embedded. Further, a surface conductor pattern 471 is formed on the surface of the insulating base material 450 on the surface protection member 451 side. A back surface conductor pattern 472 is formed on the surface of the insulating base material 450 on the back surface protection member 452 side. The first and second interlayer connection members 461 and 462 are connected in series by the front surface conductor pattern 471 and the back surface conductor pattern 472, so that a plurality of thermocouples 350 are connected in series. .. As the first and second interlayer connection members 461 and 462, for example, a combination of a solid-phase sintered Bi-Sb-Te alloy and Bi-Te, a combination of Cu and Constantan, and the like are adopted. ..
  • Such a sensor unit 310 outputs an electromotive voltage based on the temperature difference between the front surface 310a and the back surface 310b of the sensor unit 310 due to the heat flow rate. That is, even in such a sensor unit 310, a detection signal corresponding to the temperature difference is output without being energized.
  • the above is the configuration of the sensor unit 310 in this embodiment. Then, as shown in FIG. 13, the sensor unit 310 is arranged on the island unit 601 so that the back surface 310b faces the island unit 601. However, in the present embodiment, the entire sensor unit 310 is arranged on the island unit 601.
  • a heat sink 480 made of a material having high thermal conductivity is arranged on the opposite side of the island portion 601 from the sensor portion 310 via a joining member (not shown) such as silver paste.
  • the heat sink 480 is composed of heat-dissipating ceramics and porous ceramics mainly made of copper, molybdenum, tungsten, and alumina, ceramics mainly made of silicon carbide, and the like.
  • the heat insulating material 490 is arranged so as to cover the heat sink 480.
  • the mold resin 700 is formed so as to seal the sensor portion 310 and the heat sink 480, and a through hole 701 that exposes the surface 310a of the sensor portion 310 is formed.
  • a protective film 710 is formed in the portion of the through hole 701 and the sensor unit 310 that is exposed from the through hole 701.
  • the protective film 710 is made of a water-repellent material, for example, a fluorine surfactant or the like.
  • the sensor unit 310 may be configured to generate an electromotive voltage according to the temperature difference between the front surface 310a and the back surface 310b.
  • the heat sink 480 is arranged on the opposite side of the island portion 601 from the sensor portion 310, it is possible to suppress the temperature of the back surface 310b of the sensor portion 310 from fluctuating due to the mixed gas. Therefore, the temperature difference between the front surface 310a and the back surface 310b in the sensor unit 310 can be easily increased, and the sensitivity can be improved.
  • the heat insulating material 490 is arranged so as to cover the heat sink 480. Therefore, the heat insulating material 490 can prevent the temperature of the heat sink 480 from fluctuating due to the mixed gas. Therefore, it is possible to further prevent the temperature of the back surface 310b of the sensor unit 310 from fluctuating due to the mixed gas.
  • the island portion 601 of the lead frame 600 has a thick portion 601a in which the thickness of the portion where the sensor portion 310 is arranged is sufficiently thicker than the thickness of the other portion. It is configured.
  • the heat sink 480 according to the third embodiment is not arranged on the side opposite to the sensor unit 310 with the lead frame 600 in between. That is, in the present embodiment, the thick portion 601a of the lead frame 600 functions as a heat sink.
  • the thick portion 601a of the lead frame 600 functions as a heat sink, it is not necessary to provide a separate heat sink 480. Therefore, the number of parts can be reduced.
  • the heat flow rate sensor 36 is used to detect the heat flow rate in the mixed gas.
  • the portion of the mold member 300 protruding from the connector case 800 that is, the portion located in the extending portion 903 of the housing 900 is exposed to the mixed gas. Therefore, in the mold member 300, there is a concern that hydrogen gas contained in the mixed gas permeates the mold resin 700 and reaches the lead frame 600, the bonding wires 611, 612, etc., resulting in hydrogen embrittlement and the like.
  • a plating film 720 having a lower hydrogen gas permeability than the mold resin 700 is arranged on the portion of the mold member 300 exposed from the connector case 800.
  • the plating film 720 is composed of, for example, a copper plating film, a nickel plating film, or the like.
  • the plating film 720 is arranged in the portion of the mold member 300 exposed from the connector case 800, it is possible to prevent hydrogen gas from entering the inside of the mold member 300 by the plating film 720. Therefore, it is possible to suppress the occurrence of hydrogen embrittlement and the like.
  • the gas component detection device 50 may be applied to various devices other than the fuel cell 10.
  • the mixed gas is not limited to the one containing hydrogen gas and nitrogen gas, and may be configured to contain at least two kinds of gases having different thermal conductivity.
  • the heat flow rate sensor 36, the pressure sensor 37, and the temperature sensor 38 are not arranged in the gas-liquid separator 35, for example, between the gas-liquid separator 35 and the solenoid valve 34. It may be provided in the hydrogen discharge pipe 31. In this case, the hydrogen discharge pipe 31 constitutes the gas flow path. That is, the arrangement locations of the heat flow rate sensor 36, the pressure sensor 37, and the temperature sensor 38 can be changed as appropriate. Further, the fuel cell system may be configured not to include the gas-liquid separator 35.
  • a humidity sensor for detecting the humidity of the mixed gas may be provided, and the control unit 40 may calculate the concentration of the hydrogen gas in consideration of the detection result of the humidity sensor.
  • the detection accuracy can be improved by calculating the concentration of the hydrogen gas excluding the water vapor.
  • the diaphragm portion 340 is not limited to the one formed by forming the recess 321 from the other surface 320b of the sensor substrate 320.
  • the diaphragm portion 340 may be composed of a portion that substantially closes the recess by forming a recess so as to form a cavity inside from the one side 320a side of the sensor substrate 320.
  • the heat insulating material 490 does not have to be arranged. Even with such a configuration, the sensitivity can be improved by arranging the heat sink 480. Similarly, in the fifth and sixth embodiments, the heat insulating material 490 may not be arranged.
  • each of the above embodiments can be combined as appropriate.
  • the second embodiment may be combined with the third to sixth embodiments, and the protective member 430 may be arranged.
  • the third embodiment may be combined with the fourth to sixth embodiments so that the temperature sensor 38 and the heat flow rate sensor 36 are integrated.
  • the fifth embodiment may be combined with the sixth embodiment so that the island portion 601 is provided with the thick portion 601a. Then, the combination of the above embodiments may be further combined.
  • the controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done.
  • the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

Abstract

The present invention comprises: a heat flow rate sensor (36) that outputs a detection signal corresponding to the heat flow rate inside a gas flow path; a pressure sensor that outputs a detection signal corresponding to the pressure inside the gas flow path; and a control unit that calculates, on the basis of the detection signal from the heat flow rate sensor (36), the amount of change in the heat flow rate when the heat flow rate of a mixed gas periodically changes inside the gas flow path, also calculates, on the basis of the detection signal from the pressure sensor, the amount of change in the pressure when the pressure of the mixed gas is periodically changed within the gas flow path, and additionally calculates the concentration of a specific gas within the mixed gas on the basis of the relationship between the calculated amount of change in the heat flow rate and the calculated amount of change in the pressure. The heat flow rate sensor (36) is configured to have a sensor unit (310) that outputs the detection signal corresponding to the heat flow rate of the mixed gas in a state in which an electric current is cut off.

Description

ガス成分検出装置Gas component detector 関連出願への相互参照Cross-reference to related applications
 本出願は、2019年10月24日に出願された日本特許出願番号2019-193606号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2019-193606 filed on October 24, 2019, the contents of which are incorporated herein by reference.
 本開示は、ガス成分検出装置に関するものである。 This disclosure relates to a gas component detector.
 従来より、混合ガスに含まれる1種類のガスの濃度を検出するガス成分検出装置が提案されている。例えば、特許文献1には、混合ガスの熱流量の変化量と圧力の変化量との相関に基づいて混合ガスに含まれる1種類のガスの濃度を算出する方法が提案されている。なお、熱流量の変化量は、熱流量センサの検出結果に基づいて算出され、熱流量センサは、熱流量を検知する部分が混合ガスに晒された状態で配置されている。 Conventionally, a gas component detection device that detects the concentration of one type of gas contained in a mixed gas has been proposed. For example, Patent Document 1 proposes a method of calculating the concentration of one type of gas contained in a mixed gas based on the correlation between the amount of change in the heat flow rate of the mixed gas and the amount of change in pressure. The amount of change in the heat flow rate is calculated based on the detection result of the heat flow rate sensor, and the heat flow rate sensor is arranged in a state where the portion for detecting the heat flow rate is exposed to the mixed gas.
特開2017-90317号公報JP-A-2017-90317
 この場合、上記のように熱流量センサは、混合ガスに晒された状態で配置される。このため、熱流量センサが故障した際に火花等が発生する可能性がある場合、安全性が懸念される。
 本開示は、安全性を向上できるガス成分検出装置を提供することを目的とする。
In this case, the heat flow sensor is arranged in a state of being exposed to the mixed gas as described above. Therefore, if there is a possibility that sparks or the like may occur when the heat flow sensor fails, safety is a concern.
An object of the present disclosure is to provide a gas component detection device capable of improving safety.
 本開示の1つの観点によれば、ガス成分検出装置は、ガス流路内の熱流量に応じた検出信号を出力する熱流量センサと、ガス流路内の圧力に応じた検出信号を出力する圧力センサと、混合ガスの熱流量がガス流路内で周期的に変化した際の熱流量の変化量を熱流量センサの検出信号に基づいて算出すると共に、混合ガスの圧力がガス流路内で周期的に変化した際の圧力の変化量を圧力センサの検出信号に基づいて算出し、算出した熱流量の変化量と圧力の変化量との相関に基づいて混合ガスのうちの特定ガスの濃度を算出する制御部と、を備え、熱流量センサは、電流が遮断されている状態において、混合ガスの熱流量に応じた検出信号を出力するセンサ部を有する構成とされている。 According to one aspect of the present disclosure, the gas component detection device outputs a heat flow sensor that outputs a detection signal according to the heat flow rate in the gas flow path and a detection signal according to the pressure in the gas flow path. The amount of change in the heat flow rate when the heat flow rate of the pressure sensor and the mixed gas changes periodically in the gas flow path is calculated based on the detection signal of the heat flow rate sensor, and the pressure of the mixed gas is in the gas flow path. The amount of change in pressure when it changes periodically in is calculated based on the detection signal of the pressure sensor, and based on the correlation between the calculated amount of change in heat flow and the amount of change in pressure, the specific gas of the mixed gas The heat flow sensor includes a control unit for calculating the concentration, and the heat flow sensor has a sensor unit that outputs a detection signal according to the heat flow of the mixed gas in a state where the current is cut off.
 これによれば、熱流量センサは、電流が遮断されている状態において、熱流量に応じた検出信号を出力する構成とされている。このため、仮に熱流量センサが故障したとしても、火花等が発生することを抑制できる。したがって、安全性の向上を図ることができる。 According to this, the heat flow rate sensor is configured to output a detection signal according to the heat flow rate in a state where the current is cut off. Therefore, even if the heat flow rate sensor fails, it is possible to suppress the generation of sparks and the like. Therefore, the safety can be improved.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference symbols in parentheses attached to each component or the like indicate an example of the correspondence between the component or the like and the specific component or the like described in the embodiment described later.
第1実施形態における燃料電池システムの全体構成を示す図である。It is a figure which shows the whole structure of the fuel cell system in 1st Embodiment. 第1実施形態における燃料電池セルの模式的な断面図である。It is a schematic cross-sectional view of the fuel cell of 1st Embodiment. 第1実施形態における燃料電池セルの内部の構造を示す模式的な断面図である。It is a schematic cross-sectional view which shows the internal structure of the fuel cell of 1st Embodiment. 図1に示す気液分離器の内部構造を示す模式図である。It is a schematic diagram which shows the internal structure of the gas-liquid separator shown in FIG. 第1実施形態における熱流量センサの断面図である。It is sectional drawing of the heat flow rate sensor in 1st Embodiment. 図5に示すモールド部材の平面図である。It is a top view of the mold member shown in FIG. 図6中のVII-VIIに沿った断面図である。It is sectional drawing which follows VII-VII in FIG. 水素ガスの濃度、熱流量変化率、温度の関係を示す図である。It is a figure which shows the relationship between the concentration of hydrogen gas, the rate of change of a heat flow rate, and temperature. 第2実施形態におけるセンサ部の断面模式図である。It is sectional drawing of the sensor part in 2nd Embodiment. 第2実施形態の変形例におけるセンサ部の断面模式図である。It is sectional drawing of the sensor part in the modification of 2nd Embodiment. 第3実施形態におけるセンサ部の断面図である。It is sectional drawing of the sensor part in 3rd Embodiment. 第4実施形態におけるセンサ部の断面図である。It is sectional drawing of the sensor part in 4th Embodiment. 第4実施形態におけるモールド部材近傍の断面図である。It is sectional drawing of the vicinity of the mold member in 4th Embodiment. 第5実施形態におけるモールド部材近傍の断面図である。It is sectional drawing of the vicinity of the mold member in 5th Embodiment. 第6実施形態におけるモールド部材近傍の断面図である。It is sectional drawing of the vicinity of the mold member in 6th Embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the figures. In each of the following embodiments, parts that are the same or equal to each other will be described with the same reference numerals.
 (第1実施形態)
 第1実施形態について、図面を参照しつつ説明する。本実施形態では、ガス成分検出装置を燃料電池システムに適用した例について説明する。なお、本実施形態の燃料電池システムは、電気自動車の一種である燃料電池車両に適用されると好適である。
(First Embodiment)
The first embodiment will be described with reference to the drawings. In this embodiment, an example in which the gas component detection device is applied to a fuel cell system will be described. The fuel cell system of the present embodiment is preferably applied to a fuel cell vehicle which is a kind of electric vehicle.
 本実施形態の燃料電池システムは、図1に示されるように、燃料電池10を備える制御システムである。燃料電池10は、水素ガスと空気に含まれる酸素ガスの電気化学反応を利用して電気エネルギを出力するものである。本実施形態では、燃料電池10として固体高分子型燃料電池を採用している。 As shown in FIG. 1, the fuel cell system of the present embodiment is a control system including the fuel cell 10. The fuel cell 10 outputs electric energy by utilizing an electrochemical reaction between hydrogen gas and oxygen gas contained in air. In this embodiment, a polymer electrolyte fuel cell is used as the fuel cell 10.
 燃料電池10は、発電により発生した直流電力を図示しないDC-DCコンバータを介して、主に車両走行用電動モータや二次電池といった電気負荷に供給する。 The fuel cell 10 mainly supplies the DC power generated by the power generation to an electric load such as a vehicle traveling electric motor or a secondary battery via a DC-DC converter (not shown).
 本実施形態の燃料電池10は、最小単位となる燃料電池セル10aが複数積層されたスタック構造とされており、複数の燃料電池セル10aを電気的に直列接続した直列接続体として構成されている。 The fuel cell 10 of the present embodiment has a stack structure in which a plurality of fuel cell cells 10a, which are the smallest units, are stacked, and is configured as a series connection body in which a plurality of fuel cell cells 10a are electrically connected in series. ..
 複数の燃料電池セル10aは、図2に示されるように、電解質膜101の両側を一対の触媒層102a、102bで挟んで構成される膜電極接合体100、膜電極接合体100の両側に配置された一対の拡散層103a、103b、これらを挟持するセパレータ110で構成されている。 As shown in FIG. 2, the plurality of fuel cell cells 10a are arranged on both sides of the membrane electrode assembly 100 and the membrane electrode assembly 100 formed by sandwiching both sides of the electrolyte membrane 101 between a pair of catalyst layers 102a and 102b. It is composed of a pair of diffusion layers 103a and 103b, and a separator 110 that sandwiches them.
 電解質膜101は、含水性を有する炭化フッ素系や炭化水素系等の高分子材料により形成されたプロトン伝導性のイオン交換膜である。 The electrolyte membrane 101 is a proton-conducting ion exchange membrane formed of a water-containing polymer material such as a fluorine-based hydrocarbon or a hydrocarbon-based material.
 一対の触媒層102a、102bは、それぞれ電極を構成するものであり、アノード電極を構成するアノード側触媒層102a、およびカソード電極を構成するカソード側触媒層102bで構成されている。各触媒層102a、102bは、図3に示されるように、触媒作用を発揮する白金粒子等の物質102c、当該物質102cを担持する担持カーボン102d、担持カーボン102dを被覆するアイオノマー(すなわり、電解質ポリマー)102eで構成されている。 The pair of catalyst layers 102a and 102b each constitute an electrode, and is composed of an anode-side catalyst layer 102a constituting an anode electrode and a cathode-side catalyst layer 102b constituting a cathode electrode. As shown in FIG. 3, each of the catalyst layers 102a and 102b includes a substance 102c such as platinum particles that exerts a catalytic action, a supported carbon 102d that supports the substance 102c, and an ionomer that coats the supported carbon 102d. It is composed of an electrolyte polymer) 102e.
 拡散層103a、103bは、反応ガスを各触媒層102a、102bへ拡散させるものであり、ガス透過性および電子伝導性を有する多孔質部材で構成されている。多孔質部材としては、例えば、カーボンペーパーやカーボンクロス等が用いられる。 The diffusion layers 103a and 103b diffuse the reaction gas into the catalyst layers 102a and 102b, and are composed of a porous member having gas permeability and electron conductivity. As the porous member, for example, carbon paper, carbon cloth, or the like is used.
 セパレータ110は、例えば、導電性を有するカーボンや金属等の基材で構成されている。各セパレータ110には、アノード側触媒層102aに対向する部分に、水素ガスが流れる水素流路111が形成され、カソード側触媒層102bに対向する部分に、空気が流れる空気流路112が形成されている。 The separator 110 is made of, for example, a conductive base material such as carbon or metal. In each separator 110, a hydrogen flow path 111 through which hydrogen gas flows is formed in a portion facing the anode side catalyst layer 102a, and an air flow path 112 through which air flows is formed in a portion facing the cathode side catalyst layer 102b. ing.
 そして、各燃料電池セル10aでは、それぞれ、水素流路111内に水素ガスが供給され、空気流路112に空気が供給される。この場合、複数の燃料電池セル10aは、それぞれ、以下に示すように、水素流路111内の水素ガスおよび空気流路112内の酸素ガスの電気化学反応により、電気エネルギを出力する。 Then, in each fuel cell 10a, hydrogen gas is supplied into the hydrogen flow path 111, and air is supplied to the air flow path 112. In this case, each of the plurality of fuel cell 10a outputs electric energy by the electrochemical reaction of the hydrogen gas in the hydrogen flow path 111 and the oxygen gas in the air flow path 112, respectively, as shown below.
 (アノード側)H→2H++2e
 (カソード側)2H+1/2O+2e→H
 燃料電池10には、空気入口部および空気出口部が設けられている。空気入口部は、複数の燃料電池セル10aの空気流路112に空気を供給するガス入口部を構成している。空気出口部は、複数の燃料電池セル10aの空気流路112から生成水や不純物を空気と共に排出させるガス出口部を構成している。
(Anode) H 2 → 2H ++ 2e -
(Cathode) 2H + + 1 / 2O 2 + 2e - → H 2 O
The fuel cell 10 is provided with an air inlet portion and an air outlet portion. The air inlet portion constitutes a gas inlet portion that supplies air to the air flow paths 112 of the plurality of fuel cell 10a. The air outlet portion constitutes a gas outlet portion that discharges generated water and impurities together with air from the air flow paths 112 of the plurality of fuel cell 10a.
 燃料電池10には、空気入口部に空気を供給するための空気供給配管20が接続されると共に、空気出口部から生成水や不純物を空気と共に外部へ排出するための空気排出配管21が接続されている。 An air supply pipe 20 for supplying air to the air inlet portion is connected to the fuel cell 10, and an air discharge pipe 21 for discharging generated water and impurities together with air from the air outlet portion is connected to the fuel cell 10. ing.
 空気供給配管20は、その最上流部に大気中から吸入した空気を燃料電池10に圧送するための空気ポンプ22が設けられている。空気ポンプ22は、空気を圧送する圧縮機構と圧縮機構を駆動する電動モータからなる電動ポンプである。 The air supply pipe 20 is provided with an air pump 22 at its most upstream portion for pumping air sucked from the atmosphere to the fuel cell 10. The air pump 22 is an electric pump including a compression mechanism for pumping air and an electric motor for driving the compression mechanism.
 そして、空気供給配管20における空気ポンプ22と燃料電池10との間には、燃料電池10に供給される空気の圧力を調整する空気調圧弁23が設けられている。空気調圧弁23は、空気供給配管20のうち空気が流通する空気流路の開度を調整する弁体と、この弁体を駆動する電動アクチュエータとから構成されている。 An air pressure regulating valve 23 for adjusting the pressure of the air supplied to the fuel cell 10 is provided between the air pump 22 and the fuel cell 10 in the air supply pipe 20. The air pressure regulating valve 23 includes a valve body that adjusts the opening degree of the air flow path through which air flows in the air supply pipe 20, and an electric actuator that drives the valve body.
 また、空気排出配管21には、燃料電池10内部に存する生成水や不純物等を空気と共に外部へ排出するための電磁弁24が設けられている。電磁弁24は、空気排出配管21のうち空気が排出される空気排出路の開度を調整する弁体と、この弁体を駆動する電動アクチュエータとから構成されている。 Further, the air discharge pipe 21 is provided with a solenoid valve 24 for discharging the generated water, impurities, etc. existing inside the fuel cell 10 to the outside together with the air. The solenoid valve 24 includes a valve body that adjusts the opening degree of an air discharge path through which air is discharged from the air discharge pipe 21, and an electric actuator that drives the valve body.
 燃料電池10には、水素入口部12aおよび水素出口部12bが設けられている。水素入口部12aは、複数の燃料電池セル10aの水素流路111に水素ガスを供給するガス入口部を構成している。水素出口部12bは、複数の燃料電池セル10aの水素流路111から未反応水素ガス等を排出させるガス出口部を構成している。未反応水素ガスは、燃料電池10に供給される水素ガスのうち電気化学反応が行われた水素ガス以外の残りの水素ガスである。 The fuel cell 10 is provided with a hydrogen inlet portion 12a and a hydrogen outlet portion 12b. The hydrogen inlet portion 12a constitutes a gas inlet portion that supplies hydrogen gas to the hydrogen flow paths 111 of the plurality of fuel cell 10a. The hydrogen outlet portion 12b constitutes a gas outlet portion for discharging unreacted hydrogen gas or the like from the hydrogen flow paths 111 of the plurality of fuel cell 10a. The unreacted hydrogen gas is the remaining hydrogen gas other than the hydrogen gas subjected to the electrochemical reaction among the hydrogen gases supplied to the fuel cell 10.
 燃料電池10には、水素入口部12aに水素を供給するための水素供給流路を有する水素供給配管30が接続されると共に、水素出口部12bから微量な未反応水素等を外部へ排出するための水素排出流路を備える水素排出配管31が接続されている。 A hydrogen supply pipe 30 having a hydrogen supply flow path for supplying hydrogen to the hydrogen inlet portion 12a is connected to the fuel cell 10, and a small amount of unreacted hydrogen or the like is discharged to the outside from the hydrogen outlet portion 12b. A hydrogen discharge pipe 31 including the hydrogen discharge flow path of the above is connected.
 水素供給配管30の最上流部には、高圧水素が充填された高圧水素タンク(すなわち、供給装置)32が設けられている。高圧水素タンク32は、燃料電池10に供給する水素ガスを蓄える。 A high-pressure hydrogen tank (that is, a supply device) 32 filled with high-pressure hydrogen is provided at the uppermost stream of the hydrogen supply pipe 30. The high-pressure hydrogen tank 32 stores hydrogen gas to be supplied to the fuel cell 10.
 水素供給配管30における高圧水素タンク32と燃料電池10との間には、燃料電池10に供給される水素の圧力を調整する水素調圧弁33がガス流量調整部として設けられている。水素調圧弁33は、水素供給配管30のうち水素供給流路の開度を調整する弁体と、この弁体を駆動する電動アクチュエータとから構成されている電磁弁である。 A hydrogen pressure regulating valve 33 for adjusting the pressure of hydrogen supplied to the fuel cell 10 is provided as a gas flow rate adjusting unit between the high pressure hydrogen tank 32 and the fuel cell 10 in the hydrogen supply pipe 30. The hydrogen pressure regulating valve 33 is a solenoid valve composed of a valve body that adjusts the opening degree of the hydrogen supply flow path in the hydrogen supply pipe 30, and an electric actuator that drives the valve body.
 水素排出配管31には、微量な未反応水素等を外部へ排出するための電磁弁34が設けられている。電磁弁34は、水素排出配管31のうち水素排出流路の開度を調整する弁体と、この弁体を駆動する電動アクチュエータとから構成されている。 The hydrogen discharge pipe 31 is provided with a solenoid valve 34 for discharging a small amount of unreacted hydrogen or the like to the outside. The solenoid valve 34 includes a valve body that adjusts the opening degree of the hydrogen discharge flow path in the hydrogen discharge pipe 31, and an electric actuator that drives the valve body.
 水素排出配管31において電磁弁34および燃料電池10の間には、図4に示されるように、気液分離器35が設けられている。以下、本実施形態の気液分離器35の構成について説明する。 As shown in FIG. 4, a gas-liquid separator 35 is provided between the solenoid valve 34 and the fuel cell 10 in the hydrogen discharge pipe 31. Hereinafter, the configuration of the gas-liquid separator 35 of the present embodiment will be described.
 気液分離器35は、水素排出配管31a、31bの間で排ガスを流通させる排ガス流路35aを構成する。本実施形態の排ガスは、少なくとも水素ガス、窒素ガスを含む混合ガスである。 The gas-liquid separator 35 constitutes an exhaust gas flow path 35a for circulating exhaust gas between the hydrogen discharge pipes 31a and 31b. The exhaust gas of this embodiment is a mixed gas containing at least hydrogen gas and nitrogen gas.
 ここで、水素排出配管31のうち気液分離器35に対して排ガスの流れ方向上流側を水素排出配管31aとし、水素排出配管31のうち気液分離器35に対して排ガスの流れ方向下流側を水素排出配管31bとする。 Here, the upstream side of the hydrogen discharge pipe 31 in the flow direction of the exhaust gas with respect to the gas-liquid separator 35 is the hydrogen discharge pipe 31a, and the downstream side of the hydrogen discharge pipe 31 with respect to the gas-liquid separator 35 in the flow direction of the exhaust gas. Is a hydrogen discharge pipe 31b.
 気液分離器35のうち水素排出配管31aに接続される入口は、気液分離器35のうち水素排出配管31bに接続される出口に対して天地方向下側に配置されている。気液分離器35のうち底部35jには、排水を排出する排出口31cが設けられている。 The inlet of the gas-liquid separator 35 connected to the hydrogen discharge pipe 31a is arranged on the lower side in the vertical direction with respect to the outlet of the gas-liquid separator 35 connected to the hydrogen discharge pipe 31b. The bottom 35j of the gas-liquid separator 35 is provided with a discharge port 31c for discharging wastewater.
 気液分離器35内には、邪魔板35b、35c、35d、35eが設けられている。邪魔板35b、35c、35d、35eは、排ガス流路35aを蛇行させるように形成されている。 Inside the gas-liquid separator 35, baffle plates 35b, 35c, 35d, 35e are provided. The baffle plates 35b, 35c, 35d, 35e are formed so as to meander the exhaust gas flow path 35a.
 具体的には、邪魔板35b、35c、35d、35eは、それぞれ、天地方向にオフセットして配置されている。邪魔板35b、35dは、それぞれ、右側側壁35fから突起するように形成されている。邪魔板35c、35eは、それぞれ、左側側壁35gから突起するように形成されている。 Specifically, the baffle plates 35b, 35c, 35d, and 35e are arranged offset in the vertical direction, respectively. The baffle plates 35b and 35d are formed so as to project from the right side wall 35f, respectively. The baffle plates 35c and 35e are formed so as to project from the left side wall 35g, respectively.
 以上が本実施形態における気液分離器35の構成である。そして、このような気液分離器35には、水素排出配管31aから排ガスに排水が混ざった状態で流れ込む。この場合、邪魔板35b、35c、35d、35eが気液分離器35に配置されているため、排水は、邪魔板35b、35c、35d、35eを伝って床側に設けられた排出口31cから排出される。一方、排ガスは、排ガス流路35aを通過して水素排出配管31bに流れる。つまり、排ガスおよび排水は、邪魔板35b、35c、35d、35eによって分離され、排ガスが水素排出配管31bに流れつつ、排水が排出口31cから排出される。 The above is the configuration of the gas-liquid separator 35 in this embodiment. Then, the gas-liquid separator 35 flows into the gas-liquid separator 35 from the hydrogen discharge pipe 31a in a state where the exhaust gas is mixed with the exhaust gas. In this case, since the baffle plates 35b, 35c, 35d, 35e are arranged in the gas-liquid separator 35, the drainage is discharged from the discharge port 31c provided on the floor side along the baffle plates 35b, 35c, 35d, 35e. It is discharged. On the other hand, the exhaust gas passes through the exhaust gas flow path 35a and flows into the hydrogen discharge pipe 31b. That is, the exhaust gas and the drainage are separated by the baffle plates 35b, 35c, 35d, 35e, and the exhaust gas is discharged from the discharge port 31c while flowing to the hydrogen discharge pipe 31b.
 そして、気液分離器35内には、熱流量センサ36、圧力センサ37、および温度センサ38が設けられている。熱流量センサ36、圧力センサ37、および温度センサ38は、気液分離器35のうち邪魔板35bと天井35hとの間において、排ガスの流れ方向の最下流側に配置されている。つまり、熱流量センサ36、圧力センサ37、および温度センサ38は、本実施形態では、排ガスの流れ方向に直交する右側側壁35fに配置されている。 A heat flow rate sensor 36, a pressure sensor 37, and a temperature sensor 38 are provided in the gas-liquid separator 35. The heat flow rate sensor 36, the pressure sensor 37, and the temperature sensor 38 are arranged on the most downstream side of the gas-liquid separator 35 between the baffle plate 35b and the ceiling 35h in the flow direction of the exhaust gas. That is, the heat flow rate sensor 36, the pressure sensor 37, and the temperature sensor 38 are arranged on the right side wall 35f orthogonal to the flow direction of the exhaust gas in this embodiment.
 熱流量センサ36は、排ガス流路35a内の熱流量を検出するセンサである。ここで、本実施形態の熱流量センサ36の構成について、図5~図7を参照しつつ具体的に説明する。本実施形態の熱流量センサ36は、モールド部材300、コネクタケース800、ハウジング900等を備えた構成とされている。 The heat flow rate sensor 36 is a sensor that detects the heat flow rate in the exhaust gas flow path 35a. Here, the configuration of the heat flow rate sensor 36 of the present embodiment will be specifically described with reference to FIGS. 5 to 7. The heat flow rate sensor 36 of the present embodiment is configured to include a mold member 300, a connector case 800, a housing 900, and the like.
 まず、モールド部材300の構成について説明する。モールド部材300は、図5および図6に示されるように、センサ部310、回路部500、リードフレーム600、これらを封止するモールド樹脂700等を有している。 First, the configuration of the mold member 300 will be described. As shown in FIGS. 5 and 6, the mold member 300 includes a sensor unit 310, a circuit unit 500, a lead frame 600, a mold resin 700 for sealing these, and the like.
 センサ部310は、図6および図7に示されるように、一面320aおよび他面320bを有し、矩形板状とされたシリコン等の半導体基板で構成されるセンサ基板320を有している。そして、センサ基板320には、他面320b側から凹部321が形成されている。本実施形態では、凹部321は、後述する下地膜330に達するように形成されている。なお、図6では、センサ基板320の一面320a上に配置される後述の保護膜420等を省略して示している。 As shown in FIGS. 6 and 7, the sensor unit 310 has a sensor substrate 320 having one side 320a and another side 320b, and is made of a rectangular plate-shaped semiconductor substrate such as silicon. A recess 321 is formed in the sensor substrate 320 from the other surface 320b side. In the present embodiment, the recess 321 is formed so as to reach the base film 330, which will be described later. In FIG. 6, the protective film 420 and the like, which will be described later, are omitted and are shown on one side 320a of the sensor substrate 320.
 センサ基板320の一面320aには、下地膜330が形成されている。本実施形態では、下地膜330は、酸化膜等で構成される第1絶縁膜331と、窒化膜等で構成される第2絶縁膜332とが順に積層されて構成されている。また、上記のように、センサ基板320には、下地膜330に達するように凹部321が形成されている。このため、下地膜330のうちの凹部321から露出する部分は、ダイヤフラム部340として機能する。 A base film 330 is formed on one surface 320a of the sensor substrate 320. In the present embodiment, the base film 330 is configured by sequentially laminating a first insulating film 331 composed of an oxide film or the like and a second insulating film 332 composed of a nitride film or the like. Further, as described above, the sensor substrate 320 is formed with a recess 321 so as to reach the base film 330. Therefore, the portion of the base film 330 exposed from the recess 321 functions as the diaphragm portion 340.
 下地膜330上には、異なる2種の金属や半導体が接続されて構成される熱電対350が複数配置されている。具体的には、下地膜330上には、p型不純物がドープされたポリシリコン等で構成される複数の第1配線層360が所定方向に沿って区画形成されている。より詳しくは、各第1配線層360は、センサ基板320の一面320aに対する法線方向において(以下では、単に法線方向ともいう)、ダイヤフラム部340上に位置する部分と、ダイヤフラム部340上に位置する部分と異なる部分とを有するように形成されている。そして、各第1配線層360は、法線方向において、ダイヤフラム部340を中心とした略放射状に形成されている。言い換えると、各第1配線層360は、法線方向において、ダイヤフラム部340を中心として周方向に配列されている。なお、センサ基板320の一面320aに対する法線方向においてとは、言い換えると、法線方向から視たときということである。また、法線方向においてダイヤフラム部340上に位置するとは、言い換えると、法線方向において凹部321の底面上に位置することである。 A plurality of thermocouples 350 formed by connecting two different types of metals and semiconductors are arranged on the base film 330. Specifically, a plurality of first wiring layers 360 composed of polysilicon or the like doped with p-type impurities are partitioned along a predetermined direction on the base film 330. More specifically, each first wiring layer 360 is located on the diaphragm portion 340 and on the diaphragm portion 340 in the normal direction with respect to one surface 320a of the sensor substrate 320 (hereinafter, also simply referred to as the normal direction). It is formed so as to have a located portion and a different portion. Each of the first wiring layers 360 is formed substantially radially around the diaphragm portion 340 in the normal direction. In other words, each of the first wiring layers 360 is arranged in the circumferential direction with the diaphragm portion 340 as the center in the normal direction. In other words, the normal direction of the sensor substrate 320 with respect to one surface 320a means that the sensor board 320 is viewed from the normal direction. Further, being located on the diaphragm portion 340 in the normal direction means, in other words, being located on the bottom surface of the recess 321 in the normal direction.
 そして、下地膜330上には、第1配線層360を覆うように、酸化膜等で構成される第1層間絶縁膜370が形成されている。第1層間絶縁膜370上には、第2配線層380が区画形成されている。第2配線層380は、n型不純物がドープされたポリシリコンで構成されており、法線方向において、ダイヤフラム部340上に位置する部分と、ダイヤフラム部340上に位置する部分と異なる部分とを有する構成とされている。そして、本実施形態では、各第2配線層380は、それぞれ第1配線層360上に位置する部分を有する構成とされている。 Then, on the base film 330, a first interlayer insulating film 370 composed of an oxide film or the like is formed so as to cover the first wiring layer 360. A second wiring layer 380 is partitioned on the first interlayer insulating film 370. The second wiring layer 380 is made of polysilicon doped with n-type impurities, and has a portion located on the diaphragm portion 340 and a portion different from the portion located on the diaphragm portion 340 in the normal direction. It is configured to have. In the present embodiment, each of the second wiring layers 380 has a portion located on the first wiring layer 360.
 以下では、法線方向において、第1配線層360のうちのダイヤフラム部340上に位置する部分を第1配線層360の一端部側とし、第1配線層360のうちのダイヤフラム部340上と異なる部分に位置する部分を第1配線層360の他端部側として説明する。同様に、第2配線層380のうちのダイヤフラム部340上に位置する部分を第2配線層380の一端部側とし、第2配線層380のうちのダイヤフラム部340上と異なる部分に位置する部分を第2配線層380の他端部側として説明する。 In the following, in the normal direction, the portion of the first wiring layer 360 located on the diaphragm portion 340 is defined as one end side of the first wiring layer 360, which is different from the portion of the first wiring layer 360 on the diaphragm portion 340. The portion located in the portion will be described as the other end side of the first wiring layer 360. Similarly, the portion of the second wiring layer 380 located on the diaphragm portion 340 is on one end side of the second wiring layer 380, and the portion of the second wiring layer 380 located on the diaphragm portion 340 is different from the portion located on the diaphragm portion 340. Will be described as the other end side of the second wiring layer 380.
 また、第1層間絶縁膜370上には、第2配線層380を覆うように、酸化膜等で構成される第2層間絶縁膜390が形成されている。そして、第2層間絶縁膜390には、各第2配線層380の他端部側を露出させるコンタクトホール391および一端部側を露出させるコンタクトホール392が形成されている。また、第2層間絶縁膜390および第1層間絶縁膜370には、各第1配線層360の他端部側を露出させるコンタクトホール393が形成されている。さらに、第2層間絶縁膜390および第1層間絶縁膜370には、図7とは別断面において、各第1配線層360の一端部側を露出させるコンタクトホールが形成されている。 Further, on the first interlayer insulating film 370, a second interlayer insulating film 390 composed of an oxide film or the like is formed so as to cover the second wiring layer 380. The second interlayer insulating film 390 is formed with a contact hole 391 that exposes the other end side of each second wiring layer 380 and a contact hole 392 that exposes one end side. Further, the second interlayer insulating film 390 and the first interlayer insulating film 370 are formed with contact holes 393 that expose the other end side of each first wiring layer 360. Further, the second interlayer insulating film 390 and the first interlayer insulating film 370 are formed with contact holes in which one end side of each first wiring layer 360 is exposed in a cross section different from that of FIG. 7.
 そして、第2層間絶縁膜390上には、第1接続配線層401、第2接続配線層402、図7とは別断面に形成される第3接続配線層が形成されている。具体的には、第1接続配線層401、第2接続配線層402、図7とは別断面に形成される第3接続配線層は、第2層間絶縁膜に形成されたコンタクトホール391、392、393および図7とは別断面に形成されているコンタクトホールを通じ、各第1配線層360と各第2配線層380とを交互に直列に接続するように形成されている。より詳しくは、第1接続配線層401は、コンタクトホール391およびコンタクトホール393を通じ、第1配線層360の他端部側と第2配線層380の他端部側とを接続するように形成されている。第2接続配線層402は、コンタクトホール392を通じ、第2配線層380の一端部側と、当該第2配線層380の下方に位置する第1配線層360に対して周方向における一方向に位置する第1配線層360とを接続するように形成されている。第3接続配線層は、第1配線層360の一端部と、当該第1配線層360の上方に位置する第2配線層380に対して周方向における他方向に位置する第2配線層380とを接続するように形成されている。 Then, on the second interlayer insulating film 390, a first connection wiring layer 401, a second connection wiring layer 402, and a third connection wiring layer formed in a cross section different from that of FIG. 7 are formed. Specifically, the first connection wiring layer 401, the second connection wiring layer 402, and the third connection wiring layer formed in a cross section different from that of FIG. 7 are contact holes 391 and 392 formed in the second interlayer insulating film. , 393 and FIG. 7 are formed so as to alternately connect the first wiring layer 360 and the second wiring layer 380 in series through a contact hole formed in a cross section different from that of FIG. More specifically, the first connection wiring layer 401 is formed so as to connect the other end side of the first wiring layer 360 and the other end side of the second wiring layer 380 through the contact hole 391 and the contact hole 393. ing. The second connection wiring layer 402 is located in one direction in the circumferential direction with respect to one end side of the second wiring layer 380 and the first wiring layer 360 located below the second wiring layer 380 through the contact hole 392. It is formed so as to connect to the first wiring layer 360. The third connection wiring layer includes one end of the first wiring layer 360 and the second wiring layer 380 located in the other direction in the circumferential direction with respect to the second wiring layer 380 located above the first wiring layer 360. Is formed to connect.
 これにより、センサ部310は、複数の熱電対350が直列に接続されることで構成されるサーモパイルが形成された状態となっている。 As a result, the sensor unit 310 is in a state in which a thermopile formed by connecting a plurality of thermocouples 350 in series is formed.
 第1接続配線層401および第2接続配線層402上には、BPSG(Borophosphosilicate Glassの略)等で構成される応力緩和膜410が形成されている。そして、第2層間絶縁膜390上には、第1配線層360および第2配線層380を覆うように、保護膜420が形成されている。保護膜420は、水分の透過性の低い窒化膜等で構成される。 A stress relaxation film 410 composed of BPSG (abbreviation of Borophosphosilicate Glass) or the like is formed on the first connection wiring layer 401 and the second connection wiring layer 402. A protective film 420 is formed on the second interlayer insulating film 390 so as to cover the first wiring layer 360 and the second wiring layer 380. The protective film 420 is made of a nitride film or the like having low moisture permeability.
 また、第2接続配線層402の一部は、センサ基板320における後述するモールド樹脂700で封止される部分まで延設されている。そして、保護膜420には、当該第2接続配線層402の一部を露出させる開口部421が形成されている。これにより、第2配線層380のうちの開口部421から露出する部分は、パッド部381として機能し、回路部500とボンディングワイヤ611を介して電気的に接続される。 Further, a part of the second connection wiring layer 402 extends to a portion of the sensor substrate 320 that is sealed with the mold resin 700 described later. The protective film 420 is formed with an opening 421 that exposes a part of the second connection wiring layer 402. As a result, the portion of the second wiring layer 380 exposed from the opening 421 functions as a pad portion 381 and is electrically connected to the circuit portion 500 via the bonding wire 611.
 以上が本実施形態におけるセンサ部310の構成である。このようなセンサ部310は、後述するように、モールド樹脂700から露出する部分が排ガス(すなわち、混合ガス)に晒される。そして、センサ部310では、ダイヤフラム部340の熱容量が小さくなり、ダイヤフラム部340と異なる部分の熱容量が大きくなる。つまり、ダイヤフラム部340は温度変化がし易く、ダイヤフラム部340と異なる部分は温度変化がし難くなる。このため、熱電対350は、法線方向において、ダイヤフラム部340上に位置する部分が温接点となり、ダイヤフラム部340上と異なる部分に位置する部分が冷接点となる。そして、センサ部310は、ゼーベック効果により、温接点と冷接点との温度差(すなわち、熱流量)に応じた起電圧を検出信号として出力する。この場合、センサ部310は、電流が遮断されている状態において、温度差に応じた検出信号を出力する。言い換えると、センサ部310は、電流が流れなくても、温度差に応じた検出信号を出力する。 The above is the configuration of the sensor unit 310 in this embodiment. As will be described later, in such a sensor unit 310, a portion exposed from the mold resin 700 is exposed to exhaust gas (that is, a mixed gas). Then, in the sensor unit 310, the heat capacity of the diaphragm portion 340 becomes small, and the heat capacity of the portion different from the diaphragm portion 340 becomes large. That is, the temperature of the diaphragm portion 340 is likely to change, and the temperature of the portion different from the diaphragm portion 340 is difficult to change. Therefore, in the thermocouple 350, the portion located on the diaphragm portion 340 in the normal direction becomes a hot contact, and the portion located on a portion different from the diaphragm portion 340 becomes a cold contact. Then, the sensor unit 310 outputs an electromotive voltage corresponding to the temperature difference (that is, heat flow rate) between the hot contact and the cold contact as a detection signal due to the Seebeck effect. In this case, the sensor unit 310 outputs a detection signal according to the temperature difference in a state where the current is cut off. In other words, the sensor unit 310 outputs a detection signal according to the temperature difference even if no current flows.
 回路部500は、センサ部310と電気的に接続され、センサ部310から出力される検出信号に対して所定の処理等を行う。例えば、回路部500は、シリコン基板等に半導体集積回路が形成されたICチップ等が用いられる。 The circuit unit 500 is electrically connected to the sensor unit 310 and performs predetermined processing or the like on the detection signal output from the sensor unit 310. For example, as the circuit unit 500, an IC chip or the like in which a semiconductor integrated circuit is formed on a silicon substrate or the like is used.
 リードフレーム600は、図示しない接着剤を介して回路部500およびセンサ部310を搭載するアイランド部601と、外部との電気的接続を行う端子部602とを備えている。リードフレーム600は、一般的な銅(Cu)や42アロイ等の導電性に優れた金属にて構成され、エッチング加工やプレス加工等によって所定形状に加工されている。本実施形態では、アイランド部601は平面矩形状とされ、端子部602は、アイランド部601の周囲に配置されている。 The lead frame 600 includes an island unit 601 on which a circuit unit 500 and a sensor unit 310 are mounted via an adhesive (not shown), and a terminal unit 602 that electrically connects to the outside. The lead frame 600 is made of a metal having excellent conductivity such as general copper (Cu) or 42 alloy, and is processed into a predetermined shape by etching or pressing. In the present embodiment, the island portion 601 has a planar rectangular shape, and the terminal portion 602 is arranged around the island portion 601.
 なお、センサ部310は、上記のように平面矩形状とされたセンサ基板320を有している。そして、センサ部310は、凹部321が形成されている部分がアイランド部601から突出しつつ、センサ基板320の他面320bがアイランド部601と対向するように、当該アイランド部601に接合部材610を介して備えられている。 The sensor unit 310 has a sensor substrate 320 having a flat rectangular shape as described above. Then, the sensor portion 310 is connected to the island portion 601 via a joining member 610 so that the portion where the recess 321 is formed protrudes from the island portion 601 and the other surface 320b of the sensor substrate 320 faces the island portion 601. Is prepared.
 回路部500とセンサ部310に形成されたパッド部381とは、ボンディングワイヤ611を介して電気的に接続されている。また、回路部500と端子部602の一端部とは、ボンディングワイヤ612を介して電気的に接続されている。なお、これらボンディングワイヤ611、612は、金やアルミニウム等で構成されている。 The circuit unit 500 and the pad unit 381 formed on the sensor unit 310 are electrically connected via a bonding wire 611. Further, the circuit unit 500 and one end of the terminal unit 602 are electrically connected via a bonding wire 612. The bonding wires 611 and 612 are made of gold, aluminum, or the like.
 モールド樹脂700は、一般的なエポキシ樹脂等で構成され、金型を用いたトランスファーモールド法等によって形成されている。具体的には、モールド樹脂700は、センサ部310、回路部500、リードフレーム600、ボンディングワイヤ611、612が封止されるように形成されている。なお、モールド樹脂700は、センサ部310のうちのダイヤフラム部340を含むその周囲の部分が露出するように形成されている。但し、本実施形態では、モールド樹脂700は、図6に示されるように、センサ部310における一面320aと他面320bとの間の側面を封止するように形成されている。 The mold resin 700 is made of a general epoxy resin or the like, and is formed by a transfer molding method or the like using a mold. Specifically, the mold resin 700 is formed so that the sensor unit 310, the circuit unit 500, the lead frame 600, and the bonding wires 611 and 612 are sealed. The mold resin 700 is formed so that the peripheral portion of the sensor portion 310 including the diaphragm portion 340 is exposed. However, in the present embodiment, as shown in FIG. 6, the mold resin 700 is formed so as to seal the side surface between the one side 320a and the other side 320b of the sensor unit 310.
 コネクタケース800は、例えば、PPS(ポリフェニレンサルファイド)やPBT(ポリブチレンテレフタレート)等の樹脂を型成形することにより作られている。コネクタケース800は、円柱状のボディ部801と、ボディ部801から延設されると共にボディ部801との連結部分においてボディ部801よりも径が小さくされた円柱状のコネクタ部802とを有している。 The connector case 800 is made by molding a resin such as PPS (polyphenylene sulfide) or PBT (polybutylene terephthalate), for example. The connector case 800 has a columnar body portion 801 and a columnar connector portion 802 extending from the body portion 801 and having a diameter smaller than that of the body portion 801 at a connecting portion with the body portion 801. ing.
 コネクタ部802には、ボディ部801との連結側の部分の外周側面に凹部803が形成されていると共に、ボディ部801側と反対側の端部に開口部804が形成されている。そして、ボディ部801には、コネクタ部802側と反対側の端部から当該凹部803内の空間と連通する貫通孔805が形成されている。 In the connector portion 802, a recess 803 is formed on the outer peripheral side surface of the portion on the connecting side with the body portion 801 and an opening 804 is formed at the end on the side opposite to the body portion 801 side. Then, the body portion 801 is formed with a through hole 805 that communicates with the space in the recess 803 from the end portion on the side opposite to the connector portion 802 side.
 また、コネクタケース800には、センサ部310と外部回路等とを電気的に接続するための金属棒状のターミナル810が複数本備えられている。これら各ターミナル810は、インサート成形によりコネクタケース800と一体に成形されることによってコネクタケース800内に保持されている。 Further, the connector case 800 is provided with a plurality of metal rod-shaped terminals 810 for electrically connecting the sensor unit 310 and an external circuit or the like. Each of these terminals 810 is held in the connector case 800 by being integrally molded with the connector case 800 by insert molding.
 具体的には、各ターミナル810は、一端部がコネクタケース800における凹部803内にて露出し、他端部がコネクタケース800における開口部804内に突出するように、コネクタケース800に保持されている。なお、開口部804内に突出しているターミナル810の他端部は、図示しないワイヤハーネス等の外部配線部材を介して外部回路等と電気的に接続される。以上がコネクタケース800の構成である。 Specifically, each terminal 810 is held by the connector case 800 so that one end is exposed in the recess 803 of the connector case 800 and the other end is projected into the opening 804 of the connector case 800. There is. The other end of the terminal 810 protruding into the opening 804 is electrically connected to an external circuit or the like via an external wiring member such as a wire harness (not shown). The above is the configuration of the connector case 800.
 そして、コネクタケース800には、貫通孔805にモールド部材300が圧入されている。具体的には、モールド部材300は、端子部602のうちのモールド樹脂700から露出する他端部が凹部803内にて露出すると共に、センサ部310がコネクタケース800から突出するように、コネクタケース800に形成された貫通孔805に圧入されている。 Then, in the connector case 800, the mold member 300 is press-fitted into the through hole 805. Specifically, in the mold member 300, the connector case so that the other end of the terminal portion 602 exposed from the mold resin 700 is exposed in the recess 803 and the sensor portion 310 protrudes from the connector case 800. It is press-fitted into the through hole 805 formed in 800.
 凹部803内では、ターミナル810の一端部と端子部602の他端部とが溶接等によって電気的に接続されている。これにより、センサ部310が回路部500、端子部602を介してターミナル810と電気的に接続され、センサ部310と外部回路との接続が図られる。また、凹部803には、ターミナル810の一端部と端子部602の他端部との溶接箇所を保護するポッティング材820が配置されている。 In the recess 803, one end of the terminal 810 and the other end of the terminal 602 are electrically connected by welding or the like. As a result, the sensor unit 310 is electrically connected to the terminal 810 via the circuit unit 500 and the terminal unit 602, and the sensor unit 310 and the external circuit are connected to each other. Further, in the recess 803, a potting material 820 that protects the welded portion between one end of the terminal 810 and the other end of the terminal 602 is arranged.
 さらに、コネクタケース800には、ボディ部801におけるコネクタ部802側と反対側の端部に貫通孔805を囲むように環状の溝部830が形成されており、この溝部830にOリング831が配置されている。 Further, in the connector case 800, an annular groove portion 830 is formed so as to surround the through hole 805 at the end portion of the body portion 801 opposite to the connector portion 802 side, and the O-ring 831 is arranged in the groove portion 830. ing.
 また、モールド部材300とコネクタケース800との間には、モールド部材300とコネクタケース800との間の隙間を封止するように、ポッティング材840が配置されている。 Further, a potting material 840 is arranged between the mold member 300 and the connector case 800 so as to seal the gap between the mold member 300 and the connector case 800.
 ハウジング900は、例えば、ステンレス、SUS、アルミニウム等の金属材料が切削や冷間鍛造等されて構成され、収容凹部901と、当該収容凹部901と連通する導入孔902が形成された延設部903とを有している。 The housing 900 is formed by cutting or cold forging a metal material such as stainless steel, SUS, or aluminum, and has an extension portion 903 in which an accommodation recess 901 and an introduction hole 902 communicating with the accommodation recess 901 are formed. And have.
 そして、ハウジング900には、導入孔902内にセンサ部310が位置するように、収容凹部901内にコネクタケース800のボディ部801が挿入されている。そして、ハウジング900は、収容凹部901の開口端部901aがボディ部801にかしめられることにより、コネクタケース800に組付けられて一体化されている。 Then, in the housing 900, the body portion 801 of the connector case 800 is inserted into the accommodating recess 901 so that the sensor portion 310 is located in the introduction hole 902. The housing 900 is assembled and integrated with the connector case 800 by crimping the open end portion 901a of the accommodating recess 901 to the body portion 801.
 なお、コネクタケース800における溝部830に配置されたOリング831は、コネクタケース800とハウジング900とのかしめによるかしめ圧で押し潰される。これにより、導入孔902内に導入される排ガスがコネクタケース800とハウジング900との間の隙間から漏れることが防止される。 The O-ring 831 arranged in the groove 830 of the connector case 800 is crushed by the caulking pressure of the connector case 800 and the housing 900. As a result, the exhaust gas introduced into the introduction hole 902 is prevented from leaking from the gap between the connector case 800 and the housing 900.
 延設部903は、本実施形態では、突出方向の先端部(すなわち、コネクタケース800側と反対側の先端部)に底部を有する有底円筒状とされている。そして、延設部903には、外周側面にハウジング900を被実装部材に固定するためのネジ部904が形成されていると共に、ネジ部904よりもコネクタケース800側と反対側に開口部905が形成されている。なお、本実施形態では、気液分離器35が被実装部材となる。これにより、開口部905から導入孔902に排ガスが導入され、センサ部310の面方向に沿って排ガスが流れる。 In the present embodiment, the extension portion 903 has a bottomed cylindrical shape having a bottom portion at the tip portion in the protruding direction (that is, the tip portion on the side opposite to the connector case 800 side). The extension portion 903 is formed with a screw portion 904 for fixing the housing 900 to the mounted member on the outer peripheral side surface, and an opening 905 is formed on the side opposite to the connector case 800 side of the screw portion 904. It is formed. In this embodiment, the gas-liquid separator 35 is the mounted member. As a result, the exhaust gas is introduced from the opening 905 into the introduction hole 902, and the exhaust gas flows along the surface direction of the sensor unit 310.
 以上が熱流量センサ36の構成である。そして、上記のように、熱流量センサ36は、熱流量に応じた検出信号を出力する。 The above is the configuration of the heat flow sensor 36. Then, as described above, the heat flow rate sensor 36 outputs a detection signal according to the heat flow rate.
 圧力センサ37は、気液分離器35の排ガス流路35a内の排ガスの圧力を示す圧力情報を検出信号として出力する。温度センサ38は、気液分離器35内の温度を検出信号として出力する。 The pressure sensor 37 outputs pressure information indicating the pressure of the exhaust gas in the exhaust gas flow path 35a of the gas-liquid separator 35 as a detection signal. The temperature sensor 38 outputs the temperature inside the gas-liquid separator 35 as a detection signal.
 また、燃料電池10には、図1に示されるように、空気調圧弁23、水素調圧弁33および電磁弁24、34、および空気ポンプ22を制御すると共に、排ガスに含まれる特定ガスとして、1種類のガス濃度を算出する制御部40が備えられている。なお、本実施形態の制御部40は、排ガスに含まれる水素ガスの濃度を算出する。 Further, as shown in FIG. 1, the fuel cell 10 controls the air pressure regulating valve 23, the hydrogen pressure regulating valve 33, the solenoid valves 24 and 34, and the air pump 22, and as a specific gas contained in the exhaust gas, 1 A control unit 40 for calculating the gas concentration of each type is provided. The control unit 40 of the present embodiment calculates the concentration of hydrogen gas contained in the exhaust gas.
 制御部40は、図示しないCPUや、ROM、RAM、フラッシュメモリ、HDD等の非遷移的実体的記憶媒体で構成される記憶部等を備えたマイクロコンピュータ等で構成される。CPUは、Central Processing Unitの略であり、ROMは、Read Only Memoryの略であり、RAMは、Random Access Memoryの略であり、HDDはHard Disk Driveの略である。そして、制御部40は、CPUがROM等からプログラム(すなわち、後述の各ルーチン)を読み出して実行することで各種の制御作動を実現する。なお、ROM等には、プログラムの実行の際に用いられる各種のデータ(例えば、初期値、ルックアップテーブル、マップ等)が予め格納されており、本実施形態では、後述する検定線Ka1、Ka2が予め格納されている。また、ROM等の記憶媒体は、非遷移的実体的記憶媒体である。 The control unit 40 is composed of a CPU (not shown), a microcomputer or the like including a storage unit composed of a non-transitional substantive storage medium such as a ROM, RAM, flash memory, or HDD. CPU is an abbreviation for Central Processing Unit, ROM is an abbreviation for Read Only Memory, RAM is an abbreviation for Random Access Memory, and HDD is an abbreviation for Hard Disk Drive. Then, the control unit 40 realizes various control operations by the CPU reading a program (that is, each routine described later) from a ROM or the like and executing the program. Various data (for example, initial values, lookup tables, maps, etc.) used when executing the program are stored in advance in the ROM or the like, and in the present embodiment, the test lines Ka1 and Ka2 described later are stored. Is stored in advance. Further, the storage medium such as ROM is a non-transitional substantive storage medium.
 本実施形態では、制御部40は、入力される各検出信号に基づき、水素ガスの濃度を算出する。なお、本実施形態の制御部40は、圧力センサ37、および熱流量センサ36と共に、水素ガスの濃度を算出するガス成分検出装置50を構成する。 In the present embodiment, the control unit 40 calculates the concentration of hydrogen gas based on each input detection signal. The control unit 40 of the present embodiment, together with the pressure sensor 37 and the heat flow rate sensor 36, constitutes a gas component detection device 50 that calculates the concentration of hydrogen gas.
 以下、本実施形態の水素ガスの濃度の算出処理について説明する。なお、本実施形態の算出処理は、本出願人らが既に出願している特開2017-90317号公報と同様であるため、簡単に説明する。また、以下では、排ガスを混合ガスとして称して説明する。 Hereinafter, the hydrogen gas concentration calculation process of the present embodiment will be described. The calculation process of the present embodiment is the same as that of JP-A-2017-90317, which has already been filed by the applicants, and thus will be briefly described. Further, in the following, the exhaust gas will be referred to as a mixed gas and will be described.
 すなわち、制御部40は、水素調圧弁33を制御して、高圧水素タンク32から燃料電池10へ水素ガスの供給を周期的に行う。具体的には、圧力制御部として、高圧水素タンク32を制御して高圧水素タンク32の開弁と閉弁とを交互に繰り返す。 That is, the control unit 40 controls the hydrogen pressure regulating valve 33 to periodically supply hydrogen gas from the high-pressure hydrogen tank 32 to the fuel cell 10. Specifically, as the pressure control unit, the high-pressure hydrogen tank 32 is controlled to alternately repeat opening and closing the valve of the high-pressure hydrogen tank 32.
 なお、高圧水素タンク32の開弁とは、高圧水素タンク32から複数の燃料電池セル10aに水素ガスが供給される状態である。高圧水素タンク32の閉弁とは、高圧水素タンク32と複数の燃料電池セル10aとの間を閉じた状態である。 The valve opening of the high-pressure hydrogen tank 32 is a state in which hydrogen gas is supplied from the high-pressure hydrogen tank 32 to the plurality of fuel cell cells 10a. The valve closing of the high-pressure hydrogen tank 32 is a state in which the high-pressure hydrogen tank 32 and the plurality of fuel cell cells 10a are closed.
 このように水素調圧弁33を制御することにより、高圧水素タンク32から水素調圧弁33を介して複数の燃料電池セル10aの水素流路111内に水素ガスが周期的に供給される。このため、複数の燃料電池セル10aの水素流路111内では、水素ガスと窒素ガスとを含む混合ガスの圧力が周期的に変化する。したがって、水素流路111内の混合ガスの熱流量が周期的に変化する。これにより、熱流量センサ36の検出値、および圧力センサ37の検出値が周期的に同期して変化する。 By controlling the hydrogen pressure regulating valve 33 in this way, hydrogen gas is periodically supplied from the high pressure hydrogen tank 32 into the hydrogen flow paths 111 of the plurality of fuel cell cells 10a via the hydrogen pressure regulating valve 33. Therefore, the pressure of the mixed gas containing the hydrogen gas and the nitrogen gas changes periodically in the hydrogen flow path 111 of the plurality of fuel cell 10a. Therefore, the heat flow rate of the mixed gas in the hydrogen flow path 111 changes periodically. As a result, the detected value of the heat flow rate sensor 36 and the detected value of the pressure sensor 37 change periodically and synchronously.
 そして、制御部40は、熱流量センサ36の検出値に基づいて水素排出配管31内の熱流量の変化量aを求める。また、制御回路は、圧力センサ37の検出値に基づいて水素排出配管31内の圧力の変化量bを求める。 Then, the control unit 40 obtains the amount of change a of the heat flow rate in the hydrogen discharge pipe 31 based on the detected value of the heat flow rate sensor 36. Further, the control circuit obtains the amount of change b of the pressure in the hydrogen discharge pipe 31 based on the detected value of the pressure sensor 37.
 すなわち、時点T1のときの熱流量センサ36の検出値をR(t1)とする共に圧力センサ37の検出値をA(t1)とする。また、時点T2のときの熱流量センサ36の検出値をR(t2)とすると共に圧力センサ37の検出値をA(t2)とする。但し、時点T2は、時点T1以降の時点である。この場合、変化量a、および変化量bは、次の数式1、数式2で算出される。 That is, the detected value of the heat flow sensor 36 at the time point T1 is R (t1), and the detected value of the pressure sensor 37 is A (t1). Further, the detected value of the heat flow sensor 36 at the time point T2 is R (t2), and the detected value of the pressure sensor 37 is A (t2). However, the time point T2 is a time point after the time point T1. In this case, the amount of change a and the amount of change b are calculated by the following formulas 1 and 2.
 (数1)
 a=|R(t2)-R(t1)|
 (数2)
 b=|A(t2)-A(t1)|
 なお、熱流量センサ36および圧力センサ37は、上記のように、複数の燃料電池セル10aの水素流路111のガス流れ方向の下流側に配置されている。このため、熱流量の変化量aは、水素流路111内の熱流量の変化量とほぼ同一となり、圧力の変化量bは、水素流路111内の圧力の変化量とほぼ同一となる。
(Number 1)
a = | R (t2) -R (t1) |
(Number 2)
b = | A (t2) -A (t1) |
As described above, the heat flow rate sensor 36 and the pressure sensor 37 are arranged on the downstream side of the hydrogen flow path 111 of the plurality of fuel cell 10a in the gas flow direction. Therefore, the amount of change in the heat flow rate a is substantially the same as the amount of change in the heat flow rate in the hydrogen flow path 111, and the amount of change in pressure b is substantially the same as the amount of change in the pressure in the hydrogen flow path 111.
 そして、制御部40は、変化量bに対する変化量aの割合(すなわち、「a/b」)を算出する。つまり、変化量aと変化量bとの相関を示す熱流量変化率を算出する。 Then, the control unit 40 calculates the ratio of the change amount a to the change amount b (that is, "a / b"). That is, the heat flow rate change rate showing the correlation between the change amount a and the change amount b is calculated.
 ここで、水素ガスの熱伝導率は、窒素ガスの熱伝導率に比べて高い。このため、熱流量変化率は、図8に示されるように、水素ガスの濃度が高くなるほど大きくなる。また、水素ガスの熱伝導率、および窒素ガスの熱伝導率は、温度によって変わる。このため、熱流量変化率は、混合ガスの温度によっても変化する。なお、図8中の検定線Ka1および検定線Ka2は、予め実験によって導出したものであり、RAM等に記憶されている。 Here, the thermal conductivity of hydrogen gas is higher than that of nitrogen gas. Therefore, as shown in FIG. 8, the rate of change in heat flow rate increases as the concentration of hydrogen gas increases. Moreover, the thermal conductivity of hydrogen gas and the thermal conductivity of nitrogen gas change depending on the temperature. Therefore, the rate of change in heat flow rate also changes depending on the temperature of the mixed gas. The test line Ka1 and the test line Ka2 in FIG. 8 are derived by experiments in advance and are stored in a RAM or the like.
 例えば、検定線Ka1、Ka2は、混合ガスにおける水素ガスの混合比率を変化させると共に温度を変化させ、熱流量センサ36、圧力センサ37、および温度センサ38の検出結果に基づき、各温度の混合比率毎に熱流量変化率a/bを求めることによって導出される。なお、図8では、25℃の検定線Ka1および60℃の検定線Ka2を例に挙げて示しているが、実際には、さらに細分化された各温度についての検定線が導出されてROM等に記憶される。 For example, the test lines Ka1 and Ka2 change the mixing ratio of hydrogen gas in the mixed gas and change the temperature, and the mixing ratio of each temperature is based on the detection results of the heat flow sensor 36, the pressure sensor 37, and the temperature sensor 38. It is derived by obtaining the rate of change in heat flow rate a / b for each time. In FIG. 8, the test line Ka1 at 25 ° C. and the test line Ka2 at 60 ° C. are shown as examples, but in reality, further subdivided test lines for each temperature are derived and the ROM or the like is derived. Is remembered in.
 そして、制御部40は、温度センサ38の検出結果から対応する検定線を選択し、算出した熱流量変化率と検定線とを比較して水素ガスの濃度を算出する。 Then, the control unit 40 selects the corresponding test line from the detection result of the temperature sensor 38, compares the calculated heat flow rate change rate with the test line, and calculates the hydrogen gas concentration.
 以上説明したように、本実施形態では、熱流量センサ36、圧力センサ37、温度センサ38の検出結果に基づいて水素ガスの濃度が算出される。したがって、簡素な構造のガス成分検出装置50を構成できる。 As described above, in the present embodiment, the concentration of hydrogen gas is calculated based on the detection results of the heat flow rate sensor 36, the pressure sensor 37, and the temperature sensor 38. Therefore, the gas component detection device 50 having a simple structure can be configured.
 また、本実施形態では、熱流量センサ36は、電流が遮断されている状態において、熱流量に応じた検出信号(すなわち、起電圧)を出力する構成とされている。このため、仮に熱流量センサ36が故障したとしても、火花等が発生することを抑制できる。したがって、安全性の向上を図ることができる。 Further, in the present embodiment, the heat flow rate sensor 36 is configured to output a detection signal (that is, an electromotive voltage) according to the heat flow rate in a state where the current is cut off. Therefore, even if the heat flow rate sensor 36 fails, it is possible to suppress the generation of sparks and the like. Therefore, the safety can be improved.
 さらに、本実施形態では、熱流量センサ36におけるセンサ部310は、ダイヤフラム部340を有し、熱容量が大きくなる部分と小さくなる部分とが構成されている。そして、センサ部310は、法線方向において、ダイヤフラム部340上に位置する部分と、ダイヤフラム部340上と異なる部分に位置する部分とを有する熱電対350を有している。このため、熱電対350における温接点と冷接点との間で温度差を構成し易くなり、感度の向上を図ることができる。 Further, in the present embodiment, the sensor unit 310 in the heat flow sensor 36 has a diaphragm unit 340, and is composed of a portion where the heat capacity is increased and a portion where the heat capacity is decreased. The sensor unit 310 has a thermocouple 350 having a portion located on the diaphragm portion 340 and a portion located on a portion different from the diaphragm portion 340 in the normal direction. Therefore, it becomes easy to form a temperature difference between the hot contact and the cold contact in the thermocouple 350, and the sensitivity can be improved.
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対し、センサ部310の構成を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
(Second Embodiment)
The second embodiment will be described. This embodiment is a modification of the first embodiment in which the configuration of the sensor unit 310 is changed. Others are the same as those in the first embodiment, and thus the description thereof will be omitted here.
 本実施形態のセンサ部310は、図9に示されるように、センサ基板320の一面320a側に、保護部材430が配置されて構成されている。なお、図9では、センサ基板320の一面320a上に形成される熱電対350等の構成を省略して示している。 As shown in FIG. 9, the sensor unit 310 of the present embodiment is configured such that the protective member 430 is arranged on one side 320a side of the sensor substrate 320. Note that FIG. 9 omits the configuration of the thermocouple 350 and the like formed on one surface 320a of the sensor substrate 320.
 保護部材430は、一面440aおよび他面440bを有し、シリコン等の半導体基板で構成される保護基板440を有しており、他面440bがセンサ基板320の一面32aと対向するように、センサ基板320の一面320a側に配置されている。そして、保護基板440には、他面440bのうちのダイヤフラム部340と対向する部分に凹部441が形成されていると共に、凹部441の底面に、凹部441内の空間と外部とを連通させる貫通孔442が形成されている。本実施形態では、貫通孔442は、凹部441の底面がメッシュ状となるように、複数形成されている。 The protective member 430 has a protective substrate 440 having one surface 440a and another surface 440b and made of a semiconductor substrate such as silicon, and the sensor so that the other surface 440b faces the one surface 32a of the sensor substrate 320. It is arranged on one side 320a side of the substrate 320. The protective substrate 440 is formed with a recess 441 in a portion of the other surface 440b facing the diaphragm portion 340, and a through hole in the bottom surface of the recess 441 is used to communicate the space inside the recess 441 with the outside. 442 is formed. In the present embodiment, a plurality of through holes 442 are formed so that the bottom surface of the recess 441 has a mesh shape.
 なお、特に図示しないが、センサ基板320に保護部材430を配置することにより、パッド部381が露出しない構成となる。このため、例えば、保護部材430には、保護部材430とセンサ部310との積層方向に貫通してパッド部381を露出させる貫通孔が形成されると共に当該貫通孔にパッド部と電気的に接続される配線部が形成される。そして、センサ部310は、この配線部が回路部500と接続される。 Although not particularly shown, by arranging the protective member 430 on the sensor substrate 320, the pad portion 381 is not exposed. Therefore, for example, the protective member 430 is formed with a through hole that penetrates the protective member 430 and the sensor portion 310 in the stacking direction to expose the pad portion 381, and is electrically connected to the pad portion in the through hole. The wiring portion to be formed is formed. Then, in the sensor unit 310, this wiring unit is connected to the circuit unit 500.
 これによれば、センサ部310は、センサ基板320に保護部材430が配置された構成とされているため、全体の強度が高くなる。したがって、センサ部310が破壊されることを抑制できる。 According to this, since the sensor unit 310 has a configuration in which the protective member 430 is arranged on the sensor substrate 320, the overall strength is increased. Therefore, it is possible to prevent the sensor unit 310 from being destroyed.
 また、本実施形態では、保護部材430に貫通孔442が形成されており、ダイヤフラム部340上に位置する部分は、貫通孔442を通過した混合ガスに晒される。この際、上記のように、混合ガスは、センサ基板320の面方向に沿って流れるため、貫通孔442を通過する際に混合ガスの流れ方向が変化する。このため、ダイヤフラム部340上に位置する部分は、流れが弱くなった混合ガスに晒される。したがって、混合ガスの流速の影響を低減できるため、検出精度を向上できる。 Further, in the present embodiment, the through hole 442 is formed in the protective member 430, and the portion located on the diaphragm portion 340 is exposed to the mixed gas that has passed through the through hole 442. At this time, as described above, since the mixed gas flows along the surface direction of the sensor substrate 320, the flow direction of the mixed gas changes when passing through the through hole 442. Therefore, the portion located on the diaphragm portion 340 is exposed to the mixed gas having a weakened flow. Therefore, the influence of the flow velocity of the mixed gas can be reduced, and the detection accuracy can be improved.
 (第2実施形態の変形例)
 第2実施形態の変形例について説明する。図10に示されるように、保護基板440に凹部441が形成されておらず、貫通孔442は、ダイヤフラム部340上に位置する部分を全体的に開口するように形成されていてもよい。なお、図10では、センサ基板320の一面320a上に形成される熱電対350等の構成を省略して示している。
(Modified example of the second embodiment)
A modified example of the second embodiment will be described. As shown in FIG. 10, the recess 441 is not formed in the protective substrate 440, and the through hole 442 may be formed so as to open the portion located on the diaphragm portion 340 as a whole. Note that FIG. 10 omits the configuration of the thermocouple 350 and the like formed on one surface 320a of the sensor substrate 320.
 (第3実施形態)
 第3実施形態について説明する。本実施形態は、第1実施形態に対し、温度センサ38の配置場所を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
(Third Embodiment)
The third embodiment will be described. In this embodiment, the location of the temperature sensor 38 is changed from that of the first embodiment. Others are the same as those in the first embodiment, and thus the description thereof will be omitted here.
 本実施形態では、図11に示されるように、温度センサ38は、センサ基板320上に配置されている。具体的には、温度センサ38は、センサ基板320のうちのモールド樹脂700で封止される部分に形成されており、本実施形態では、下地膜330上に形成されている。そして、温度センサ38は、図11とは別断面において、回路部500とボンディングワイヤ等を介して電気的に接続されている。 In this embodiment, as shown in FIG. 11, the temperature sensor 38 is arranged on the sensor substrate 320. Specifically, the temperature sensor 38 is formed in a portion of the sensor substrate 320 that is sealed with the mold resin 700, and is formed on the base film 330 in the present embodiment. The temperature sensor 38 is electrically connected to the circuit unit 500 via a bonding wire or the like in a cross section different from that of FIG.
 また、本実施形態の温度センサ38は、温度に応じて抵抗値が変化する感温抵抗体で構成されており、通電された状態で抵抗値が変化すると電圧が変化する構成とされている。そして、温度センサ38は、電圧の変化に基づいた温度を検出信号として出力する。 Further, the temperature sensor 38 of the present embodiment is composed of a temperature-sensitive resistor whose resistance value changes according to the temperature, and the voltage changes when the resistance value changes in the energized state. Then, the temperature sensor 38 outputs the temperature based on the change in voltage as a detection signal.
 これによれば、温度センサ38がセンサ基板320に形成されているため、部品点数の削減を図ることができる。つまり、熱流量センサ36と温度センサ38とを一体化することにより、部品点数の削減を図ることができる。 According to this, since the temperature sensor 38 is formed on the sensor board 320, the number of parts can be reduced. That is, by integrating the heat flow rate sensor 36 and the temperature sensor 38, the number of parts can be reduced.
 さらに、温度センサ38は、通電された状態で検出信号を出力する構成とされているが、モールド樹脂700で封止される部分に配置されている。このため、仮に温度センサ38に故障等が発生したとしても、混合ガス内に火花が発生することが抑制される。したがって、温度センサ38として採用可能な構成を広くしつつ、安全性の向上をさらに図ることができる。 Further, the temperature sensor 38 is configured to output a detection signal in a state of being energized, but is arranged in a portion sealed with the mold resin 700. Therefore, even if the temperature sensor 38 fails, sparks are suppressed from being generated in the mixed gas. Therefore, it is possible to further improve the safety while widening the configuration that can be adopted as the temperature sensor 38.
 なお、本実施形態では、温度センサ38を下地膜330上に形成する例について説明したが、温度センサ38は、例えば、第1層間絶縁膜370上に形成されていてもよい。つまり、温度センサ38の配置場所は、モールド樹脂700で封止される部分であれば、詳細な場所については適宜変更である。 Although the example in which the temperature sensor 38 is formed on the base film 330 has been described in the present embodiment, the temperature sensor 38 may be formed on, for example, the first interlayer insulating film 370. That is, the location of the temperature sensor 38 is appropriately changed as long as it is a portion sealed with the mold resin 700.
 (第4実施形態)
 第4実施形態について説明する。本実施形態は、第1実施形態に対し、熱流量センサ36におけるモールド部材300の構成を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
(Fourth Embodiment)
A fourth embodiment will be described. This embodiment is a modification of the configuration of the mold member 300 in the heat flow rate sensor 36 with respect to the first embodiment. Others are the same as those in the first embodiment, and thus the description thereof will be omitted here.
 まず、本実施形態のセンサ部310の構成について説明する。センサ部310は、図12に示されるように、絶縁基材450、表面保護部材451、裏面保護部材452が一体化され、この一体化されたものの内部で第1、第2層間接続部材461、462が交互に直列に接続された構造とされている。 First, the configuration of the sensor unit 310 of this embodiment will be described. As shown in FIG. 12, the sensor unit 310 has an insulating base material 450, a front surface protection member 451 and a back surface protection member 452 integrated, and inside the integrated body, the first and second interlayer connection members 461, The structure is such that 462s are alternately connected in series.
 具体的には、絶縁基材450、表面保護部材451、裏面保護部材452は、フィルム状であって、熱可塑性樹脂等の可撓性を有する樹脂材料で構成されている。 Specifically, the insulating base material 450, the front surface protection member 451 and the back surface protection member 452 are in the form of a film and are made of a flexible resin material such as a thermoplastic resin.
 そして、絶縁基材450には、厚さ方向に貫通するビアホールが形成され、当該ビアホール内に、互いに異なる金属や半導体等の熱電材料で構成された第1、第2層間接続部材461、462が埋め込まれている。また、絶縁基材450のうちの表面保護部材451側の面には、表面導体パターン471が形成されている。絶縁基材450のうちの裏面保護部材452側の面には、裏面導体パターン472が形成されている。そして、各第1、第2層間接続部材461、462は、表面導体パターン471および裏面導体パターン472によって直列に接続されることにより、複数の熱電対350が直列に接続された状態となっている。なお、第1、第2層間接続部材461、462としては、例えば、固相焼結されたBi-Sb-Te合金とBi-Teとの組み合わせや、Cuとコンスタンタンとの組み合わせ等が採用される。 A via hole penetrating in the thickness direction is formed in the insulating base material 450, and the first and second interlayer connection members 461 and 462 made of different thermoelectric materials such as metal and semiconductor are formed in the via hole. It is embedded. Further, a surface conductor pattern 471 is formed on the surface of the insulating base material 450 on the surface protection member 451 side. A back surface conductor pattern 472 is formed on the surface of the insulating base material 450 on the back surface protection member 452 side. The first and second interlayer connection members 461 and 462 are connected in series by the front surface conductor pattern 471 and the back surface conductor pattern 472, so that a plurality of thermocouples 350 are connected in series. .. As the first and second interlayer connection members 461 and 462, for example, a combination of a solid-phase sintered Bi-Sb-Te alloy and Bi-Te, a combination of Cu and Constantan, and the like are adopted. ..
 このようなセンサ部310は、熱流量による当該センサ部310の表面310aと裏面310bとの間の温度差に基づいた起電圧を出力する。つまり、このようなセンサ部310においても、通電されることなく、温度差に応じた検出信号を出力する。 Such a sensor unit 310 outputs an electromotive voltage based on the temperature difference between the front surface 310a and the back surface 310b of the sensor unit 310 due to the heat flow rate. That is, even in such a sensor unit 310, a detection signal corresponding to the temperature difference is output without being energized.
 以上が本実施形態におけるセンサ部310の構成である。そして、センサ部310は、図13に示されるように、裏面310bがアイランド部601と対向するように、アイランド部601上に配置されている。但し、本実施形態では、センサ部310は、全体がアイランド部601上に配置されている。 The above is the configuration of the sensor unit 310 in this embodiment. Then, as shown in FIG. 13, the sensor unit 310 is arranged on the island unit 601 so that the back surface 310b faces the island unit 601. However, in the present embodiment, the entire sensor unit 310 is arranged on the island unit 601.
 また、アイランド部601には、当該アイランド部601を挟んでセンサ部310と反対側に、熱伝導率の高い材料で構成されたヒートシンク480が銀ペースト等の図示しない接合部材を介して配置されている。例えば、ヒートシンク480は、銅、モリブデン、タングステン、アルミナを主材料とした放熱性系セラミックスや多孔質セラミックス、炭化珪素を主材料したセラミック等で構成される。 Further, in the island portion 601, a heat sink 480 made of a material having high thermal conductivity is arranged on the opposite side of the island portion 601 from the sensor portion 310 via a joining member (not shown) such as silver paste. There is. For example, the heat sink 480 is composed of heat-dissipating ceramics and porous ceramics mainly made of copper, molybdenum, tungsten, and alumina, ceramics mainly made of silicon carbide, and the like.
 さらに、本実施形態では、ヒートシンク480を覆うように、断熱材490が配置されている。 Further, in the present embodiment, the heat insulating material 490 is arranged so as to cover the heat sink 480.
 モールド樹脂700は、センサ部310およびヒートシンク480を封止するように形成されていると共に、センサ部310の表面310aを露出させる貫通孔701が形成されている。そして、貫通孔701およびセンサ部310のうちの貫通孔701から露出する部分には、保護膜710が形成されている。保護膜710は、撥水性の材料によって構成されており、例えば、フッ素界面活性剤等によって構成される。 The mold resin 700 is formed so as to seal the sensor portion 310 and the heat sink 480, and a through hole 701 that exposes the surface 310a of the sensor portion 310 is formed. A protective film 710 is formed in the portion of the through hole 701 and the sensor unit 310 that is exposed from the through hole 701. The protective film 710 is made of a water-repellent material, for example, a fluorine surfactant or the like.
 以上説明したように、センサ部310は、表面310aと裏面310bとの間の温度差に応じた起電圧を発生する構成とされていてもよい。この場合、本実施形態では、アイランド部601を挟んでセンサ部310と反対側にヒートシンク480が配置されているため、センサ部310の裏面310bの温度が混合ガスによって変動することを抑制できる。したがって、センサ部310における表面310aと裏面310bとの間の温度差を大きくし易く、感度の向上を図ることができる。 As described above, the sensor unit 310 may be configured to generate an electromotive voltage according to the temperature difference between the front surface 310a and the back surface 310b. In this case, in the present embodiment, since the heat sink 480 is arranged on the opposite side of the island portion 601 from the sensor portion 310, it is possible to suppress the temperature of the back surface 310b of the sensor portion 310 from fluctuating due to the mixed gas. Therefore, the temperature difference between the front surface 310a and the back surface 310b in the sensor unit 310 can be easily increased, and the sensitivity can be improved.
 さらに、本実施形態では、ヒートシンク480を覆うように断熱材490が配置されている。このため、断熱材490により、ヒートシンク480の温度が混合ガスによって変動することを抑制できる。したがって、さらにセンサ部310の裏面310bの温度が混合ガスによって変動することを抑制できる。 Further, in the present embodiment, the heat insulating material 490 is arranged so as to cover the heat sink 480. Therefore, the heat insulating material 490 can prevent the temperature of the heat sink 480 from fluctuating due to the mixed gas. Therefore, it is possible to further prevent the temperature of the back surface 310b of the sensor unit 310 from fluctuating due to the mixed gas.
 (第5実施形態)
 第5実施形態について説明する。本実施形態は、第4実施形態に対し、熱流量センサ36におけるモールド部材300の構成を変更したものである。その他に関しては、第4実施形態と同様であるため、ここでは説明を省略する。
(Fifth Embodiment)
A fifth embodiment will be described. This embodiment is a modification of the configuration of the mold member 300 in the heat flow rate sensor 36 with respect to the fourth embodiment. Others are the same as those in the fourth embodiment, and thus the description thereof will be omitted here.
 本実施形態では、図14に示されるように、リードフレーム600におけるアイランド部601は、センサ部310が配置される部分の厚みが他の部分の厚みより十分に厚くされた厚肉部601aを有する構成とされている。そして、リードフレーム600を挟んでセンサ部310と反対側には、上記第3実施形態におけるヒートシンク480が配置されていない。つまり、本実施形態では、リードフレーム600のうちの厚肉部601aがヒートシンクとしての機能を発揮する。 In the present embodiment, as shown in FIG. 14, the island portion 601 of the lead frame 600 has a thick portion 601a in which the thickness of the portion where the sensor portion 310 is arranged is sufficiently thicker than the thickness of the other portion. It is configured. The heat sink 480 according to the third embodiment is not arranged on the side opposite to the sensor unit 310 with the lead frame 600 in between. That is, in the present embodiment, the thick portion 601a of the lead frame 600 functions as a heat sink.
 これによれば、リードフレーム600のうちの厚肉部601aがヒートシンクとしての機能を発揮するため、別体のヒートシンク480を備える必要がない。このため、部品点数の削減を図ることができる。 According to this, since the thick portion 601a of the lead frame 600 functions as a heat sink, it is not necessary to provide a separate heat sink 480. Therefore, the number of parts can be reduced.
 (第6実施形態)
 第6実施形態について説明する。本実施形態は、第4実施形態に対し、熱流量センサ36におけるモールド部材300にメッキ膜を配置したものである。その他に関しては、第4実施形態と同様であるため、ここでは説明を省略する。
(Sixth Embodiment)
The sixth embodiment will be described. In this embodiment, a plating film is arranged on the mold member 300 in the heat flow sensor 36 as compared with the fourth embodiment. Others are the same as those in the fourth embodiment, and thus the description thereof will be omitted here.
 まず、上記のように熱流量センサ36は、混合ガスにおける熱流量を検出するのに用いられる。この場合、モールド部材300のうちのコネクタケース800から突出する部分、つまり、ハウジング900の延設部903内に位置する部分は、混合ガスに晒される。このためモールド部材300では、混合ガスに含まれる水素ガスがモールド樹脂700を透過してリードフレーム600やボンディングワイヤ611、612等に達することによる水素脆化等が懸念される。 First, as described above, the heat flow rate sensor 36 is used to detect the heat flow rate in the mixed gas. In this case, the portion of the mold member 300 protruding from the connector case 800, that is, the portion located in the extending portion 903 of the housing 900 is exposed to the mixed gas. Therefore, in the mold member 300, there is a concern that hydrogen gas contained in the mixed gas permeates the mold resin 700 and reaches the lead frame 600, the bonding wires 611, 612, etc., resulting in hydrogen embrittlement and the like.
 したがって、本実施形態では、図15に示されるように、モールド部材300のうちのコネクタケース800から露出する部分には、モールド樹脂700よりも水素ガスの透過性が低いメッキ膜720が配置されている。なお、メッキ膜720は、例えば、銅メッキ膜やニッケルメッキ膜等で構成される。 Therefore, in the present embodiment, as shown in FIG. 15, a plating film 720 having a lower hydrogen gas permeability than the mold resin 700 is arranged on the portion of the mold member 300 exposed from the connector case 800. There is. The plating film 720 is composed of, for example, a copper plating film, a nickel plating film, or the like.
 これによれば、モールド部材300のうちのコネクタケース800から露出する部分にメッキ膜720が配置されているため、メッキ膜720によって水素ガスがモールド部材300の内部に侵入することを抑制できる。したがって、水素脆化等が発生することを抑制できる。 According to this, since the plating film 720 is arranged in the portion of the mold member 300 exposed from the connector case 800, it is possible to prevent hydrogen gas from entering the inside of the mold member 300 by the plating film 720. Therefore, it is possible to suppress the occurrence of hydrogen embrittlement and the like.
 (他の実施形態)
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
Although the present disclosure has been described in accordance with embodiments, it is understood that the present disclosure is not limited to such embodiments or structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.
 例えば、上記各実施形態では、ガス成分検出装置50を燃料電池10に適用した例について説明したが、燃料電池10以外の各種装置にガス成分検出装置50を適用してもよい。 For example, in each of the above embodiments, the example in which the gas component detection device 50 is applied to the fuel cell 10 has been described, but the gas component detection device 50 may be applied to various devices other than the fuel cell 10.
 また、上記各実施形態では、混合ガスに含まれる水素ガスの濃度を算出する例について説明したが、窒素ガスの濃度を算出するようにしてもよい。 Further, in each of the above embodiments, an example of calculating the concentration of hydrogen gas contained in the mixed gas has been described, but the concentration of nitrogen gas may be calculated.
 そして、上記各実施形態において、混合ガスは、水素ガスおよび窒素ガスを含むものに限定されるものではなく、熱伝導率が異なる少なくとも2種類のガスを含む構成されていればよい。 Then, in each of the above embodiments, the mixed gas is not limited to the one containing hydrogen gas and nitrogen gas, and may be configured to contain at least two kinds of gases having different thermal conductivity.
 さらに、上記各実施形態において、熱流量センサ36、圧力センサ37、温度センサ38は、気液分離器35内に配置されておらず、例えば、気液分離器35と電磁弁34との間の水素排出配管31に備えられていてもよい。この場合は、水素排出配管31がガス流路を構成する。つまり、熱流量センサ36、圧力センサ37、温度センサ38の配置場所は、適宜変更可能である。また、燃料電池システムは、気液分離器35を備えない構成とされていてもよい。 Further, in each of the above embodiments, the heat flow rate sensor 36, the pressure sensor 37, and the temperature sensor 38 are not arranged in the gas-liquid separator 35, for example, between the gas-liquid separator 35 and the solenoid valve 34. It may be provided in the hydrogen discharge pipe 31. In this case, the hydrogen discharge pipe 31 constitutes the gas flow path. That is, the arrangement locations of the heat flow rate sensor 36, the pressure sensor 37, and the temperature sensor 38 can be changed as appropriate. Further, the fuel cell system may be configured not to include the gas-liquid separator 35.
 そして、上記各実施形態において、混合ガスの湿度を検出する湿度センサを備えるようにし、制御部40は、湿度センサの検出結果を加味して水素ガスの濃度を算出するようにしてもよい。この場合、湿度センサによって混合ガスに含まれる水蒸気の比率を導出できるため、水蒸気を除いた水素ガスの濃度を算出することにより、検出精度の向上を図ることができる。 Then, in each of the above embodiments, a humidity sensor for detecting the humidity of the mixed gas may be provided, and the control unit 40 may calculate the concentration of the hydrogen gas in consideration of the detection result of the humidity sensor. In this case, since the ratio of the water vapor contained in the mixed gas can be derived by the humidity sensor, the detection accuracy can be improved by calculating the concentration of the hydrogen gas excluding the water vapor.
 また、上記各実施形態において、ダイヤフラム部340は、センサ基板320の他面320bから凹部321が形成されることで構成されるものに限定されない。例えば、ダイヤフラム部340は、センサ基板320の一面320a側から内部に空洞部が形成されるように凹部が形成されることにより、当該凹部を略閉塞する部分で構成されてもよい。 Further, in each of the above embodiments, the diaphragm portion 340 is not limited to the one formed by forming the recess 321 from the other surface 320b of the sensor substrate 320. For example, the diaphragm portion 340 may be composed of a portion that substantially closes the recess by forming a recess so as to form a cavity inside from the one side 320a side of the sensor substrate 320.
 また、上記第4実施形態において、断熱材490は、配置されていなくもよい。このような構成としても、ヒートシンク480が配置されていることにより、感度の向上を図ることができる。同様に、上記第5、第6実施形態においても、断熱材490は配置されていなくてもよい。 Further, in the fourth embodiment, the heat insulating material 490 does not have to be arranged. Even with such a configuration, the sensitivity can be improved by arranging the heat sink 480. Similarly, in the fifth and sixth embodiments, the heat insulating material 490 may not be arranged.
 そして、上記各実施形態を適宜組み合わせることもできる。例えば、上記第2実施形態を第3~第6実施形態に組み合わせ、保護部材430を配置するようにしてもよい。また、上記第3実施形態を上記第4~第6実施形態に組み合わせ、温度センサ38と熱流量センサ36とを一体化するようにしてもよい。さらに、上記第5実施形態を第6実施形態に組み合わせ、アイランド部601に厚肉部601aを備えるようにしてもよい。そして、上記各実施形態を組み合わせたもの同士をさらに組み合わせるようにしてもよい。 Then, each of the above embodiments can be combined as appropriate. For example, the second embodiment may be combined with the third to sixth embodiments, and the protective member 430 may be arranged. Further, the third embodiment may be combined with the fourth to sixth embodiments so that the temperature sensor 38 and the heat flow rate sensor 36 are integrated. Further, the fifth embodiment may be combined with the sixth embodiment so that the island portion 601 is provided with the thick portion 601a. Then, the combination of the above embodiments may be further combined.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

Claims (5)

  1.  ガス流路(35a)内を流れる、熱伝導率の異なる少なくとも2種類のガスが混合された混合ガスのうちの特定ガスのガス濃度を検出するガス成分検出装置であって、
     前記ガス流路内の熱流量に応じた検出信号を出力する熱流量センサ(36)と、
     前記ガス流路内の圧力に応じた検出信号を出力する圧力センサ(37)と、
     前記混合ガスの熱流量が前記ガス流路内で周期的に変化した際の前記熱流量の変化量を前記熱流量センサの検出信号に基づいて算出すると共に、前記混合ガスの圧力が前記ガス流路内で周期的に変化した際の前記圧力の変化量を前記圧力センサの検出信号に基づいて算出し、算出した前記熱流量の変化量と前記圧力の変化量との相関に基づいて前記特定ガスの濃度を算出する制御部(40)と、を備え、
     前記熱流量センサは、電流が遮断されている状態において、前記混合ガスの熱流量に応じた検出信号を出力するセンサ部(310)を有する構成とされているガス成分検出装置。
    A gas component detection device that detects the gas concentration of a specific gas in a mixed gas in which at least two types of gases having different thermal conductivitys are mixed, which flows in the gas flow path (35a).
    A heat flow rate sensor (36) that outputs a detection signal according to the heat flow rate in the gas flow path, and
    A pressure sensor (37) that outputs a detection signal according to the pressure in the gas flow path, and
    The amount of change in the heat flow rate when the heat flow rate of the mixed gas changes periodically in the gas flow path is calculated based on the detection signal of the heat flow rate sensor, and the pressure of the mixed gas is the gas flow. The amount of change in pressure when periodically changed in the road is calculated based on the detection signal of the pressure sensor, and the specified amount is specified based on the correlation between the calculated amount of change in heat flow rate and the amount of change in pressure. It is equipped with a control unit (40) that calculates the gas concentration.
    The heat flow rate sensor is a gas component detection device having a sensor unit (310) that outputs a detection signal according to the heat flow rate of the mixed gas in a state where the current is cut off.
  2.  前記センサ部は、一面(320a)および前記一面と反対側の他面(320b)を有し、凹部(321)が形成されたセンサ基板(320)と、前記センサ基板の一面上に配置され、前記センサ基板の一面に対する法線方向において、凹部の底面上に位置する端部と、凹部の底面と異なる部分上に位置する端部とを有する複数の第1配線層(360)および複数の第2配線層(380)と、を備え、
     前記複数の第1配線層および前記複数の第2配線層は、異なる材料で構成されると共に、交互に直列に接続され、
     前記検出信号は、前記混合ガスの熱流量に応じた起電圧である請求項1に記載のガス成分検出装置。
    The sensor unit is arranged on a sensor substrate (320) having one surface (320a) and another surface (320b) opposite to the one surface and having a recess (321) formed therein, and one surface of the sensor substrate. A plurality of first wiring layers (360) and a plurality of first wiring layers (360) having an end portion located on the bottom surface of the recess and an end portion located on a portion different from the bottom surface of the recess in the normal direction with respect to one surface of the sensor substrate. With 2 wiring layers (380)
    The plurality of first wiring layers and the plurality of second wiring layers are made of different materials and are alternately connected in series.
    The gas component detection device according to claim 1, wherein the detection signal is an electromotive voltage corresponding to the heat flow rate of the mixed gas.
  3.  前記センサ部は、一面(440a)および前記一面と反対側の他面(440b)を有し、前記他面が前記センサ基板の一面と対向する状態で前記センサ基板上に配置される保護基板(440)を有する保護部材(430)を備え、
     前記保護部材には、前記センサ部のうちの前記凹部の底面となる部分を前記保護部材から露出させる貫通孔(442)が形成されている請求項2に記載のガス成分検出装置。
    The sensor unit has one surface (440a) and another surface (440b) opposite to the one surface, and is arranged on the sensor substrate with the other surface facing one surface of the sensor substrate (protective substrate (440a). Provided with a protective member (430) having 440)
    The gas component detecting device according to claim 2, wherein the protective member is formed with a through hole (442) that exposes a portion of the sensor portion that becomes the bottom surface of the recess from the protective member.
  4.  前記ガス流路内の温度を検出する温度センサ(38)を備え、
     前記制御部は、前記熱流量の変化量と前記圧力の変化量との相関に加え、前記温度センサで検出された温度に基づき、前記特定ガスの濃度を算出する請求項1ないし3のいずれか1つに記載のガス成分検出装置。
    A temperature sensor (38) for detecting the temperature in the gas flow path is provided.
    Any one of claims 1 to 3 in which the control unit calculates the concentration of the specific gas based on the temperature detected by the temperature sensor in addition to the correlation between the change amount of the heat flow rate and the change amount of the pressure. The gas component detection device according to one.
  5.  前記センサ部は、一部がモールド樹脂(700)で封止されており、
     前記温度センサは、前記センサ部に形成され、前記モールド樹脂で封止されている請求項4に記載のガス成分検出装置。
    The sensor portion is partially sealed with a mold resin (700).
    The gas component detecting device according to claim 4, wherein the temperature sensor is formed in the sensor portion and sealed with the mold resin.
PCT/JP2020/039963 2019-10-24 2020-10-23 Gas component detection device WO2021080003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019193606A JP2022180669A (en) 2019-10-24 2019-10-24 Gas component detection device
JP2019-193606 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021080003A1 true WO2021080003A1 (en) 2021-04-29

Family

ID=75620161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039963 WO2021080003A1 (en) 2019-10-24 2020-10-23 Gas component detection device

Country Status (2)

Country Link
JP (1) JP2022180669A (en)
WO (1) WO2021080003A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090317A (en) * 2015-11-12 2017-05-25 株式会社デンソー Gas component detection device and control system
JP2019128182A (en) * 2018-01-22 2019-08-01 株式会社Soken Gas characteristic detection device, and fuel cell system
JP2019129014A (en) * 2018-01-23 2019-08-01 株式会社Soken Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090317A (en) * 2015-11-12 2017-05-25 株式会社デンソー Gas component detection device and control system
JP2019128182A (en) * 2018-01-22 2019-08-01 株式会社Soken Gas characteristic detection device, and fuel cell system
JP2019129014A (en) * 2018-01-23 2019-08-01 株式会社Soken Fuel cell system

Also Published As

Publication number Publication date
JP2022180669A (en) 2022-12-07

Similar Documents

Publication Publication Date Title
US8713990B2 (en) Gas sensor
JP2009081117A (en) Current density distribution sensor, manufacturing method thereof, and fuel cell system
JP6569464B2 (en) Fuel cell diagnostic device
WO2006134671A1 (en) Fuel cell system designed to ensure stability of operation
JP2007040755A (en) Gas sensor
US9660283B2 (en) Current measurement device
US20100003568A1 (en) Fuel cell and fuel cell system including the same
WO2021080003A1 (en) Gas component detection device
JP7052303B2 (en) Humidity detector, fuel cell system
JP2008293766A (en) Fuel cell stack
JP2019128182A (en) Gas characteristic detection device, and fuel cell system
JP4602124B2 (en) Gas detector
US9664637B2 (en) Microelectrochemical sensor and method for operating a microelectrochemical sensor
JP2009129847A (en) Fuel cell system
JP2010021096A (en) Temperature distribution measuring device, fuel cell system, and fuel cell evaluation device
JP2009193900A (en) Fuel cell system
US7416797B2 (en) Monitor device for fuel cell
JP2007115489A (en) Fuel cell and fuel cell system
US20160290947A1 (en) Gas sensor
JP2021018130A (en) Sensor device and fuel cell system
WO2021193725A1 (en) Gas concentration sensor
JP2007048647A (en) Fuel cell
JP6291369B2 (en) Water content control method and apparatus for fuel cell
JP4430520B2 (en) Gas sensor
JP7174680B2 (en) Separator, power generation cell, fuel cell stack and liquid detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP