WO2021079731A1 - 光電変換膜およびそれを用いた太陽電池、ならびに光電変換膜の製造方法 - Google Patents

光電変換膜およびそれを用いた太陽電池、ならびに光電変換膜の製造方法 Download PDF

Info

Publication number
WO2021079731A1
WO2021079731A1 PCT/JP2020/037789 JP2020037789W WO2021079731A1 WO 2021079731 A1 WO2021079731 A1 WO 2021079731A1 JP 2020037789 W JP2020037789 W JP 2020037789W WO 2021079731 A1 WO2021079731 A1 WO 2021079731A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion film
electrode
solar cell
solution
Prior art date
Application number
PCT/JP2020/037789
Other languages
English (en)
French (fr)
Inventor
牧 平岡
隆介 内田
透 中村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021554237A priority Critical patent/JPWO2021079731A1/ja
Priority to CN202080070049.8A priority patent/CN114514623A/zh
Publication of WO2021079731A1 publication Critical patent/WO2021079731A1/ja
Priority to US17/700,952 priority patent/US20220216439A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/24Lead compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes

Definitions

  • the present disclosure relates to a photoelectric conversion film, a solar cell using the photoelectric conversion film, and a method for manufacturing the photoelectric conversion film.
  • perovskite solar cells have been researched and developed.
  • the perovskite compound represented by the chemical formula AMX 3 (where A is a monovalent cation, M is a divalent cation, and X is a halogen anion) is used as the photoelectric conversion material. has been done.
  • the perovskite solar cell has a laminated structure including two electrodes arranged opposite to each other and a photoelectric conversion layer located between them and performing light absorption and light charge separation.
  • the photoelectric conversion layer is a perovskite layer containing a perovskite compound.
  • a perovskite compound represented by HC (NH 2 ) 2 PbI 3 (hereinafter referred to as “FAPbI 3 ”) can be used.
  • a lead-based perovskite solar cell provided with a perovskite layer containing a lead-based perovskite compound having M as lead exhibits high photoelectric conversion efficiency.
  • high-efficiency solar cells with an efficiency of more than 20% have been reported.
  • the crystal structure of a lead-based perovskite compound such as FAPbI 3 has a black ⁇ phase known in the space group P3m1 and a yellow ⁇ phase known in the space group P63mc.
  • the ⁇ phase is a structural isomer of the ⁇ phase.
  • the ⁇ phase does not exhibit photoelectric conversion characteristics near room temperature.
  • the ⁇ phase exhibits high photoelectric conversion capability and has a bandgap of 1.4 eV.
  • the value of this bandgap is the smallest among lead-based perovskite compounds.
  • the value of this bandgap is equal to the energy gap that allows the most efficient absorption of sunlight. Therefore, the perovskite layer containing FAPbI 3 is promising for producing a more efficient solar cell among the perovskite layers containing lead-based perovskite compounds.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose a method for producing a FAPbI 3 thin film.
  • Non-Patent Document 1 and Non-Patent Document 2 suggest that a solar cell having high conversion efficiency can be produced by using FAPbI 3 in the perovskite layer of a perovskite solar cell.
  • Patent Document 1 discloses a solar cell including a perovskite layer containing a complex containing a perovskite compound and a sulfolane.
  • the perovskite layer disclosed in Patent Document 1 contains a perovskite compound in a complex state.
  • the perovskite layer containing the lead-based perovskite compound is required to have a larger film thickness.
  • the carrier life may be shortened.
  • An object of the present disclosure is to provide a photoelectric conversion film having a long carrier life.
  • the photoelectric conversion film of the present disclosure is An ⁇ -phase perovskite compound composed of a monovalent formamidinium cation, a Pb cation, and an iodide ion, and a dispersion term ⁇ D of 20 ⁇ 0.5 MPa 0.5 , a polar term ⁇ P of 18 ⁇ 1 MPa 0.5 , and hydrogen. It contains a substance having a Hansen solubility parameter in which the binding term ⁇ H satisfies 11 ⁇ 2 MPa 0.5.
  • the present disclosure provides a photoelectric conversion film having a long carrier life.
  • FIG. 1A is a schematic cross-sectional view of a photoelectric conversion film for explaining an outline of a method for manufacturing a photoelectric conversion film according to the first embodiment of the present disclosure.
  • FIG. 1B is a schematic cross-sectional view of a photoelectric conversion film for explaining an outline of a method for manufacturing a photoelectric conversion film according to the first embodiment of the present disclosure.
  • FIG. 2A is a schematic view showing an example of a method for manufacturing a photoelectric conversion film according to the first embodiment of the present disclosure.
  • FIG. 2B is a schematic view showing an example of a method for manufacturing a photoelectric conversion film according to the first embodiment of the present disclosure.
  • FIG. 1A is a schematic cross-sectional view of a photoelectric conversion film for explaining an outline of a method for manufacturing a photoelectric conversion film according to the first embodiment of the present disclosure.
  • FIG. 2B is a schematic view showing an example of a method for manufacturing a photoelectric conversion film according to the first embodiment of the present disclosure.
  • FIG. 2C is a schematic view showing an example of a method for manufacturing a photoelectric conversion film according to the first embodiment of the present disclosure.
  • FIG. 2D is a schematic view showing an example of a method for manufacturing a photoelectric conversion film according to the first embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view schematically showing a first example of a solar cell according to a second embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view schematically showing a second example of the solar cell according to the second embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view schematically showing a third example of the solar cell according to the second embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view schematically showing a first example of a solar cell according to a second embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view schematically showing a second example of the solar cell according to the second embodiment of the present disclosure.
  • FIG. 5 is a cross-
  • FIG. 6 shows a scanning electron microscope (SEM) image of a cross section of the photoelectric conversion film of Example 1-1.
  • FIG. 7 shows an SEM image of a cross section of the photoelectric conversion film of Comparative Example 1-4.
  • FIG. 8A shows an SEM image of a cross section of the photoelectric conversion film of Comparative Example 5-2.
  • FIG. 8B shows an SEM image of a cross section of the photoelectric conversion film of Comparative Example 5-2.
  • FIG. 9 shows the fluorescence attenuation curves of the photoelectric conversion films of Example 1-2, Comparative Example 1-4, Comparative Example 2-2, and Comparative Example 5-4.
  • FIG. 10A shows the analysis result of dimethyl sulfoxide by selective ion analysis of the gas chromatograph mass spectrometry (GC / MS) method for the photoelectric conversion film of Example 1-1.
  • FIG. 10B shows the analysis result of ⁇ -butyrolactone by selective ion analysis of the GC / MS method for the photoelectric conversion film of Example 1-1.
  • FIG. 10C shows the analysis result of sulfolane by selective ion analysis of the GC / MS method for the photoelectric conversion film of Example 1-1.
  • FIG. 11 shows the analysis results of the photoelectric conversion film of Example 1-1 by the scan analysis of the GC / MS method.
  • FIG. 12A shows the analysis results of dimethyl sulfoxide by selective ion analysis by the GC / MS method for the photoelectric conversion film of Comparative Example 1-4.
  • FIG. 12B shows the analysis result of ⁇ -butyrolactone by selective ion analysis of the GC / MS method for the photoelectric conversion film of Comparative Example 1-4.
  • FIG. 12C shows the analysis result of sulfolane by selective ion analysis of the GC / MS method for the photoelectric conversion film of Comparative Example 1-4.
  • FIG. 13 shows the analysis results of the photoelectric conversion film of Comparative Example 1-4 by the scan analysis of the GC / MS method.
  • FIG. 14 is a graph showing the relationship between the wavelength of incident light and the external quantum efficiency (EQE) in the solar cells of Example 2 and Comparative Example 6.
  • perovskite compound is a perovskite crystal structure represented by the chemical formula ABX 3 (where A is a monovalent cation, B is a divalent cation, and X is a halogen anion). And a structure having crystals similar thereto.
  • perovskite layer used in the present specification means a layer containing a perovskite compound.
  • lead-based perovskite compound used in the present specification means a lead-containing perovskite compound.
  • lead-based perovskite solar cell used in the present specification means a solar cell containing a lead-based perovskite compound as a photoelectric conversion material.
  • the photoelectric conversion film according to the first embodiment of the present disclosure contains a substance (hereinafter referred to as substance (A)) having the following Hansen solubility parameter (hereinafter referred to as “HSP”).
  • substance (A) having the following Hansen solubility parameter (hereinafter referred to as “HSP”).
  • ⁇ P 18 ⁇ 1 MPa 0.5
  • ⁇ H 11 ⁇ 2 MPa 0.5
  • perovskite compound according to the present embodiment may be referred to as “perovskite compound according to the present embodiment”.
  • HSP may be described as "HSP according to this embodiment”.
  • the photoelectric conversion film according to this embodiment contains the substance (A) having HSP according to this embodiment together with the perovskite compound according to this embodiment.
  • the photoelectric conversion film according to the present embodiment can be a high-quality film having excellent flatness even when the film thickness is large. Therefore, the photoelectric conversion film according to the present embodiment has a long carrier life even when the film thickness is large.
  • the perovskite compound contained in the photoelectric conversion film according to the present embodiment has an ⁇ phase.
  • the ⁇ -phase perovskite compound exhibits high photoelectric conversion ability and has a low bandgap.
  • the perovskite compound according to this embodiment is, for example, FAPbI 3
  • the ⁇ phase of this FAPbI 3 has a bandgap of 1.4 eV.
  • the value of this bandgap is the smallest among lead-based perovskite compounds. Since the perovskite compound according to the present embodiment has such a low bandgap, it is possible to efficiently absorb sunlight.
  • the substance (A) may be at least one selected from the group consisting of sulfolane and maleic anhydride.
  • Sulfolane has an HSP with a dispersion term ⁇ D of 20.3 MPa 0.5 , a polar term ⁇ P of 18.2 MPa 0.5 and a hydrogen bond term ⁇ H of 10.8 MPa 0.5.
  • Maleic anhydride has an HSP having a dispersion term ⁇ D of 20.2 MPa 0.5 , a polar term ⁇ P of 18.1 MPa 0.5 and a hydrogen bond term ⁇ H of 12.6 MPa 0.5.
  • substance (A) is sulfolane and / or maleic anhydride
  • defects in the perovskite structure derived from this substance (A) are less likely to become carrier recombination sites. Therefore, when the photoelectric conversion film according to the present embodiment contains sulfolane and / or maleic anhydride as the substance (A), a long carrier life can be realized.
  • the content of the substance (A) in the photoelectric conversion film according to the present embodiment may be 0.1 mol% or less.
  • the photoelectric conversion film according to the present embodiment contains the substance (A) in an amount of more than 0 mol%.
  • the photoelectric conversion film according to the present embodiment contains sulfolane as the substance (A)
  • the substance (A) may be a solvent contained in the solution used when producing the photoelectric conversion film according to the present embodiment.
  • the photoelectric conversion film according to the present embodiment can be produced by leaving a desired amount of the solvent in the film to be produced.
  • perovskite compounds are represented by, for example, chemical formula AMX 3 .
  • A represents a monovalent cation
  • M represents a divalent cation
  • X represents a halogen anion.
  • A, M, and X are also referred to herein as A-sites, M-sites, and X-sites, respectively.
  • the perovskite compound according to this embodiment is composed of a monovalent formamidinium cation, a Pb cation, and an iodide ion.
  • the perovskite compound according to this embodiment is, for example, a perovskite compound represented by the chemical formula HC (NH 2 ) 2 PbI 3 (that is, FAPbI 3 ).
  • the photoelectric conversion film according to the present embodiment may mainly contain the perovskite compound according to the present embodiment.
  • the photoelectric conversion film mainly contains the perovskite compound according to the present embodiment means that the ratio of the perovskite compound according to the present embodiment to the entire substance constituting the photoelectric conversion film is 70 mol% or more. For example, it may be 80 mol% or more.
  • the photoelectric conversion film according to the present embodiment may contain a material other than the perovskite compound according to the present embodiment.
  • the photoelectric conversion film according to the present embodiment for example, different from the FAPbI 3, a perovskite compound may include trace amounts of the chemical formula A2M2X2 3.
  • A2 is a monovalent cation.
  • A2 may contain a trace amount of monovalent cations such as alkali metal cations or organic cations. More specifically, A2 may include methyl ammonium cation (CH 3 NH 3 +) and / or cesium cations (Cs +) to trace.
  • M2 is a divalent cation.
  • M2 may contain trace amounts of transition metals and / or divalent cations of Group 13 to Group 15 elements. Further specific examples include Pb 2+ , Ge 2+ , and Sn 2+ .
  • X2 is a monovalent anion such as a halogen anion. Each site of cation A2, cation M2, and anion X2 may be occupied by a plurality of types of trace amounts of ions.
  • perovskite compounds different from FAPbI 3 are CH 3 NH 3 PbI 3 , CH 3 CH 2 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , CsPbI 3 , and CsPbBr 3 . ..
  • the photoelectric conversion film according to this embodiment can have a film thickness of 1 ⁇ m or more.
  • the film thickness of the photoelectric conversion film according to the present embodiment can be appropriately selected in the range of 1 ⁇ m or more and 100 ⁇ m or less depending on the application, for example.
  • the photoelectric conversion film according to the present embodiment can have a long carrier life even when it has a large film thickness of 1 ⁇ m or more.
  • the photoelectric conversion film according to the present embodiment can have a larger film thickness while maintaining a long carrier life. Since the photoelectric conversion film according to the present embodiment has a large film thickness of, for example, 1 ⁇ m or more, the photoelectric conversion film according to the present embodiment can also absorb light in the band of 1.4 eV to 1.5 eV.
  • the carrier life is shortened when the film thickness is increased, so that the film thickness must be limited to about several hundred nm in order to take out the generated carriers. Therefore, the conventional photoelectric conversion film containing a perovskite compound can absorb only about 1.5 eV of solar energy.
  • the photoelectric conversion film of the present embodiment can achieve both a long carrier life and a large film thickness of, for example, 1 ⁇ m or more. Therefore, the photoelectric conversion film according to the present embodiment has an increased absorption amount as compared with the conventional photoelectric conversion film, and can realize a high light absorption capacity.
  • the photoelectric conversion film according to the present embodiment When the photoelectric conversion film according to the present embodiment is used in a solar cell, the amount of carriers generated in the solar cell increases due to the large optical spectrum band that can be absorbed, and the carriers generated by the long carrier life can be taken out. It is possible. Therefore, the photoelectric conversion film according to the present embodiment can realize a solar cell having higher conversion efficiency.
  • the film thickness of the photoelectric conversion film according to this embodiment may be 3.4 ⁇ m or less.
  • the film thickness of the photoelectric conversion film is 3.4 ⁇ m or less, the surface roughness of the photoelectric conversion film can be suppressed to be smaller and the quality of the film can be improved. Therefore, when the film thickness is 3.4 ⁇ m or less, the photoelectric conversion film according to the present embodiment can further extend the carrier life.
  • the ratio of the root mean square roughness Rq to the film thickness may be, for example, 0.13 or less.
  • the photoelectric conversion film according to the present embodiment may have a longer carrier life.
  • the root mean square roughness Rq is measured according to JIS B 0601: 2013. For example, using a surface shape measuring device, a contour curve having a width of 500 ⁇ m is measured at three points to obtain a root mean square roughness. Then, the root mean square roughness Rq obtained by taking the average value of the measured root mean square roughness Rq at three points. Further, the film thickness of the photoelectric conversion film is determined by using a surface shape measuring device. For example, using a surface shape measuring device, three contour curves having a width of 500 ⁇ m are acquired. Then, from each contour curve, the average height from the substrate at a total of three points can be obtained. The average value is obtained from the average height from the obtained three points of the substrate and used as the film thickness of the photoelectric conversion film.
  • the ratio of the root mean square roughness Rq to the film thickness may be 0.1 or less.
  • the photoelectric conversion film of the present embodiment has a smaller surface roughness such that the ratio of the root mean square roughness Rq to the film thickness satisfies 0.1 or less. Therefore, a decrease in carrier life is less likely to occur, and a longer carrier life can be realized.
  • the ratio of the root mean square roughness Rq to the film thickness may be 0.07 or more.
  • 1A and 1B are schematic cross-sectional views of a photoelectric conversion film for explaining an outline of a method for manufacturing a photoelectric conversion film according to the present embodiment.
  • the method for producing a photoelectric conversion film includes the following steps: (A) By applying a first solution containing a constituent element of the first perovskite compound on the substrate 10, a seed layer 11 composed of the first perovskite compound is formed (see FIG. 1A), and (B). The substrate 10 is heated and the second solution is brought into contact with the surface of the seed layer 11 on the substrate 10 to precipitate the second perovskite compound to obtain a photoelectric conversion film 12 (see FIG. 2B).
  • the second solution contains the constituent elements and the solvent of the second perovskite compound.
  • the constituent elements of the second perovskite compound include a monovalent formamidinium cation, a Pb cation, and an iodide ion.
  • the solvent contains a substance (A) having an HSP satisfying the dispersion term ⁇ D of 20 ⁇ 0.5 MPa 0.5 , the polar term ⁇ P of 18 ⁇ 1 MPa 0.5 , and the hydrogen bond term ⁇ H of 11 ⁇ 2 MPa 0.5.
  • the seed layer 11 composed of the first perovskite compound is formed on the substrate 10.
  • the second perovskite compound is precipitated by bringing the second solution into contact with the surface of the seed layer 11 provided on the substrate 10, and the photoelectric conversion film 12 is formed.
  • the substrate 10 is allowed to stand while the substrate 10 is being heated while the second solution is in contact with the surface of the seed layer 11 provided on the substrate 10.
  • the seed layer 11 dissipates into the second solution, and at the same time, the second perovskite compound is precipitated to obtain the photoelectric conversion film 12.
  • the second perovskite compound corresponds to the perovskite compound according to the present embodiment.
  • the photoelectric conversion film 12 manufactured by such a method has excellent surface roughness and excellent quality even when it has a large film thickness. Therefore, the obtained photoelectric conversion film 12 can have a long carrier life even when it has a large film thickness.
  • the substance (A) used as a solvent remains in the obtained photoelectric conversion film 12. Therefore, the photoelectric conversion film 12 produced by the production method according to the present embodiment also contains the substance (A).
  • the seed layer 11 formed in the step (A) is composed of the first perovskite compound.
  • the first perovskite compound constituting the seed layer 11 may be, for example, a perovskite compound represented by Formula A1M1X1 3.
  • A1 represents a monovalent formamidinium cation, a monovalent ammonium cation, at least one selected from the group consisting of monovalent cesium cations, and monovalent rubidium cation.
  • B1 is at least one selected from the group consisting of Pb cations and Sn cations.
  • X1 is a halogen anion.
  • seed layer 11 is composed of a perovskite compound represented by Formula A1M1X1 3
  • second perovskite compound is easily precipitated in step (B), easily form the photoelectric conversion layer of good film quality.
  • the first solution used to form the seed layer 11 contains the constituent elements of the first perovskite compound.
  • first solution comprises, for example, a compound of M1X1 2 and A1X1 to be A1M1X1 3 raw material and a solvent.
  • the solvent may be any solvent that can dissolve the raw materials M1X1 2 and A1X1.
  • an organic solvent can be used.
  • organic solvents include alcohol solvents, amide solvents, nitrile solvents, hydrocarbon solvents, and lactone solvents. Two or more kinds of these solvents may be mixed and used.
  • the solvent may contain an additive. The inclusion of additives can lead to crystal nucleation and promote crystal growth. Examples of additives include hydrogen iodide, amines, and surfactants.
  • the first perovskite compound may be the same compound as the second perovskite compound contained in the produced photoelectric conversion film, or may be a different compound.
  • the substrate 10 As a method of applying the first solution on the substrate 10, for example, a coating method such as a spin coating method and a dip coating method, and a printing method can be used.
  • a coating method such as a spin coating method and a dip coating method, and a printing method can be used.
  • the substrate 10 may be, for example, a substrate having an electrode layer on its surface, or a surface.
  • a substrate in which an electrode layer and a carrier transport layer (for example, a hole transport layer or an electron transport layer) are laminated in this order may be used.
  • the substrate 10 to which the first solution is applied is heated to the first temperature to dry the applied first solution.
  • the first temperature may be any temperature at which the solvent of the first solution can be dried.
  • the first temperature is, for example, 100 ° C. or higher and 180 ° C. or lower.
  • the thickness of the seed layer 11 may be, for example, 10 nm or more and 100 nm or less. If it is 10 nm or more, the possibility of functioning as a seed layer can be increased. On the other hand, if it is 100 nm or less, the residue of the seed layer can be easily eliminated. That is, the photoelectric conversion film 12 in which the seed layer does not remain can be easily produced.
  • step (B) is carried out. That is, the photoelectric conversion film 12 is formed on the substrate 10.
  • a second solution for forming the photoelectric conversion film 12 is prepared.
  • the second solution contains the constituent elements of the second perovskite compound.
  • the second perovskite compound corresponds to the above-mentioned perovskite compound according to the present embodiment contained in the photoelectric conversion film according to the present embodiment. Therefore, the second perovskite compound is composed of a monovalent formamidinium cation, a Pb cation, and an iodide ion.
  • the second perovskite compound is, for example, a perovskite compound represented by the chemical formula FAPbI 3 . In this case, the second solution contains the constituent elements of FAPbI 3.
  • the second solution contains, for example, a compound of PbI 2 and FAI, which is a raw material of FAPbI 3 , and a solvent.
  • the solvent of the second solution is an HSP satisfying the dispersion term ⁇ D of 20 ⁇ 0.5 MPa 0.5 , the polar term ⁇ P of 18 ⁇ 1 MPa 0.5 , and the hydrogen bond term ⁇ H of 11 ⁇ 2 MPa 0.5.
  • the substance (A) to have is included.
  • This substance (A) may be, for example, at least one selected from the group consisting of sulfolane and maleic anhydride, or may be sulfolane.
  • PbI 2 has an HSP with a dispersion term ⁇ D of 18.8 MPa 0.5 , a polar term ⁇ P of 11.7 MPa 0.5 , and a hydrogen bond term ⁇ H of 12.3 MPa 0.5 .
  • FAI is dispersion term [delta] D is 15.0 MPa 0.5
  • polarity term [delta] P is 21.3MPa 0.5
  • a hydrogen bond term [delta] H have the HSP of 22.2MPa 0.5.
  • materials having a short distance R have similar properties, so that they are miscible, and materials having a long distance R are not compatible with each other and are separated.
  • R (PbI 2 ) the distance between the point representing PbI 2 and the point representing an arbitrary solvent
  • R (FAI) the distance between the FAI and the point of the solvent
  • the solvent of the second solution may contain a plurality of kinds of substances (A).
  • the second solution is brought into contact with the surface of the seed layer 11 on the substrate 10.
  • the substrate 10 is heated to the second temperature.
  • the second temperature which is the heating temperature of the substrate 10 at the time of contact between the seed layer 11 and the second solution, can be set to, for example, a temperature at which the second solution becomes saturated or supersaturated.
  • This immediately results in the exchange of the seed layer 11 with the second perovskite compound in the second solution.
  • the second perovskite compound grows on the substrate 10 to form the photoelectric conversion film 12.
  • the solvent contained in the second solution is sulfolane
  • the second solution becomes supersaturated in the range of room temperature or more and 150 ° C. or less.
  • the second temperature can be set to, for example, 130 ° C. or lower.
  • at least the substrate 10 may be heated to the second temperature, and the second solution may or may not be heated.
  • the heating temperature may be lower than the second temperature.
  • the film thickness of the photoelectric conversion film can be controlled by adjusting the contact time between the seed layer 11 and the second solution (that is, the precipitation time of the second perovskite compound).
  • the photoelectric conversion film 12 can be formed by precipitating, for example, FAPbI 3 as a second perovskite compound on the seed layer 11.
  • the thickness of the photoelectric conversion film 12 to be produced is not particularly limited, and can be appropriately determined according to the application of the photoelectric conversion film 12. According to the production method according to the present embodiment, a photoelectric conversion film 12 having a large film thickness having a thickness of 1 ⁇ m or more can be produced with high quality so as to have high flatness.
  • FIGS. 2A to 2D are schematic views showing an example of a method for manufacturing a photoelectric conversion film according to the present embodiment.
  • the first solution 51 is applied onto the substrate 10 by, for example, a spin coating method.
  • the substrate 10 coated with the first solution 51 is heated to dry the coating film of the first solution 51 on the substrate 10.
  • a seed layer 11 composed of the first perovskite compound is formed.
  • the second solution 52 is held in the container 54, and the surface of the seed layer 11 of the substrate 10 on which the seed layer 11 is formed is brought into contact with the liquid level 53 of the second solution 52.
  • the second solution 52 containing PbI 2 and FAI is heated to a second temperature (for example, 100 ° C.), and the surface of the seed layer 11 of the substrate 10 also heated to the second temperature is subjected to the liquid level 53 of the second solution 52. Make contact.
  • the exchange of the seed layer 11 with FAPbI 3 in the second solution 52 occurs immediately, and FAPbI 3 grows on the substrate 10.
  • the photoelectric conversion film 12 is formed on the substrate 10.
  • the heating temperature of the second solution 52 may be lower than the second temperature, and the second solution 52 may not be heated.
  • the method for producing a photoelectric conversion film according to the present embodiment is not limited to the above method.
  • a photoelectric conversion film having a large film thickness is produced, a film having high flatness and higher quality can be obtained, so that the production method according to the above embodiment may be used.
  • the solar cell according to the second embodiment of the present disclosure includes a first electrode, a second electrode, and a photoelectric conversion layer.
  • the photoelectric conversion layer is located between the first electrode and the second electrode. At least one electrode selected from the group consisting of the first electrode and the second electrode has translucency.
  • the photoelectric conversion layer is the photoelectric conversion film described in the first embodiment. That is, the photoelectric conversion layer of the solar cell according to the second embodiment has a perovskite compound composed of a monovalent formamidinium cation, a Pb cation, and an iodide ion, and a dispersion term ⁇ D of 20 ⁇ 0.5 MPa.
  • It is composed of a photoelectric conversion film containing a substance (A) having an HSP satisfying 0.5, a polar term ⁇ P of 18 ⁇ 1 MPa 0.5 , and a hydrogen bond term ⁇ H of 11 ⁇ 2 MPa 0.5.
  • the photoelectric conversion layer of the solar cell according to the present embodiment is composed of the photoelectric conversion film having the above configuration. Thereby, it is possible to have a long carrier life. As described in the first embodiment, this photoelectric conversion film can have a long carrier life even when the film thickness is increased. Therefore, by increasing the film thickness of the photoelectric conversion film, a solar cell having a wider absorbable optical spectrum band and improved light absorption capacity can be obtained. As a result, the amount of carriers generated in the solar cell increases, and high conversion efficiency can be realized.
  • FIG. 3 is a cross-sectional view schematically showing a first example of a solar cell according to a second embodiment of the present disclosure.
  • the first electrode 102, the photoelectric conversion layer 103, and the second electrode 104 are laminated in this order on the substrate 101.
  • the solar cell 100 does not have to have the substrate 101.
  • the solar cell 100 When the solar cell 100 is irradiated with light, the photoelectric conversion layer 103 absorbs the light and generates excited electrons and holes. The excited electrons move to the first electrode 102, which is the negative electrode. On the other hand, the holes generated in the photoelectric conversion layer 103 move to the second electrode 104, which is the positive electrode. As a result, the solar cell 100 can draw current from the negative electrode and the positive electrode.
  • the first electrode 102 functions as a negative electrode and the second electrode 104 functions as a positive electrode has been described, but the first electrode 102 functions as a positive electrode and the second electrode 104 functions as a negative electrode. You may.
  • the solar cell 100 can be manufactured by, for example, the following method. First, the first electrode 102 is formed on the surface of the substrate 101 by a sputtering method or the like. Next, the photoelectric conversion layer 103 made of the photoelectric conversion film according to the first embodiment is formed by the method described in the first embodiment. Next, the second electrode 104 is formed on the photoelectric conversion layer 103 by a sputtering method or the like.
  • the substrate 101 holds each layer of the solar cell 100.
  • the substrate 101 can be formed from a transparent material.
  • a glass substrate or a plastic substrate can be used.
  • the plastic substrate may be, for example, a plastic film.
  • the first electrode 102 and the second electrode 104 have conductivity. At least one of the first electrode 102 and the second electrode 104 is translucent. As used herein, "the electrode is translucent" means that 10% or more of the light having a wavelength of 200 nanometers or more and 2000 nanometers or less passes through the electrode at any wavelength.
  • the translucent electrode can transmit light from the visible region to the near infrared region, for example.
  • the translucent electrode can be formed from at least one of a transparent and conductive metal oxide and metal nitride.
  • metal oxides are (I) Titanium oxide doped with at least one selected from the group consisting of lithium, magnesium, niobium, and fluorine. (Ii) Gallium oxide doped with at least one selected from the group consisting of tin and silicon, (Iii) Indium-tin composite oxide, (Iv) Tin oxide doped with at least one selected from the group consisting of antimony and fluorine, or (v) Oxidation doped with at least one selected from the group consisting of boron, aluminum, gallium, and indium. It is zinc.
  • Two or more kinds of metal oxides can be combined and used as a composite.
  • metal nitride gallium nitride doped with at least one selected from the group consisting of silicon and oxygen. Two or more kinds of metal nitrides can be used in combination.
  • Metal oxides and metal nitrides can be used in combination.
  • the translucent electrode can be formed by using a non-transparent material and providing a pattern through which light is transmitted.
  • Examples of light-transmitting patterns include linear, wavy, grid-like, and punched metal-like patterns in which a large number of fine through holes are regularly or irregularly arranged. When the electrode has these patterns, light can be transmitted through a portion where the electrode material is not present.
  • Non-transparent materials include, for example, platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, zinc, and alloys containing any of these.
  • a carbon material having conductivity can also be used.
  • the first electrode 102 is in contact with the photoelectric conversion layer 103. Therefore, the first electrode 102 is formed of a material having a hole blocking property that blocks holes moving from the photoelectric conversion layer 103. In this case, the first electrode 102 does not make ohmic contact with the photoelectric conversion layer 103.
  • the hole blocking property in which holes moving from the photoelectric conversion layer 103 are blocked means that only the electrons generated in the photoelectric conversion layer 103 pass through and the holes do not pass through.
  • the Fermi energy level of the material having the hole blocking property may be higher than the energy at the upper end of the valence band with the photoelectric conversion layer 103. Examples of such a material include aluminum.
  • the second electrode 104 is in contact with the photoelectric conversion layer 103. Therefore, the second electrode 104 is made of a material having an electron blocking property that blocks electrons moving from the photoelectric conversion layer 103. In this case, the second electrode 104 does not make ohmic contact with the photoelectric conversion layer 103.
  • the electron blocking property in which the electrons moving from the photoelectric conversion layer 103 are blocked means that only the holes generated in the photoelectric conversion layer 103 pass through and the electrons do not pass through.
  • the Fermi energy level of the material having the electron blocking property is lower than the energy level at the lower end of the conduction band of the photoelectric conversion layer 103.
  • the Fermi energy level of the material having the electron blocking property may be lower than the Fermi energy level of the photoelectric conversion layer 103.
  • the second electrode 104 can be formed from a carbon material such as platinum, gold, or graphene. These materials have electron blocking properties but no translucency. Therefore, when the translucent second electrode 104 is formed by using such a material, the second electrode 104 having a pattern through which light is transmitted is formed as described above.
  • the light transmittance of the translucent electrode may be 50% or more, or 80% or more.
  • the wavelength of light transmitted through the electrodes depends on the absorption wavelength of the photoelectric conversion layer 103.
  • the thickness of each of the first electrode 102 and the second electrode 104 is, for example, 1 nm or more and 1000 nm or less.
  • the photoelectric conversion layer 103 is a photoelectric conversion film according to the first embodiment. Therefore, detailed description is omitted here.
  • FIG. 4 is a cross-sectional view schematically showing a second example of the solar cell according to the second embodiment of the present disclosure.
  • the solar cell 200 shown in FIG. 4 differs from the solar cell 100 shown in FIG. 3 in that it includes an electron transport layer 105.
  • Components having the same functions and configurations as the solar cell 100 are designated by a common reference numeral of the solar cell 100, and the description thereof will be omitted.
  • the first electrode 102, the electron transport layer 105, the photoelectric conversion layer 103, and the second electrode 104 are laminated in this order on the substrate 101.
  • the solar cell 200 When the solar cell 200 is irradiated with light, the photoelectric conversion layer 103 absorbs the light and generates excited electrons and holes. The excited electrons move to the first electrode 102, which is a negative electrode, via the electron transport layer 105. On the other hand, the holes generated in the photoelectric conversion layer 103 move to the second electrode 104, which is the positive electrode. As a result, the solar cell 200 can draw current from the negative electrode and the positive electrode.
  • the solar cell 200 can be manufactured by the same method as the solar cell 100 shown in FIG.
  • the electron transport layer 105 is formed on the first electrode 102 by a sputtering method or the like.
  • the first electrode 102 in the solar cell 200 is the same as the first electrode 102 in the solar cell 100.
  • the solar cell 200 includes an electron transport layer 105 between the photoelectric conversion layer 103 and the first electrode 102. Therefore, the first electrode 102 does not have to have a hole blocking property that blocks holes transferred from the photoelectric conversion layer 103. Therefore, the first electrode 102 may be formed of a material capable of forming ohmic contact with the photoelectric conversion layer 103. Since the first electrode 102 of the solar cell 200 does not have to have a hole blocking property, the range of material selection for the first electrode 102 is widened.
  • the electron transport layer 105 includes a semiconductor.
  • the electron transport layer 105 may be a semiconductor having a band gap of 3.0 eV or more.
  • a semiconductor having a band gap of 3.0 eV or more By forming the electron transport layer 105 with a semiconductor having a band gap of 3.0 eV or more, visible light and infrared light can be transmitted to the photoelectric conversion layer 103.
  • Examples of such semiconductors are organic n-type semiconductors and inorganic n-type semiconductors.
  • organic n-type semiconductors are imide compounds, quinone compounds, fullerenes, or derivatives of fullerenes.
  • inorganic n-type semiconductors are metal oxides, metal nitrides, or perovskite oxides.
  • metal oxides are Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga, Si, or Cr. It is an oxide.
  • a specific example is TiO 2 .
  • perovskite oxides are SrTIO 3 or CaTIO 3 .
  • the electron transport layer 105 may contain a substance having a bandgap larger than 6.0 eV.
  • substances with band gaps greater than 6.0 eV are (i) halides of alkali metals or alkaline earth metals such as lithium fluoride or calcium fluoride, (ii) alkali metal oxidation such as magnesium oxide. A thing, or (iii) silicon dioxide.
  • the thickness of the electron transport layer 105 is, for example, 10 nm or less.
  • the electron transport layer 105 may include a plurality of layers made of different materials.
  • FIG. 5 is a cross-sectional view schematically showing a third example of the solar cell according to the second embodiment of the present disclosure.
  • the solar cell 300 shown in FIG. 5 differs from the solar cell 200 shown in FIG. 4 in that it includes a hole transport layer 106.
  • the components having the same functions and configurations as the solar cell 100 and the solar cell 200 are designated by the same reference numerals as the solar cell 100 and the solar cell 200, and the description thereof will be omitted.
  • the first electrode 102, the electron transport layer 105, the photoelectric conversion layer 103, the hole transport layer 106, and the second electrode 104 are laminated in this order on the substrate 101. There is.
  • the solar cell 300 When the solar cell 300 is irradiated with light, the photoelectric conversion layer 103 absorbs the light and generates excited electrons and holes. The excited electrons move to the first electrode 102, which is a negative electrode, via the electron transport layer 105. On the other hand, the excited holes move to the second electrode 104, which is the positive electrode, via the hole transport layer 106. As a result, the solar cell 300 can draw current from the negative electrode and the positive electrode.
  • the solar cell 300 can be manufactured by the same method as the solar cell 200 shown in FIG.
  • the hole transport layer 106 is formed on the photoelectric conversion layer 103 by a coating method or the like.
  • the second electrode 104 in the solar cell 300 is the same as the second electrode 104 in the solar cell 200.
  • the solar cell 300 includes a hole transport layer 106 between the photoelectric conversion layer 103 and the second electrode 104. Therefore, the second electrode 104 does not have to have an electron blocking property that blocks electrons moving from the photoelectric conversion layer 103. Therefore, the second electrode 104 may be made of a material capable of making ohmic contact with the photoelectric conversion layer 103. Since the second electrode 104 of the solar cell 300 does not have to have an electron blocking property, the range of material selection for the second electrode 104 is widened.
  • the hole transport layer 106 is composed of an organic substance or an inorganic semiconductor.
  • the hole transport layer 106 may include a plurality of layers made of different materials.
  • the organic substance examples include phenylamine, a triphenylamine derivative, polytriallylamine (Poly (bis (4-phenyl) (2,4,6-trimethylphenyl) amino: PTAA), and PTAA) containing a tertiary amine in the skeleton. , PEDOT (poly (3,4-ethylenedioxythiophene) compound) containing a thiophene structure.
  • the molecular weight is not particularly limited and may be a polymer.
  • the film thickness may be 1 nm or more and 1000 nm or less, or 100 nm or more and 500 nm or less. If the film thickness is within this range, sufficient hole transportability can be exhibited, and the film thickness is this. If it is within the range, low resistance can be maintained, so that photogeneration can be performed with high efficiency.
  • the inorganic semiconductor can be used CuO, Cu 2 O, CuSCN, a p-type semiconductor such as molybdenum oxide or nickel oxide.
  • the film thickness may be 1 nm or more and 1000 nm or less, or 10 nm or more and 50 nm or less. When the film thickness is within this range, sufficient hole transportability can be exhibited. Further, if the film thickness is within this range, low resistance can be maintained, so that photovoltaic power generation can be performed with high efficiency.
  • a coating method or a printing method can be adopted as a method for forming the hole transport layer 106.
  • coating methods are doctor blade method, bar coating method, spray method, dip coating method or spin coating method.
  • An example of a printing method is a screen printing method.
  • a plurality of materials may be mixed to form the hole transport layer 106, and then the hole transport layer 106 may be pressurized or fired.
  • the hole transport layer 106 can be formed by a vacuum deposition method or the like.
  • the hole transport layer 106 may contain a supporting electrolyte and a solvent.
  • the supporting electrolyte and solvent stabilize the holes in the hole transport layer 106.
  • Examples of supporting electrolytes are ammonium salts or alkali metal salts.
  • Examples of ammonium salts are tetrabutylammonium perchlorate, tetraethylammonium hexafluorophosphate, imidazolium salt, or pyridinium salt.
  • Examples of alkali metal salts are lithium perchlorate or potassium tetrafluoride.
  • the solvent contained in the hole transport layer 106 may have high ionic conductivity. Both aqueous and organic solvents can be used.
  • the solvent may be an organic solvent in order to make the solute more stable. Examples of organic solvents are heterocyclic compounds such as tert-butylpyridine, pyridine, or n-methylpyrrolidone.
  • the solvent contained in the hole transport layer 106 may be an ionic liquid.
  • Ionic liquids can be used alone or in admixture with other solvents. Ionic liquids are desirable because of their low volatility and high flame retardancy.
  • ionic liquids examples include imidazolium compounds such as 1-ethyl-3-methylimidazolium tetracyanoborate, pyridine compounds, alicyclic amine compounds, aliphatic amine compounds, or azonium amine compounds.
  • the thickness of each layer other than the photoelectric conversion film can be an average value of values measured at an arbitrary plurality of points (for example, 5 points).
  • the thickness of each layer can be measured using an electron micrograph of the cross section.
  • Example 1 an operation for producing a photoelectric conversion film was performed.
  • the carrier life of the photoelectric conversion film was evaluated.
  • Example 1 The components of the photoelectric conversion film produced in Example 1 and Comparative Example 1 were analyzed.
  • Example 2 In Example 2 and Comparative Example 4, solar cells were produced. External quantum efficiency was measured for the manufactured solar cells.
  • Example 1 The photoelectric conversion films of Examples 1-1 to 1-6 were produced by the following methods.
  • a 24.5 mm square glass substrate with a thickness of 0.7 mm (manufactured by Nippon Sheet Glass Co., Ltd.) was prepared.
  • a seed layer was formed on the substrate.
  • the seed layer was formed by a coating method.
  • As the first solution for forming the seed layer 1 mol / L of lead iodide (PbI 2 ) (manufactured by Tokyo Chemical Industry Co., Ltd.) and methyl ammonium iodiate (CH 3 NH 3 I) (manufactured by Great Cell Solar Co., Ltd.) were used.
  • a solution of dimethyl sulfoxide (DMSO) manufactured by Sigma Aldrich) containing a molar concentration of 1 mol / L was prepared.
  • the first solution was applied onto the substrate by the spin coating method.
  • the substrate was heat-treated on a hot plate at 110 ° C. for 10 minutes to form a seed layer having a thickness of 300 nm on the substrate.
  • the second solution and the substrate on which the seed layer was formed were heated.
  • the heating temperatures of the second solution and the substrate are shown in Table 2.
  • the surface of the seed layer of the heated substrate was brought into contact with the liquid surface of the heated second solution for 1 second.
  • FAPbI 3 was precipitated by substituting with the seed layer.
  • a photoelectric conversion film containing FAPbI 3 was obtained. It was found by XRD measurement that FAPbI 3 was in the ⁇ phase. CuK ⁇ rays were used as X-rays.
  • Example 2 the solar cell 300 shown in FIG. 5 was manufactured.
  • Each component of the solar cell 300 according to the second embodiment was as follows.
  • Substrate 101 Glass substrate (thickness 0.7 mm)
  • First electrode 102 Indium-tin composite oxide electron transport layer 105: Laminated film of titanium dioxide (thickness 12 nm) and porous titanium dioxide (thickness 150 nm)
  • Photoelectric conversion layer 103 FAPbI3 (thickness 4000 nm)
  • Hole transport layer 106 2,2', 7,7'-tetracis- (N, N-di-p-methoxyphenylamine) 9,9'-spirobifluorene (hereinafter referred to as "spiro-OMeTAD") (thickness 170 nm)
  • Second electrode 104 Gold (thickness 170 nm)
  • the solar cell 300 of Example 2 was produced as follows.
  • a substrate provided with a transparent conductive layer that functions as the first electrode 102 was prepared on the surface of the glass substrate that is the substrate 101.
  • a conductive glass substrate surface resistance 10 ⁇ / ⁇ , manufactured by Nippon Sheet Glass Co., Ltd.
  • a thickness of 0.7 mm and having an indium-tin composite oxide layer on the surface was prepared.
  • the electron transport layer 105 was produced.
  • a dense titanium dioxide film was formed on the conductive glass substrate by the sputtering method.
  • An electron transport layer solution for forming a porous titanium dioxide layer constituting the electron transport layer 105 was prepared.
  • the electron transport layer solution was prepared by dispersing porous titanium dioxide (product name NR30D, manufactured by Great Cell Solar) in ethanol at a concentration of 150 g / L. Further, the electron transport layer solution was applied onto the dense titanium dioxide film by the spin coating method to obtain a coating film. The coating film was heated in an oven at 500 ° C. for 30 minutes to prepare an electron transport layer 105.
  • the photoelectric conversion layer 103 was produced.
  • the first solution for forming the seed layer on the electron transport layer 105 instead of the DMSO solution containing PbI 2 and CH 3 NH 3 I used in Example 1, the following solutions A, B, and A mixed solution of Solution C was prepared.
  • the solvent in solution A was a mixed solvent in which dimethylformamide (DMF) (manufactured by Sigma-Aldrich) and dimethyl sulfoxide (DMSO) (manufactured by Sigma-Aldrich) were mixed at a ratio of 4: 1 (volume ratio).
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • solution B a DMSO solution containing cesium iodide (CsI) (manufactured by Sigma-Aldrich) at a molar concentration of 1.5 mol / L was prepared.
  • CsI cesium iodide
  • a solution containing rubidium iodide (RbI) (manufactured by Sigma-Aldrich) at a molar concentration of 1.5 mol / L was prepared.
  • the solvent in solution C was a mixed solvent in which DMF and DMSO were mixed in a volume ratio of 4: 1.
  • the first solution was applied onto the electron transport layer 105 by the spin coating method. That is, the laminate formed by the substrate 101, the first electrode 102, and the electron transport layer 105 was the substrate for forming the seed layer. At this time, 200 ⁇ L of chlorobenzene (manufactured by Sigma-Aldrich) was added dropwise as a poor solvent onto the electron transport layer 105 of the above-mentioned laminated body during rotation.
  • chlorobenzene manufactured by Sigma-Aldrich
  • the laminate is heat-treated on a hot plate at 115 ° C. for 10 minutes, and further heat-treated on a hot plate at 100 ° C. for 30 minutes to form a seed layer having a thickness of 400 nm on the electron transport layer 105 of the laminate.
  • a seed layer having a thickness of 400 nm on the electron transport layer 105 of the laminate.
  • a photoelectric conversion film forming the photoelectric conversion layer 103 was produced in the same manner as in Example 1.
  • the concentration of the second concentration of PbI 2 in solution and CH (NH 2) 2 I, i.e. the concentration of FAPbI 3 in the second solution are shown in Table 2 .
  • the heating temperature of the substrate (that is, the above-mentioned laminate) and the second solution when the surface of the seed layer was brought into contact with the second solution was 125 ° C.
  • the hole transport layer 106 was formed on the photoelectric conversion layer 103.
  • the hole transport layer 106 was prepared by applying a toluene solution containing spiro-OMeTAD (manufactured by Tokyo Chemical Industry Co., Ltd.) at a concentration of 45 mg / mL onto the photoelectric conversion layer 103 by spin coating.
  • the thickness of the hole transport layer 106 was 170 nm.
  • Comparative Examples 1-1 to 1-7 ⁇ -butyrolactone (GBL) (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the solvent for the second solution for forming the photoelectric conversion film, instead of using SLF. It was.
  • the HSP of GBL is shown in Table 1.
  • the photoelectric conversion films containing FAPbI 3 of Comparative Examples 1-1 to 1-7 were prepared in the same steps as in Example 1 except that the solvent of the second solution was different.
  • the concentration of the second concentration of PbI 2 in solution and CH (NH 2) 2 I i.e. the concentration of FAPbI 3 in the second solution, Table It is shown in 2.
  • the heating temperatures of the second solution and the substrate, and the contact time between the seed layer and the second solution are shown in Table 2.
  • Comparative Examples 2-1 to 2-4 instead of using SLF as the solvent of the second solution for forming the photoelectric conversion film, ⁇ -valerolactone (GVL) (manufactured by Wako Pure Chemical Industries, Ltd.) was used. Used. HSP of GVL is shown in Table 1.
  • the photoelectric conversion films containing FAPbI 3 of Comparative Examples 2-1 to 2-4 were prepared in the same steps as in Example 1 except that the solvent of the second solution was different.
  • the concentration of the second concentration of PbI 2 in solution and CH (NH 2) 2 I i.e. the concentration of FAPbI 3 in the second solution, Table It is shown in 2.
  • the heating temperatures of the second solution and the substrate, and the contact time between the seed layer and the second solution are shown in Table 2.
  • ⁇ -heptanolactone (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the solvent of the second solution for forming the photoelectric conversion film, instead of using SLF.
  • GHL HSPs are in the range shown in Table 1.
  • the step of producing the photoelectric conversion film was carried out in the same step as in Example 1 except that the solvent of the second solution was different.
  • the concentration of the second concentration of PbI 2 in solution and CH (NH 2) 2 I i.e. the concentration of FAPbI 3 in the second solution are shown in Table 2.
  • the heating temperatures of the second solution and the substrate, and the contact time between the seed layer and the second solution are shown in Table 2.
  • ⁇ -decanolactone (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of using SLF as the solvent of the second solution for forming the photoelectric conversion film.
  • GDL HSPs are in the range shown in Table 1.
  • the step of producing the photoelectric conversion film was carried out in the same step as in Example 1 except that the solvent of the second solution was different.
  • the concentration of the second concentration of PbI 2 in solution and CH (NH 2) 2 I, i.e. the concentration of FAPbI 3 in the second solution are shown in Table 2.
  • the heating temperatures of the second solution and the substrate, and the contact time between the seed layer and the second solution are shown in Table 2.
  • a 24.5 mm square glass substrate with a thickness of 0.7 mm was prepared.
  • DMSO Dimethyl sulfoxide
  • PbI 2 lead iodide
  • CH formamidinium iodide
  • Table 2 The HSP of DMSO is shown in Table 1.
  • the concentration and CH (NH 2) of PbI 2 in this DMSO solution concentration of 2 I the concentration of FAPbI 3 in this DMSO solution, Table 2 It is shown in.
  • a photoelectric conversion film containing FAPbI 3 was formed on the substrate by applying a DMSO solution on the substrate and heat-treating it in the same manner as in the method for producing the seed layer in Example 1.
  • HSP of various solvents HSPs of various solvents used to prepare the photoelectric conversion films of Example 1, Comparative Example 1 and Comparative Example 5 are described in Reference 1 “Charles M. Hansen,“ HANSEN SOLUBILITY PARAMETERS A User's Handbook ”, It is taken from the value described in “Second Edition (2007, CRC Press)”.
  • the HSP of the solvent used to prepare the photoelectric conversion film of Comparative Example 2 is described in Reference 2 "HJ Salavage et al.," Identity of high performance solvent “for the chemistry 2017, 19, p2550-2560 (The Royal Society of Chemistry) ”.
  • ⁇ Measurement of film thickness H of photoelectric conversion film> The method for measuring the film thickness H of each photoelectric conversion film of Examples 1, 2 and Comparative Examples 1 to 5 is as follows. Using DekTak (manufactured by Bruker), the average height of the contour curve having a width of 500 ⁇ m from the substrate was measured at three points. Then, the average value was calculated and used as the film thickness H of the photoelectric conversion film. The results are shown in Table 2. The measured average heights of 3 points are a point at the center of the substrate and a point 7 mm to the left and right from the center of the substrate.
  • ⁇ Measurement of root mean square roughness Rq of photoelectric conversion film> The method for measuring the root mean square roughness Rq of each of the photoelectric conversion films of Examples 1, 2 and Comparative Examples 1 to 5 is as follows. Using DekTak (manufactured by Bruker), three contour curves having a width of 500 ⁇ m were measured. Then, the root mean square roughness was obtained using the contour curves of the three points. The average value was calculated and used as the root mean square roughness Rq of the photoelectric conversion film. The results are shown in Table 2.
  • FIG. 6 shows an SEM image of a cross section of the photoelectric conversion film of Example 1-1.
  • FIG. 7 shows an SEM image of a cross section of the photoelectric conversion film of Comparative Example 1-4.
  • FIG. 8A shows an SEM image of a cross section of the photoelectric conversion film of Comparative Example 5-2.
  • FIG. 8B shows an SEM image of a cross section of the photoelectric conversion film of Comparative Example 5-2.
  • 8A and 8B show SEM images of cross sections of the same photoelectric conversion film at different locations.
  • the photoelectric conversion films produced by the methods of Example 1 and Comparative Example 1 have a small surface roughness and a substantially uniform film thickness despite the large film thickness. It was.
  • FIGS. 8A and 8B when the film thickness of the photoelectric conversion film produced by the method of Comparative Example 5 is large, the film thickness differs depending on the observation point, the thickness is distributed, and the surface roughness is rough. It was observed that the film thickness was large.
  • the photoelectric conversion films of Example 1 and Comparative Example 1 have a surface surface as compared with the photoelectric conversion film of Comparative Example 5. The roughness was small. Further, from the SEM images of FIGS. 6 and 7, it was also confirmed that the seed layer disappeared in the photoelectric conversion film of Example 1-1 and Comparative Example 1-4, and a uniform photoelectric conversion film was obtained. It was.
  • FIG. 9 shows the fluorescence attenuation curves of the photoelectric conversion films of Example 1-2, Comparative Example 1-4, Comparative Example 2-2, and Comparative Example 5-4.
  • the horizontal axis of FIG. 9 shows time, and the vertical axis shows the number of counts normalized by peak count.
  • A A 1 exp (-t / ⁇ 1 ) + A 2 exp (-t / ⁇ 2 ) Obtained lifetimes ⁇ 1 (including laser light component) and ⁇ 2 .
  • A, A 1 , and A 2 represent the fluorescence intensity and the intensity of each component, and t represents time.
  • the pulse of the time waveform of the laser used for excitation is superimposed on the first component A 1 exp ( ⁇ t / ⁇ 1). Therefore, the carrier lifespan was compared using the lifetime ⁇ 2 of the second component A 2 exp ( ⁇ t / ⁇ 2).
  • Table 3 The calculation results are shown in Table 3.
  • the optimum film thickness of the photoelectric conversion film from which the generated carriers can be taken out is about 1 ⁇ m at most. Therefore, when the film thickness is increased to 1 ⁇ m or more to produce a photoelectric conversion film having a large light absorption, the generated carriers cannot be sufficiently taken out by the electrode layer.
  • the carrier life was 400 ns even though the film thickness was about 2.5 ⁇ m.
  • the carrier life of the photoelectric conversion films of Comparative Examples 1-4, 2-2, and 5-4 was as short as 120 ns or less. From these results, a substance having an HSP satisfying the dispersion term ⁇ D of 20 ⁇ 0.5 MPa 0.5 , the polar term ⁇ P of 18 ⁇ 1 MPa 0.5 , and the hydrogen bond term ⁇ H of 11 ⁇ 2 MPa 0.5 was used as the solvent.
  • the prepared photoelectric conversion film of Example 1-2 is a thick film, it is about four times as large as the photoelectric conversion film of Comparative Example prepared by using a solvent that does not satisfy such HSP. It had a carrier life.
  • the photoelectric conversion film was extracted by immersing a 24.5 mm square 0.7 mm thick glass substrate on which the photoelectric conversion film to be analyzed was produced in 2 mL of acetone. The obtained extract was used as a measurement sample. Quantitative analysis (selective ion analysis) of SLF, GBL, and DMSO, and qualitative and quantitative analysis (scan analysis) of the contained substances were performed on the measurement samples using a GC / MS apparatus. The quantification of the scan analysis was performed by calculation using toluene d8 as a reference material.
  • FIG. 10A shows the analysis result of dimethyl sulfoxide by selective ion analysis of the GC / MS method for the photoelectric conversion film of Example 1-1.
  • FIG. 10A shows the analysis result of dimethyl sulfoxide by selective ion analysis of the GC / MS method for the photoelectric conversion film of Example 1-1.
  • FIG. 10B shows the analysis result of ⁇ -butyrolactone by selective ion analysis of the GC / MS method for the photoelectric conversion film of Example 1-1.
  • FIG. 10C shows the analysis result of sulfolane by selective ion analysis of the GC / MS method for the photoelectric conversion film of Example 1-1.
  • FIG. 11 shows the analysis results of the photoelectric conversion film of Example 1-1 by the scan analysis of the GC / MS method.
  • FIG. 12A shows the analysis results of dimethyl sulfoxide by selective ion analysis by the GC / MS method for the photoelectric conversion film of Comparative Example 1-4.
  • FIG. 12B shows the analysis result of ⁇ -butyrolactone by selective ion analysis of the GC / MS method for the photoelectric conversion film of Comparative Example 1-4.
  • FIG. 12C shows the analysis result of sulfolane by selective ion analysis of the GC / MS method for the photoelectric conversion film of Comparative Example 1-4.
  • FIG. 13 shows the analysis results of the photoelectric conversion film of Comparative Example 1-4 by the scan analysis of the GC / MS method.
  • Table 4 shows the results of quantifying the substances contained in the photoelectric conversion film by the above analysis. From the photoelectric conversion film of Example 1-1, 0.1 mol% of SLF and 0.01 mol% of DMSO were detected. Further, 0.05 mol% of GBL and 0.02 mol% of DMSO were detected from the photoelectric conversion film of Comparative Example 1-4. As shown in HSP, SLF has a large tendency to complex with FAPbI 3 in the solvent group showing ITC, and it is considered that SLF is easily incorporated into the crystal structure of FAPbI 3. The number density of the incorporated molecules corresponds to 3.8 ⁇ 10 18 / cm 3.
  • the photoelectric conversion film of Example 1-1 thus incorporates the molecules of the solvent in the process of crystal growth during the production of the photoelectric conversion film.
  • the carrier life is considered to be about 20 ns at most. Therefore, in order to realize a carrier life of about 400 ns like the photoelectric conversion film of Example 1-1, it is considered necessary that the defect density is at most about 10 10 pieces / cm 3 or less.
  • the SLF molecules in the photoelectric conversion film are present in complementarity with the lattice defects, thereby preventing the photoinduced carriers from being captured by the lattice defects, lowering the recombination probability, and contributing to the extension of the carrier life. it is conceivable that.
  • the photoelectric conversion film of Example 1-1 has a dispersion term ⁇ D of 20 ⁇ 0.5 MPa 0.5 , a polar term ⁇ P of 18 ⁇ 1 MPa 0.5 , and a hydrogen bond term ⁇ H of 11 ⁇ 2 MPa 0.5 . It was confirmed that the substance (A) having HSP satisfying the above conditions was contained. That is, it was found that the produced photoelectric conversion film contains the substance (A) by using the substance (A) satisfying the above HSP as a solvent when producing the photoelectric conversion film. Furthermore, it was found that by containing the substance (A), the photoelectric conversion film can have a long carrier life even when it has a large film thickness.
  • FIG. 14 is a graph showing the wavelength of incident light and EQE in the solar cells of Example 2 and Comparative Example 2.
  • the horizontal axis of the graph of FIG. 14 indicates the wavelength of the incident light, and the vertical axis indicates EQE.
  • the bias voltage was 1V.
  • Table 5 shows the short-circuit current density (mA / cm 2 ) obtained by integrating EQE.
  • the photoelectric conversion layer of the solar cell according to Example 2 is charged by photoelectric conversion in a long wavelength band of 1.4 to 1.5 eV that can be absorbed by the thick film due to the long carrier recombination life. It was possible to take out more carriers to generate electricity.
  • the photoelectric conversion film of the present disclosure can have a long carrier life even when the film thickness is increased. Therefore, the photoelectric conversion film of the present disclosure can widen the light absorption band by increasing the film thickness, and also has a long carrier life. Therefore, the photoelectric conversion film of the present disclosure is a photoelectric conversion film suitable for producing a highly efficient solar cell.
  • the photoelectric conversion film of the present disclosure can achieve both high light absorption capacity and long carrier life, it can be used for a highly efficient photoelectric conversion layer of a solar cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本開示による光電変換膜12は、1価のホルムアミジニウムカチオン、Pbカチオン、およびヨウ化物イオンで構成されるペロブスカイト化合物、および、分散項δDが20±0.5MPa0.5、極性項δPが18±1MPa0.5、および水素結合項δHが11±2MPa0.5、を満たすハンセン溶解度パラメータを有する物質、を含有する。

Description

光電変換膜およびそれを用いた太陽電池、ならびに光電変換膜の製造方法
 本開示は、光電変換膜およびそれを用いた太陽電池、ならびに光電変換膜の製造方法に関する。
 近年、ペロブスカイト太陽電池が研究および開発されている。ペロブスカイト太陽電池では、化学式AMX3(ここで、Aは1価のカチオンであり、Mは2価のカチオンであり、かつXはハロゲンアニオンである)で示されるペロブスカイト化合物が、光電変換材料として用いられている。
 ペロブスカイト太陽電池は、互いに対向して配置された2つの電極と、その間に位置し、光吸収および光電荷分離を行う光電変換層とを含む積層構造を有している。光電変換層は、ペロブスカイト化合物を含むペロブスカイト層である。ペロブスカイト化合物として、例えばHC(NH22PbI3(以下、「FAPbI3」という)で示されるペロブスカイト化合物が用いられ得る。
 特に、上記化学式AMX3において、Mを鉛とする鉛系ペロブスカイト化合物を含むペロブスカイト層を備えた鉛系ペロブスカイト太陽電池は、高い光電変換効率を示す。例えば、鉛系ペロブスカイト太陽電池において、効率20%を超える高効率な太陽電池が報告されている。例えば、FAPbI3のような鉛系ペロブスカイト化合物の結晶構造は、空間群P3m1で知られる黒色のα相、および、空間群P63mcで知られる黄色のδ相が存在する。δ相は、α相の構造異性体である。δ相は、室温付近では光電変換特性を示さない。しかしながら、α相は、高い光電変換能力を示し、バンドギャップ1.4eVを有する。このバンドギャップの値は、鉛系ペロブスカイト化合物中最小である。このバンドギャップの値は、太陽光の光吸収を最も効率的に行うことができるエネルギーギャップに等しい。このため、FAPbI3を含むペロブスカイト層は、鉛系ペロブスカイト化合物を含むペロブスカイト層の中でも、より高効率な太陽電池の作製に有望である。
 非特許文献1および非特許文献2は、FAPbI3薄膜の作製法を開示している。非特許文献1および非特許文献2では、FAPbI3をペロブスカイト太陽電池のペロブスカイト層に用いることによって、変換効率の高い太陽電池を作製できることが示唆されている。
 特許文献1は、ペロブスカイト化合物およびスルホランを含む錯体を含むペロブスカイト層を備えた太陽電池を開示している。特許文献1に開示されているペロブスカイト層には、ペロブスカイト化合物が錯体の状態で含まれている。
特開2019-55916号公報
Jeon, Nature 517, (2015) p476 Fang, Light: Science & Applications 5, (2016) e16056
 光吸収能力のさらなる向上を目的として、鉛系ペロブスカイト化合物を含むペロブスカイト層には、より大きい膜厚を有することが求められる。しかし、ペロブスカイト層の膜厚を大きくすると、キャリア寿命が低下する場合がある。
 本開示の目的は、長いキャリア寿命を有する光電変換膜を提供することにある。
 本開示の光電変換膜は、
 1価のホルムアミジニウムカチオン、Pbカチオン、およびヨウ化物イオンで構成されるα相のペロブスカイト化合物、および
 分散項δDが20±0.5MPa0.5、極性項δPが18±1MPa0.5、および水素結合項δHが11±2MPa0.5、を満たすハンセン溶解度パラメータを有する物質を含有する。
 本開示は、長いキャリア寿命を有する光電変換膜を提供する。
図1Aは、本開示の第1の実施形態による光電変換膜の製造方法の概略を説明するための、光電変換膜の模式的な断面図である。 図1Bは、本開示の第1の実施形態による光電変換膜の製造方法の概略を説明するための、光電変換膜の模式的な断面図である。 図2Aは、本開示の第1の実施形態による光電変換膜の製造方法の一例を示す模式図である。 図2Bは、本開示の第1の実施形態による光電変換膜の製造方法の一例を示す模式図である。 図2Cは、本開示の第1の実施形態による光電変換膜の製造方法の一例を示す模式図である。 図2Dは、本開示の第1の実施形態による光電変換膜の製造方法の一例を示す模式図である。 図3は、本開示の第2の実施形態による太陽電池の第1例を模式的に示す断面図である。 図4は、本開示の第2の実施形態による太陽電池の第2例を模式的に示す断面図である。 図5は、本開示の第2の実施形態による太陽電池の第3例を模式的に示す断面図である。 図6は、実施例1-1の光電変換膜の断面の走査型電子顕微鏡(SEM)画像を示す。 図7は、比較例1-4の光電変換膜の断面のSEM画像を示す。 図8Aは、比較例5-2の光電変換膜の断面のSEM画像を示す。 図8Bは、比較例5-2の光電変換膜の断面のSEM画像を示す。 図9は、実施例1-2、比較例1-4、比較例2-2、および比較例5-4の光電変換膜の蛍光減衰曲線を示す。 図10Aは、実施例1-1の光電変換膜について、ガスクロマトグラフ質量分析(GC/MS)法の選択イオン分析によるジメチルスルホキシドの分析結果を示す。 図10Bは、実施例1-1の光電変換膜について、GC/MS法の選択イオン分析によるγ-ブチロラクトンの分析結果を示す。 図10Cは、実施例1-1の光電変換膜について、GC/MS法の選択イオン分析によるスルホランの分析結果を示す。 図11は、実施例1-1の光電変換膜について、GC/MS法のスキャン分析による分析結果を示す。 図12Aは、比較例1-4の光電変換膜について、GC/MS法の選択イオン分析によるジメチルスルホキシドの分析結果を示す。 図12Bは、比較例1-4の光電変換膜について、GC/MS法の選択イオン分析によるγ-ブチロラクトンの分析結果を示す。 図12Cは、比較例1-4の光電変換膜について、GC/MS法の選択イオン分析によるスルホランの分析結果を示す。 図13は、比較例1-4の光電変換膜について、GC/MS法のスキャン分析による分析結果を示す。 図14は、実施例2および比較例6の太陽電池における、入射光の波長と外部量子効率(EQE)との関係を示すグラフである。
 <用語の定義>
 本明細書において用いられる用語「ペロブスカイト化合物」とは、化学式ABX3(ここで、Aは1価のカチオン、Bは2価のカチオン、およびXはハロゲンアニオンである)で示されるペロブスカイト結晶構造体およびそれに類似する結晶を有する構造体を意味する。
 本明細書において用いられる用語「ペロブスカイト層」とは、ペロブスカイト化合物を含む層を意味する。
 本明細書において用いられる用語「鉛系ペロブスカイト化合物」とは、鉛を含有するペロブスカイト化合物を意味する。
 本明細書において用いられる用語「鉛系ペロブスカイト太陽電池」とは、鉛系ペロブスカイト化合物を光電変換材料として含む太陽電池を意味する。
 <本開示の実施形態>
 以下、本開示の実施形態が、図面を参照しながら詳細に説明される。
 (第1の実施形態)
 本開示の第1の実施形態による光電変換膜は、1価のホルムアミジニウムカチオン(すなわち、NH2CHNH2 +)、Pbカチオン、およびヨウ化物イオンで構成されるα相のペロブスカイト化合物、および、以下のハンセン溶解度パラメータ(以下、「HSP」という)を有する物質(以下、物質(A)という)を含有する。
 HSP:
 分散項δD、極性項δP、および水素結合項δHとして
 δD=20±0.5MPa0.5
 δP=18±1MPa0.5
 δH=11±2MPa0.5
 以下、上記のα相のペロブスカイト化合物を「本実施形態によるペロブスカイト化合物」と記載することがある。また、上記のHSPを「本実施形態によるHSP」と記載することがある。
 本実施形態による光電変換膜は、本実施形態によるペロブスカイト化合物と共に、本実施形態によるHSPを有する物質(A)を含有する。この構成により、本実施形態による光電変換膜は、膜厚が大きい場合でも、平坦性に優れた高品質の膜となり得る。したがって、本実施形態による光電変換膜は、膜厚が大きい場合でも長いキャリア寿命を有する。
 本実施形態による光電変換膜に含まれるペロブスカイト化合物は、α相を有する。α相のペロブスカイト化合物は、高い光電変換能力を示し、かつ低いバンドギャップを有する。本実施形態によるペロブスカイト化合物が例えばFAPbI3である場合、このFAPbI3のα相は1.4eVのバンドギャップを有する。このバンドギャップの値は、鉛系ペロブスカイト化合物中最小である。本実施形態によるペロブスカイト化合物は、このように低いバンドギャップを有するので、太陽光の光吸収を効率的に行うことができる。
 物質(A)は、スルホランおよび無水マレイン酸からなる群より選ばれる少なくとも1つであってもよい。スルホランは、分散項δDが20.3MPa0.5であり、極性項δPが18.2MPa0.5であり、かつ水素結合項δHが10.8MPa0.5であるHSPを有する。無水マレイン酸は、分散項δDが20.2MPa0.5であり、極性項δPが18.1MPa0.5であり、かつ水素結合項δHが12.6MPa0.5であるHSPを有する。物質(A)がスルホランおよび/または無水マレイン酸である場合、この物質(A)に由来するペロブスカイト構造の欠陥は、キャリアの再結合サイトになりにくい。したがって、本実施形態による光電変換膜が物質(A)としてスルホランおよび/または無水マレイン酸を含む場合、長いキャリア寿命が実現され得る。
 スルホランに由来するペロブスカイト構造の欠陥は、特にキャリアの再結合サイトになりにくい。したがって、本実施形態による光電変換膜が物質(A)としてスルホランを含む場合、長いキャリア寿命がより実現されやすい。
 本実施形態による光電変換膜において、物質(A)の含有量は、0.1モル%以下であってもよい。本実施形態による光電変換膜は、物質(A)を0モル%を超えて含んでいる。
 本実施形態による光電変換膜が物質(A)としてスルホランを含有する場合、本実施形態により光電変換膜は、GC/MS法による分析において、m/z=41、56、および120にピークを有する。
 物質(A)は、本実施形態による光電変換膜を作製する際に用いられる溶液に含まれる溶媒であってもよい。物質(A)が膜作製時の溶媒である場合、作製される膜に溶媒を所望の量だけ残存させることによって、本実施形態による光電変換膜を作製できる。
 一般に、ペロブスカイト化合物は、例えば、化学式AMX3で示される。この化学式において、Aは1価のカチオンを表し、Mは2価のカチオンを表し、Xはハロゲンアニオンを表す。ペロブスカイト化合物における、慣用的に用いられている表現に従い、本明細書においては、A、M、およびXは、それぞれ、Aサイト、Mサイト、およびXサイトとも言う。本実施形態によるペロブスカイト化合物は、1価のホルムアミジニウムカチオン、Pbカチオン、およびヨウ化物イオンで構成されている。したがって、本実施形態によるペロブスカイト化合物は、例えば、化学式HC(NH22PbI3(すなわち、FAPbI3)で示されるペロブスカイト化合物である。なお、ここでいうFAPbI3は、FA:Pb:I=1:1:3で示されるが、AサイトにFA、MサイトにPb、XサイトにIを主として含んでいれば、組成のずれは許容される。
 本実施形態による光電変換膜は、本実施形態によるペロブスカイト化合物を主として含んでいてもよい。ここで、「光電変換膜が、本実施形態によるペロブスカイト化合物を主として含む」とは、光電変換膜を構成する物質全体に対する本実施形態によるペロブスカイト化合物の割合が、70モル%以上であることであり、例えば80モル%以上であってもよい。
 本実施形態による光電変換膜は、本実施形態によるペロブスカイト化合物以外の材料を含んでいてもよい。本実施形態による光電変換膜は、例えば、FAPbI3とは異なる、化学式A2M2X23で示されるペロブスカイト化合物を微量含んでもよい。A2は1価のカチオンである。耐久性を向上させるなどの目的で、A2は、アルカリ金属カチオンまたは有機カチオンのような1価のカチオンを微量含んでいてもよい。さらに具体的には、A2は、メチルアンモニウムカチオン(CH3NH3 +)および/またはセシウムカチオン(Cs+)を微量に含んでもよい。M2は、2価のカチオンである。耐久性を向上させるなどの目的で、M2は、遷移金属、および/または、第13族元素から第15族元素の2価のカチオンを微量含んでもよい。さらに具体例として、Pb2+、Ge2+、およびSn2+が挙げられる。X2は、ハロゲンアニオンなどの1価のアニオンである。カチオンA2、カチオンM2、およびアニオンX2のそれぞれのサイトは、複数種類の微量のイオンによって占有されていてもよい。FAPbI3とは異なるペロブスカイト化合物の具体例は、CH3NH3PbI3、CH3CH2NH3PbI3、CH3NH3PbBr3、CH3NH3PbCl3、CsPbI3、およびCsPbBr3である。
 本実施形態による光電変換膜は、1μm以上の膜厚を有することができる。本実施形態による光電変換膜の膜厚は、例えば用途に応じて、1μm以上100μm以下の範囲で適宜選択し得る。本実施形態による光電変換膜は、1μm以上の大きい膜厚を有する場合であっても、長いキャリア寿命を有し得る。このように、本実施形態による光電変換膜は、長いキャリア寿命を維持したまま、膜厚をより大きくすることができる。本実施形態による光電変換膜が、例えば1μm以上の大きい膜厚を有することにより、本実施形態による光電変換膜は、1.4eVから1.5eVの帯域の光も吸収することができる。一方、従来のペロブスカイト化合物を含有する光電変換膜では、膜厚を大きくするとキャリア寿命の低下が生じるので、発生したキャリアを取り出すために膜厚を数100nm程度に制限しなければならなかった。したがって、従来のペロブスカイト化合物を含有する光電変換膜は、1.5eV程度の太陽光エネルギーしか吸光できなかった。しかし、本実施形態の光電変換膜は、長いキャリア寿命と、例えば1μm以上の大きい膜厚とを両立することが可能である。したがって、本実施形態による光電変換膜は、従来の光電変換膜よりも吸光量が増加し、高い光吸収能力を実現し得る。本実施形態による光電変換膜は、太陽電池に利用された場合、吸収できる光スペクトル帯域が大きい分、太陽電池内で生じるキャリアの量が増加し、かつ長いキャリア寿命により生じたキャリアを取り出すことが可能である。したがって、本実施形態による光電変換膜は、より高い変換効率を有する太陽電池を実現できる。
 本実施形態による光電変換膜の膜厚は、3.4μm以下であってもよい。光電変換膜の膜厚が3.4μm以下であることにより、光電変換膜の表面粗さをより小さく抑えて膜の品質を向上させることができる。したがって、膜厚が3.4μm以下である場合、本実施形態による光電変換膜は、キャリア寿命をさらに高めることができる。
 本実施形態による光電変換膜では、膜厚に対する二乗平均平方根粗さRqの比は、例えば0.13以下であってもよい。本実施形態による光電変換膜がこのような小さい表面粗さを有する場合、本実施形態の光電変換膜は、より長いキャリア寿命を有し得る。
 ここで、二乗平均平方根粗さRqは、JIS B 0601:2013に準拠して測定される。例えば、表面形状測定装置用いて、幅500μmの輪郭曲線を3点測定して二乗平均平方根粗さを求める。そして、3点の測定された二乗平均平方根粗さの平均値をとることにより二乗平均平方根粗さRqが求められる。また、光電変換膜の膜厚は、表面形状測定装置を用いて、求められる。例えば、表面形状測定装置を用いて、幅500μmの輪郭曲線を3点取得する。そして、それぞれの輪郭曲線から、計3点の基板からの平均高さが求められる。得られた3点の基板からの平均高さから平均値を求め、光電変換膜の膜厚とする。
 本実施形態による光電変換膜において、膜厚に対する二乗平均平方根粗さRqの比は、0.1以下であってもよい。本実施形態の光電変換膜は、膜厚に対する二乗平均平方根粗さRqの比が0.1以下を満たす、より小さい表面粗さを有する。したがって、キャリア寿命の低下がより生じにくく、より長いキャリア寿命が実現され得る。
 本実施形態による光電変換膜において、膜厚に対する二乗平均平方根粗さRqの比は、0.07以上であってもよい。この構成により、本実施形態により光電変換膜は、長いキャリア寿命を実現するための結晶粒の必要最低限の大きさが担保される。よって、キャリア寿命が大きく、より平坦な膜が実現され得る。
 次に、本実施形態による光電変換膜を製造する方法の一形態が説明される。図1Aおよび図1Bは、本実施形態による光電変換膜の製造方法の概略を説明するための、光電変換膜の模式的な断面図である。
 本実施形態による光電変換膜の製造方法は、以下の工程を具備する:
 (A)基板10上に、第1ペロブスカイト化合物の構成元素を含む第1溶液を付与することによって、第1ペロブスカイト化合物で構成されたシード層11を形成し(図1A参照)、および
 (B)基板10を加熱し、かつ基板10上のシード層11の表面に第2溶液を接触させて、第2ペロブスカイト化合物を析出させて光電変換膜12を得る(図2B参照)。
 ここで、第2溶液は、第2ペロブスカイト化合物の構成元素および溶媒を含む。第2ペロブスカイト化合物の構成元素は、1価のホルムアミジニウムカチオン、Pbカチオン、およびヨウ化物イオンを含む。溶媒は、分散項δDが20±0.5MPa0.5、極性項δPが18±1MPa0.5、および水素結合項δHが11±2MPa0.5、を満たすHSPを有する物質(A)を含む。
 上記の本実施形態による製造方法では、まず工程(A)において、基板10上に第1ペロブスカイト化合物で構成されたシード層11が形成される。次に、工程(B)において、基板10上に設けられたシード層11の表面に第2溶液を接触させることにより、第2ペロブスカイト化合物を析出させて、光電変換膜12が形成される。工程(B)において、基板10上に設けられたシード層11の表面に第2溶液を接触させた状態で、かつ基板10を加熱しながら基板10を静置する。これにより、シード層11が第2溶液に散逸すると同時に第2ペロブスカイト化合物が析出して、光電変換膜12が得られる。すなわち、第2ペロブスカイト化合物が、本実施形態によるペロブスカイト化合物に相当する。このような方法で製造された光電変換膜12は、大きい膜厚を有する場合でも、表面粗さが小さく抑えられ、かつ優れた品質を有する。したがって、得られた光電変換膜12は、大きい膜厚を有する場合でも、長いキャリア寿命を有することができる。なお、得られた光電変換膜12には、溶媒として用いられた物質(A)が残存する。したがって、本実施形態による製造方法によって作製された光電変換膜12は、物質(A)も含有する。
 以下に、工程(A)および工程(B)が、より詳細に説明される。
 工程(A)で形成されるシード層11は、第1ペロブスカイト化合物で構成される。シード層11を構成する第1ペロブスカイト化合物は、例えば、化学式A1M1X13で示されるペロブスカイト化合物であってもよい。化学式A1M1X13において、A1は、1価のホルムアミジニウムカチオン、1価のメチルアンモニウムカチオン、1価のセシウムカチオン、および1価のルビジウムカチオンからなる群より選ばれる少なくとも1種である。B1は、PbカチオンおよびSnカチオンからなる群より選ばれる少なくとも1種である。X1は、ハロゲンアニオンである。
 シード層11が化学式A1M1X13で示されるペロブスカイト化合物で構成されることにより、工程(B)において第2ペロブスカイト化合物が析出しやすく、良好な膜質の光電変換膜を形成しやすくなる。
 シード層11の形成に用いられる第1溶液は、第1ペロブスカイト化合物の構成元素を含む。第1ペロブスカイト化合物が化学式A1M1X13で示されるペロブスカイト化合物である場合、第1溶液は、例えば、A1M1X13の原料となるM1X12およびA1X1の化合物と、溶媒とを含む。溶媒としては、原料であるM1X12およびA1X1を溶解することができるものであればよい。例えば有機溶媒が用いられ得る。有機溶媒の例として、アルコール溶媒、アミド溶媒、ニトリル溶媒、炭化水素溶媒、およびラクトン溶媒が挙げられる。これらの溶媒が2種類以上混合されて用いられてもよい。また、溶媒が添加剤を含んでいてもよい。添加剤が含まれることにより、結晶の核生成が生じて、結晶成長が促進され得る。添加剤の例としては、ヨウ化水素、アミン類、および界面活性剤が挙げられる。
 第1ペロブスカイト化合物は、作製される光電変換膜に含まれる第2ペロブスカイト化合物と同じ化合物であってもよいし、異なる化合物であってもよい。
 基板10上に第1溶液を付与する方法には、例えば、スピンコート法およびディップコート法などの塗布法、ならびに印刷法が用いられ得る。なお、本実施形態による製造方法によって作製される光電変換膜12が太陽電池の光電変換層である場合、基板10は、例えば、表面に電極層が設けられた基板であってもよいし、表面に電極層およびキャリア輸送層(例えば、正孔輸送層または電子輸送層)がこの順で積層された基板であってもよい。
 次いで、例えば、第1溶液が付与された基板10を第1温度に加熱して、付与された第1溶液を乾燥させる。第1温度は、第1溶液の溶媒を乾燥させることができる温度であればよい。第1温度は、一例として、例えば100℃以上180℃以下である。これにより、図1Aに示すように、第1ペロブスカイト化合物で構成されたシード層11が形成される。
 シード層11の厚さは、例えば10nm以上100nm以下であってもよい。10nm以上であれば、シード層として機能する可能性を高めることができる。一方、100nm以下であれば、シード層の残留を容易に排除できる。すなわち、シード層が残留しない光電変換膜12の作製が容易となる。
 次に、工程(B)が実施される。すなわち、基板10上に光電変換膜12が形成される。
 光電変換膜12を形成するための第2溶液が用意される。第2溶液は、第2ペロブスカイト化合物の構成元素を含む。第2ペロブスカイト化合物は、本実施形態による光電変換膜に含まれる、上述の本実施形態によるペロブスカイト化合物に相当する。したがって、第2ペロブスカイト化合物は、1価のホルムアミジニウムカチオン、Pbカチオン、およびヨウ化物イオンで構成される。第2ペロブスカイト化合物は、例えば、化学式FAPbI3で示されるペロブスカイト化合物である。この場合、第2溶液は、FAPbI3の構成元素を含む。第2の溶液は、例えば、FAPbI3の原料であるPbI2およびFAIの化合物と、溶媒とを含む。上述のとおり、第2溶液の溶媒には、分散項δDが20±0.5MPa0.5、極性項δPが18±1MPa0.5、および水素結合項δHが11±2MPa0.5、を満たすHSPを有する物質(A)が含まれる。この物質(A)は、例えば、スルホランおよび無水マレイン酸からなる群より選ばれる少なくとも1つであってもよく、スルホランであってもよい。
 PbI2は、分散項δDが18.8MPa0.5、極性項δPが11.7MPa0.5、および水素結合項δHが12.3MPa0.5のHSPを有する。FAIは、分散項δDが15.0MPa0.5、極性項δPが21.3MPa0.5、および水素結合項δHが22.2MPa0.5のHSPを有する。一般に、三次元のHSP空間において距離Rが近い材料同士は性質が似ているためよく混和し、距離Rが遠い材料同士は相溶せず分離する。HSP空間において、PbI2を表す点と、任意の溶媒を表す点との距離をR(PbI2)と表記し、FAIと溶媒の点との距離をR(FAI)と表記する。例えば、R(PbI2)が7から9、R(FAI)が16から18の狭い範囲にて、高温にするほど溶解度が低下する逆温度結晶化(ITC)が生じる。この範囲は、溶解と不溶解との中間的な位置であり、PbI2がクラスター状に溶液中に存在する。特にスルホランは、R(PbI2)=7.3、R(FAI)=15.8であり、ITCが生じ得る条件のうち、溶媒との親和性が高い側の端に位置する。したがって、スルホランは、室温ではFAPbI3への高い溶解度を示し、通常の結晶化傾向を持つが、95℃以上の温度領域でITCが発現するので、この条件で生成される光電変換膜が特に高品質であると考えられる。
 第2溶液の溶媒は、複数種の物質(A)を含んでいてもよい。
 次いで、基板10上のシード層11の表面に第2溶液を接触させる。このとき、基板10は第2温度に加熱される。シード層11と第2溶液との接触時の基板10の加熱温度である第2温度は、例えば、第2溶液が飽和もしくは過飽和状態となる温度に設定し得る。これにより、シード層11と第2溶液中の第2ペロブスカイト化合物との交換が直ちに生じる。そして、第2ペロブスカイト化合物が基板10上に成長し、光電変換膜12が形成される。例えば、第2溶液に含まれる溶媒がスルホランの場合、第2溶液は、室温以上150℃以下の範囲で過飽和状態となる。このため、第2温度は、例えば130℃以下に設定され得る。なお、工程(B)では、少なくとも基板10が第2温度に加熱されていればよく、第2溶液は加熱されてもよいし、加熱されていなくてもよい。第2溶液が加熱される場合、加熱温度は、第2温度よりも低くてもよい。
 シード層11と第2溶液とを接触させる時間(すなわち、第2ペロブスカイト化合物の析出時間)を調整することで、光電変換膜の膜厚を制御できる。
 上記のように、光電変換膜12は、シード層11上に、第2ペロブスカイト化合物として例えばFAPbI3を析出させることで形成され得る。
 作製される光電変換膜12の厚さは、特に限定されず、光電変換膜12の用途に応じて適宜決定され得る。本実施形態による製造方法によれば、1μm以上の厚さを有するような大きい膜厚の光電変換膜12を、高い平坦性を有するような高品質に作製し得る。
 さらに図2Aから図2Dを参照しながら、本実施形態による光電変換膜の製造方法の一例が具体的に説明される。図2Aから図2Dは、本実施形態による光電変換膜の製造方法の一例を示す模式図である。
 図2Aに示すように、基板10上に第1溶液51を、例えばスピンコート法で塗布する。次いで、第1溶液51が塗布された基板10を加熱して、基板10上の第1溶液51の塗布膜を乾燥させる。この方法により、図2Bに示すように、第1ペロブスカイト化合物で構成されたシード層11が形成される。
 次いで、図2Cに示すように、第2溶液52を容器54に保持し、第2溶液52の液面53に、シード層11が形成された基板10のシード層11の表面を接触させる。例えば、PbI2およびFAIを含む第2溶液52を第2温度(例えば100℃)に加熱し、同じく第2温度に加熱した基板10のシード層11の表面を第2溶液52の液面53を接触させる。これにより、シード層11と第2溶液52中のFAPbI3との交換が直ちに生じ、FAPbI3が基板10上に成長する。その結果、図2Dに示すように、基板10上に光電変換膜12が形成される。なお、第2溶液52の加熱温度は第2温度よりも低くてもよいし、第2溶液52は加熱されなくてもよい。
 なお、本実施形態による光電変換膜の製造方法は、上記の方法に限定されない。例えば、スピンコート法のような公知の塗布法を用いて、光電変換膜を作製することも可能である。しかし、大きい膜厚を有する光電変換膜を作製する場合は、平坦性が高く、より優れた品質を有する膜が得られるので、上記の本実施形態による製造方法を用いてもよい。
 (第2の実施形態)
 本開示の第2の実施形態による太陽電池は、第1電極、第2電極、および光電変換層を具備する。光電変換層は、第1電極および第2電極の間に位置する。第1電極および第2電極からなる群より選ばれる少なくとも1つの電極は、透光性を有する。光電変換層は、第1の実施形態で説明された光電変換膜である。すなわち、第2の実施形態による太陽電池の光電変換層は、1価のホルムアミジニウムカチオン、Pbカチオン、およびヨウ化物イオンで構成されるペロブスカイト化合物、および、分散項δDが20±0.5MPa0.5、極性項δPが18±1MPa0.5、および水素結合項δHが11±2MPa0.5、を満たすHSPを有する物質(A)を含有する光電変換膜からなる。
 本実施形態による太陽電池の光電変換層は、上記構成の光電変換膜からなる。これにより、長いキャリア寿命を有することできる。第1の実施形態で説明したとおり、この光電変換膜は、膜厚を大きくした場合でも、長いキャリア寿命を有し得る。したがって、光電変換膜の膜厚を大きくすることによって、吸収可能な光スペクトル帯域がより広く、かつ光吸収能力が向上した太陽電池が得られる。これにより、太陽電池内で生じるキャリアの量が増え、高い変換効率を実現できる。
 (太陽電池の第1例)
 図3は、本開示の第2の実施形態による太陽電池の第1例を模式的に示す断面図である。
 図3に示す太陽電池100では、基板101上に、第1電極102と、光電変換層103と、第2電極104とがこの順に積層されている。なお、太陽電池100は、基板101を有していなくてもよい。
 次に、太陽電池100の基本的な作用効果が説明される。太陽電池100に光が照射されると、光電変換層103が光を吸収し、励起された電子と、正孔とを発生させる。励起された電子は、負極である第1電極102に移動する。一方、光電変換層103で生じた正孔は、正極である第2電極104に移動する。これにより、太陽電池100は、負極と正極とから電流を取り出すことができる。なお、ここでは、第1電極102が負極として機能し、かつ第2電極104が正極として機能する例を説明したが、第1電極102が正極として機能し、かつ第2電極104が負極として機能してもよい。
 太陽電池100は、例えば以下の方法によって作製されることができる。まず、基板101の表面にスパッタ法などによって第1電極102が形成される。次に、第1の実施形態で説明した方法によって、第1の実施形態による光電変換膜からなる光電変換層103が形成される。次に、光電変換層103上に、第2電極104がスパッタ法などによって形成される。
 以下、太陽電池100の各構成要素が具体的に説明される。
 (基板101)
 基板101は、太陽電池100の各層を保持する。基板101は、透明な材料から形成することができる。例えば、ガラス基板またはプラスチック基板を用いることができる。プラスチック基板は、例えばプラスチックフィルムであってもよい。第1電極102が十分な強度を有している場合、第1電極102によって各層を保持することができるので、必ずしも基板1を設けなくてもよい。
 (第1電極102および第2電極104)
 第1電極102および第2電極104は、導電性を有する。第1電極102および第2電極104は、少なくとも一方が透光性を有する。本明細書において、「電極が透光性を有する」とは、200ナノメートル以上2000ナノメートル以下の波長を有する光の10%以上が、いずれかの波長において電極を透過することを意味する。
 透光性を有する電極は、例えば、可視領域から近赤外領域までの光を透過させ得る。透光性を有する電極は、透明性かつ導電性を有する金属酸化物および金属窒化物の少なくとも1つから形成され得る。
 金属酸化物の例は、
 (i) リチウム、マグネシウム、ニオブ、およびフッ素からなる群から選択される少なくとも1つによってドープされた酸化チタン、
 (ii) 錫およびシリコンからなる群から選択される少なくとも1つによってドープされた酸化ガリウム、
 (iii) インジウム-錫複合酸化物、
 (iv) アンチモンおよびフッ素からなる群から選択される少なくとも1つによってドープされた酸化錫、または
 (v) ホウ素、アルミニウム、ガリウム、およびインジウムからなる群から選択される少なくとも1つによってドープされた酸化亜鉛
 である。
 2種以上の金属酸化物が組み合わせられて複合物として用いられ得る。
 金属窒化物の例は、シリコンおよび酸素からなる群から選択される少なくとも1つによってドープされた窒化ガリウムである。2種以上の金属窒化物が組み合わせられて用いられ得る。
 金属酸化物および金属窒化物は組み合わせられて用いられ得る。
 透光性を有する電極は、透明でない材料を用いて、光が透過するパターンを設けて形成することができる。光が透過するパターンとしては、例えば、線状、波線状、格子状、および多数の微細な貫通孔が規則的または不規則に配列されたパンチングメタル状のパターンが挙げられる。電極がこれらのパターンを有すると、電極材料が存在しない部分を光が透過することができる。透明でない材料として、例えば、白金、金、銀、銅、アルミニウム、ロジウム、インジウム、チタン、鉄、ニッケル、スズ、亜鉛、およびこれらのいずれかを含む合金を挙げることができる。また、導電性を有する炭素材料を用いることもできる。
 太陽電池100では、第1電極102が光電変換層103に接している。したがって、第1電極102は、光電変換層103から移動する正孔がブロックされる正孔ブロック性を有する材料で形成される。この場合、第1電極102は、光電変換層103とオーミック接触しない。光電変換層103から移動する正孔がブロックされる正孔ブロック性とは、光電変換層103で発生した電子のみを通過させ、かつ正孔を通過させないことを意味する。正孔ブロック性を有する材料のフェルミエネルギー準位は、光電変換層103との価電子帯上端のエネルギーよりも高くてもよい。このような材料として、例えばアルミニウムが挙げられる。
 太陽電池100では、第2電極104が光電変換層103に接している。したがって、第2電極104は、光電変換層103から移動する電子がブロックされる電子ブロック性を有する材料で形成される。この場合、第2電極104は、光電変換層103とオーミック接触しない。光電変換層103から移動する電子がブロックされる電子ブロック性とは、光電変換層103で発生した正孔のみを通過させ、かつ電子を通過させないことを意味する。電子ブロック性を有する材料のフェルミエネルギー準位は、光電変換層103の伝導帯下端のエネルギー準位よりも低い。電子ブロック性を有する材料のフェルミエネルギー準位は、光電変換層103のフェルミエネルギー準位よりも低くてもよい。具体的には、第2電極104は、白金、金、またはグラフェンのような炭素材料から形成され得る。これらの材料は、電子ブロック性を有するが、透光性を有さない。したがって、このような材料を用いて透光性の第2電極104を形成する場合は、上述のように、光が透過するパターンを有する第2電極104が形成される。
 透光性を有する電極の光の透過率は、50%以上であってもよく、80%以上であってもよい。電極を透過する光の波長は、光電変換層103の吸収波長に依存する。第1電極102および第2電極104のそれぞれの厚さは、例えば、1nm以上1000nm以下である。
 (光電変換層103)
 光電変換層103は、第1の実施形態による光電変換膜である。したがって、ここでは詳細な説明が省略される。
 (太陽電池の第2例)
 本開示の第2の実施形態による太陽電池の変形例が説明される。
 図4は、本開示の第2の実施形態による太陽電池の第2例を模式的に示す断面図である。図4に示す太陽電池200は、電子輸送層105を備える点で、図3に示す太陽電池100と異なる。太陽電池100と同一の機能および構成を有する構成要素については、太陽電池100を共通する符号を付し、説明を省略する。
 図4に示す太陽電池200では、基板101上に、第1電極102と、電子輸送層105と、光電変換層103と、第2電極104とがこの順に積層されている。
 次に、太陽電池200の基本的な作用効果が説明される。太陽電池200に光が照射されると、光電変換層103が光を吸収し、励起された電子と、正孔とを発生させる。励起された電子は、電子輸送層105を介して負極である第1電極102に移動する。一方、光電変換層103で生じた正孔は、正極である第2電極104に移動する。これにより、太陽電池200は、負極と正極とから電流を取り出すことができる。
 太陽電池200は、図3に示す太陽電池100と同様の方法によって作製することができる。電子輸送層105は、第1電極102の上にスパッタ法などによって形成する。
 以下、太陽電池200の各構成要素について、具体的に説明する。
 (第1電極102)
 太陽電池200における第1電極102は、太陽電池100における第1電極102と同じである。ただし、太陽電池200は、光電変換層103と第1電極102との間に電子輸送層105を具備している。したがって、第1電極102は、光電変換層103から移動される正孔がブロックされる正孔ブロック性を有さなくてもよい。したがって、第1電極102は、光電変換層103とオーミック接触を形成可能な材料から形成されていてもよい。太陽電池200第1電極102は、正孔ブロック性を有さなくてもよいので、第1電極102の材料選択の幅が広がる。
 (電子輸送層105)
 電子輸送層105は、半導体を含む。電子輸送層105は、バンドギャップが3.0eV以上の半導体であってもよい。バンドギャップが3.0eV以上の半導体で電子輸送層105を形成することにより、可視光および赤外光を光電変換層103まで透過させることができる。当該半導体の例は、有機のn型半導体および無機のn型半導体である。
 有機のn型半導体の例は、イミド化合物、キノン化合物、フラーレン、またはフラーレンの誘導体である。無機のn型半導体の例は、金属酸化物、金属窒化物、またはペロブスカイト酸化物である。金属酸化物の例は、Cd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、またはCrの酸化物である。具体的な例としては、TiO2が挙げられる。ペロブスカイト酸化物の例は、SrTiO3またはCaTiO3である。
 電子輸送層105は、6.0eVよりも大きなバンドギャップを有する物質を含んでいてもよい。6.0eVよりも大きなバンドギャップを有する物質の例は、(i)フッ化リチウムまたはフッ化カルシウムのようなアルカリ金属またはアルカリ土類金属のハロゲン化物、(ii)酸化マグネシウムのようなアルカリ金属酸化物、または(iii)二酸化ケイ素である。この場合、電子輸送層105の電子輸送性を確保するために、電子輸送層105の厚みは、例えば、10nm以下である。
 電子輸送層105は、互いに異なる材料からなる複数の層を含んでいてもよい。
 (太陽電池の第3例)
 本開示の第2の実施形態による太陽電池の変形例が説明される。
 図5は、本開示の第2の実施形態による太陽電池の第3例を模式的に示す断面図である。図5に示す太陽電池300は、正孔輸送層106を備える点で、図4に示す太陽電池200と異なる。太陽電池100および太陽電池200と同一の機能および構成を有する構成要素については、太陽電池100および太陽電池200を共通する符号を付し、説明を省略する。
 図5に示す太陽電池300では、基板101上に、第1電極102と、電子輸送層105と、光電変換層103と、正孔輸送層106と、第2電極104とがこの順に積層されている。
 次に、太陽電池300の基本的な作用効果が説明される。太陽電池300に光が照射されると、光電変換層103が光を吸収し、励起された電子と、正孔とを発生させる。励起された電子は、電子輸送層105を介して負極である第1電極102に移動する。一方、励起された正孔は、正孔輸送層106を介して正極である第2電極104に移動する。これにより、太陽電池300は、負極と正極とから電流を取り出すことができる。
 太陽電池300は、図4に示す太陽電池200と同様の方法によって作製することができる。正孔輸送層106は、光電変換層103の上に塗布法などによって形成する。
 以下、太陽電池300の各構成要素について、具体的に説明する。
 (第2電極104)
 太陽電池300における第2電極104は、太陽電池200における第2電極104と同じである。ただし、太陽電池300は、光電変換層103と第2電極104との間に正孔輸送層106を具備している。したがって、第2電極104は、光電変換層103から移動する電子がブロックされる電子ブロック性を有さなくてもよい。したがって、第2電極104は、光電変換層103とオーミック接触することが可能な材料から形成されていてもよい。太陽電池300第2電極104は、電子ブロック性を有さなくてもよいので、第2電極104の材料選択の幅が広がる。
 (正孔輸送層106)
 正孔輸送層106は、有機物または無機半導体によって構成される。正孔輸送層106は、互いに異なる材料からなる複数の層を含んでいてもよい。
 有機物としては、例えば、3級アミンを骨格内に含む、フェニルアミン、トリフェニルアミン誘導体、ポリトリアリルアミン(Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine:PTAA)、および、チオフェン構造を含むPEDOT(poly(3,4-ethylenedioxythiophene)化合物、が挙げられる。分子量は、特に限定されず、高分子体であってもよい。有機物で正孔輸送層106を形成する場合、膜厚は、1nm以上1000nm以下であってもよく、100nm以上500nm以下であってもよい。膜厚がこの範囲内であれば、十分な正孔輸送性を発現できる。また、膜厚がこの範囲内であれば、低抵抗を維持できるので、高効率に光発電を行うことができる。
 無機半導体としては、CuO、Cu2O、CuSCN、酸化モリブデン、または酸化ニッケルのようなp型の半導体を用いることができる。無機半導体で正孔輸送層106を形成する場合、膜厚は、1nm以上1000nm以下であってもよく、10nm以上50nm以下であってもよい。膜厚がこの範囲内であれば、十分な正孔輸送性を発現できる。また、膜厚がこの範囲内であれば、低抵抗を維持できるので、高効率に光発電を行うことができる。
 正孔輸送層106の形成方法としては、塗布法または印刷法を採用することができる。塗布法の例は、ドクターブレード法、バーコート法、スプレー法、ディップコーティング法またはスピンコート法である。印刷法の例は、スクリーン印刷法である。また、必要に応じて、複数の材料を混合して正孔輸送層106を形成し、次いで正孔輸送層106を加圧または焼成してもよい。正孔輸送層106の材料が有機の低分子体または無機半導体である場合には、真空蒸着法などによって正孔輸送層106が形成され得る。
 正孔輸送層106は、支持電解質および溶媒を含んでいてもよい。支持電解質および溶媒は、正孔輸送層106中の正孔を安定化させる。
 支持電解質の例は、アンモニウム塩またはアルカリ金属塩である。アンモニウム塩の例は、過塩素酸テトラブチルアンモニウム、六フッ化リン酸テトラエチルアンモニウム、イミダゾリウム塩、またはピリジニウム塩である。アルカリ金属塩の例は、過塩素酸リチウムまたは四フッ化ホウ素カリウムである。
 正孔輸送層106に含まれる溶媒は、高いイオン伝導性を有していてもよい。水系溶媒および有機溶媒のいずれも使用できる。溶質をより安定化させるため、溶媒は、有機溶媒であってもよい。有機溶媒の例は、tert-ブチルピリジン、ピリジン、またはn-メチルピロリドンなどの複素環化合物である。
 正孔輸送層106に含有される溶媒は、イオン液体であってもよい。イオン液体は、単独でまたは他の溶媒と混合されて用いられ得る。イオン液体は、低い揮発性および高い難燃性の点で望ましい。
 イオン液体の例は、1-エチル-3-メチルイミダゾリウムテトラシアノボレートのようなイミダゾリウム化合物、ピリジン化合物、脂環式アミン化合物、脂肪族アミン化合物、またはアゾニウムアミン化合物である。
 本明細書において、光電変換膜以外の各層の厚さは、任意の複数の点(例えば5点)で測定された値の平均値でありうる。各層の厚さは、断面の電子顕微鏡像を用いて測定され得る。
 (実施例)
 以下の実施例を参照しながら、本開示はより詳細に説明される。
 実施例1および比較例1から比較例5では、光電変換膜を作製する操作が行われた。作製された光電変換膜については、当該光電変換膜のキャリア寿命が評価された。
 実施例1および比較例1で作製された光電変換膜について、当該光電変換膜の成分が分析された。
 実施例2および比較例4では、太陽電池が作製された。作製された太陽電池について、外部量子効率が測定された。
 まず、各実施例および比較例の光電変換膜の構成および作製方法が説明される。
 <実施例1>
 以下の方法により、実施例1-1から実施例1-6の光電変換膜が作製された。
 基板として、24.5mm角の厚さ0.7mmのガラス基板(日本板硝子社製)が用意された。
 次に、基板上にシード層が形成された。シード層は、塗布法で形成された。シード層を形成するための第1溶液として、ヨウ化鉛(PbI2)(東京化成工業社製)を1mol/Lおよびヨウ化メチルアンモニウム(CH3NH3I)(グレートセルソーラー社製)を1mol/Lのモル濃度で含む、ジメチルスルホキシド(DMSO)(シグマアルドリッチ社製)溶液が調製された。
 次に、基板上に、第1溶液がスピンコート法で塗布された。
 この後、基板を110℃のホットプレート上で10分間熱処理することによって、基板上に厚さ300nmのシード層が形成された。
 続いて、光電変換膜が形成された。光電変換膜を形成するための第2溶液として、PbI2(東京化成工業社製)およびヨウ化ホルムアミジニウム(CH(NH22I)(グレートセルソーラー社製)を含む、スルホラン(SLF)(東京化成工業社製)溶液が調製された。SLFのHSPは、表1に示されている。実施例1-1から実施例1-6の光電変換膜の作製において、第2溶液におけるPbI2の濃度およびCH(NH22Iの濃度、すなわち第2溶液におけるFAPbI3の濃度が、表2に示されている。
 次に、第2溶液と、シード層が形成された基板とが、それぞれ加熱された。実施例1-1から実施例1-6の光電変換膜の作製において、第2溶液および基板の加熱温度は、表2に示されている。この後、加熱された第2溶液の液面に、加熱された基板のシード層の表面を1秒間接触させた。これにより、シード層に置換して、FAPbI3が析出した。その結果、FAPbI3を含む光電変換膜が得られた。FAPbI3がα相であることは、XRD測定によってわかった。X線にCuKα線が用いられた。
 <実施例2>
 実施例2では、図5に示される太陽電池300が作製された。実施例2による太陽電池300の各構成要素は、以下の通りであった。
 基板101:ガラス基板(厚さ0.7mm)
 第1電極102:インジウム-錫複合酸化物
 電子輸送層105:二酸化チタン(厚さ12nm)および多孔質の二酸化チタン(厚さ150nm)の積層膜
 光電変換層103:FAPbI3(厚さ4000nm)
 正孔輸送層106:2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobifluorene(以下、「spiro-OMeTAD」という)(厚さ170nm)
 第2電極104:金(厚さ170nm)
 実施例2の太陽電池300は、以下のようにして作製した。
 まず、基板101であるガラス基板の表面に、第1電極102として機能する透明導電層が設けられている基板を用意した。本実施例では、インジウム-錫複合酸化物層を表面に有する厚さ0.7mmの導電性ガラス基板(表面抵抗10Ω/□、日本板硝子社製)を用意した。
 次に、電子輸送層105が作製された。導電性ガラス基板の上に、緻密な二酸化チタン膜がスパッタ法によって作製された。電子輸送層105を構成する多孔質の二酸化チタンの層を形成するための電子輸送層溶液が作製された。電子輸送層溶液が、多孔質の二酸化チタン(製品名NR30D、グレートセルソーラー製)を150g/Lの濃度でエタノールに分散させることによって作製された。さらに、緻密な二酸化チタン膜の上に、電子輸送層溶液がスピンコート法で塗布されて、塗布膜が得られた。この塗布膜が500℃のオーブンで30分間加熱されることによって、電子輸送層105が作製された。
 続いて、光電変換層103が作製された。電子輸送層105上にシード層を形成するための第1溶液として、実施例1で用いられたPbI2およびCH3NH3Iを含むDMSO溶液の代わりに、以下の溶液A、溶液B、および溶液Cの混合溶液が作製された。
 溶液Aとして、ヨウ化鉛(PbI2)(東京化成工業社製)を1.1mol/L、ヨウ化フォルムアンモニウム(HC(CH3NH22I)(グレートセルソーラー社製)を1mol/L、臭化鉛(BrI2)(東京化成工業社製)を0.22mol/L、臭化メチルアンモニウム(MAI)(グレートセルソーラー社製)を0.2mol/Lのモル濃度で含む溶液が調製された。溶液Aにおける溶媒は、ジメチルホルムアミド(DMF)(シグマアルドリッチ社製)とジメチルスルホキシド(DMSO)(シグマアルドリッチ社製)とが4:1(体積比)で混合された混合溶媒であった。
 溶液Bとして、ヨウ化セシウム(CsI)(シグマアルドリッチ社製)を1.5mol/Lのモル濃度で含むDMSO溶液が調製された。
 溶液Cとして、ヨウ化ルビジウム(RbI)(シグマアルドリッチ社製)を1.5mol/Lのモル濃度で含む溶液が調製された。溶液Cにおける溶媒は、DMFとDMSOとが4:1の体積比率で混合された混合溶媒であった。
 溶液A、溶液B、および溶液Cが、溶液A:溶液B:溶液C=90:5:5(体積比)で混合されて、第1溶液が得られた。
 次に、電子輸送層105上に、第1溶液がスピンコート法で塗布された。すなわち、基板101、第1電極102、および電子輸送層105で形成された積層体が、シード層を形成するための基板であった。このとき、回転中の上記積層体の電子輸送層105上に、貧溶媒としてクロロベンゼン(シグマアルドリッチ社製)200μLが滴下された。
 この後、上記積層体を115℃のホットプレート上で10分間熱処理し、さらに100℃のホットプレート上で30分間熱処理することによって、上記積層体の電子輸送層105上に厚さ400nmのシード層が形成された。
 このシード層を用いて、光電変換層103を形成する光電変換膜が、実施例1と同様の方法で作製された。なお、実施例2による光電変換膜の作製において、第2溶液におけるPbI2の濃度およびCH(NH22Iの濃度、すなわち第2溶液におけるFAPbI3の濃度が、表2に示されている。また、実施例2による光電変換膜の作製において、シード層の表面を第2溶液に接触させる際の、基板(すなわち、上記積層体)および第2溶液の加熱温度は、125℃であった。
 この後、光電変換層103上に、正孔輸送層106が作製された。正孔輸送層106は、spiro-OMeTAD(東京化成工業社製)を濃度45mg/mLで含むトルエン溶液を光電変換層103上にスピンコートによって塗布することにより作製された。正孔輸送層106の厚さは、170nmであった。
 最後に、正孔輸送層106上に金を170nmの厚さになるように蒸着し、第2電極6を作製した。このようにして、実施例2による太陽電池300を得た。
 <比較例1>
 以下の方法により、比較例1-1から比較例1-7の光電変換膜が作製された。
 比較例1-1から比較例1-7では、光電変換膜を形成するための第2溶液の溶媒として、SLFを使う代わりにγ―ブチロラクトン(GBL)(和光純薬工業社製)が用いられた。GBLのHSPは、表1に示されている。第2溶液の溶媒が異なる点を除き、実施例1と同様の工程で、比較例1-1から比較例1-7の、FAPbI3を含む光電変換膜が作製された。比較例1-1から比較例1-7の光電変換膜の作製において、第2溶液におけるPbI2の濃度およびCH(NH22Iの濃度、すなわち第2溶液におけるFAPbI3の濃度が、表2に示されている。また、第2溶液および基板の加熱温度、ならびにシード層と第2溶液との接触時間は、表2に示されている。
 <比較例2>
 以下の方法により、比較例2-1から比較例2-4の光電変換膜が作製された。
 比較例2-1から比較例2-4では、光電変換膜を形成するための第2溶液の溶媒として、SLFを使う代わりに、γ-バレロラクトン(GVL)(和光純薬工業社製)が用いられた。GVLのHSPは、表1に示されている。第2溶液の溶媒が異なる点を除き、実施例1と同様の工程で、比較例2-1から比較例2-4の、FAPbI3を含む光電変換膜が作製された。比較例2-1から比較例2-4の光電変換膜の作製において、第2溶液におけるPbI2の濃度およびCH(NH22Iの濃度、すなわち第2溶液におけるFAPbI3の濃度が、表2に示されている。また、第2溶液および基板の加熱温度、ならびにシード層と第2溶液との接触時間は、表2に示されている。
 <比較例3>
 以下の方法により、比較例3の光電変換膜が作製された。
 比較例3では、光電変換膜を形成するための第2溶液の溶媒として、SLFを使う代わりに、γ-ヘプタノラクトン(GHL)(東京化成工業社製)が用いられた。GHLのHSPは、表1に示されている範囲中に存在する。第2溶液の溶媒が異なる点を除き、実施例1と同様の工程で、光電変換膜の作製工程が実施された。比較例3の光電変換膜の作製において、第2溶液におけるPbI2の濃度およびCH(NH22Iの濃度、すなわち第2溶液におけるFAPbI3の濃度が、表2に示されている。また、第2溶液および基板の加熱温度、ならびにシード層と第2溶液との接触時間は、表2に示されている。
 比較例3では、加熱された第2溶液の液面に加熱された基板のシード層の表面を接触させた際にシード層が溶解して消失し、FAPbI3が析出しなかった。その結果、FAPbI3で構成された光電変換膜が得られなかった。
 <比較例4>
 以下の方法により、比較例4の光電変換膜が作製された。
 比較例4では、光電変換膜を形成するための第2溶液の溶媒として、SLFを使う代わりに、γ-デカノラクトン(GDL)(東京化成工業社製)が用いられた。GDLのHSPは、表1に示されている範囲中に存在する。第2溶液の溶媒が異なる点を除き、実施例1と同様の工程で、光電変換膜の作製工程が実施された。比較例4の光電変換膜の作製において、第2溶液におけるPbI2の濃度およびCH(NH22Iの濃度、すなわち第2溶液におけるFAPbI3の濃度が、表2に示されている。また、第2溶液および基板の加熱温度、ならびにシード層と第2溶液との接触時間は、表2に示されている。
 比較例4では、加熱された第2溶液の液面に加熱された基板のシード層の表面を接触させた際にシード層が溶解して消失し、FAPbI3が析出しなかった。その結果、FAPbI3で構成された光電変換膜が得られなかった。
 <比較例5>
 以下の方法により、比較例5-1から比較例5-4の光電変換膜が作製された。
 基板として、24.5mm角の厚さ0.7mmのガラス基板が用意された。
 ヨウ化鉛(PbI2)(東京化成工業社製)およびヨウ化ホルムアミジニウム(CH(NH22I)(グレートセルソーラー社製)を含むジメチルスルホキシド(DMSO)(シグマアルドリッチ社製)溶液が調製された。DMSOのHSPは、表1に示されている。比較例5-1から比較例5-4の光電変換膜の作製において、このDMSO溶液におけるPbI2の濃度およびCH(NH22Iの濃度、このDMSO溶液におけるFAPbI3の濃度が、表2に示されている。実施例1でシード層を作製する方法と同様の方法で、基板上にDMSO溶液を塗布し、加熱処理することによって、基板上にFAPbI3を含む光電変換膜を形成した。
 <比較例6>
 比較例6では、図5に示される太陽電池300が作製された。比較例6による太陽電池300は、光電変換膜を形成するための第2溶液の溶媒として、SLFを使う代わりに、γ-ブチロラクトン(GBL)(和光純薬工業社製)が用いられた点を除き、実施例2による太陽電池300と同様の方法で作製された。
 <各種溶媒のHSP>
 実施例1、比較例1、および比較例5の光電変換膜を作製するために用いられた各種溶媒のHSPは、参照文献1「Charles M. Hansen,“HANSEN SOLUBILITY PARAMETERS A User’s Handbook”、Second Edition(2007年、CRC Press)」に記載されている値から引用された。比較例2の光電変換膜を作製するために用いられた溶媒のHSPは、参照文献2「H. J. Salavagione et al., “Identification of high performance solvents for the sustainable processing of graphene”, Green Chemistry, 2017, 19, p2550-2560(The Royal Society of Chemistry)」から引用された。なお、比較例3および比較例4で用いられた溶媒のHSPが存在する範囲は、参照文献1の記載に基づき推定された。より具体的には、γ-ラクトン(すなわち、GHLおよびGDLに共通の基本骨格)における各種HSPから、参照文献1の第10から11頁に記載されているTable1.1のGroup Contributions to Partial Solubility Parametersを参照して、付与されるアルキル基の影響が検討された。そして、GHLおよびGDLの各種HSPが推定された。その結果が表1にまとめられている。
Figure JPOXMLDOC01-appb-T000001
 <光電変換膜の膜厚Hの測定>
 実施例1、実施例2および比較例1から5の各光電変換膜の膜厚Hの測定方法は、次の通りである。DekTak(ブルカー社製)を用いて、幅500μmの輪郭曲線の基板からの平均高さを3点測定した。そして、その平均値を算出して、光電変換膜の膜厚Hとした。結果は、表2に示されている。なお、測定された平均高さ3点とは、基板の中央の点、基板の中央から左右に7mmの点、である。
 <光電変換膜の二乗平均平方根粗さRqの測定>
 実施例1、実施例2および比較例1から5の各光電変換膜の二乗平均平方根粗さRqの測定方法は、次の通りである。DekTak(ブルカー社製)を用いて、幅500μmの輪郭曲線を3点測定した。そして、その3点の輪郭曲線を用いて二乗平均平方根粗さを求めた。その平均値を算出して、光電変換膜の二乗平均平方根粗さRqとした。結果は、表2に示されている。
 <膜厚Hと二乗平均平方根粗さRqとの関係>
 上記の方法で測定された膜厚Hと二乗平均平方根粗さRqとが用いられて、膜厚Hに対する二乗平均平方根粗さRqの比(以下、「Rq/H」と記載する。)が算出された。結果は、表2に示されている。
 <光電変換膜の断面のSEM画像>
 図6は、実施例1-1の光電変換膜の断面のSEM画像を示す。図7は、比較例1-4の光電変換膜の断面のSEM画像を示す。図8Aは、比較例5-2の光電変換膜の断面のSEM画像を示す。図8Bは、比較例5-2の光電変換膜の断面のSEM画像を示す。なお、図8Aおよび図8Bは、同じ光電変換膜の互いに異なる場所の断面のSEM画像を示している。
 図6および7からわかるように、実施例1および比較例1の方法で作製された光電変換膜では、膜厚が大きいにも関わらず、表面粗さが小さく、かつ膜厚がほぼ均一であった。一方、図8Aおよび8Bからわかるように、比較例5の方法で作製された光電変換膜については、膜厚が大きい場合は、観察する地点によって膜厚が異なり、厚さが分布し、表面粗さが大きい様子が観察された。このように、表2に示された二乗平均平方根粗さRqの測定結果からも明らかなように、実施例1および比較例1の光電変換膜は、比較例5の光電変換膜に比べて表面粗さが小さかった。また、図6および7のSEM画像から、実施例1-1および比較例1-4の光電変換膜ではシード層は消失しており、一様な光電変換膜が得られていることも認められた。
 <キャリア寿命>
 実施例および比較例の光電変換膜のキャリア寿命は、蛍光減衰曲線から確認された。近赤外蛍光寿命測定装置(C7990、浜松ホトニクス社製)を用いて、ガラス基板上に作製された光電変換膜に対し、蛍光寿命測定が行われた。レーザー入射は、光電変換膜側から行われた。レーザー入射は、励起波長840nm、試料への励起出力50mW以下、ピークカウント1000の条件で行われた。なお、蛍光減衰曲線の測定は、実施例1-2、比較例1-4、比較例2-2、および比較例5-4の光電変換膜について実施された。図9は、実施例1-2、比較例1-4、比較例2-2、および比較例5-4の光電変換膜の蛍光減衰曲線を示す。図9の横軸は時間、縦軸はピークカウントにより正規化したカウント数を示す。
 蛍光減衰曲線から、2成分解析:
A=A1exp(-t/τ1)+A2exp(-t/τ2
により、ライフタイムτ1(レーザー光成分含む)およびτ2が求められた。ここで、A、A1、およびA2は、蛍光強度および各成分強度を表し、tは時間を表す。第1成分A1exp(-t/τ1)には、励起に使用したレーザーの時間波形のパルスが重畳されている。このため、第2成分A2exp(-t/τ2)のライフタイムτ2を用いて、キャリア寿命の比較が行われた。算出結果が表3に示されている。
 通常、FAPbI3を主成分として含有する光電変換膜では、キャリア寿命が100ns程度の場合に、発生したキャリアを取り出せる光電変換膜の最適膜厚は、せいぜい1μm程度である。このため、膜厚を1μm以上に大きくして、光吸収の大きい光電変換膜を作製した場合、発生したキャリアを電極層によって十分取り出すことができない。
 しかし、実施例1-2の光電変換膜の場合、約2.5μmの膜厚を有しているにも関わらず、キャリア寿命は400nsであった。一方、比較例1-4、2-2、および5-4の光電変換膜のキャリア寿命は、120ns以下と短かった。これらの結果から、分散項δDが20±0.5MPa0.5、極性項δPが18±1MPa0.5、および水素結合項δHが11±2MPa0.5、を満たすHSPを有する物質を溶媒として用いて作製された実施例1-2の光電変換膜は、厚膜であるにも関わらず、このようなHSPを満たさない溶媒を用いて作製された比較例の光電変換膜に対し、およそ4倍のキャリア寿命を備えていた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 <成分分析>
 GC/MS法により、実施例1-1および比較例1-4の光電変換膜に含まれる物質を定量した。GC/MS装置として「GCMS-QP2010 Plus」(島津製作所社製)、カラムに「ZB-FFAP(30m×0.32mm×0.50μm)」が用いられた。カラム昇温条件は、3分間で40℃に昇温後、10℃/分の割合で240℃まで昇温し、7分間保持した。キャリアガスにヘリウムガスが用いられた。ヘリウムガスは、2.02mL/分の割合で流通された。測定試料をスプリットレス法で注入し、注入口温度は200℃、検出器温度は230℃、にて、スキャン分析(m/z=33-600)および選択イオン分析(SLF:m/z=41、56および120の3点、GBL:m/z=42、56および86の3点、DMSO:m/z=63および78の2点)を行った。
 分析対象の光電変換膜が作製されている24.5mm角の厚さ0.7mmのガラス基板1枚をアセトン2mLに浸漬させて、光電変換膜が抽出された。得られた抽出液が測定試料として用いられた。測定試料について、GC/MS装置を用いて、SLF、GBL、およびDMSOの定量分析(選択イオン分析)、ならびに、含有物質の定性および定量分析(スキャン分析)が行われた。スキャン分析の定量は、トルエンd8を標準物質として用いて算出することによって行われた。図10Aは、実施例1-1の光電変換膜について、GC/MS法の選択イオン分析によるジメチルスルホキシドの分析結果を示す。図10Bは、実施例1-1の光電変換膜について、GC/MS法の選択イオン分析によるγ-ブチロラクトンの分析結果を示す。図10Cは、実施例1-1の光電変換膜について、GC/MS法の選択イオン分析によるスルホランの分析結果を示す。図11は、実施例1-1の光電変換膜について、GC/MS法のスキャン分析による分析結果を示す。図12Aは、比較例1-4の光電変換膜について、GC/MS法の選択イオン分析によるジメチルスルホキシドの分析結果を示す。図12Bは、比較例1-4の光電変換膜について、GC/MS法の選択イオン分析によるγ-ブチロラクトンの分析結果を示す。図12Cは、比較例1-4の光電変換膜について、GC/MS法の選択イオン分析によるスルホランの分析結果を示す。図13は、比較例1-4の光電変換膜について、GC/MS法のスキャン分析による分析結果を示す。
 以上の分析により、光電変換膜に含まれる物質を定量した結果を表4に示す。実施例1-1の光電変換膜からは、SLFが0.1モル%、およびDMSOが0.01モル%検出された。また、比較例1-4の光電変換膜からは、GBLが0.05モル%、およびDMSOが0.02モル%検出された。HSPに示されるように、SLFは、FAPbI3と錯形成する傾向がITCを示す溶媒群の中では大きいため、FAPbI3の結晶構造中に取り込まれ易いためと考えられる。取り込まれている分子の数密度は、3.8×1018個/cm3に相当する。実施例1-1の光電変換膜は、このように光電変換膜の作製時における結晶成長の過程で、溶媒の分子を取り込んでいる。FAPbI3の結晶構造には格子欠陥が存在する。この格子欠陥は、光誘起キャリアを捕捉して再結合サイトとなるため、キャリア寿命の低下原因となる。欠陥サイトが1018個/cm3ある場合のキャリア寿命はせいぜい20ns程度であると考えられる。したがって、実施例1-1の光電変換膜のように400ns程度のキャリア寿命が実現されるためには、欠陥密度がせいぜい1010個/cm3程度以下であることが必要と考えられる。光電変換膜中のSLF分子は、格子欠陥と相補的に存在することで、光誘起キャリアが格子欠陥に捕捉されることを防ぎ、再結合確率を下げ、キャリアの長寿命化に寄与していると考えられる。
Figure JPOXMLDOC01-appb-T000004
 以上の結果から、実施例1-1の光電変換膜は、分散項δDが20±0.5MPa0.5、極性項δPが18±1MPa0.5、および水素結合項δHが11±2MPa0.5、を満たすHSPを有する物質(A)を含有していることが確認された。すなわち、光電変換膜を作製する際に溶媒として上記HSPを満たす物質(A)を用いることにより、作製された光電変換膜が物質(A)を含有することがわかった。さらに、物質(A)を含有することにより、光電変換膜は、大きい膜厚を有する場合でも長いキャリア寿命を有し得ることがわかった。
 <外部量子効率の測定>
 実施例2および比較例6の太陽電池の外部量子効率(以下、「EQE」と記載することがある)が測定された。図14は、実施例2および比較例2の太陽電池における、入射光の波長とEQEとを示すグラフである。図14のグラフの横軸は入射光の波長を示し、縦軸はEQEを示す。バイアス電圧は1Vであった。また、表5は、EQEの積分によって求められ短絡電流密度(mA/cm2)を示す。この結果からわかるように、実施例2による太陽電池の光電変換層は、キャリア再結合寿命が長い分、厚膜によって吸収できる1.4から1.5eVの長波長帯域にて光電変換された荷電キャリアを、より多く取り出して発電することが可能であった。
Figure JPOXMLDOC01-appb-T000005
 以上のように、本開示の光電変換膜は、たとえ膜厚を大きくした場合でも長いキャリア寿命を有することができる。したがって、本開示の光電変換膜は、膜厚を大きくすることによって光吸収帯域を広げることができ、かつ長いキャリア寿命も有する。したがって、本開示の光電変換膜は、高効率な太陽電池の作製に適した光電変換膜である。
 本開示の光電変換膜は、高い光吸収能力と、長いキャリア寿命とを両立できるので、高効率な太陽電池の光電変換層へ利用できる。
10  基板
11  シード層
12  光電変換膜
51  第1溶液
52  第2溶液
101  基板
102  第1電極
103  光電変換層
104  第2電極
105  電子輸送層
106  正孔輸送層
100,200,300  太陽電池

Claims (8)

  1.  光電変換膜であって、
     1価のホルムアミジニウムカチオン、Pbカチオン、およびヨウ化物イオンで構成されるα相のペロブスカイト化合物、および
     分散項δDが20±0.5MPa0.5、極性項δPが18±1MPa0.5、および水素結合項δHが11±2MPa0.5、を満たすハンセン溶解度パラメータを有する物質を含有する、
    光電変換膜。
  2.  前記物質が、スルホランおよび無水マレイン酸からなる群より選ばれる少なくとも1つである、
    請求項1に記載の光電変換膜。
  3.  前記物質がスルホランであり、
     ガスクロマトグラフ質量分析法による分析において、m/z=41、56、および120にピークを有する、
    請求項2に記載の光電変換膜。
  4.  前記物質の含有量が0.1モル%以下である、
    請求項1から3のいずれか一項に記載の光電変換膜。
  5.  太陽電池であって、
     第1電極、
     第2電極、および
     前記第1電極および前記第2電極の間に位置する光電変換層、
    を具備し、
     ここで、
     前記第1電極および前記第2電極からなる群より選ばれる少なくとも1つの電極が透光性を有し、および
     前記光電変換層が、請求項1から4のいずれか一項に記載の光電変換膜である、
    太陽電池。
  6.  前記第1電極と前記光電変換層との間に位置する電子輸送層をさらに具備する、
    請求項5に記載の太陽電池。
  7.  前記第2電極と前記光電変換層との間に位置する正孔輸送層をさらに具備する、
    請求項5または6に記載の太陽電池。
  8.  光電変換膜の製造方法であって、以下の工程を具備する:
     (A)基板上に、第1ペロブスカイト化合物の構成元素を含む第1溶液を付与することによって、第1ペロブスカイト化合物で構成されたシード層を形成し、および
     (B)前記基板を加熱し、かつ前記基板上の前記シード層の表面に第2溶液を接触させて、第2ペロブスカイト化合物を析出させて前記光電変換膜を得る、
     ここで、
     前記第2溶液は、前記第2ペロブスカイト化合物の構成元素および溶媒を含み、
     前記第2ペロブスカイト化合物の構成元素は、1価のホルムアミジニウムカチオン、Pbカチオン、およびヨウ化物イオンを含み、および
     前記溶媒は、分散項δDが20±0.5MPa0.5、極性項δPが18±1MPa0.5、および水素結合項δHが11±2MPa0.5、を満たすハンセン溶解度パラメータを有する物質を含む。
PCT/JP2020/037789 2019-10-23 2020-10-06 光電変換膜およびそれを用いた太陽電池、ならびに光電変換膜の製造方法 WO2021079731A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021554237A JPWO2021079731A1 (ja) 2019-10-23 2020-10-06
CN202080070049.8A CN114514623A (zh) 2019-10-23 2020-10-06 光电转换膜及使用了它的太阳能电池、以及光电转换膜的制造方法
US17/700,952 US20220216439A1 (en) 2019-10-23 2022-03-22 Photoelectric conversion film, solar cell using same, and method for producing photoelectric conversion film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019193050 2019-10-23
JP2019-193050 2019-10-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/700,952 Continuation US20220216439A1 (en) 2019-10-23 2022-03-22 Photoelectric conversion film, solar cell using same, and method for producing photoelectric conversion film

Publications (1)

Publication Number Publication Date
WO2021079731A1 true WO2021079731A1 (ja) 2021-04-29

Family

ID=75620008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037789 WO2021079731A1 (ja) 2019-10-23 2020-10-06 光電変換膜およびそれを用いた太陽電池、ならびに光電変換膜の製造方法

Country Status (4)

Country Link
US (1) US20220216439A1 (ja)
JP (1) JPWO2021079731A1 (ja)
CN (1) CN114514623A (ja)
WO (1) WO2021079731A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162982A1 (ja) * 2022-02-28 2023-08-31 ソニーセミコンダクタソリューションズ株式会社 光電変換素子および光検出装置ならびに電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287741A (zh) * 2022-04-29 2022-11-04 中山复元新材料科技有限责任公司 一种钙钛矿型晶体黑相甲脒基碘化铅晶型及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104792A1 (ja) * 2015-12-16 2017-06-22 国立大学法人京都大学 錯体及びペロブスカイト材料、並びに該錯体若しくはペロブスカイト材料を用いたペロブスカイト型太陽電池
JP2017199893A (ja) * 2016-04-25 2017-11-02 パナソニックIpマネジメント株式会社 光吸収材料およびそれを用いた太陽電池
WO2018123402A1 (ja) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 太陽電池、光吸収層および光吸収層の形成方法
US20180204682A1 (en) * 2017-01-18 2018-07-19 Iowa State University Research Foundation, Inc. Solvent-free, solid phase synthesis of hybrid lead halide perovskites with superior purity
JP2018536995A (ja) * 2015-11-27 2018-12-13 オックスフォード ユニバーシティ イノベーション リミテッドOxford University Innovation Limited 混合カチオンペロブスカイト
JP2019038714A (ja) * 2017-08-24 2019-03-14 国立大学法人京都大学 ハロゲン化スズペロブスカイト化合物の製造方法
JP2019055916A (ja) * 2017-09-20 2019-04-11 国立大学法人京都大学 錯体,ペロブスカイト層及び太陽電池
JP2019527934A (ja) * 2016-07-21 2019-10-03 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) 混合カチオンペロブスカイト固体太陽電池とその製造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342130B2 (en) * 2019-05-30 2022-05-24 Energy Materials Corporation Method of making a photovoltaic device on a substrate at high speed with perovskite solution

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536995A (ja) * 2015-11-27 2018-12-13 オックスフォード ユニバーシティ イノベーション リミテッドOxford University Innovation Limited 混合カチオンペロブスカイト
WO2017104792A1 (ja) * 2015-12-16 2017-06-22 国立大学法人京都大学 錯体及びペロブスカイト材料、並びに該錯体若しくはペロブスカイト材料を用いたペロブスカイト型太陽電池
JP2017199893A (ja) * 2016-04-25 2017-11-02 パナソニックIpマネジメント株式会社 光吸収材料およびそれを用いた太陽電池
JP2019527934A (ja) * 2016-07-21 2019-10-03 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) 混合カチオンペロブスカイト固体太陽電池とその製造
WO2018123402A1 (ja) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 太陽電池、光吸収層および光吸収層の形成方法
US20180204682A1 (en) * 2017-01-18 2018-07-19 Iowa State University Research Foundation, Inc. Solvent-free, solid phase synthesis of hybrid lead halide perovskites with superior purity
JP2019038714A (ja) * 2017-08-24 2019-03-14 国立大学法人京都大学 ハロゲン化スズペロブスカイト化合物の製造方法
JP2019055916A (ja) * 2017-09-20 2019-04-11 国立大学法人京都大学 錯体,ペロブスカイト層及び太陽電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162982A1 (ja) * 2022-02-28 2023-08-31 ソニーセミコンダクタソリューションズ株式会社 光電変換素子および光検出装置ならびに電子機器

Also Published As

Publication number Publication date
JPWO2021079731A1 (ja) 2021-04-29
US20220216439A1 (en) 2022-07-07
CN114514623A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
Nazir et al. Stabilization of perovskite solar cells: recent developments and future perspectives
Duan et al. Inorganic perovskite solar cells: an emerging member of the photovoltaic community
Jeong et al. Large-area perovskite solar cells employing spiro-Naph hole transport material
US11222924B2 (en) Photovoltaic device
Bogachuk et al. Low-temperature carbon-based electrodes in perovskite solar cells
Ng et al. Photovoltaic performances of mono-and mixed-halide structures for perovskite solar cell: A review
Sahare et al. Emerging perovskite solar cell technology: remedial actions for the foremost challenges
WO2018123402A1 (ja) 太陽電池、光吸収層および光吸収層の形成方法
Manspeaker et al. Role of interface in stability of perovskite solar cells
Murugadoss et al. Synthesis of ligand-free, large scale with high quality all-inorganic CsPbI3 and CsPb2Br5 nanocrystals and fabrication of all-inorganic perovskite solar cells
Wu et al. Interface modification to achieve high-efficiency and stable perovskite solar cells
Dong et al. Carbon-based all-inorganic perovskite solar cells: Progress, challenges and strategies toward 20% efficiency
JP2017022355A (ja) 太陽電池
JP7232032B2 (ja) 太陽電池
US20220216439A1 (en) Photoelectric conversion film, solar cell using same, and method for producing photoelectric conversion film
Zhou et al. Aspartate all-in-one doping strategy enables efficient all-perovskite tandems
US11737291B2 (en) Solar cell
JP2017126731A (ja) ペロブスカイト太陽電池
JP2017199893A (ja) 光吸収材料およびそれを用いた太陽電池
US20220077411A1 (en) Photoelectric conversion film, solar cell using same, and method for producing photoelectric conversion film
US20230022255A1 (en) Solar cell
WO2021100237A1 (ja) 太陽電池
JP6628119B1 (ja) 太陽電池
US20220139636A1 (en) Solar cell
WO2022244412A1 (ja) 太陽電池および太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878625

Country of ref document: EP

Kind code of ref document: A1