WO2021078146A1 - 一种风力发电叶片 - Google Patents

一种风力发电叶片 Download PDF

Info

Publication number
WO2021078146A1
WO2021078146A1 PCT/CN2020/122463 CN2020122463W WO2021078146A1 WO 2021078146 A1 WO2021078146 A1 WO 2021078146A1 CN 2020122463 W CN2020122463 W CN 2020122463W WO 2021078146 A1 WO2021078146 A1 WO 2021078146A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
power generation
wind power
wing
leaf
Prior art date
Application number
PCT/CN2020/122463
Other languages
English (en)
French (fr)
Inventor
张跃
Original Assignee
张跃
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张跃 filed Critical 张跃
Publication of WO2021078146A1 publication Critical patent/WO2021078146A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05B2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05B2230/234Laser welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of wind power generation, in particular to a wind power generation blade.
  • the blade is one of the key components of a wind power generator.
  • the wind speed of the natural wind is mainly used to blow the blade rotation for kinetic energy, and the kinetic energy of the blade rotation is used to rotate the generator to generate electricity.
  • the length of the blade needs to be longer.
  • the longer the blade the greater the processing difficulty and the more complex the process, which makes it difficult to ensure the quality of the blade; and most of the blades are manufactured as a whole, and the transportation cost is high. , And transportation is difficult.
  • many blade manufacturers divide the blade into two or more segments along the length during manufacture, and splice the multi-segment blades into an integral blade after being transported to the destination.
  • the conventional technical method is to install a reinforcing plate in the inner cavity of the blade to support the blade.
  • the installation of the reinforcing plate can only partially strengthen the blade and avoid the hollow blade from collapsing. It still cannot enhance the overall stability of the blade, nor can it. Strengthen the overall rigidity and stability of the segmented blades.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a wind power blade with light weight, reduced cost, stability and reliability, convenient replacement, and high structural strength.
  • a wind power generation blade including a blade wing and a leaf stem
  • the blade wing is a cavity structure formed by splicing a plurality of sandwich panels and arc plates, and the blade wing includes successively connected The leaf root section, the middle leaf section and the leaf tip section; the leaf stem is provided in the cavity of the leaf wing along the direction of the leaf root section to the tip section, and the outer wall of the leaf stem is in contact with the The inner walls of the sandwich panels are connected.
  • the leaf stem has a segmented structure.
  • the leaf stem has a cone-tube structure.
  • the leaf stem has a conical tube structure or a polygonal conical tube structure.
  • the end of the blade root section is provided with a connecting piece.
  • the middle section of the leaf has a multi-segment splicing structure.
  • the sandwich panel and the arc plate are connected by welding.
  • the sandwich panel is welded and connected to the arc panel through a patch panel.
  • the sandwich panel is made of stainless steel sandwich material.
  • the cavity of the blade wing is also provided with reinforcing ribs.
  • reinforcing ribs are respectively connected with the sandwich panel and the leaf stem.
  • the beneficial effects of the present invention on the one hand, lightweight materials are used to manufacture the blade, and at the same time, the material itself is overcome in terms of shape limitations; on the other hand, the overall strength of the blade can be improved, and the rigidity of the splicing section can be strengthened And stability; and the blade wing has light weight, can generate electricity in breeze, and can be installed in any power demand terminal with poor wind.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an embodiment of the present invention
  • Figure 2 is a front view of the embodiment shown in Figure 1;
  • Figure 3 is a cross-sectional view taken along the line A-A of the embodiment shown in Figure 2;
  • Figure 4 is a B-B cross-sectional view of the embodiment shown in Figure 2;
  • Fig. 5 is an enlarged schematic diagram of part I of the embodiment shown in Fig. 4;
  • Fig. 6 is an enlarged schematic view of part II of the embodiment shown in Fig. 4;
  • Fig. 7 is a schematic structural diagram of the connector of the embodiment shown in Fig. 1;
  • FIG. 8 is a schematic diagram of a partially disassembled structure of the embodiment shown in FIG. 1.
  • Leaf root section 11. Leaf root section; 12. Leaf middle section; 13. Leaf tip section; 14. Long side; 15. Short side.
  • a wind power generation blade comprising a blade wing 1 and a leaf stem 2.
  • the blade wing 1 is a cavity structure formed by splicing multiple sandwich panels 3 and arc plates 4, and
  • the blade wing 1 includes a blade root section 11, a leaf middle section 12, and a blade tip section 13 that are connected in sequence;
  • the leaf stem 2 is arranged on the blade wing in a direction from the blade root section 11 to the blade tip section 12 In the cavity of 1, and the outer wall of the leaf stem 2 is connected with the inner wall of the sandwich panel 3.
  • the blade is a spliced structure, which is convenient for transportation and assembly;
  • the blade wing is a cavity structure formed by splicing multiple sandwich panels and arc panels.
  • the sandwich panel is used to ensure strength. At the same time, it can also greatly improve the lightweight; and the lighter the blade, the easier it is to be blown by the wind to generate electricity, that is, the breeze can generate electricity, and the annual power generation hours are greatly increased;
  • the leaf stem By setting the leaf stem, the overall blade can be strengthened. Strength, and can enhance the rigidity and stability of the splicing section.
  • the sandwich panel 3 is a flat sandwich panel. Compared with the existing curved panel body, it is easier to manufacture, and the manufacturing cost is greatly reduced. It can be said that this embodiment uses lightweight materials to manufacture the blades, and at the same time Overcome the limitations of the material itself in terms of shape.
  • the plane sandwich panels are connected by the arc panels.
  • the mid-leaf section 12 may be a multi-segment splicing structure.
  • the number of splicing sections in this embodiment can be selected according to requirements. The longer the length, the more splicing sections.
  • the leaf stem 2 of this embodiment has a tapered tube structure, which may be a tapered tube structure or a polygonal tapered tube structure.
  • the leaf stem 2 is a tapered tube structure, which is supported and connected to the cavity of the blade wing 1, which can improve the overall strength of the blade wing, instead of being only partially strengthened like a reinforcing plate; on the other hand, it can strengthen the rigidity and rigidity of the splicing section. stability.
  • the leaf stem has a segmented structure.
  • the segmented structure means that each of the root section 11, the middle section 12 and the tip section 13 is provided with a leaf stem 2 instead of a whole root running through between the leaf wings.
  • the length of the leaf stem of each segment of the leaf wing satisfies: when the adjacent segments are connected, the leaf stems are just butted together.
  • the length of the leaf stem can be equal to the length of each segment of the leaf wing, and can also be greater or less than the length of each segment of the leaf wing, as long as it can be docked with the leaf stem in the adjacent segment.
  • the end of the previous leaf stem should be adapted to the size of the head of the next leaf stem. The reason why a leaf stem is provided in each blade wing in this embodiment is to facilitate quick connection. Since the leaf stems are arranged inside the leaf wings, the adjacent leaf stems are preferably connected by welding or plug-in connection, so as to speed up the assembling speed.
  • the sandwich panel 3 of this embodiment is made of metal material, and includes a plate layer, a sandwich layer, and a plate layer.
  • the sandwich layer may be a honeycomb core, a tube core, a corrugated core, or the like.
  • the sandwich layer includes a plurality of hollow tubes, the upper and lower ends of the hollow tubes are flanged, and the hollow tubes are welded to the plate layer by flanging, preferably brazed connection.
  • the wall of the existing blade wing usually has a curvature, and the processing is relatively complicated, and if it is a sandwich structure, it is more difficult to set the arc shape, the processing is difficult, and the cost is high. Therefore, in this embodiment, it is preferable to use a sandwich panel with a planar structure to make a blade wing. However, if the sandwich panels of the planar structure are connected, it is not easy to butt, and the edges are sharper after butting. In order to solve this problem, the arc plate 4 is provided at the junction of adjacent sandwich panels in this embodiment. In addition, when the outer wall of the leaf stem 2 is connected to the inner wall of the sandwich panel 3, the connection may be directly or through a patch panel 5.
  • a first arc plate 4 is provided between two adjacent long sides and between two adjacent short sides. For example, when two adjacent long sides are connected, the two long sides are not aligned, and It is a staggered connection, and the lengths of the two long sides are different, which facilitates the staggered connection to set the first arc plate 4.
  • the first arc plate 4 is hook-shaped and includes a first arc surface and a straight surface, one end of the first arc surface is welded to one side of one long side, and one end of the straight surface is welded to one side of the other long side, and
  • the first arc surface 41 forms the edge of the blade wing, and a cavity is formed between the two long sides 14 and the first arc plate 4.
  • the connection between the adjacent short sides 15 is the same as that of the long sides, and will not be repeated here.
  • the long side 14 and the short side 15 are welded into a whole with the second arc plate 5, wherein a patch plate 6 is welded on both sides of the second arc plate 5, and a part of the patch plate 6 extends to the inner cavity of the blade wing, and The leaf stems 2 are welded into one body.
  • the number of sandwich panels of the blade root section 11 is more than that of other splicing sections.
  • the end of the blade root section 11 is provided with a connecting head 7 for connecting other components.
  • the end of the connector 7 is welded to the leaf stem 2 into one body.
  • the connecting head 7 has a flange structure.
  • the sandwich panel 3 and the leaf stem 2 are made of stainless steel.
  • Stainless steel has an almost infinite life. When used in wind turbines for wind power generation, it can be installed in any power demand terminal with poor wind power, achieving excellent return on investment and huge carbon reduction. It is expected to become the ultimate solution for civilization to protect the climate. .
  • reinforcing ribs in addition to arranging the leaf stem in the cavity of the blade wing, reinforcing ribs can also be provided for further strengthening.
  • the reinforcing ribs are respectively welded and connected with the sandwich panel and the leaf stem, and the reinforcing ribs may be distributed horizontally and/or longitudinally.
  • the blade wing of this embodiment has a total of 8 segments, that is, segments A to H, segment A is the tip segment, segment H is the root segment, and segments B to G are the middle segment of the blade.
  • each segment is welded in sequence to form an integral blade wing structure.
  • each segment is welded by a number of sandwich panels 3 and arc plates 4, and a leaf stem is welded in the cavity.
  • the length of the leaf stem is the same as or close to the length of each leaf wing, and the leaf stem 2 is connected to the patch board. 6 Welding into one.
  • the mobile robot is preferably a robot car
  • the welding method is preferably laser welding.
  • plug-in connections can also be used.
  • plug-in connections can be used between the segments with smaller blade cross-sections.
  • a tenon is provided between the middle blade section of the rear section and between the middle blade section and the tip section. The mortise structure realizes the plug connection.
  • this embodiment adopts lightweight materials to manufacture the blade wing, and at the same time overcomes the limitation of the material itself in terms of shape; on the other hand, it can improve the overall strength of the blade and strengthen the splicing section.
  • the rigidity and stability of the blades are light, and the blades can generate electricity in a breeze, and can be installed in any power demand terminal with poor wind.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

一种风力发电叶片,包括叶翼(1)和叶茎(2),叶翼(1)是由多块夹芯板(3)和弧板(4)拼接而成的空腔结构,且叶翼(1)包括依次连接的叶根段(11)、叶中段(12)和叶尖段(13);叶茎(2)沿叶根段(11)向叶尖段(13)的方向设在叶翼(1)的空腔中,且叶茎(2)的外壁与夹芯板(3)的内壁相接。一方面采用了轻量化材料来制造叶翼(1),同时又克服了材料本身在形状方面的限制;另一方面,能够提高叶翼(1)的整体强度,以及能够加强拼接段处的刚度和稳定性;并且叶翼(1)自重轻,可微风发电。

Description

一种风力发电叶片 技术领域
本发明涉及风力发电技术领域,特别是一种风力发电叶片。
背景技术
叶片是风力发电机组的关键部件之一,主要通过气体自然风的风速为动能吹动叶片旋转,通过叶片旋转的动能力量转动发电机产生电力。为了充分利用风能而产生更高的发电效率,叶片的长度需要做的较长,然而,叶片越长,加工难度越大、工艺越复杂,难以保证叶片质量;而且叶片大多整体制造,运输成本高,且运输困难。为了解决该问题,很多叶片制造厂家在制造时将叶片沿长度方向划分为两段或更多段,并在运输至目的地后将多段叶片拼接成整体叶片。
另外,叶片长度越长,强度就会大大降低,尤其是叶片分段拼接结构,其拼接处的强度较弱,很容易导致叶片折断。为了增加叶片强度,常规技术手段是在叶片的内腔中设置加强板来支撑叶片,然而设置加强板只能对叶片进行局部加强,避免空心叶片塌陷,仍旧不能增强叶片整体的稳定性,也不能加强分段叶片的整体刚度和稳定性。
再者,现有的叶片,当需要更换时,需要整体更换,或者某一处损坏时,那叶片整体报废,导致成本大大增加,且影响工作。
发明内容
本发明的目的是克服现有技术的上述不足而提供一种自重轻,降低成本,稳定可靠,更换方便,结构强度大的风力发电叶片。
本发明的技术方案是:一种风力发电叶片,包括叶翼和叶茎,所述叶翼是由多块夹芯板和弧板拼接而成的空腔结构,且所述叶翼包括依次连接的叶根段、叶中段和叶尖段;所述叶茎沿所述叶根段向所述叶尖段的方向设在所述叶翼的空腔中,且所述叶茎的外壁与所述夹芯板的内壁相接。
进一步,所述叶茎为分段结构。
进一步,所述叶茎为锥管结构。
进一步,所述叶茎为圆锥管结构或多边形锥管结构。
进一步,所述叶根段的端部设有连接件。
进一步,所述叶中段为多段拼接结构。
进一步,所述夹芯板和所述弧板通过焊接连接。
进一步,所述夹芯板通过补板与所述弧板焊接连接。
进一步,所述夹芯板为不锈钢夹芯材料。
进一步,所述叶翼的空腔内还设有加强筋。
进一步,所述加强筋分别与所述夹芯板和所述叶茎连接。
本发明的有益效果:一方面采用了轻量化材料来制造叶翼,同时又克服了材料本身在形状方面的限制;另一方面,能够提高叶翼的整体强度,以及能够加强拼接段处的刚度和稳定性;并且叶翼自重轻,可微风发电,可设在任何风力不佳的用电需求终端。
附图说明
图1是本发明实施例的立体结构示意图;
图2是图1所示实施例的主视图;
图3是图2所示实施例的A-A向剖视图;
图4是图2所示实施例的B-B向剖视图;
图5是图4所示实施例的I部放大示意图;
图6是图4所示实施例的Ⅱ部放大示意图;
图7是图1所示实施例连接头的结构示意图;
图8是图1所示实施例的部分拆分结构示意图。
附图标识说明:
1.叶翼;2.叶茎;3.夹芯板;4.第一弧板;5.第二弧板;6.补板;7.连接头;
11.叶根段;12.叶中段;13.叶尖段;14.长边;15.短边。
具体实施方式
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
如图1~图8所示:一种风力发电叶片,包括叶翼1和叶茎2,所述叶翼1是由多块夹芯板3和弧板4拼接而成的空腔结构,且所述叶翼1包括依次连接的叶根段11、叶中段12和叶尖段13;所述叶茎2沿所述叶根段11向所述叶尖段12的方向设在所述叶翼1的空腔中,且所述叶茎2的外壁与所述夹芯板3的内壁相接。
上述方案具有以下优点:(1)叶片为拼接结构,便于运输和拼装;(2)叶翼是由多块夹芯板和弧板拼接而成的空腔结构,采用夹芯板,在保证强度的同时,还能大大提高轻量化;而叶片越轻质,越容易被风吹动旋转发电,即微风可发电,年发电小时数大大增加;(3)通过设置叶茎,能够加强叶片的整体强度,以及能够加强拼接段处的刚度和稳定性。
具体地,夹芯板3为平面夹芯板,相比现有的曲面板体而言,更易制造,且制造成 本大大降低,可以说,本实施例采用了轻量化材料来制造叶片,同时又克服了材料本身在形状方面的限制。平面夹芯板之间通过所述弧板进行连接。
其中,叶中段12可以是多段拼接结构,本实施例的拼接段数量可根据需求进行选择,长度越长,拼接段越多。
由于叶片的尺寸从叶根段11到叶尖段13逐渐缩小,因此,本实施例的叶茎2为锥管结构,可以是圆锥管结构或多边形锥管结构。叶茎2为锥管结构,支撑连接于叶翼1的空腔中,能够提高叶翼的整体强度,而不是像加强板那样仅仅是局部加强;另一方面,能够加强拼接段处的刚度和稳定性。
进一步地,叶茎为分段结构。所述的分段结构是指叶根段11、叶中段12和叶尖段13的每一段中均设置叶茎2,而不是一整根贯穿于叶翼间,当需要更换某一段时,只需将该段以及该段内的叶茎整体拆下即可,无需更换整体叶翼,不仅节约成本,还会大大提高工作效率。
优选地,叶翼每段的叶茎长度满足:当相邻段连接后,各叶茎之间正好对接在一起。其中,叶茎的长度可以与每段叶翼的长度等同,也可以大于或小于每段叶翼的长度,只要满足能够与相邻段内的叶茎对接即可。为了便于各叶茎之间的连接,前一个叶茎的末端要与后一个叶茎的头部尺寸相适配。本实施例之所以在每段叶翼内均设置叶茎,是为了便于快速连接。由于叶茎设于叶翼内部,相邻叶茎之间优选采用焊接或插接方式连接,从而能够加快拼装速度。
进一步地,本实施例的夹芯板3为金属材质,包括板层、夹芯层、板层。其中,夹芯层可以是蜂窝芯、管芯、瓦楞芯等。优选地,夹芯层包括若干个空心管,空心管的上下两端翻边,空心管通过翻边与板层之间焊接,优选为钎焊连接。
现有叶翼的壁通常带有弧度,加工较复杂,而且如果是夹层结构,更不易设置成弧形,加工难度大,成本高。因此,本实施例优选采用平面结构的夹芯板制成叶叶翼。然而,如果平面结构的夹芯板之间连接时,不易对接,且对接后棱边较为尖锐。为了解决该问题,本实施例在相邻夹芯板的连接处设有所述弧板4。此外,叶茎2的外壁与所述夹芯板3的内壁相接时,可以是直接连接,也可以通过补板5进行连接。
以下为本发明夹芯板连接方式的一个优选实施例:
如图5和图6所示:除叶根段11外,叶中段和叶尖段均由四块平面的夹芯板3拼接形成,使得叶翼的截面形状为四边形,且四边形的相邻两个呈锐角的边为长边14,另外相邻两个呈锐角的边为短边15,长边与短边之间呈钝角。其中,相邻两个长边之间以及相邻两个短 边之间均设有第一弧板4,例如,相邻两个长边之间连接时,两个长边并不对齐,而是错位连接,且两个长边的长度不同,便于错位连接设置第一弧板4。其中,第一弧板4呈钩状,包括第一弧形面和直面,第一弧形面的一端与一长边的一侧焊接,直面的一端与另一长边的一侧焊接,且第一弧形面41构成叶翼的边缘,两长边14与第一弧板4之间形成空腔。另外,相邻短边15之间的连接与长边相同,此处不再赘述。长边14与短边15之间与第二弧板5焊接成一体,其中,第二弧板5的两侧焊接有补板6,且补板6延伸出一部分至叶翼的内腔,与叶茎2之间焊接成一体。
叶根段11的夹芯板的数量多于其它拼接段。例如,本实施例优选采用8~10块夹芯板拼接形成叶根段11,形成一个多面体结构。叶根段11的端部设有连接头7,用于连接其它构件。连接头7的末端与叶茎2焊接成一体。优选地,连接头7为法兰结构。
本实施例中,夹芯板3和叶茎2均为不锈钢材料。不锈钢寿命几乎无限长,当用于风力发电机组进行风力发电时,可以设在任何风力不佳的用电需求终端,实现极好的投资回报和巨额减碳,有望成为人类保护气候的终极解决方案。
本实施例中,除了在叶翼的空腔内设置叶茎外,还可设置加强筋进行进一步加强。加强筋分别与所述夹芯板和所述叶茎焊接连接,加强筋可以是横向和/或纵向分布。
以下为本发明叶翼拼装方法的一个优选实施方式,主要包括以下步骤:
S101:将叶根段11、叶中段12和叶尖段13进行拼接安装;
具体地,如图2所示:假设本实施例的叶翼总共为8段,即A~H段,A段为叶尖段,H段为叶根段,B~G段为叶中段。将这八段进行现场拼接时,各段之间依次进行焊接,形成整体叶翼结构。其中,每段均由多块夹芯板3和弧板4焊接而成,且内腔中焊接有叶茎,叶茎的长度与每段叶翼的长度相同或接近,叶茎2与补板6焊接成一体。
S102:各段拼接成一体后,通过移动机器人进入叶茎内,对相邻叶茎之间进行焊接,使叶茎形成一整体,从而完成叶翼拼装。
具体地,移动机器人优选为机器人小车,焊接方式优选为激光焊。
当叶翼的某段受损时,可直接将该段叶翼连带内部的叶茎拆下即可,其它段不受影响。
本实施例采用焊接方式,可提高整体强度。可以理解的是,也可以采用插接等,例如,叶片截面较小的那几段之间可采用插接方式,如在后段的叶中段之间以及叶中段与叶尖段之间设置榫头榫眼结构实现插接。
综上所述,本实施例一方面采用了轻量化材料来制造叶翼,同时又克服了材料本身 在形状方面的限制;另一方面,能够提高叶翼的整体强度,以及能够加强拼接段处的刚度和稳定性;并且叶翼自重轻,可微风发电,可设在任何风力不佳的用电需求终端。

Claims (10)

  1. 一种风力发电叶片,其特征在于:包括叶翼和叶茎,所述叶翼是由多块夹芯板和弧板拼接而成的空腔结构,且所述叶翼包括依次连接的叶根段、叶中段和叶尖段;所述叶茎沿所述叶根段向所述叶尖段的方向设在所述叶翼的空腔中,且所述叶茎的外壁与所述夹芯板的内壁相接。
  2. 根据权利要求1所述的风力发电叶片,其特征在于:所述叶茎为分段结构。
  3. 根据权利要求1所述的风力发电叶片,其特征在于:所述叶茎为锥管结构。
  4. 根据权利要求3所述的风力发电叶片,其特征在于:所述叶茎为圆锥管结构或多边形锥管结构。
  5. 根据权利要求1所述的风力发电叶片,其特征在于:所述叶根段的端部设有连接件。
  6. 根据权利要求1所述的风力发电叶片,其特征在于:所述夹芯板和所述弧板通过焊接连接。
  7. 根据权利要求6所述的风力发电叶片,其特征在于:所述夹芯板通过补板与所述弧板焊接连接。
  8. 根据权利要求1所述的风力发电叶片,其特征在于:所述夹芯板为不锈钢夹芯材料。
  9. 根据权利要求1所述的风力发电叶片,其特征在于:所述叶翼的空腔内还设有加强筋。
  10. 根据权利要求9所述的风力发电叶片,其特征在于:所述加强筋分别与所述夹芯板和所述叶茎连接。
PCT/CN2020/122463 2019-10-21 2020-10-21 一种风力发电叶片 WO2021078146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911001807.6A CN110617175A (zh) 2019-10-21 2019-10-21 一种风力发电叶片
CN201911001807.6 2019-10-21

Publications (1)

Publication Number Publication Date
WO2021078146A1 true WO2021078146A1 (zh) 2021-04-29

Family

ID=68926206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122463 WO2021078146A1 (zh) 2019-10-21 2020-10-21 一种风力发电叶片

Country Status (2)

Country Link
CN (1) CN110617175A (zh)
WO (1) WO2021078146A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617175A (zh) * 2019-10-21 2019-12-27 张跃 一种风力发电叶片
CN112780485B (zh) * 2021-03-02 2022-09-06 三一重能股份有限公司 风电叶片设计方法及装置
CN116498486A (zh) * 2023-02-17 2023-07-28 清新能源科技张家口有限公司 一种分段式钢索扶持型风力发电机叶片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2456484A (en) * 2009-06-10 2009-07-22 Vestas Wind Sys As Wind turbine blade incorporating nanoclay
CN103147936A (zh) * 2013-04-02 2013-06-12 南京飓能电控自动化设备制造有限公司 风力发电机叶片以及具有该叶片的风力发电机
CN105402084A (zh) * 2015-12-29 2016-03-16 南京高传机电自动控制设备有限公司 一种新型风力机组合叶片
CN105909463A (zh) * 2016-06-02 2016-08-31 三重型能源装备有限公司 风力发电机及其组合叶片
CN207647684U (zh) * 2017-12-25 2018-07-24 江苏金风科技有限公司 风力发电机组叶片组成部件、叶片及风力发电机组
CN110617175A (zh) * 2019-10-21 2019-12-27 张跃 一种风力发电叶片
CN210714920U (zh) * 2019-10-21 2020-06-09 张跃 一种风力发电叶片

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854594B2 (en) * 2009-04-28 2010-12-21 General Electric Company Segmented wind turbine blade
US8167570B2 (en) * 2009-12-14 2012-05-01 General Electric Company Fluid turbine blade and method of providing the same
US8186964B2 (en) * 2010-12-10 2012-05-29 General Electric Company Spar assembly for a wind turbine rotor blade
US9534580B2 (en) * 2013-02-27 2017-01-03 General Electric Company Fluid turbine blade with torsionally compliant skin and method of providing the same
CN103600498B (zh) * 2013-11-07 2017-06-23 吉林重通成飞新材料股份公司 分段式风电叶片的制造以及装配方法
CN104696167B (zh) * 2014-12-24 2017-06-20 中国科学院工程热物理研究所 一种钝尾缘风力涡轮机叶片及其实施装置与方法
CN205330875U (zh) * 2016-01-28 2016-06-22 北京金风科创风电设备有限公司 风力发电机组分段叶片及风力发电机组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2456484A (en) * 2009-06-10 2009-07-22 Vestas Wind Sys As Wind turbine blade incorporating nanoclay
CN103147936A (zh) * 2013-04-02 2013-06-12 南京飓能电控自动化设备制造有限公司 风力发电机叶片以及具有该叶片的风力发电机
CN105402084A (zh) * 2015-12-29 2016-03-16 南京高传机电自动控制设备有限公司 一种新型风力机组合叶片
CN105909463A (zh) * 2016-06-02 2016-08-31 三重型能源装备有限公司 风力发电机及其组合叶片
CN207647684U (zh) * 2017-12-25 2018-07-24 江苏金风科技有限公司 风力发电机组叶片组成部件、叶片及风力发电机组
CN110617175A (zh) * 2019-10-21 2019-12-27 张跃 一种风力发电叶片
CN210714920U (zh) * 2019-10-21 2020-06-09 张跃 一种风力发电叶片

Also Published As

Publication number Publication date
CN110617175A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2021078146A1 (zh) 一种风力发电叶片
CN101876292B (zh) 分段式风力涡轮机叶片
US8425195B2 (en) Wind turbine blade
US8231351B2 (en) Adaptive rotor blade for a wind turbine
CN102374113B (zh) 风力涡轮机转子叶片接头
US9719489B2 (en) Wind turbine rotor blade assembly having reinforcement assembly
US9133818B2 (en) Wind turbine blade
EP2534373B1 (en) A sectional blade
US6415510B2 (en) Method of fabricating leading edge nose structures of aerodynamic surfaces
CN102650269B (zh) 改进的风轮机多片式叶片
US9605651B2 (en) Spar assembly for a wind turbine rotor blade
CN102767469B (zh) 用于风力涡轮机转子叶片的小翼
CN115506947A (zh) 一种多梁张力型风电叶片及制造方法
CN210714920U (zh) 一种风力发电叶片
CN114045941B (zh) 一种喇叭状空间曲面节点及其制作方法
CN113775471B (zh) 一种桁架式模块化风电叶片
JP7221384B2 (ja) 中空の翼弦方向に延在するピンを有する風力タービンのジョイントされたロータブレード
CN112443451A (zh) 一种新型风力发电叶片
CN214092127U (zh) 一种新型风力发电叶片
CN111997830B (zh) 一种垂直轴风力发电机风轮
CN115405460B (zh) 一种无芯材风电叶片
CN211975271U (zh) 一种三腹板结构的大型风电机组叶片
CN219865325U (zh) 一种桁架式支撑主梁风力机叶片及风力机
CN116696654A (zh) 一种分段式风力发电叶片及其运输方法
CN116557206A (zh) 一种风力发电叶片结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879226

Country of ref document: EP

Kind code of ref document: A1