WO2021078074A1 - 一种空间骨料增强3d打印混凝土结构的建造方法 - Google Patents

一种空间骨料增强3d打印混凝土结构的建造方法 Download PDF

Info

Publication number
WO2021078074A1
WO2021078074A1 PCT/CN2020/121534 CN2020121534W WO2021078074A1 WO 2021078074 A1 WO2021078074 A1 WO 2021078074A1 CN 2020121534 W CN2020121534 W CN 2020121534W WO 2021078074 A1 WO2021078074 A1 WO 2021078074A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial
aggregate
printing
concrete structure
reinforced
Prior art date
Application number
PCT/CN2020/121534
Other languages
English (en)
French (fr)
Inventor
孙晓燕
王海龙
叶柏兴
陈龙
张治成
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US17/769,750 priority Critical patent/US20220402164A1/en
Publication of WO2021078074A1 publication Critical patent/WO2021078074A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/522Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement for producing multi-layered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • B28B23/022Means for inserting reinforcing members into the mould or for supporting them in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials

Definitions

  • the invention belongs to the technical fields of building materials, building structure and modeling design, and particularly relates to a method for constructing a 3D printed concrete structure reinforced by spatial aggregates.
  • 3D printing has been rapidly and widely promoted in various industries since its invention.
  • 3D printing buildings and structures can effectively reduce construction waste, improve construction efficiency, shorten construction period, reduce labor, improve the level of mechanization, and achieve energy saving and emission reduction as a whole, which will help improve the environment.
  • 3D printing can be controlled by a computer to realize arbitrary design of the space, it can combine structural forces with architectural aesthetics, reflecting the artistic quality of architecture. Due to the uniqueness of the technology, it is impossible to reinforce the 3D printed concrete, resulting in most 3D printed buildings being pure concrete structures. Due to the printing process, the molding structure is anisotropic and there are obvious layer defects. Even with the addition of various flexible fibers, it is difficult to distribute continuously in accordance with the load-bearing space, resulting in a serious lack of tensile strength of the material, and the failure mode presents obvious brittleness characteristics.
  • CN 104961367 A proposes a patent for using strip-shaped steel fiber concrete to 3D print buildings, using steel fibers with a diameter of less than 5 cm and a length of less than 10 cm for precise distribution design as required, and concrete is poured into the concrete to enhance the stress performance of the concrete during printing.
  • the enhancement method of the long and thin range of the steel fiber and the discontinuous spatial distribution of the steel fibers has a very limited improvement in the shear resistance of the printed layer interface, and it is difficult to meet the structural function and safety requirements.
  • CN 106738898 A proposes a programmable orientation short fiber composite material 3D printing method and device, which utilizes magnetic force to locate short and thin magnetized fibers with a length of 0.05-2mm and a length-to-diameter ratio of 2-10 to make composite material boards.
  • CN 10971985 A proposes a 3D printing electromagnetic wave-absorbing concrete directional grading feeding system within jurisdiction.
  • This research group proposes a 3D printing woven concrete structure construction method CN109227875A, which uses flexible ropes/wires through nail positioning and integrated weaving to build reinforced concrete structures, realizing continuous reinforcement of printed concrete structures.
  • the existing bar planting technology has limited adaptation to the printing process, and it is difficult to adapt to spatial changes and enhancement requirements.
  • the German inventor Kai Parthy proposed a solution to the filling of mesh steel fibers, using a space ring to fill in the concrete through a sprinkler or by hand, to ensure that the printed structure has a strong bearing capacity in the three directions of XYZ and improve the structure Destruction mode.
  • the smooth boundary results in limited bonding effect, and the efficiency of enhancing the overall structural performance is not good.
  • the purpose of the present invention is to provide a construction method of 3D printed concrete structure reinforced by space aggregate, which can form continuous reinforced space aggregate, effectively improve the stress performance of the concrete structure space, and improve the tensile strength and crack resistance of the concrete structure space .
  • a method for constructing a 3D printed concrete structure reinforced with space aggregates including the following steps:
  • the spatial aggregate is a spatial rigid aggregate composed of a bionic structure formed by aggregates of different shapes.
  • the aggregate has a spatial multi-limb structure, the tail of the aggregate is provided with a buckle and an end anchor for the connection between the spatial aggregates, and the center of the spatial aggregate is provided with a rib or rope/wire sleeve ’S buckle
  • step (1) Extrude the 3D printing material along the path of the printing and weaving process in step (1), implant the ribs or knit the rope/wire, and evenly sprinkle the spatial rigid aggregate, using the electromagnetic signal in step (3) And set as the push program to realize the link between the spatial aggregates and the link between the spatial aggregates and the reinforcement or rope/wire respectively, build up layer by layer, and form a spatial aggregate reinforced 3D printed concrete structure at one time after being hardened and molded; or subdivided After the segment is printed, the component nodes are connected through the preset tenon and rib or rope/wire lap design to form a spatial aggregate reinforced 3D printed concrete structure.
  • the space aggregate, the matrix printed by the 3D printing material and the reinforcement, rope or wire form a continuous space skeleton;
  • the space aggregate can be adapted to a variety of printing paths and is positioned by magnetism , Bayonet design and buckle link realize continuous overall coordinated force, effectively improve the tensile strength and crack resistance of concrete structures, and improve the shear resistance, bearing capacity and deformation performance of concrete structures.
  • the multi-limb and end anchor design of the spatial aggregate can effectively improve the bonding strength between layers/strips, which are incorporated during printing.
  • the spatial aggregate is connected by electromagnetic alignment and buckles to form spatial flexible bones.
  • the hardening of concrete and the bionic design of space aggregates effectively realize the synergy of the two; effectively enhance the overall bearing capacity of the structure and improve the failure mode.
  • the center of the space aggregate is provided with a snap button, which can be pushed by the positioning machine and connected with the continuous rope/wire woven in the printing material to form a good integral space skeleton, which cooperates with the matrix to bear the force to ensure that the structure is under accidental loads and extreme work. Safe under conditions.
  • the invention combines the technical superiority of the existing 3D printing materials for rapid prototyping and the convenient incorporation of spatial aggregates and the construction convenience of precise control of the amount.
  • a certain proportion of high-strength spatial aggregates are mixed into the 3D printing matrix at the same time.
  • the buckle link between various continuous reinforcement materials of ropes and wires is formed to form a continuous space reinforced aggregate, which can effectively improve the structural space stress performance, especially for the lack of shear strength and bending toughness.
  • the formation is different from the traditional The new building structure form of integrated molding of reinforced concrete structure not only solves the performance defects of the existing 3D printing matrix, but also makes up for the lack of structural space spanning ability.
  • the construction is convenient, fast and applicable.
  • the space aggregates, reinforcements, and wires , Rope and 3D printing materials work together to form a space skeleton, instead of steel cages, to ensure that the space aggregates enhance the mechanical properties, fatigue performance and durability of the 3D printed concrete structure.
  • the biomimetic structure formed by the aggregate is one or a combination of at least two kinds of quinoa, cocklebur or sea urchin.
  • the material of the aggregate is selected from one or a combination of at least two of steel, alloy, fiber composite material or nano-rigid material; the shape of the tail of the aggregate is selected from milling type, corrugated, arch type Or one or a combination of at least two of the tail hooks.
  • step (2) the method of determining the type, positioning and mixing amount of the spatial aggregate according to the stress distribution and size under the normal service limit state of the structural member is as follows:
  • the spatial aggregate is determined to be mixed into the dense area, and the threshold value is determined according to the actual value.
  • the design parameters of the end anchor include the length and width of the tip of the end anchor, and these design parameters will directly determine the shear resistance of the buckle.
  • the space between the aggregates is connected by an end anchor or a buckle at the end of the space with a buckle or an end anchor at the tail of the other space between the aggregates.
  • the 3D printing material is selected from one or a combination of at least two of cement-based materials, gypsum materials or nylon materials.
  • the 3D printing material further includes a reinforcing component, the reinforcing component is selected from one or at least two of various types of fibers and their polymers, expanded microbeads, hollow particles or nanomaterials The combination.
  • step (4) the method of implanting ribs or braiding ropes/wires is as follows: in the parallel printing direction, the 3D printing material is integrated with ribs or braided ropes/wires when printing the substrate; In the direction, after 3D printing the substrate, the reinforcement or rope/wire is inserted before the printing material is initially set to form a spatial reinforcement grid.
  • a braiding positioning point is set in the printing and knitting process, and the screw is sprayed to the braiding positioning point when the rope/wire is braided, and the braided rope/thread is wound on the sprayed screw.
  • the segmented printing method is: 3D printing matrix and space aggregates are printed in segments according to the structural requirements of the structural components to form parts, and the prefabricated segmented components are printed by the post-casting/post-tensioning method. Print tenon structure connection.
  • the materials of the ribs and ropes/wires are selected from one or a combination of at least two of steel strands, fiber composite wires, or nanowires.
  • the present invention proposes a method for building a spatial aggregate reinforced 3D printed concrete structure. It solves the existing 3D printed concrete structure's inability to reinforce the lack of reinforcement, enhances the mechanical performance of the structure, greatly improves the tensile and flexural strength and failure mode of the printed concrete, and ensures that the 3D printed concrete structure is in tension and resistance. Bending, crack resistance, impact resistance, fatigue resistance and other aspects of performance, and variable space, convenient construction and reduce carbon emissions in the production and construction process.
  • the high-strength space aggregate is designed and constructed in combination with existing reinforcements, ropes, and wires, which effectively improves the tensile, shear, abrasion and crack resistance of the 3D printing matrix, and greatly enhances the structural fracture toughness and impact resistance. , To improve the fatigue performance and durability of the structure, so that the advantages of 3D printing buildings are fully highlighted, not limited to small building structures.
  • the parts can be printed separately in different areas, and then assembled into a whole, using preset tenon components and post-tensioning pre-stress technology to enhance the integrity.
  • the new strong structure is combined with the traditional building structure, which has flexible compatibility and universality.
  • Figure 1 is a schematic diagram of the structure of the spatial aggregate in the embodiment
  • Figure 2 is a schematic diagram of a spatial aggregate electromagnetic buckle link in an embodiment
  • Fig. 3 is a schematic diagram of a composite structure of a plurality of spatial aggregates in an embodiment
  • Figure 4 is a schematic diagram of the spatial aggregate combination and the positioning link of the rope and wire in the embodiment
  • Figure 5 is a printing flow chart of the construction method provided by the present invention.
  • FIG. 6 is a schematic diagram of the process of reinforcing the 3D printed beam with the spatial aggregate in the embodiment
  • Fig. 7 is a schematic diagram of the process of the 3D printing column reinforced by the spatial aggregate in the embodiment.
  • the process of the space aggregate reinforced 3D printing concrete structure provided by the present invention is as follows: the 3D printing device prints the building components or functional accessories layer by layer according to the preset structural space model, while using the 3D printing material to spatially print the building matrix, the high-strength
  • the spatial aggregate adopts the method of precise spatial positioning and quality control to incorporate the volume to disperse between the layers of the structure and the position of conditional defects.
  • the electromagnetic signal editing technology can be used to realize the gap between the aggregates.
  • the space positioning and linking of the aggregate centroid can be linked with rigid reinforcements such as existing reinforcements and flexible reinforcements such as steel strands or steel ropes through the button design of the aggregate centroid.
  • This construction method can adapt to a variety of printing processes and spatial shapes. Through the extrusion and hydration and hardening of the printing matrix, a space-strong structure with coordinated force and uniform deformation is formed, which can have higher bearing capacity, deformation capacity, and multi-directional crack resistance, and meet the needs of structural functions.
  • the construction method of the novel spatial aggregate reinforced 3D printing structure provided by the present invention includes the following steps:
  • the robotic arm sprinkles the rigid aggregate into the space, and the space between the aggregates, the spatial aggregates and the ribs, ropes or wires are connected, layer by layer, and then superimposed and hardened to form a space aggregate at one time. Reinforce the 3D printed concrete structure; or after segment printing, connect the component nodes through the preset tenon and rib, rope or wire lap design to form a spatial aggregate reinforced 3D printed concrete structure.
  • the method of determining the basic amount of braided rope/wire and the printing and weaving process is: determine the braiding range and braiding density of the wire according to the weak surface of the structure, and then according to the structure of the structural member skeleton and the braiding of the wire
  • the range and knitting density determine the printing process and the knitting process, specifically: determine the knitting range according to the safety factor determined by the stress/strength ratio; determine the encrypted knitting and normal knitting range according to the safety factor and the threshold value, and the threshold is based on The actual value is determined.
  • Example 1 Construction method of space truss beam as a structural member of a bridge
  • the main load-bearing components of bridges are generally beam-type or arch-type structures.
  • 3D printed cement-based materials have high compressive strength and low tensile strength. Choosing a beam structure as the main load-bearing structure of the bridge can make full use of new spatial aggregates. The characteristics of the tensile strength of cement-based materials.
  • the spatial modeling of the beam structure is selected through computer topology optimization after modeling, and the optimized structural shape is used as the structural component of the 3D printed bridge.
  • the 3D printing substrate is printed layer by layer.
  • a robotic arm is equipped with a spatial aggregate bin next to the print head.
  • the electromagnetic signal is edited along the printing path.
  • the mechanical bayonet design and electromagnetic positioning at the end are used to realize the spatial bone.
  • Embedded between the materials, as shown in Figure 2, a, b, and c are respectively the side view of two spatial aggregates connected by a single aggregate electromagnetic buckle into a composite aggregate before linking, and the top view wireframe after linking, Side view after linking, 1 in a is the end anchor, and 2 is the buckle.
  • Spatial aggregates achieve continuous reinforcement in all directions through spatial overlap.
  • d and e are composite aggregate structure diagrams formed by linking multiple spatial aggregates in different ways.
  • the link combination of the rope and the spatial aggregate is shown in Figure 4.
  • 3 is the ribs, ropes, wires, etc. used for linking
  • 4 is the spatial aggregate.
  • the printing flow chart provided by the present invention is shown in FIG. 5.
  • the 3D printing matrix and the spatial aggregate are bonded and solidified under the action of the upper layer of gravity to form a strong and reliable spatial continuous skeleton inside, which further improves the bending, shear and crack resistance of the printed structure.
  • the printing of the truss beam starts with A, and the printing path is AB, BD, DA, AC, CD, DF, FC, CE , EF, FH, HE, EG, GH, JI, IK, KJ, JL, LK, KM, ML, LN, NM, MO, ON, NP, PO, the robot arm carries the space aggregate along the printing path and adds according to the design quantity , Positioning push in the spatial aggregate link part.
  • the spatial aggregates are connected with the ribs, ropes or wires.
  • the spatial aggregates are interlocked between the strips to form a spatial skeleton and form an integral component with the printing matrix. After the components are cured, they can be hoisted and combined to form an integral structure.
  • Embodiment 2 relates to a method for constructing a structural member with a circular column as a bridge
  • the 3D printing matrix is printed layer by layer.
  • a mechanical arm is equipped with a new type of spatial aggregate bin next to the print head, which edits electromagnetic signals along with the printing path, and uses the mechanical bayonet design and electromagnetic positioning at the end to realize the spatial bone Embedded between materials.
  • Each spatial aggregate realizes continuous reinforcement in all directions through spatial overlap. Utilize the centroid button design and mechanical push in the center of the spatial aggregate to realize the link between the spatial aggregate and the reinforcement, rope or wire.
  • the 3D printing matrix and the spatial aggregate are bonded and solidified under the action of the upper layer of gravity to form a strong and reliable spatial continuous skeleton inside, which further improves the bending, shear and crack resistance of the printed structure.
  • the columns are printed counterclockwise from the bottom layer, and stacked layer by layer.
  • the robotic arm carries the space aggregate and adds it according to the design quantity along the printing path, and performs positioning and pushing in the aggregate link part.
  • 5 is a printing and extruding device
  • 6 is an electromagnetic editing device and a robotic arm
  • 7 is a link combination of ribs, ropes or wires and spatial aggregates as shown in Figure 4
  • 8 is an embedded buckle in printing
  • the spatial aggregate in the base body as shown in Fig. 1, 9 is the longitudinal spatial aggregate combination in b in Fig. 3, and 10 is the printing direction of the printer.
  • the interlayer aggregates are connected with the ribs, ropes or wires, and the aggregates between the strips are embedded and buckled to form a space skeleton and form an integral component with the printing matrix.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

一种空间骨料增强3D打印混凝土结构的建造方法:选取结构构件,进行力学分析,确定植入筋材或编入绳/线材的基本用量和打印编织流程;确定空间骨料类型、定位和掺量;配制3D打印材料;根据选定的空间刚性骨料的定位和掺量,编辑空间骨料的电磁信号和定位推送程序;沿打印编织流程路径挤出3D打印材料和植入筋材或编入绳/线材,同时均匀撒入空间刚性骨料,分别实现空间骨料间的链接和空间骨料与筋材、绳材或线材的链接,逐层建造后叠加、硬化成型后一次性形成;或分段打印后形成空间骨料增强3D打印混凝土结构。该建造方法可以形成连续增强空间骨料,有效改善混凝土结构空间的受力性能,提高混凝土结构空间的抗拉强度和抗裂能力。

Description

一种空间骨料增强3D打印混凝土结构的建造方法 技术领域
本发明属于建筑材料、建筑结构和造型设计等技术领域,特别涉及一种空间骨料增强3D打印混凝土结构的建造方法。
背景技术
3D打印作为一种快速成型、增材制造技术,自发明以来,在各个行业得到迅速广泛的推广。3D打印建筑及构筑物能够有效减少建筑垃圾,提升施工效率,缩短工期,减少人工,提升机械化水平,整体上做到节能减排,有助于环境改善。由于3D打印可由计算机控制实现空间任意造型设计,能够将结构受力与建筑美学相结合,体现出建筑的艺术性。由于技术的独特性,无法在3D打印的混凝土之中进行配筋,导致大部分3D打印建筑为纯混凝土结构,由于打印工艺导致成型结构呈现各向异性,存在明显层条缺陷。即使添加各种柔性纤维,也难以按照承载需求空间连续分布,导致材料抗拉强度严重不足,破坏模式呈现明显脆性特征。
CN 104961367 A提出一种利用条形钢纤维混凝土3D打印建筑物的专利,采用直径5厘米以内,长度10厘米以内的钢纤维按需要精准进行分布设计,在打印时投入混凝土增强混凝土受力性能。但这种钢纤维的长细范围和空间不连续分布的增强方式,对打印层间界面抗剪性能的提升非常有限,很难满足结构功能和 安全需求。CN 106738898 A提出一种可编程定向短纤维复合材料3D打印方法及装置,利用磁力定位长度为0.05-2mm,长径比为2-10的短细磁化纤维制作复合材料板。CN 10971985 A提出一种3D打印电磁吸波混凝土定向辖内分级供料系统。本课题组提出一种3D打印编织混凝土结构的建造方法CN109227875A,把柔性的绳/线材通过射钉定位一体化编织建造增强混凝土结构,实现了连续增强打印混凝土结构。现有的植筋技术对打印流程适应有限,而且很难适应空间变化增强需求。本课题组提出的绳、线编织尽管适应打印工艺和空间增强需求,实现了一体化增强制造工艺,但由于绳、线只能放在层条间隙,而绳、线材表面的机械咬合和摩擦提供的粘结性能不足以保持结构在各个工况下的承载性能,导致结构的开裂集中在个别裂缝,空间抗剪性能薄弱,结构正常使用极限状态性能亟待提升。德国发明家Kai Parthy提出网状钢纤维填充的解决思路,利用空间环通过喷头或者手工,填入混凝土之中,以保证打印结构在XYZ三个方向上均有较强的承载能力,且改善结构破坏模式。但这种空间环长径比过大很难在打印过程中保持空间角度,边界光滑造成粘结作用有限,对整体结构性能的增强效率不佳。
因此,如何解决3D打印混凝土结构空间配筋的不足和困难,增强3D打印混凝土结构整体空间受力性能,是目前亟需解决的问题。
发明内容
本发明的目的在于提供一种空间骨料增强3D打印混凝土结构的建造方法,可以形成连续增强空间骨料,有效改善混凝土结构空间的受力性能,提高混凝土结构空间的抗拉强度和抗裂能力。
本发明提供如下技术方案:
一种空间骨料增强3D打印混凝土结构的建造方法,所述建造方法包括以下步骤:
(1)选取结构构件,进行力学分析,根据结构构件承载力极限状态下应力分布和大小确定植入筋材或编入绳/线材的基本用量和打印编织流程;
(2)根据结构构件正常使用极限状态下应力分布和大小,确定空间骨料类型、定位和掺量,所述空间骨料为不同形状的骨料形成的仿生结构所组成的空间刚性骨料,所述骨料具有空间多肢结构,所述骨料的尾部设有用于空间骨料间链接的卡扣和端锚,所述空间骨料的中心带有用于与筋材或绳/线材套接的碰扣;
(3)配制3D打印材料;根据选定的空间刚性骨料的定位和掺量,编辑空间骨料的电磁信号和定位推送程序;
(4)沿步骤(1)中的打印编织流程路径挤出3D打印材料,植入筋材或编入绳/线材的同时,均匀撒入空间刚性骨料,利用步骤(3)中的电磁信号和定为推送程序分别实现空间骨料间的链接和空间骨料与筋材或绳/线材的链接,逐层建造后叠加、硬化成型后一次性形成空间骨料增强3D打印混凝土结构;或分段打印后通过预设榫卯和筋材或绳/线材搭接设计进行构件节点连接,形成空间骨料增强3D打印混凝土结构。
在本发明提供空间骨料增强3D打印混凝土结构中,空间骨料、3D打印材料打印的基体和筋材、绳材或线材形成连续空间骨架;空间骨料可适应多种打印路径,通过磁性定位、卡口设计和碰扣链接实现连续整体协同受力,高效改善混凝土结构的抗拉强度和抗裂能力,提升混凝土结构的抗剪性能、承载能力和变形性能。
在本发明中,空间骨料的多肢及端锚设计有效改善层间/条间粘结强度,在打 印时掺入,空间骨料用电磁对位和卡扣链接成空间柔性筋骨,随着混凝土的硬化和空间骨料的仿生设计有效实现二者协同受力;有效增强结构整体承载力,改善失效模式。空间骨料中心设置有碰扣,可通过定位机械推送与编织在打印材料中的连续绳/线材套接,形成整体性良好的空间骨架,与基体协同受力,保障结构在偶然荷载和极端工况下安全。
本发明融合了现有3D打印材料快速成型的技术优越性和空间骨料便捷掺入、精准控量的施工便捷性,在3D打印基体的同时掺入一定比例的高强空间骨料(轻质高强,仿生造型,几何可变,具有较高的表面摩擦系数),并且利用电磁定向技术、空间骨料的造型设计和机械咬合原理,提升粘结性能,实现骨料间、骨料与筋材、绳材、线材各类连续增强材料间实现卡扣链接,形成连续空间增强骨料,有效改善结构空间受力性能,特别针对抗剪强度和弯曲韧度的不足有明显改善,形成有别于传统钢筋混凝土结构的一体化成型的新型建筑结构形式,既解决了现有3D打印基体性能缺陷,又弥补了结构空间跨越能力的不足,施工便捷,快速适用的同时,空间骨料、筋材、线材、绳材和3D打印材料协同受力形成空间骨架,代替钢筋笼,保障空间骨料增强3D打印混凝土结构的力学性能,疲劳性能和耐久性。
在步骤(2)中,所述骨料形成的仿生结构为疾藜、苍耳或海胆等一种或至少两种组合的仿生结构。
作为优选,所述骨料的材质选自钢材、合金、纤维复合材料或纳米刚性材料中的一种或者或至少两种的组合;所述骨料尾部的形状选自铣削型、波纹、弓型或尾钩中的一种或至少两种的组合。
步骤(2)中,根据结构构件正常使用极限状态下应力分布和大小确定空间 骨料的类型、定位和掺量的方法为:
(2-1)根据剪应力的分布选择空间骨料类型,根据剪应力大小选择尾部中的端锚和卡扣的设计参数,根据剪应力空间分布确定空间骨料的肢数;
(2-2)根据主应力/材料强度比值确定的安全系数设计空间刚性骨料掺入量,根据掺入区域和结构构件的外形进行空间骨料定位,;
(2-3)根据安全系数与阀值的大小和区域分布,确定空间骨料掺入加密区域,所述阀值根据实际值确定。
在步骤(2-1)中,所述端锚的设计参数包括端锚的尖端的长度和宽度,这些设计参数将会直接决定卡扣的抗剪能力。空间骨料间通过一尾部的端锚或卡扣与另一空间骨料间尾部的卡扣或端锚链接。
在步骤(3)中,所述3D打印材料选自水泥基材料、石膏材料或尼龙材料中的一种或至少两种的组合。
在步骤(3)中,所述3D打印材料还包括增强组分,所述增强组分选自各类纤维及其聚合物、膨化微珠、中空微粒或纳米材料中的一种或至少两种的组合。
在步骤(4)中,植入筋材或编入绳/线材的方法为:在平行打印方向上,3D打印材料在打印基体时一体化植入筋材或编入绳/线材;在垂直打印方向上,3D打印基体后,在打印材料初凝前植入筋材或编入绳/线材,形成空间增强网格。
其中,在打印编织流程中设置有编织定位点,在编入绳/线材时喷射螺钉到编织定位点,编入的绳/线缠绕在喷射的螺钉上。
在步骤(4)中,所述分段打印的方法为:3D打印基体和空间骨料按照结构构件的构造要求分段打印掺入形成局部,打印预制的分段构件通过后浇/后张法打印榫接结构连接。
在本发明中,所述筋材和绳/线材的材质选自钢绞线、纤维复合线材或纳米线材中的一种或者或至少两种的组合。
鉴于现有3D打印基体在空间强度和韧性方面的不足,导致难以突破打印结构空间跨度和承载力方面的局限,本发明提出了一种空间骨料增强3D打印混凝土结构的建造方法,该建造方法在解决了现有3D打印混凝土结构无法配筋的不足,增强了结构的受力性能,极大改善了打印混凝土的抗拉抗折强度和破坏模式,保障了3D打印混凝土结构在抗拉,抗弯,抗裂,抗冲击,抗疲劳等方面的性能,并且空间多变、便捷施工和减少了生产建造过程中的碳排放。
本发明由于采用以上技术方案,使其具有以下有益效果:
1.采用3D打印基体替代传统混凝土,采用高强空间骨料替代钢筋,采用空间定位成型技术代替传统建筑结构工艺,形成空间受力体系,不仅减少了建筑施工程序,降低了劳动强度,而且美化了结构立面造型。
2.高强空间骨料通与现有筋材、绳材、线材进行组合设计施工,有效改善了3D打印基体抗拉、抗剪、抗磨和抗裂性能,大大增强结构断裂韧性和抗冲击性能,提升结构的疲劳性能及其耐久性,使3D打印建筑物的优势全面凸显,不局限于小型建筑结构。
3.采用结构体型空间优化设计,合理选择结构形式,采用空间定位,将高强骨料一体化成型,形成强韧空间结构,使建筑物各个部位既能达到结构力学的不同要求,又可以在安全可靠的基础上可达到经济美观,造型艺术。
4.对于大型空间复杂结构构件,可以分区域单独打印局部,再组装成为整体,采用预设榫接构件和后张预应力工艺加强整体性。该新型强韧结构与传统建筑结构组合,具有灵活多变的兼容性和普适性。
附图说明
图1为实施例中的空间骨料的结构示意图;
图2为实施例中空间骨料电磁卡扣链接示意图;
图3为实施例中多个空间骨料复合的结构示意图;
图4为实施例中空间骨料组合与绳线材定位链接示意图;
图5为本发明提供的建造方法的打印流程图;
图6为实施例中空间骨料增强3D打印梁的工序示意图;
图7为实施例中空间骨料增强3D打印柱的工序示意图。
具体实施方式:
下面结合附图和实施例对本发明作进一步的说明:
本发明提供的空间骨料增强3D打印混凝土结构的流程为:3D打印装置根据预设结构空间造型分层打印建筑物构件或者功能辅件,在采用3D打印材料空间打印建筑基体的同时,将高强空间骨料采用空间精准定位和质量控制掺入体积的方法弥散在结构的层间和条件缺陷位置,通过空间骨料尾部的端锚和卡口设计,可以利用电磁信号编辑技术实现骨料之间的空间定位和链接,通过骨料形心的碰扣设计可与现有筋材等刚性增强、钢绞线或钢丝绳等柔性增强组合链接,该建造方法可适应多种打印流程和空间造型。通过打印基体挤压和水化硬化,形成协同受力,一致变形的空间强韧结构,可具有更高的承载能力,变形能力,多向抗裂能力,满足结构功能需要。
本发明提供的新型空间骨料增强3D打印结构的建造方法,包括以下步骤:
(1)选取基本结构构件,空间建模后采用计算机拓扑优化关键荷载组合下,结合应力云图确定最佳空间形态;
(2)对确定的结构构件的空间形态进行计算分析,确定结构受力不利的关键位置,确定结构构件的打印流程,确定植入筋材或编入绳/线材的基本用量和打印编织流程,确定空间骨料类型、掺入量,进行空间骨料的空间布置。空间骨料的不同方向透视图如图1,空间造型、肢数、锚钩和卡扣设计不局限这种形式;
(3)根据结构构件空间外形确定打印流程;
(4)配制3D打印材料;
(5)根据打印路径编辑电磁信号和定位推送程序;
(6)打印的同时由机械臂撒入空间刚性骨料,空间骨料间、空间骨料与筋材、绳材或线材实现链接,逐层建造后叠加、硬化成型后一次性形成空间骨料增强3D打印混凝土结构;或分段打印后通过预设榫卯和筋材、绳材或线材材搭接设计进行构件节点连接,形成空间骨料增强3D打印混凝土结构。
其中,在步骤(2)中,确定编入绳/线材的基本用量和打印编织流程的方法为:根据结构受力薄弱面确定线材的编织范围和编织密度,再根据结构构件骨架以及线材的编织范围和编织密度确定打印流程和编织流程,具体为:根据应力/强度比值确定的安全系数去确定编织范围;根据安全系数与阀值的大小,确定加密编织和普通编织范围,所述阀值根据实际值确定。
实施例1空间桁架梁作为桥梁的结构构件的建造方法
1、根据结构功能要求确定结构形式和空间结构。桥梁的主要受力构件一般为梁式或者拱式结构,3D打印水泥基材料的抗压强度高,抗拉强度低,选择梁 式结构作为桥梁的主要受力结构可以充分利用新型空间骨料增强水泥基材料抗拉强度的特点。梁式结构的空间造型通过建模后的计算机拓扑优化进行选型,优化后的结构形状作为3D打印桥梁的结构构件。
2、对结构构件进行力学计算分析,根据结构承载力极限状态和正常使用极限状态分别确定打印编织流程和加入该结构构件中的空间骨料类型(如图1)以及掺入量。
3、配制3D打印材料;根据选定的空间刚性骨料的定位和掺量,编辑空间骨料的电磁信号和定位推送程序。
4、根据打印编织流程,逐层打印3D打印基体,打印头旁配有一个机械臂携带有空间骨料仓,随打印路径进行电磁信号编辑,利用尾端的机械卡口设计和电磁定位实现空间骨料间嵌固,如图2所示,a、b、c分别为两个空间骨料由单个骨料电磁卡扣链接成一个复合骨料的链接前的侧视图、链接后的俯视线框图、链接后的侧视图,a中的1为端锚,2为卡扣。空间骨料通过空间搭接实现各个方向的连续增强,如图3所示,d和e为多个空间骨料以不同方式链接而成的复合骨料结构图。利用空间骨料中心的形心的碰扣设计和机械推送实现空间骨料与筋材、绳材或线材的链接,如图4所示为绳材与空间骨料的链接组合,图4中的3为用来链接的筋、绳、线材等,4为空间骨料。本发明提供的打印流程图如图5所示。3D打印基体与空间骨料在上层重力作用下粘结固化成型,在内部形成结实可靠的空间连续骨架,进一步提升打印结构抗弯,抗剪和抗裂性能。
具体的,在本实施例中,根据设计计算后的结果,如图6所示,桁架梁的打印以A为起始点,打印路径为AB、BD、DA、AC、CD、DF、FC、CE、EF、FH、HE、EG、GH、JI、IK、KJ、JL、LK、KM、ML、LN、NM、MO、ON、 NP、PO,机械臂携带空间骨料沿打印路径根据设计数量添加,在空间骨料链接部分进行定位推送。
按照打印流程和预先设计的结构构件的形状逐层打印建造,空间骨料与筋材、绳材或线材链接,空间骨料间在条间嵌扣,形成空间骨架,与打印基体形成整体构件,构件养护后可以进行吊装组合并形成整体结构。
实施例2涉及圆形柱为桥梁的结构构件的建造方法
1、对柱进行力学计算分析,根据结构承载力极限状态和正常使用极限状态选择分别确定打印编织流程和加入该结构构件中的刚性骨料类型以及掺入量。
3、配制3D打印材料;根据选定的空间刚性骨料的定位和掺量,编辑空间骨料的电磁信号和定位推送程序。
3、根据打印编织流程,逐层打印3D打印基体,打印头旁配有一个机械臂携带新型空间骨料仓,随打印路径进行电磁信号编辑,利用尾端的机械卡口设计和电磁定位实现空间骨料间嵌固。各空间骨料通过空间搭接实现各个方向的连续增强。利用空间骨料中心的形心的碰扣设计和机械推送实现空间骨料与筋材、绳材或线材材的链接。3D打印基体与空间骨料在上层重力作用下粘结固化成型,在内部形成结实可靠的空间连续骨架,进一步提升打印结构抗弯、抗剪和抗裂性能。
具体的,在本实施例中,根据设计计算后的结果,柱从底层逆时针打印,逐层叠加,机械臂携带空间骨料沿打印路径根据设计数量添加,在骨料链接部分进行定位推送,如图7所示,其中5为打印挤出装置,6为电磁编辑装置和机械臂,7为图4所示筋材、绳材或线材与空间骨料的链接组合,8为嵌扣在打印基体内的如图1所示空间骨料,9为如图3中的b中的纵向空间骨料组合,10为打印机的打印方向。
最后、按照打印流程和预先设计的结构形状逐层打印建造,层间骨料与筋材、绳材或线材材链接,条间骨料间嵌扣,形成空间骨架,与打印基体形成整体构件。

Claims (8)

  1. 一种空间骨料增强3D打印混凝土结构的建造方法,其特征在于,所述建造方法包括以下步骤:
    (1)选取结构构件,进行力学分析,根据结构构件承载力极限状态下应力分布和大小确定植入筋材或编入绳/线材的基本用量和打印编织流程;
    (2)根据结构构件正常使用极限状态下应力分布和大小,确定空间骨料类型、定位和掺量,所述空间骨料为不同形状的骨料形成的仿生结构所组成的空间刚性骨料,所述骨料具有空间多肢结构,所述骨料的尾部设有用于空间骨料间链接的卡扣和端锚,所述空间骨料的中心带有用于与筋材或绳/线材套接的碰扣;
    (3)配制3D打印材料;根据选定的空间刚性骨料的定位和掺量,编辑空间骨料的电磁信号和定位推送程序;
    (4)沿步骤(1)中的打印编织流程路径挤出3D打印材料,植入筋材或编入绳/线材的同时,均匀撒入空间刚性骨料,利用步骤(3)中的电磁信号和定位推送程序分别实现空间骨料间的链接和空间骨料与筋材或绳/线材的链接,逐层建造后叠加、硬化成型后一次性形成空间骨料增强3D打印混凝土结构;或分段打印后通过预设榫卯和筋材或绳/线材搭接设计进行构件节点连接,形成空间骨料增强3D打印混凝土结构。
  2. 根据权利要求1所述的空间骨料增强3D打印混凝土结构的建造方法,其特征在于,在步骤(2)中,所述骨料形成的仿生结构为疾藜、苍耳或海胆仿生结构中的一种或至少两种组合的仿生结构。
  3. 根据权利要求2所述的空间骨料增强3D打印混凝土结构的建造方法,其特征在于,所述骨料的材质选自钢材、合金、纤维复合材料或纳米刚性材料中的一种或者至少两种的组合;所述骨料尾部的形状选自铣削型、波纹、弓型或尾钩中的一种或至少两种的组合。
  4. 根据权利要求1-3任一所述的空间骨料增强3D打印混凝土结构的建造方法,其特征在于,在步骤(2)中,根据结构构件正常使用极限状态下应力分布和大小确定空间骨料的类型、定位和掺量的方法为:
    (2-1)根据剪应力的分布选择空间骨料类型,根据剪应力大小选择尾部中的端锚和卡扣的设计参数,根据剪应力空间分布确定空间骨料的肢数;
    (2-2)根据主应力/材料强度比值确定的安全系数设计空间刚性骨料掺入量,根据掺入区域和结构构件的外形进行空间骨料定位;
    (2-3)根据安全系数与阀值的大小和区域分布,确定空间骨料掺入加密区域,所述阀值根据实际值确定。
  5. 根据权利要求1所述的空间骨料增强3D打印混凝土构件的建造方法,其特征在于,在步骤(3)中,所述3D打印材料选自水泥基材料、石膏材料或尼龙材料中的一种或至少两种的组合。
  6. 根据权利要求1所述的空间骨料增强3D打印混凝土结构的建造方法,其特征在于,在步骤(3)中,所述3D打印材料还包括增强组分,所述增强组分选自各类纤维及其聚合物、膨化微珠、中空微粒或纳米材料中的一种或至少两种的组合。
  7. 根据权利要求1所述的空间骨料增强3D打印混凝土结构的建造方法,其特征在于,在步骤(4)中,植入筋材或编入绳/线材的方法为:在平行打印方向 上,3D打印材料在打印基体时一体化植入筋材或编入绳/线材;在垂直打印方向上,3D打印基体后,在打印材料初凝前植入筋材或编入绳/线材,形成空间增强网格。
  8. 根据权利要求1所述的空间骨料增强3D打印混凝土结构的建造方法,其特征在于,所述筋材和绳/线材的材质选自钢绞线、纤维复合线材或纳米线材中的一种或者或至少两种的组合。
PCT/CN2020/121534 2019-10-21 2020-10-16 一种空间骨料增强3d打印混凝土结构的建造方法 WO2021078074A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/769,750 US20220402164A1 (en) 2019-10-21 2020-10-16 Construction method for spatial aggregate reinforced 3d printed concrete structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911000935.9 2019-10-21
CN201911000935.9A CN110774407B (zh) 2019-10-21 2019-10-21 一种空间骨料增强3d打印混凝土结构的建造方法

Publications (1)

Publication Number Publication Date
WO2021078074A1 true WO2021078074A1 (zh) 2021-04-29

Family

ID=69384342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121534 WO2021078074A1 (zh) 2019-10-21 2020-10-16 一种空间骨料增强3d打印混凝土结构的建造方法

Country Status (3)

Country Link
US (1) US20220402164A1 (zh)
CN (1) CN110774407B (zh)
WO (1) WO2021078074A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110774407B (zh) * 2019-10-21 2020-08-25 浙江大学 一种空间骨料增强3d打印混凝土结构的建造方法
AU2021229533A1 (en) * 2020-03-04 2022-08-18 Nv Bekaert Sa 3D concrete printing with flexible reinforcing structure
US20230061766A1 (en) * 2020-03-04 2023-03-02 Nv Bekaert Sa 3d concrete printing with well anchoring cords
CN111519954B (zh) * 2020-04-17 2021-02-19 浙江大学 一种基于拓扑优化的3d打印负压医疗舱的建造方法
CN111648519A (zh) * 2020-05-06 2020-09-11 浙江大学 一种3d打印的乐高式空间嵌扣砌体及结构建造方式
WO2021233905A1 (en) * 2020-05-20 2021-11-25 Danmarks Tekniske Universitet Apparatus and method for manufacturing reinforced 3d printed structures
CN112536884B (zh) * 2020-11-17 2022-04-12 深圳大学 一种粗骨料植埋装置及3d打印机
CN112709443B (zh) * 2020-12-25 2022-03-01 浙江大学 一种用于3d打印混凝土结构的整体装配式配筋打印建造方法
CN113605168A (zh) * 2021-08-04 2021-11-05 黄鹏宇 一种旧水泥混凝土加铺改造结构
CN113844028B (zh) * 2021-09-15 2023-04-18 重庆建工建材物流有限公司 一种透光混凝土模具的三维打印方法
CN114109044B (zh) * 2021-11-25 2022-08-23 浙江大学 一种3d编织打印一体化结构建造设备
CN115056310A (zh) * 2022-04-24 2022-09-16 上海建工建材科技集团股份有限公司 一种3d打印塞石混凝土工艺及设备
CN116573901B (zh) * 2023-03-31 2023-12-05 重庆大学溧阳智慧城市研究院 基于3d打印技术的定向钢纤维电磁吸波混凝土超结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106738898A (zh) * 2017-03-14 2017-05-31 吉林大学 一种可编程定向短纤维增强复合材料3d打印方法及装置
KR20180016100A (ko) * 2016-08-05 2018-02-14 한국해양대학교 산학협력단 3차원 콘크리트 프린트 시스템 및 그를 이용한 콘크리트 구조물 제조방법
CN108891029A (zh) * 2018-07-30 2018-11-27 大连理工大学 连续纤维增强复合材料3d打印典型路径的规划方法
CN109129827A (zh) * 2018-09-06 2019-01-04 浙江大学 一种3d打印编织一体化成型的复合柱的建造方法及复合柱
CN109227875A (zh) * 2018-09-06 2019-01-18 浙江大学 一种3d打印编织一体化成型建筑的建造方法
CN109304788A (zh) * 2018-09-06 2019-02-05 浙江大学 一种3d打印编织一体化成型的复合板的建造方法及复合板
CN110774407A (zh) * 2019-10-21 2020-02-11 浙江大学 一种空间骨料增强3d打印混凝土结构的建造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090937A1 (en) * 2002-04-24 2003-11-06 Wisconsin Alumni Research Foundation Apparatus and method of fabricating small-scale devices
US8475703B2 (en) * 2010-01-15 2013-07-02 Wisconsin Alumni Research Foundation Method of orientating fillers in composite materials
WO2016196382A1 (en) * 2015-06-01 2016-12-08 Velo3D, Inc. Three-dimensional printing and three-dimensional objects formed using the same
CN108025359B (zh) * 2015-07-24 2019-11-22 惠普发展公司,有限责任合伙企业 用于三维(3d)打印的稳定化液体功能材料
DE102015214690A1 (de) * 2015-07-31 2017-02-02 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Objektes mittels eines generativen Schichtbauverfahrens
AU2017306528B2 (en) * 2016-08-03 2021-08-12 3Deo, Inc. Devices and methods for three-dimensional printing
EP3704545A4 (en) * 2017-10-31 2021-06-16 Lawrence Livermore National Security, LLC DEEP-RESOLUTION PARALLEL BIPHOTONIC BIPHOTONIC POLYMERIZATION SYSTEM AND PROCESS FOR EXTENDABLE SUBMICRONIC ADDITIVE MANUFACTURING
CN109129818B (zh) * 2018-09-06 2019-11-22 浙江大学 一种3d打印编织一体化成型的复合梁的建造方法及复合梁

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180016100A (ko) * 2016-08-05 2018-02-14 한국해양대학교 산학협력단 3차원 콘크리트 프린트 시스템 및 그를 이용한 콘크리트 구조물 제조방법
CN106738898A (zh) * 2017-03-14 2017-05-31 吉林大学 一种可编程定向短纤维增强复合材料3d打印方法及装置
CN108891029A (zh) * 2018-07-30 2018-11-27 大连理工大学 连续纤维增强复合材料3d打印典型路径的规划方法
CN109129827A (zh) * 2018-09-06 2019-01-04 浙江大学 一种3d打印编织一体化成型的复合柱的建造方法及复合柱
CN109227875A (zh) * 2018-09-06 2019-01-18 浙江大学 一种3d打印编织一体化成型建筑的建造方法
CN109304788A (zh) * 2018-09-06 2019-02-05 浙江大学 一种3d打印编织一体化成型的复合板的建造方法及复合板
CN110774407A (zh) * 2019-10-21 2020-02-11 浙江大学 一种空间骨料增强3d打印混凝土结构的建造方法

Also Published As

Publication number Publication date
US20220402164A1 (en) 2022-12-22
CN110774407A (zh) 2020-02-11
CN110774407B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021078074A1 (zh) 一种空间骨料增强3d打印混凝土结构的建造方法
CN109227875B (zh) 一种3d打印编织一体化成型建筑的建造方法
Ahmed A review of “3D concrete printing”: Materials and process characterization, economic considerations and environmental sustainability
CN109304788B (zh) 一种3d打印编织一体化成型的复合板的建造方法及复合板
CN109129818B (zh) 一种3d打印编织一体化成型的复合梁的建造方法及复合梁
CN112709443B (zh) 一种用于3d打印混凝土结构的整体装配式配筋打印建造方法
CN109129827B (zh) 一种3d打印编织一体化成型的复合柱的建造方法及复合柱
Löfgren Fibre-reinforced concrete for industrial construction
US20040247845A1 (en) Composite material-use fiber base material
CN106930532B (zh) 提高混凝土外观质量的新浇筑方法
CN109208825A (zh) 一种便于对接和灌浆的装配式建筑结构
WO2023093619A1 (zh) 一种3d编织打印一体化结构建造设备
JP2021521028A (ja) 3次元プリントされた繊維状の結合中間層
CN203113510U (zh) 一种约束混集料结构
AU2020101015A4 (en) Spatial-grid reinforced concrete and preparation process thereof
CN201043299Y (zh) 钢筋混凝土结构
JP2558100B2 (ja) ハイブリツド型繊維補強軽量コンクリ−ト構造物
CN206503133U (zh) 一种预制咬合桩组合导槽
EP4035857A1 (de) Verfahren zur herstellung von armierten 3d-gedruckten beton- bzw. mörtelbasierten objekten
CN2532145Y (zh) 双曲折板高强度轻质复合结构板
CN100420809C (zh) 一种现浇砼填充用空心胎体
Rashidi Additive Manufacturing of Lightweight Concrete Mixtures
CN2713037Y (zh) 聚氨酯保温复合墙体
Wu et al. State of the Art Review of Reinforcement Strategies and Technologies for 3D Printing of Concrete. Energies 2022, 15, 360
Ghaffar 3D Printing Set to Transform the Construction Industry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879216

Country of ref document: EP

Kind code of ref document: A1