WO2023093619A1 - 一种3d编织打印一体化结构建造设备 - Google Patents

一种3d编织打印一体化结构建造设备 Download PDF

Info

Publication number
WO2023093619A1
WO2023093619A1 PCT/CN2022/132726 CN2022132726W WO2023093619A1 WO 2023093619 A1 WO2023093619 A1 WO 2023093619A1 CN 2022132726 W CN2022132726 W CN 2022132726W WO 2023093619 A1 WO2023093619 A1 WO 2023093619A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
weaving
wire
rope
integrated structure
Prior art date
Application number
PCT/CN2022/132726
Other languages
English (en)
French (fr)
Inventor
王海龙
孙晓燕
吴振楠
Original Assignee
浙江大学
徐州建研智造科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学, 徐州建研智造科技有限公司 filed Critical 浙江大学
Priority to US18/039,277 priority Critical patent/US20240076886A1/en
Publication of WO2023093619A1 publication Critical patent/WO2023093619A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to technical fields such as building structure, structure space shape optimization, structure design, construction and construction, and in particular to a 3D weaving and printing integrated structure construction equipment.
  • 3D printing As a rapid prototyping and additive manufacturing technology, 3D printing has been rapidly and widely promoted in various industries since its invention. 3D printing buildings can effectively reduce construction waste, improve construction efficiency, shorten construction period, reduce labor, improve mechanization level, achieve energy saving and emission reduction as a whole, and help improve the environment. In addition, because 3D printing can be controlled by a computer to realize any shape design in space, it can combine structural force with architectural aesthetics, reflecting the artistry of architecture. In January 2013, the Netherlands used 3D printed concrete to build a Mobius ring house. In January of the same year, the European Space Agency was developing the construction technology of using lunar soil and other materials to 3D print space stations. In February 2013, the UK realized fiber nylon. 3D printing into structures and rapid assembly construction technology.
  • CN107603162A discloses a high-strength and high-toughness 3D printing material for construction.
  • CN107619230A discloses a concrete material for 3D printing
  • CN107200536A discloses a rapid prototyping 3D printing paste for construction and its preparation method
  • CN107177155A discloses a high-strength UV-resistant 3D printing material and Its preparation method
  • CN107141799A discloses a kind of oxidation-resistant high-strength 3D printing material and its preparation method for construction engineering
  • CN107417180A discloses a kind of graphene geopolymer cement and its preparation method
  • CN10 7032669A discloses a kind of 3D printing building material.
  • the 3D printing substrate does not need a mold, and the additive is self-made, but most of them are brittle materials with low strength. They need to be combined with a flexible, high-strength, geometrically variable high-strength material to form a strong spatial network to ensure the structure under various operating conditions. Excellent bearing capacity, deformation capacity and durability.
  • CN106760532 A discloses a building construction method based on 3D printing
  • CN105756187 A discloses a 3D printing process combined with concrete Combination of architectural engineering and construction methods. These methods use the shaping ability of the 3D printing process to print the shell or the main bracket, and then use the traditional steel skeleton manufacturing mode to construct ordinary concrete.
  • CN111015891 a spatial embedding method for 3D printed concrete structures, to solve the problem of spatial reinforcement of rigid reinforcement in 3D printed concrete matrix.
  • CN108708455 A proposes an integrated construction device and method for 3D printing FRP reinforced concrete structures.
  • the FRP material is extruded and softened by a gear device, thermoplastically formed into tendons, solidified into tendons during the concrete printing process, and combined with concrete printing to build Integrated construction technology.
  • a gear device thermoplastically formed into tendons, solidified into tendons during the concrete printing process, and combined with concrete printing to build Integrated construction technology.
  • this research group proposed CN 110774407B, a construction method of spatial aggregate reinforced 3D printed concrete structure, and CN1107407A, a 3D printing and weaving integrated molding building
  • the construction method of CN1091 9818 B is a kind of construction method and composite beam of 3D printing and weaving integrated composite beam
  • CN109304788B is a kind of 3D printing and weaving integrated forming composite plate construction method and composite plate
  • CN 109129827B is a kind of 3D printing and weaving integrated
  • the construction method of the chemically formed composite column and the composite column have carried out technical verification and a series of attempts on the printed braided structure in terms of materials, components and reinforced construction methods.
  • the purpose of the present invention is to provide a 3D weaving and printing integrated structure construction equipment, which can realize the integrated weaving of wires into the printing matrix to form a strong and tough space structure.
  • the present invention provides following technical scheme:
  • a 3D weaving and printing integrated structure construction equipment includes:
  • the printing substrate material preparation device processes the printing substrate raw materials and transports them to the printing substrate device;
  • the printing substrate extrusion device has the functions of push extrusion and lamination molding, and performs substrate printing;
  • Wire pushing and space anchoring device in the vertical direction, use nails to position the traction rope/wire/cable continuously and layer by layer;
  • Electromagnetic guided picking device weaving rope/thread/cable material in warp and weft direction;
  • the locking device is used to position and fix the rope/thread/cable material woven in the warp and weft direction;
  • the tensioning traction device implements spatial multi-directional prestressed tensioning on the rope/thread/cable material woven in the warp and weft directions.
  • the 3D weaving and printing integrated structure construction equipment also includes equipment brackets, which can be selected but not limited to plane Cartesian coordinate system brackets, which can realize the tensioning of high-strength wires in multiple directions in space, the pushing of the printing substrate extrusion device and the electromagnetic guidance.
  • equipment brackets can be selected but not limited to plane Cartesian coordinate system brackets, which can realize the tensioning of high-strength wires in multiple directions in space, the pushing of the printing substrate extrusion device and the electromagnetic guidance.
  • the positioning support for the weaving of the drop pick device can be selected but not limited to plane Cartesian coordinate system brackets, which can realize the tensioning of high-strength wires in multiple directions in space, the pushing of the printing substrate extrusion device and the electromagnetic guidance.
  • the positioning support for the weaving of the drop pick device can be selected but not limited to plane Cartesian coordinate system brackets
  • the wire pushing and space anchoring device includes: a driving spool, a driven spool and a nailing chamber, the driving spool and the driven spool form a rotating wheel set to mechanically drive the push rope/wire/cable; the driving spool serves as a multi-point ejection turntable at the same time, After the driving wire enters the nail chamber and is connected with the anchor nail, it is continuously woven into the printing substrate layer by layer in the vertical direction.
  • One end of the anchoring nail is provided with a through hole, and the other end is provided with an inverted umbrella anchor, wherein the inverted umbrella anchor is connected to the nail through the anchor ring; the driving spool drives the driven spool (steel ring) to push the rope/wire/cable After the material enters the nailing chamber and penetrates the puncture hole, the trigger button of the nail triggers the anchor ring to bounce off the inverted umbrella anchor, and the wire and nails are continuously woven into the printing substrate layer by layer in the vertical direction.
  • the electromagnetic guided shuttle picking device includes a shuttle seat, a spring injection device, a spool, a bearing and a shaft hole, and the shuttle seat is used to pick up the shuttle and control the spring. Electromagnetic shuttle, weaving rope/thread/cable material in warp and weft direction.
  • the hydraulic power input is adopted to press the spring injection device at the rear of the shuttle seat.
  • the printing base material is a 3D printing material, which has the characteristics of rapid prototyping and convenient construction compared with ordinary building materials. It includes cement-based materials, gypsum materials, resin materials, plastics, nylon materials and composite reinforcement components, and the composite reinforcement components include fibers, polymers, expanded microbeads or hollow particles.
  • the rope/wire/cable is selected from steel wire, steel strand, fiber composite wire or nano wire.
  • the tensioning traction device is rigidly connected with the equipment support through bolts.
  • the equipment provided by the invention can replace the template engineering, steel cage binding process and prestressed tensioning process in the traditional building construction during the construction process of the 3D weaving and printing integrated structure.
  • the use of spatial multi-directional prestressed tension ensures the mechanical performance, seismic performance, fatigue performance and durability of the strong and tough new structure.
  • Perform topology optimization analysis on structural force and spatial shape determine the spatial structure form and printing weaving process, and realize the three-dimensional positioning and spatial weaving of toughened wires/ropes/cables by positioning injection-specific inverted umbrella anchor screws during the 3D printing matrix structure process , to ensure the precise construction and stress safety of structural integration, the structural shape is more reasonable, and the design is accurately implemented.
  • the electromagnetic trigger picking device and interlocking device are used, which can adapt to the space weaving tension interlocking of materials with various modulus and various surface shapes.
  • the spatial tension and the numerical control device are used to apply the prestressed tension of the spatial multi-directional braided wire/rope/cable material to ensure the strengthening and toughening efficiency of the braided wire to the printing substrate.
  • the surface of the wire/rope/cable material can be made rough and patterned to increase friction.
  • the initial prestress is used to tension the weaving to ensure the enhancement efficiency, and the smooth coating can also be used for non-bonded tension anchoring. After the printing substrate is hardened, the tension is higher. Stress takes full advantage of high-strength material properties.
  • This kind of multi-material construction equipment of printing matrix and space weaving adopts but is not limited to the frame structure construction form, which can be combined with the existing traditional reinforcement for construction, and the spatial weaving mesh reinforcement and traditional reinforcement methods can be used for synergistic force, and can also be printed separately Weaving to build structures and components has good applicability and compatibility.
  • the 3D weaving and printing integrated structure construction equipment provided by the present invention also includes a control system.
  • the control system can perform positioning control, power control, electromagnetic control, and mechanical control. It can position and push the printed substrate according to the structural design and construction process, and position and configure reinforcement lines. /rope/rope, positioning nail anchoring, directional tensioning wire, positioning guiding machine shuttle; quantitative control nailing, quantitative control shuttle ejection, quantitative control tensioning; electromagnetic signal control guiding machine shuttle, mechanical control printing weaving and Spatial tension direction.
  • the present invention integrates additive manufacturing technology and space weaving technology, aiming at the collaborative construction and enhanced efficiency of printing process, printing matrix material and high-strength wire, and proposes spatial weaving wire/rope/
  • the spatial positioning, effective anchoring and prestressed tensioning technology and equipment realization scheme of the cable solve the lack of equipment technology for intelligent manufacturing in the field of civil engineering technology in my country, and provide the hardware foundation for the integrated engineering building intelligent additive construction technology.
  • the printing substrate can not only use the existing traditional cement-based building materials, but also choose polymer materials, gypsum materials and other modeling materials to manufacture more refined materials to realize the integrated construction of structural construction and structural decoration.
  • the surface of high-strength wire/rope/cable can be made rough and patterned to increase friction. Utilize initial prestress to tension weave, or smooth coating for non-bonded tension settings, etc. After hardening of the printing substrate, supplementary tension and higher prestress make full use of high-strength materials performance.
  • the flexible weaving reinforcement form of high-strength wire can be self-contained or combined with existing reinforcements for design and construction, which effectively improves the tensile, shear, abrasion and crack resistance of the 3D printing substrate, and greatly enhances the structural fracture toughness And impact resistance, improve the fatigue performance and durability of the structure, so that the advantages of 3D printing buildings are fully highlighted, no longer limited to small building structures.
  • Adopt structural shape space optimization design rationally select structural form, adopt spatial positioning, integrate high-strength wire into the printing substrate to form a strong spatial structure, so that various parts of the building can not only meet the different requirements of structural mechanics, but also can be used in the printing process. On the basis of safety and reliability, it can achieve economical beauty and artistic appearance.
  • weaving parts can be printed separately in different regions, and then assembled into a whole.
  • the pre-set tenon joint components and post-tensioning prestressing process are used to strengthen the integrity.
  • the combination of the new strong structure and the traditional building structure has flexible compatibility and universality.
  • Fig. 1 is a detailed diagram of equipment of the present invention
  • Figure 2 is a detailed view of the wire space anchor
  • Figure 3 is a detailed drawing of wire tensioning
  • Fig. 4 is a detailed diagram of wire rod wire space weaving traction
  • Fig. 5 is a detailed diagram of the wire space weaving electromagnetic guidance picking
  • Printing substrate preparation device 2. Rope/thread/cable material in the vertical direction, 3. Printing substrate extrusion device, 4. Anchor nailing, 5. Piercing holes, 6. Pushing anchor rings, 7 . Inverted umbrella anchor, 8. Rope/wire/cable driving spool and multi-point ejection turntable, 9. Nail shooting chamber, 10. Nail trigger buckle, 11. Driven spool: steel ring, 12.
  • Printing weaving structure 13 , multiple tensioning channels, 14, tensioning traction device, 15, rotating ball hinge, 16, locking device, 17, progressive sleeve, 18, universal damping joint ball, 19, thread, 20, hydraulic input, 21, Tension digital display, 22, high-pressure rubber hose, 23, hydraulic pump, 24, electromagnetic guided shuttle picking device, 25, hydraulic power input, 26, screw thread, 27, shuttle seat, 28, electromagnetic shuttle, 29, bearing, 30 .
  • Rope/wire/cable material in the latitude and longitude direction, 31. Spring injection device.
  • the 3D printing and weaving integrated construction machine adopted in the present invention includes: a printing substrate preparation device 1, a printing substrate extrusion device 3 and a wire pushing and space anchoring device 4, which are arranged on the equipment support and can move in space.
  • Tension traction device 14 and electromagnetic guidance picking device 24 fixed on the equipment support.
  • the above-mentioned space weaving enhancement design is carried out in different regions, stages and working conditions.
  • the main body of the building is made by using three layers of printing substrate extrusion devices ;
  • the electromagnetic trigger picking interlocking device 24, the hydraulic tensioning device 14 and the locking device 16 are used to carry out three-dimensional weaving of the rope/thread/cable material in the warp and weft directions. Specifically:
  • the first step consider the mechanical properties and cooperative properties of the printed substrate and the reinforced material, and consider the anisotropy of the macroscopic properties after molding, and use the improved incremental optimization algorithm to carry out the topology optimization of the structural space, and determine the three-dimensional digital design model of the building;
  • Step 2 Refer to "Code for Design of Concrete Structures GB50010-2010", "Technical Regulations for Assembled Integral Type_Reinforced Welded Mesh Laminated Concrete Structures TCECS_579-2019", “Concrete 3D Printing Technical Regulations T/CECS 786-2020", consider printing The difference between base material and traditional concrete material, the difference between reinforcing wire material and traditional steel bar material, and the difference between printing and weaving process characteristics and traditional structure construction, design the printing and weaving process of the three-dimensional digital model of the structure, determine the weaving density, weaving positioning nodes, tensioning quantity, tension Specific printing and weaving parameters such as pulling angle and tensile stress, setting power control, mechanical control and electromagnetic control parameters, and determining the integrated construction process of printing and weaving;
  • Step 3 Measure and mix aggregates, admixtures and admixtures according to the pre-set mix ratio and process flow, use device 1 to prepare the printing substrate, and pass the prepared 3D printing substrate through the printing extrusion device 3 Positioning stack forming;
  • Step 4 In the printing process, integrate the rope/thread/cable material 2 in the vertical direction according to the pre-designed parallel printing direction.
  • the nail positioning traction line/rope/cable material is weaved layer by layer, and the warp and weft interlaced weaving adopts the electromagnetic guidance picking device 24 to form a spatial grid, which is designed and set according to the structural force and deformation, and adopts 14 tensioning traction devices in the warp and weft directions.
  • the rope/thread/cable material is prestressed in multiple directions in space to form a three-dimensional weaving structure in space. In this way, the integrated rapid hardening molding and high-strength construction of high-strength wire/rope/cable braided overall printing structure can be realized.
  • the entire woven structure 12 can also be printed as a whole, or the components can be printed first, connected and assembled by wires/ropes/cables to form an integral structure.
  • the surface of wire/rope/cable material can be made rough and patterned to increase friction. Utilize initial prestress to tension weave, or smooth coating for non-bonding tension setting, etc. After hardening of printing substrate, supplement tension and high prestress to make full use of high-strength materials performance.

Abstract

本发明公开了一种3D编织打印一体化结构建造设备,所述设备包括:打印基体备料装置,对打印基体原材料进行加工后输送至打印基体装置;打印基体挤出装置,具有推进挤出、层叠成型的功能,进行基体打印;线材推送及空间锚固装置,在铅垂方向上以射钉定位牵引绳/线/索材连续逐层编入;电磁导引投梭装置,在经纬方向上编织绳/线/索材;锁紧装置,对在经纬方向上编织的绳/线/索材进行定位固定;张拉牵引装置,对经纬方向上编织的绳/线/索材实施空间多向预应力张拉。本发明提供的3D编织打印一体化结构建造设备可以实现将线材一体化编织进入打印基体形成强韧空间结构。

Description

一种3D编织打印一体化结构建造设备 技术领域
本发明涉及建筑结构,结构空间体型优化,结构设计,建造施工等技术领域,特别涉及一种3D织打印一体化结构建造设备。
背景技术
3D打印作为一种快速成型、增材制造技术,自发明以来,在各个行业得到迅速广泛的推广。3D打印建筑能够有效减少建筑垃圾,提升施工效率,缩短工期,减少人工,提升机械化水平,整体上做到节能减排,有助于环境改善。此外由于3D打印可由计算机控制实现空间任意造型设计,能够将结构受力与建筑美学相结合,体现出建筑的艺术性。2013年1月,荷兰采用3D打印混凝土建造了莫比乌斯环状房屋,同年1月欧洲航天局正在研发利用月球土壤和其他材料3D打印空间站的建设技术,2013年2月英国实现了纤维尼龙3D打印成结构快速组装建造技术。2013年1月,中国在上海利用高标号水泥、玻璃纤维和部分添加剂完成了临时设施的打印,并尝试通过3D打印构件拼装成多层结构。2015年,我国在苏州使用塑料,镁质粘结剂,石膏,玻璃纤维和水泥打印了一座小型多层建筑结构。由于现有打印材料的强度和耐久性一直亟待提升,当前3D打印技术也缺乏基体与传统增强材料,如钢筋的组合形式,导致打印结构型式受限于材料性能,多为小空间小跨度的小型民用建筑。
现有3D建筑材料非常丰富,CN107603162A公开了一种建筑用高强度高韧性3D打印材料。CN107619230A公开了一种用于3D打印的混凝土材料,CN107200536A公布了一种用于建筑的快速成型3D打印浆料及其制备方法,CN107177155A公开了一种建筑领域用高强度耐紫外线的3D打印材料及其制备方法,CN107141799A公开了一种建筑工程用耐氧化高强度3D打印材料及其制备方法,CN107417180A公布了一种石墨烯土聚水泥及其制备方法,CN10 7032669A公布了一种3D打印建筑材料。目前打印材料的种类和强度均有了明显提升。3D打印基体无需模具,增材自制,但多为脆性材料,强度较低,需要与一种柔韧高强,几何可变的高强材料组合形成强韧的空间网络,保障结构在多种使用工况下的承载能力,变形能力和耐久性能。
2015年11月,北京纳盛通(NST)新材料科技有限公司、北京热塑性复合材料工程技术研究所,碳纤维复合材料创新中心研发出新型超轻量化、高强度、耐高温、耐磨损、耐腐蚀的工业级别3D打印碳纤维增强纳米复合材料。由于碳纤维材料价格高昂,多用于航天航空和精工产业,大比例用于建筑结构尚不现实。2008年张志春提出采用内嵌钢丝的复合FRP筋材,钢材与FRP也开启了多种组合形式和材料制备工艺,现有各种规则高强钢绞线,钢-FRP复合线材,纳米高强复合线材生产能力。现有建筑钢材和复合纤维材料多以筋材形式制造,需要根据设计进行切割,绑扎,定位,形成刚性骨架,施工工序繁杂,难以与现有3D打印技术融合集成。
如何采用现有的3D打印技术和已有的水泥基胶凝材料,与高强高韧复合材料相结合制造新型建筑结构是现阶段关键问题。现阶段进行了各种技术尝试将空间多变的3D打印优势与传统的钢筋材料进行结合,CN106760532 A公布了一种基于3D打印的建筑物施工方法,CN105756187 A公布了一种3D打印工艺与混凝土结合的建筑工造、施工方法。这些方法都是利用3D打印工艺的形塑能力打印外壳或者主要支架,然后采用传统的钢筋骨架制造模式,建筑普通混凝土施工。通过先打印基体,后切割钢筋,绑扎,定位吊装,最后在3D模板里浇筑普通混凝土将二者进行组装。现有的组合装配式3D建造方式仅仅利用了3D打印技术节省了模板工程,没有充分利用3D打印技术形成一体化自动化的智能建造技术。本课题组提出了CN111015891一种用于3D打印混凝土结构的空间嵌钉方法,用以解决刚性筋材在3D打印混凝土基体中的空间配筋增强难题。CN108708455 A提出了一种3D打印FRP筋混凝土结构的一体化建造装置及方法,以齿轮装置将FRP材料挤出、软化,热塑成筋,在混凝土打印过程中固化成筋,与混凝土打印结合建立一体化建造技术。但由于热加工筋材与冷加工打印工艺产生温度应力易于开裂,而且FRP筋材无预应力,以粘结形式增强混凝土,结构性能提升效率低。为了解决筋材增强与打印基体的增材制造工艺难以空间适应的问题,本课题组提出了CN 110774407B一种空间骨料增强3D打印混凝土结构的建造方法,CN1107407A一种3D打印编织一体化成型建筑的建造方法,CN1091 9818 B一种3D打印编织一体化的复合梁的建造方法及复合梁,CN109304788B一种3D打印编织一体化成型的复合板建造方法及复合板,CN 109129827B一种3D打印编织一体化成型的复合 柱的建造方法及复合柱,从材料、构件和增强建造方法上对打印编织结构进行了技术验证和系列尝试,研究论文《钢丝绳与3D打印水泥基材料的粘结性能》,《Bond performance between BFRP bars and 3D printed concrete》等发表在《建筑结构学报》、《Construction and building material》等国内外期刊上,取得了优异的试验效果。
鉴于现有的3D打印及其建造设备技术具有产品适应范围窄,工艺无法适用于建筑工程,增强材料对打印基体增强效率低,难以应用等技术瓶颈问题,如何整合增材制造技术和空间编织技术,以提供一种一体化工程建筑智能增材建造设备是目前亟需解决的技术问题。
发明内容
本发明的目的在于提供一种3D编织打印一体化结构建造设备,该设备可以实现将线材一体化编织进入打印基体形成强韧空间结构。
本发明提供如下技术方案:
一种3D编织打印一体化结构建造设备,所述设备包括:
打印基体备料装置,对打印基体原材料进行加工后输送至打印基体装置;
打印基体挤出装置,具有推进挤出、层叠成型的功能,进行基体打印;
线材推送及空间锚固装置,在铅垂方向上以射钉定位牵引绳/线/索材连续逐层编入;
电磁导引投梭装置,在经纬方向上编织绳/线/索材;
锁紧装置,对在经纬方向上编织的绳/线/索材进行定位固定;
张拉牵引装置,对经纬方向上编织的绳/线/索材实施空间多向预应力张拉。
其中,所述3D编织打印一体化结构建造设备还包括设备支架,可选用但不限于平面直角坐标系支架,可实现空间多向的高强线材的张拉,打印基体挤出装置的推送和电磁导引投梭装置编织的定位支撑。
所述线材推送及空间锚固装置包括:驱动线轴、从动线轴和射钉仓,驱动线轴和从动线轴组成转动轮组机械带动推送绳/线/索材;驱动线轴同时作为多点弹射转盘,驱动线材进入射钉仓与锚固射钉连接后在铅垂方向上连续逐层编入打印基体。
所述锚固射钉一端设有穿引孔、另一端设有倒伞锚,其中,倒伞锚通过锚环连接在射钉上;驱动线轴带动从动线轴(钢圈)推送绳/线/索材进入射钉仓,穿入穿引孔后,射钉触发扣推动锚环弹开倒伞锚,线材及射钉在铅垂方向上连续逐层编入打印基体。
所述电磁导引投梭装置包括梭座、弹簧压射装置、线轴、轴承和轴孔,梭座进行接梭并控制弹簧也设装置压射轴承上带有绳/线/索材的线轴的电磁梭,在经纬方向上编织绳/线/索材。
其中,采用液压动力输入压紧梭座后部的弹簧压射装置。
对于经纬方向上的绳/线/索材:采用渐进套筒,通过锁紧装置进行有效嵌锁,以及通过转动球铰和万向阻尼关节滚珠在结构受力需要的角度通过螺纹进行定位固定。
所述打印基体原料为3D打印材料,与普通建筑材料相比具有快速成型,便捷施工的特点。包括水泥基材料、石膏材料、树脂材料、塑料、尼龙材料和复合增强组分,所述复合增强部分包括纤维、聚合物、膨化微珠或中空微粒。
所述绳/线/索材选自钢丝、钢绞线、纤维复合线材或纳米线材。轻质高强,几何可变,多股绳材绞绕编制,具有较高的表面摩擦系数,与基体一体化成型协同受力,保障强韧性新型结构的力学性能,疲劳性能和耐久性。
其中,张拉牵引装置通过螺栓与设备支架刚性连接。
本发明提供的设备在进行3D编织打印一体化结构建造过程中可以代替传统建筑建造施工中的模板工程、钢筋笼绑扎工序和预应力张拉工序。采用空间多向预应力张拉保障强韧性新型结构的受力性能,抗震性能,疲劳性能和耐久性能。对结构受力和空间体型进行拓扑优化分析,确定空间结构形式和打印编织流程,通过在3D打印基体结构过程中定位喷射专用倒伞锚固螺钉实现增韧线/绳/索的立体定位和空间编织,保障结构一体化精准建造和受力安全,结构造型更为合理,设计准确实施。在打印编织过程中采用电磁触发投梭装置和嵌锁装置,可适应多种模量、多种表面形态材料的空间编织张拉嵌锁。在打印编织过程中通过空间张拉及数控装置施加空间多向编织线/绳/索材的预应力张拉,保障编织线材对打印基体的增强增韧效率。线/绳/索材表面可以做粗糙和花纹增加摩擦利用初始预应力张紧编织,保障增强效率,也可以光滑涂层进行无粘结张拉锚固,等打印基体 硬化后补张拉较高预应力充分利用高强材料性能。这种打印基体与空间编织的多材料建造设备采用但不局限于框架结构建造形式,可以与现有传统筋材绑扎组合施工,空间编织网格增强与传统增强方式协同受力,也可以单独打印编织建造结构和构件,具有良好的适用性和兼容性。
本发明提供的3D编织打印一体化结构建造设备还包括控制系统,控制系统可以进行定位控制、动力控制、电磁控制、机械控制,可根据结构设计及建造工艺实现定位推送打印基体,定位配置增强线/绳/索,定位射钉锚固,定向张拉线材,定位导引机梭;定量控制射钉、定量控制机梭弹射、定量控制张拉;电磁信号控制导引机梭,机械控制打印编织及空间张拉方向。
本发明鉴于现有3D打印材料基体在强度和韧性方面的不足,导致结构难以突破空间跨度和承载力方面的局限,本融合了现有3D打印材料快速成型的技术优越性和高强线材轻质高强几何可变的优越材料性能,发明了3D打印基体的同时编织入一定比例的高强线材以改善结构强度韧度不足,形成有别于传统钢筋混凝土结构的一体化成型的新型建筑结构形式,既解决了现有3D打印基体性能缺陷,又弥补了结构空间跨越能力的不足,施工便捷,快速适用的同时,具有高韧性,耐疲劳,长寿命等优点。
本发明在现有技术基础上整合增材制造技术和空间编织技术,针对打印工艺、打印基体材料和高强线材的协作建造和增强效率,提出增材制造打印基体的同时进行空间编织线/绳/索的空间定位、有效锚固及预应力张拉技术和设备实现方案,解决我国土木工程技术领域智能制造的装备技术缺失,为一体化工程建筑智能增材建造技术提供硬件基础。
本发明由于采用以上技术方案,使其具有以下有益效果:
1.采用3D打印基体替代传统混凝土,采用高强线材替代传统钢筋,采用空间打印编织成型技术替代传统建筑结构施工工艺,形成空间受力体系,不仅减少了建筑施工程序,降低了劳动强度,而且还可丰富结构造型。
2.采用数控工艺实现打印编织一体化结构建造施工,提升了结构建造数字化智能一体化水平,节约了建造工期,降低了材料损耗、半成品加工,减少了建筑结构生产建造碳排放。
3.打印基体既可以采用现有传统水泥基建筑材料,也可以选择高分子材料、 石膏材料等造型制造更为精细的材料实现结构建造与结构装饰一体化施工。高强线/绳/索表面可以做粗糙和花纹增加摩擦利用初始预应力张紧编织,也可以光滑涂层进行无粘结张拉设置等打印基体硬化后补张拉较高预应力充分利用高强材料性能。高强线材的柔性编织增强形式,既可以自成体系,也可以与现有筋材进行组合设计施工,有效改善了3D打印基体抗拉、抗剪、抗磨和抗裂性能,大大增强结构断裂韧性和抗冲击性能,提升结构的疲劳性能及其耐久性,使3D打印建筑物的优势全面凸显,不再局限于小型建筑结构。
4.采用结构体型空间优化设计,合理选择结构形式,采用空间定位,将高强线材一体化编织进入打印基体形成强韧空间结构,使建筑物各个部位既能达到结构力学的不同要求,又可以在安全可靠的基础上可达到经济美观,造型艺术。
5.大型空间复杂结构,可以分区域单独打印编织局部,再组装成为整体,采用预设榫接构件和后张预应力工艺加强整体性。该新型强韧结构与传统建筑结构组合,具有灵活多变的兼容性和普适性。
附图说明
图1为本发明的设备装置详图;
图2为线材空间锚钉详图;
图3为线材张拉详图;
图4为线材线材空间编织牵引详图;
图5为线材空间编织电磁导引投梭详图;
其中,1、打印基体备料装置,2、铅垂方向上的绳/线/索材,3、打印基体挤出装置,4、锚固射钉,5、穿引孔,6、推锚环,7、倒伞锚,8、绳/线/索材驱动线轴及多点弹射转盘,9、射钉仓,10、射钉触发扣,11、从动线轴:钢圈,12、打印编织结构,13、多张拉通道,14、张拉牵引装置,15、转动球铰,16、锁紧装置,17、渐进套筒,18、万向阻尼关节滚珠,19、螺纹,20、液压输入,21、张拉数显器,22、高压胶管,23、液压泵,24、电磁导引投梭装置,25、液压动力输入,26、螺纹,27、梭座,28、电磁梭,29、轴承,30、经纬方向上的绳/线/索材,31、弹簧压射装置。
具体实施方式
下面描述本发明的优选实施方式,本领域普通技术人员将能够根据下文所述用本领域的相关技术加以实现,并能更加明白本发明的创新之处和带来的益处。
如图1-5示,本发明采用的3D打印编织一体化建造机包括:打印基体备料装置1,设置在设备支架上可空间移动的打印基体挤出装置3和线材推送及空间锚固装置4、固定在设备支架上的张拉牵引装置14、电磁导引投梭装置24。
其使用方法为:
一、打印基体及编织铅垂方向上的绳/线/索材
(1)采用打印基体备料装置1对打印基体备料并输送至打印基体挤出装置3;
(2)由于3D打印建筑物采用结构体型优化设计,因此所述的空间编织增强设计分区域分阶段分工况设计开展,针对打印工艺和编织流程,采用打印基体挤出装置3层叠制作建筑主体;
(3)采用轮轴转动铅垂方向上的线/绳/索材2空间编入基体,具体方法为:采用驱动线轴及多点弹射转盘8带动从动线轴钢圈11导引铅垂方向上的线/绳/索材穿入射钉仓9内尾部穿引孔5,并利用锚固射钉4定位发射,利用射钉触发扣10推动锚环6,弹开倒伞锚7,实现铅垂方向上的线/绳/索材2在打印基体中的定位编织锚固。
二、利用空间梭织技术进行线/绳/索材的空间立体编织
在此步骤中采用电磁触发投梭嵌锁装置24,液压张拉装置14和锁紧装置16,进行经纬方向上的绳/线/索材空间立体编织。具体为:
(1)经纬方向上的绳/线/索材编织:其中通过螺纹26将电磁触发投梭嵌锁装置24固定在设备支架的定位孔内,采用液压动力输入25压紧梭座27的后部弹簧,控制压射轴承29上带有经纬方向上的高强绳/线/索材30线轴的电磁梭28,利用梭座27进行接梭并激发弹簧压射装置31二次压射,实现复杂空间立体编织。
(2)锁紧及张拉:采用适应多种模量、多种表面形态高强线/绳/索材料的渐进套筒17,通过锁紧装置16进行有效嵌锁,通过转动球铰15和万向阻尼关节滚珠18在结构受力需要的角度通过螺纹19进行定位固定,采用万向数控液压张拉14通过液压输入20,张拉数显器21,高压胶管22,液压泵23对空间编织高 强线/绳/索材进行分阶段分工况预应力张拉;在打印基体达到既定强度后,放张高强绳/线/索材,以永久倒伞锚钉4保持结构长期服役性能,保证高强线/绳/索空间立体预应力编织,提升结构增强效率和智能建造一体化技术水平。
所述的设备开展打印编织一体化智能建造方法步骤如下:
第一步:考虑打印基体和增强材料的力学性能、协作性能,考虑成型后宏观性能各向异性采用改进的渐进优化算法开展结构空间拓扑优化,确定建筑三维数字设计模型;
第二步:参考《混凝土结构设计规范GB50010-2010》、《装配整体式_钢筋焊接网叠合混凝土结构技术规程TCECS_579-2019》、《混凝土3D打印技术规程T/CECS 786-2020》,考虑打印基体材料与传统混凝土材料差异、增强线材与传统钢筋材料差异和打印编织工艺特点与传统结构施工差异,对结构三维数字模型进行打印编织工序设计,确定编织密度,编织定位节点,张拉数量,张拉角度及张拉应力等具体打印编织参数,设置动力控制,机械控制和电磁控制参数,确定打印编织一体化建造流程;
第三步:按预先设定好的配合比和工艺流程对集料、掺合料和外加剂计量混合加工,采用装置1进行打印基体备料,将制备好的3D打印基体通过打印挤出装置3定位堆叠成型;
第四步:在打印过程中将铅垂方向上的绳/线/索材2按预先设计平行打印方向一体化编入,关键转点以射钉4定位保证几何编织造型,铅垂方向以射钉定位牵引线/绳/索材逐层编入,经纬交错编织采用电磁导引投梭装置24形成空间网格,按结构受力和变形设计设置,采用张拉牵引装置14对经纬方向上的绳/线/索材实施空间多向预应力张拉,形成空间立体编织结构。从而实现高强线/绳/索材编织整体打印结构一体化快速硬化成型和高强建造。
对于本发明来说,也可整体打印编织整个结构12,也可以先打印构件,通过线/绳/索材进行连接组装成为整体结构。线/绳/索材表面可以做粗糙和花纹增加摩擦利用初始预应力张紧编织,也可以光滑涂层进行无粘结张拉设置等打印基体硬化后补张拉较高预应力充分利用高强材料性能。

Claims (8)

  1. 一种3D编织打印一体化结构建造设备,其特征在于,所述设备包括:
    打印基体备料装置,对打印基体原材料进行加工后输送至打印基体挤出装置;
    打印基体挤出装置,具有推进挤出、层叠成型的功能,进行基体打印;
    线材推送及空间锚固装置,在铅垂方向上以射钉定位牵引绳/线/索材连续逐层编入基体;
    电磁导引投梭装置,在经纬方向上编织绳/线/索材;
    锁紧装置,对在经纬方向上编织的绳/线/索材进行定位固定;
    张拉牵引装置,对经纬方向上编织的绳/线/索材实施空间多向预应力张拉。
  2. 根据权利要求1所述的3D编织打印一体化结构建造设备,其特征在于,所述线材推送及空间锚固装置包括:驱动线轴、从动线轴和射钉仓,驱动线轴和从动线轴组成转动轮组机械带动推送绳/线/索材;驱动线轴同时作为多点弹射转盘,驱动线材进入射钉仓与锚固射钉连接后在铅垂方向上连续逐层编入打印基体。
  3. 根据权利要求2所述的3D编织打印一体化结构建造设备,其特征在于,所述锚固射钉一端设有穿引孔、另一端设有倒伞锚,其中,倒伞锚通过锚环连接在射钉上;驱动线轴带动从动线轴推送绳/线/索材进入射钉仓,穿入穿引孔后,射钉触发扣推动锚环弹开倒伞锚,线材及射钉在铅垂方向上连续逐层编入打印基体。
  4. 根据权利要求1所述的3D编织打印一体化结构建造设备,其特征在于,所述电磁导引投梭装置包括梭座、弹簧压射装置、线轴、轴承和电磁梭,梭座进行接梭并控制弹簧压射装置压射轴承上带有绳/线/索材的线轴的电磁梭,在经纬方向上编织绳/线/索材。
  5. 根据权利要求1所述的3D编织打印一体化结构建造设备,其特征在于,对于经纬方向上的绳/线/索材:采用渐进套筒,通过锁紧装置进行有效嵌锁,以及通过转动球铰和万向阻尼关节滚珠在结构受力需要的角度通过螺纹进行定位固定。
  6. 根据权利要求1所述的3D编织打印一体化结构建造设备,其特征在于,所述打印基体原材料包括水泥基材料、石膏材料、树脂材料、塑料、尼龙材料和 复合增强组分,所述复合增强组分包括纤维、聚合物、膨化微珠或中空微粒。
  7. 根据权利要求1所述的3D编织打印一体化结构建造设备,其特征在于,所述绳/线/索材选自钢丝、钢绞线、纤维复合线材或纳米线材。
  8. 根据权利要求1-7任一所述的3D编织打印一体化结构建造设备,其特征在于,所述设备的施工方法为:
    (1)根据打印基体和增强材料的力学性能、协作性能,成型后宏观性能各向异性采用改进的渐进优化算法开展结构空间拓扑优化,确定建筑三维数字设计模型;
    (2)根据打印基体材料与传统混凝土材料差异、绳/线/索材与传统钢筋材料差异和打印编织工艺特点与传统结构施工差异,对结构三维数字模型进行打印编织工序设计,确定编织密度,编织定位节点,张拉数量,张拉角度及张拉应力等具体打印编织参数,设置动力控制,机械控制和电磁控制参数,确定打印编织一体化建造流程;
    (3)按预先设定好的配合比和工艺流程对集料、掺合料和外加剂计量混合加工,采用打印基体备料装置进行打印基体备料,将制备好的3D打印基体原料通过打印基体挤出装置定位堆叠成型;
    (4)在打印过程中:线材推送及空间锚固装置在铅垂方向上以射钉定位牵引线/绳/索材按预先设计平行打印方向一体化编入,经纬方向上电磁导引投梭装置压射线/绳/索材交错编织形成空间网格;按结构受力和变形设计设置,采用张拉牵引装置对经纬方向上的绳/线/索材实施空间多向预应力张拉,形成空间立体编织结构。
PCT/CN2022/132726 2021-11-25 2022-11-18 一种3d编织打印一体化结构建造设备 WO2023093619A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/039,277 US20240076886A1 (en) 2021-11-25 2022-11-18 A construction equipment for a 3d weaving and printing integrated structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111412981.7A CN114109044B (zh) 2021-11-25 2021-11-25 一种3d编织打印一体化结构建造设备
CN202111412981.7 2021-11-25

Publications (1)

Publication Number Publication Date
WO2023093619A1 true WO2023093619A1 (zh) 2023-06-01

Family

ID=80372948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132726 WO2023093619A1 (zh) 2021-11-25 2022-11-18 一种3d编织打印一体化结构建造设备

Country Status (3)

Country Link
US (1) US20240076886A1 (zh)
CN (1) CN114109044B (zh)
WO (1) WO2023093619A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109044B (zh) * 2021-11-25 2022-08-23 浙江大学 一种3d编织打印一体化结构建造设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106393684A (zh) * 2016-09-27 2017-02-15 浙江理工大学 一种结合纺织制造原理改进的3d打印生产装置及织造方法
CN107553934A (zh) * 2017-09-12 2018-01-09 浙江理工大学 一种复合材料快速成型生产装置及制备方法
CN107856298A (zh) * 2017-10-31 2018-03-30 陕西斐帛科技发展有限公司 一种连续纤维增强复合材料回转式3d打印机
CN109129827A (zh) * 2018-09-06 2019-01-04 浙江大学 一种3d打印编织一体化成型的复合柱的建造方法及复合柱
CN109227875A (zh) * 2018-09-06 2019-01-18 浙江大学 一种3d打印编织一体化成型建筑的建造方法
CN110774407A (zh) * 2019-10-21 2020-02-11 浙江大学 一种空间骨料增强3d打印混凝土结构的建造方法
US20200149269A1 (en) * 2018-11-13 2020-05-14 Stratasys, Inc. System and method for 3d construction printing
CN112709443A (zh) * 2020-12-25 2021-04-27 浙江大学 一种用于3d打印混凝土结构的整体装配式配筋打印建造方法
US20210122111A1 (en) * 2019-10-29 2021-04-29 Saudi Arabian Oil Company System and method for three-dimensional printing of fiber reinforced thermoplastics with multi-axial reinforcement
CN114109044A (zh) * 2021-11-25 2022-03-01 浙江大学 一种3d编织打印一体化结构建造设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176922A (ja) * 1998-12-18 2000-06-27 Sankyoo Kk コンクリート型枠
CN103862676B (zh) * 2014-03-07 2016-03-02 济南大学 Fdm技术3d打印机
EP2944402B1 (en) * 2014-05-12 2019-04-03 Ansaldo Energia IP UK Limited Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys
CN107571371B (zh) * 2017-10-17 2024-04-26 河北工业大学 一种水泥基材料阵列式3d打印机
FR3098225B1 (fr) * 2019-07-03 2021-07-16 3Ditex Dispositif de realisation d'une preforme en 3d, procede de realisation en 3d avec ledit dispositif, preforme en 3d ainsi obtenue
CN211164453U (zh) * 2019-11-14 2020-08-04 田林 一种用于3d打印的加强结构及3d打印系统
KR20220116228A (ko) * 2019-12-12 2022-08-22 위브쓰리디 인코퍼레이티드 전송 재료와 통합된 인터레이스드 복합물 및 그것의 제작 방법
CN111941584A (zh) * 2020-07-28 2020-11-17 同济大学 一种适用于纤维水泥基混凝土材料的3d打印装置与方法
CN111975926B (zh) * 2020-08-18 2021-11-26 东南大学 一种3d打印混凝土缓粘结预应力增强构件及其制备方法
CN113459274B (zh) * 2021-07-16 2022-10-11 湖南大学 一种纤维编织网增强混凝土复合板材的制作方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106393684A (zh) * 2016-09-27 2017-02-15 浙江理工大学 一种结合纺织制造原理改进的3d打印生产装置及织造方法
CN107553934A (zh) * 2017-09-12 2018-01-09 浙江理工大学 一种复合材料快速成型生产装置及制备方法
CN107856298A (zh) * 2017-10-31 2018-03-30 陕西斐帛科技发展有限公司 一种连续纤维增强复合材料回转式3d打印机
CN109129827A (zh) * 2018-09-06 2019-01-04 浙江大学 一种3d打印编织一体化成型的复合柱的建造方法及复合柱
CN109227875A (zh) * 2018-09-06 2019-01-18 浙江大学 一种3d打印编织一体化成型建筑的建造方法
US20200149269A1 (en) * 2018-11-13 2020-05-14 Stratasys, Inc. System and method for 3d construction printing
CN110774407A (zh) * 2019-10-21 2020-02-11 浙江大学 一种空间骨料增强3d打印混凝土结构的建造方法
US20210122111A1 (en) * 2019-10-29 2021-04-29 Saudi Arabian Oil Company System and method for three-dimensional printing of fiber reinforced thermoplastics with multi-axial reinforcement
CN112709443A (zh) * 2020-12-25 2021-04-27 浙江大学 一种用于3d打印混凝土结构的整体装配式配筋打印建造方法
CN114109044A (zh) * 2021-11-25 2022-03-01 浙江大学 一种3d编织打印一体化结构建造设备

Also Published As

Publication number Publication date
CN114109044A (zh) 2022-03-01
CN114109044B (zh) 2022-08-23
US20240076886A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US20220402164A1 (en) Construction method for spatial aggregate reinforced 3d printed concrete structure
US20210340756A1 (en) Construction method of 3d printing and weaving intergtated building
WO2023093619A1 (zh) 一种3d编织打印一体化结构建造设备
CN1936206A (zh) 钢-连续纤维复合筋增强混凝土抗震结构
CN109129827B (zh) 一种3d打印编织一体化成型的复合柱的建造方法及复合柱
Löfgren Fibre-reinforced concrete for industrial construction
CN112709443B (zh) 一种用于3d打印混凝土结构的整体装配式配筋打印建造方法
US20220325542A1 (en) A tre assemble permanent column formwork and manufacturing method thereof
CN102021886A (zh) 桥梁拉索用混合型frp筋及其制作方法
CN104309126A (zh) 纤维增强复合材料增强3d打印结构
Naaman Evolution in ferrocement and thin reinforced cementitious composites
CN102041870B (zh) 混合型碳纤维板及其制作方法
CN204263543U (zh) 纤维增强复合材料增强3d打印结构
CN204252616U (zh) 空心玻璃钢管混凝土复合结构电杆
CN103161323A (zh) 混凝土结构梁柱节点的加固方法
JP4708534B2 (ja) 繊維強化樹脂成形体からなる補修・補強材およびその製造方法並びに補修・補強材を使用したセメント系構造体
CN101581133A (zh) 一种连续纤维-钢丝复合板
CN101139177B (zh) 一种分布超细钢丝的纤维塑料筋及其制作方法
Halvaei Fibers and textiles reinforced cementitious composites
CN201660735U (zh) 一种碳玻璃玄武岩单向混杂纤维布
CN203284774U (zh) 一种用于复合地基处理的刚性桩
CN101285388A (zh) 一种在地铁混凝土开挖工程中使用的frp筋笼
Holschemacher et al. Innovations in construction of carbon concrete composite members
CN103266595A (zh) 一种用于复合地基处理的刚性桩及其生产方法
WO2006138224A1 (en) Fabric reinforced concrete

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18039277

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897702

Country of ref document: EP

Kind code of ref document: A1