WO2021077926A1 - 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法 - Google Patents

一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法 Download PDF

Info

Publication number
WO2021077926A1
WO2021077926A1 PCT/CN2020/114159 CN2020114159W WO2021077926A1 WO 2021077926 A1 WO2021077926 A1 WO 2021077926A1 CN 2020114159 W CN2020114159 W CN 2020114159W WO 2021077926 A1 WO2021077926 A1 WO 2021077926A1
Authority
WO
WIPO (PCT)
Prior art keywords
marigold
quercetin
lutein
extraction
acetone
Prior art date
Application number
PCT/CN2020/114159
Other languages
English (en)
French (fr)
Inventor
连运河
吴迪
田洪
高伟
王欢欢
Original Assignee
晨光生物科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晨光生物科技集团股份有限公司 filed Critical 晨光生物科技集团股份有限公司
Publication of WO2021077926A1 publication Critical patent/WO2021077926A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/24Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by six-membered non-aromatic rings, e.g. beta-carotene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/30Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/40Separation, e.g. from natural material; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the invention relates to the technical field of extraction of plant functional components, in particular to a method for extracting lutein and quercetin marigold from marigold.
  • Marigold is one of the main cultivated herb potted flowers in my country, and it is widely used in indoor and outdoor environment layout. With the development of the nutrition and health industry, there is an increasing demand for marigolds in the world. Marigold not only has ornamental value, but also has good medicinal value. The main components of its pharmacological effect are flavonoids, carotenoids, terpenes, glycosides, essential oils and other ingredients.
  • the extraction method of lutein and flavonoids is mainly a step-by-step extraction, that is, lutein is first extracted with n-hexane, and then marigold flower meal is treated with a solvent to obtain flavonoid products.
  • 201410104645.X uses two aqueous phase solvents for extraction; mainly extracts to obtain a mixture of lutein and flavonoids, but cannot extract high-purity quercetin marigold.
  • Chinese patent 201811188771.2 uses a mixed solvent of petroleum ether and acetone for extraction. The separation method selected in this patent is separation after adding water. The operation is more complicated, and it is also impossible to separate high-purity quercetin marigold. Chrysanthemum flavonoid mixture.
  • the method for preparing high-purity quercetin marigold in the prior art mainly uses chromatographic separation.
  • Chinese patent 201410708334.4 discloses that high-purity quercetin marigold can be obtained by one-dimensional liquid chromatography and two-dimensional liquid chromatography.
  • Chinese patent 201610108596.6 discloses the preparation of quercetin marigold with a content greater than 85% by repeated centrifugation, filtration, washing and other methods.
  • Chinese patent 201910397773.0 discloses a mixed solvent of n-hexane and acetone to extract lutein and quercetin marigold. This method can extract high-purity lutein and quercetin marigold.
  • mixed solvents are used in the extraction process. After the extraction is completed, the separation and recovery of the extractant is difficult, and it is difficult to extract lutein and quercetin marigold.
  • the cost of the separation process is relatively high, which is not conducive to large-scale industrial production.
  • the present invention relates to an industrialized method for extracting lutein and quercetin marigold from marigold flower particles, including the following steps:
  • the concentration is not enough, that is, the concentrate contains higher acetone.
  • the acetone and low-polarity solvents can separate them.
  • the miscibility of sexual solvents will affect the yield of quercetin marigold and the purity of lutein, and it will also cause difficulties for subsequent solvent recovery.
  • the low-polarity solvent is an isomer of pentane, an isomer of hexane, or a mixture of two or more of them.
  • n-hexane More preferably, n-hexane, petroleum ether, or No. 6 extraction mineral spirits.
  • the mass-volume ratio of the marigold flower particles to the acetone solution is 1:4-20.
  • lutein and quercetin marigold can be fully extracted, and the extraction rate is high.
  • the mass-volume ratio of the marigold flower particles to the acetone solution is 1:5-10.
  • lutein and quercetin marigold can be fully extracted without causing an increase in cost.
  • the extraction is carried out at a temperature of 30-60°C, and the extraction time is 2-6 hours.
  • the two products can be fully and completely extracted. If the temperature is too low, the extraction is insufficient, and the temperature is too high, the yield of quercetin marigold will not increase, but the yield of lutein will decrease.
  • the concentration to the above range is more conducive to the effective separation of quercetin marigold and lutein.
  • the volume fraction of acetone in the acetone solution is 94-99%.
  • lutein and quercetin marigold can be efficiently extracted with high selectivity.
  • the concentration is specifically vacuum concentration at a temperature of 50-90°C.
  • the extract can be efficiently concentrated, and the loss of the product can be reduced as much as possible.
  • the mass-volume ratio of the concentrate to the low-polar solvent is 1:1-5. In this range, it can be ensured that the low-polarity solvent has a sufficient amount compared with the acetone in the concentrate, ensuring the extraction effect, and will not cause the waste of the low-polarity solvent, so that the lutein can be fully extracted and very good. The refinement.
  • the extraction conditions are carried out at a temperature of 30-50°C, and/or the extraction time is 2-6h. Under these conditions, lutein can be fully extracted.
  • the method of the present invention includes the following steps:
  • Another object of the present invention is to protect the lutein products and quercetin marigold products extracted by the method of the present invention.
  • the acetone solution of the present invention is an aqueous solution of acetone, and the mass and volume in the mass-volume ratio are both standard units. In the process of the ratio, gram corresponds to milliliter and kilogram corresponds to liter.
  • the present invention proposes a method for extracting lutein and quercetin marigold through a single solvent, which only includes the operations of extraction, concentration, extraction, and filtration.
  • extraction The solvent is easy to separate, easy to recycle for the next step of production and application, the cost of drying and concentration in the extraction process is low, it can protect lutein well, and it is suitable for industrialized large-scale production.
  • lutein and quercetin marigold can be fully extracted.
  • the yield of lutein obtained is 99%, and the content is greater than 20%; the yield of quercetin marigold is 95%, the purity is more than 95%.
  • Figure 1 is a liquid chromatographic analysis diagram of the quercetin marigold product obtained in Example 1.
  • the marigold flower particles involved in the examples are marigold flower particles obtained by fermentation, pressing, drying, crushing, and granulation of marigold flowers, which can be directly purchased in the market.
  • This embodiment relates to an industrialized preparation method of lutein and quercetin marigold, including the following steps:
  • Example 1 Compared with Example 1, the difference is that in the step 1), an acetone solution with a volume fraction of 94% is used for extraction.
  • Example 1 Compared with Example 1, the difference is that in the step 1), an acetone solution with a volume fraction of 90% is used for extraction.
  • This embodiment relates to an industrialized preparation method of lutein and quercetin marigold, including the following steps:
  • This example relates to an industrial preparation method of lutein and quercetin marigold. Compared with Example 5, the difference is that the step 2) is concentrated to a solid content of 70%.
  • This example relates to an industrialized preparation method of lutein and quercetin marigold. Compared with Example 5, the difference is that the step 2) is concentrated to a solid content of 60%.
  • This example relates to an industrialized preparation method of lutein and quercetin marigold. Compared with Example 5, the difference is that the step 2) is concentrated to a solid content of 95%.
  • Example 1 Compared with Example 1, the difference is that the amount of the acetone solution in the step 1) is 500L.
  • Example 2 Compared with Example 1, the difference is that the extractant used in step 2) is petroleum ether.
  • Example 1 Compared with Example 1, the difference lies in the use of propanol to extract the marigold flower particles.
  • Example 2 Compared with Example 1, the difference is that n-hexane is used to extract the marigold flower particles.
  • Example 2 Compared with Example 1, the difference is that the marigold flower particles are extracted with ethyl acetate.
  • Example 2 Compared with Example 1, the difference is that an acetone solution with a volume fraction of 85% is used to extract the marigold flower particles.
  • Example 1 Compared with Example 1, the difference is that in the step 1), acetone with a volume fraction of 100% is used for extraction.
  • Example 1 Compared with Example 1, the difference is that the step 2) is concentrated to a solid content of 100%.
  • the quercetin marigold obtained was detected by HPLC, and the detection conditions were as follows:
  • Phase A is 2 ⁇ phosphoric acid solution
  • Phase B is acetonitrile, using gradient elution for analysis (the conditions of gradient elution are shown in Table 1); Elution flow rate: 1ml/min; Column temperature: 40°C; Chromatographic column : CORTECS C18 column (4.6mm ⁇ 50mm, particle size 2.7 ⁇ m); UV detector wavelength: 260nm; sample volume: 2 ⁇ L. Ultraviolet spectrophotometry was used to detect the content of lutein under the condition of 474nm. The test results are shown in Table 2.
  • the present invention provides an industrialized method for extracting lutein and quercetin marigold from marigold flower particles, which includes the following steps: 1) Use an acetone solution with a volume fraction of 90 to 99% to extract marigold flower particles to obtain an extract 2) The extract is concentrated to a solid content of 60-95%, and the concentrated solution is extracted with a low-polar solvent to obtain quercetin marigold products and lutein products.
  • the present invention selects acetone as the extractant, which can extract lutein and quercetin marigold at the same time, and can improve the yield of the two products by strictly controlling the acetone concentration. By controlling the degree of concentration, the effective separation of the two active ingredients can be ensured, and high-yield, high-purity quercetin marigold and lutein can be obtained, which has good economic value and application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

本发明涉及一种从万寿菊花颗粒中提取叶黄素和槲皮万寿菊素的工业化方法,包括如下步骤:1)用体积分数为90~99%的丙酮溶液对万寿菊花颗粒进行提取,得提取液;2)将所述提取液浓缩至固形物含量为60~95%,用低极性溶剂对浓缩液进行萃取,得槲皮万寿菊素产品和叶黄素产品。针对于万寿菊花颗粒,本发明选择丙酮作为提取剂,可以对叶黄素和槲皮万寿菊素同时进行提取,并且通过严格控制丙酮浓度能够提高两种产品的得率。通过控制浓缩程度能够保证两种有效成分的有效分离,得到高得率,高纯度的槲皮万寿菊素和叶黄素。

Description

一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法
交叉引用
本申请要求2019年10月22日提交的专利名称为“一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法”的第201911007664X号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明涉及植物功能性成分提取的技术领域,具体涉及一种从万寿菊中提取叶黄素和槲皮万寿菊素的方法。
背景技术
万寿菊是我国主要栽培的草本盆花之一,且广泛用于室内外环境布置。随着营养健康产业发展,国际上对万寿菊的需求量越来越多。万寿菊不但具有观赏价值外,而且还有很好的药用价值,其起药理作用的主要成分是黄酮类物质、类胡萝卜素类、萜类、糖苷类、精油等成分。
目前关于叶黄素和黄酮提取方法,主要是分步提取,即利用正己烷首先提取叶黄素,然后利用溶剂处理万寿菊花粕得到黄酮类产品。另外有两篇专利是利用混合溶剂提取,201410104645.X中采用双水相溶剂进行提取;主要是提取得到叶黄素和黄酮混合物,并不能提取得到高纯度的槲皮万寿菊素。中国专利201811188771.2采用石油醚和丙酮的混合溶剂进行提取,该专利中选用的分离方式为加入水后进行分离,操作较为复杂,而且也无法分离得到高纯度的槲皮万寿菊素,仅可得到万寿菊黄酮混合物。
现有技术中关于高纯度槲皮万寿菊素的制备方法主要利用色谱分离。如中国专利201410708334.4公开通过一维液相色谱和二维液相色谱法提取得到高纯度的槲皮万寿菊素。中国专利201610108596.6公开通过反复离心、过滤、洗涤等方法,制备得到含量大于85%的槲皮万寿菊素,中国专利201910397773.0中公开了一种采用正己烷和丙酮的混合溶剂提取叶黄素和槲皮万寿菊素的方法,该方法可提取得到高纯度的叶黄素和槲皮 万寿菊素,但是在提取的过程中使用了混合溶剂,提取完成后提取剂的分离回收困难,而且对叶黄素和槲皮万寿菊素分离的过程成本较高,不利于进行大规模的工业化生产。
发明内容
本发明涉及一种从万寿菊花颗粒中提取叶黄素和槲皮万寿菊素的工业化方法,包括如下步骤:
1)用体积分数为90~99%的丙酮溶液对万寿菊花颗粒进行提取,得提取液;
2)将所述提取液浓缩至固含量为60~95%,然后向浓缩物中添加低极性溶剂进行萃取,得槲皮万寿菊素产品和叶黄素产品。
研究发现,将丙酮浓度严格地控制在上述范围内,可直接提取得到槲皮万寿菊素和叶黄素,但是在采用低极性溶剂对上述两种物质分离的过程中,若直接将提取液挥干后进行萃取,不易将二者分离,槲皮万寿菊素和叶黄素的纯度会大大降低,分析原因可能为单独采用丙酮溶液对二者进行提取,挥发至干后二者以均匀的固体存在,相互之间存在较强的包裹,不易直接分离。将其浓缩至上述程度,二者存在一定的分散度,有利于低极性溶剂对其进行分离,而若浓缩程度不够,即浓缩物中含有较高的丙酮,萃取的过程中丙酮与低极性溶剂互溶,会影响槲皮万寿菊素的得率以及叶黄素的纯度,同时为后续溶剂回收带来困难。
优选的,所述低极性溶剂为戊烷的同分异构体、己烷的同分异构体或它们中两种或者几种的混合物。
进一步优选正己烷、石油醚或6号抽提溶剂油。
优选的,所述万寿菊花颗粒与所述丙酮溶液的质量体积比为1:4~20。在上述范围内,可对叶黄素和槲皮万寿菊素进行充分地提取,提取率较高。
进一步优选的,所述万寿菊花颗粒与所述丙酮溶液的质量体积比为1:5~10。在上述范围内,既可对叶黄素和槲皮万寿菊素进行充分地提取,还不会导致成本的升高。
优选的,所述提取在温度30~60℃的条件下进行,提取时间为2~6h。在上述温度下,两种产品能够得到充分完全的提取,温度过低,提取不充分,温度过高,槲皮万寿菊素得率也不会增加,叶黄素得率反而会降低。
优选的,浓缩至固形物含量为70%~90%。浓缩至上述范围更有利于实现槲皮万寿菊素和叶黄素的有效分离。
优选的,所述丙酮溶液中丙酮的体积分数为94~99%。在上述范围,可高效地将叶黄素和槲皮万寿菊素高选择性地提取出来。
优选的,所述浓缩具体为在温度50~90℃条件下进行真空浓缩。在此范围下,提取液能够得到高效的浓缩,还可尽可能地减少对产品的损耗。
优选的,所述浓缩物与所述低极性溶剂的质量体积比为1:1~5。在此范围内可保证低极性溶剂与浓缩物中的丙酮相比有足够的量,保证提取效果,且不会导致低极性溶剂的浪费,使叶黄素能够得到充分的萃取和很好的精制。
优选的,所述萃取的条件为在温度30~50℃的条件下进行,和/或,萃取时间为2~6h。在此条件下,叶黄素能够被充分的萃取。
作为优选的方案,本发明的方法包括如下步骤:
1)用体积分数为94~99%的丙酮溶液对万寿菊花颗粒进行提取,得提取液;
2)将所述提取液浓缩至固含量为70~90%,然后向浓缩物中添加低极性溶剂进行萃取,得槲皮万寿菊素产品和叶黄素产品。
本发明的另一目的是保护本发明所述方法提取得到的叶黄素产品和槲皮万寿菊素产品。
本发明所述的丙酮溶液为丙酮的水溶液,所述的质量体积比中质量和体积均为标准单位,在比的过程中克对应毫升,千克对应升。
本发明具有如下有益效果:
1)本发明提出了一种通过单溶剂提取叶黄素和槲皮万寿菊素的方法,仅包括提取、浓缩、萃取、过滤的操作,与现有技术中的多溶剂混合的提 取方案相比,提取溶剂易于分离,易于回收进行下一步地生产应用,提取过程中干燥浓缩的成本低,可对叶黄素进行良好的保护,适用于工业化大规模生产。
2)采用本发明的方法,可对叶黄素和槲皮万寿菊素进行充分提取,通过对方案进行优选,所得叶黄素收率99%,含量大于20%;槲皮万寿菊素的收率为95%,纯度为95%以上。
附图说明
图1为实施例1所得槲皮万寿菊素产品的液相色谱分析图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例中涉及的万寿菊花颗粒是由万寿菊花经过发酵、压榨、烘干、粉碎、制粒得到的万寿菊花颗粒,市场上可直接购买得到。
实施例1
本实施例涉及一种叶黄素和槲皮万寿菊素的工业化制备方法,包括如下步骤:
1)取万寿菊花颗粒50kg,加入体积分数为99%的丙酮溶液350L,在50℃条件下浸提5h。
2)将提取液在真空度0.07±0.002Mpa,温度50℃条件下进行加压浓缩,当固含量到90%时,停止浓缩,此时浓缩物的质量为16.7kg。
3)向上述浓缩液加入60L的正己烷,在30℃下萃取2h,抽滤,滤饼为槲皮万寿菊素(对其进行液相色谱分析,其液相色谱图如图1,图中纵坐标表示提取物的峰面积,横坐标表示时间),正己烷相浓缩得叶黄素浸膏。
实施例2
与实施例1相比,其区别在于,所述步骤1)中采用体积分数为94%的丙酮溶液进行提取。
实施例3
与实施例1相比,其区别在于,所述步骤1)中采用体积分数为90%的丙 酮溶液进行提取。
实施例4
本实施例涉及一种叶黄素和槲皮万寿菊素的工业化制备方法,包括如下步骤:
1)取万寿菊花颗粒50kg,加入浓度为99%的丙酮溶液350L,在50℃条件下浸提5h。
2)将提取液在真空度0.07±0.002Mpa,温度50℃条件下进行加压浓缩,当固含量到80%时,停止浓缩,此时浓缩液的质量为18.7kg。
3)向上述浓缩液加入75L的正己烷进行萃取,抽滤,滤饼为槲皮万寿菊素,正己烷相浓缩得叶黄素浸膏。
实施例5
本实施例涉及一种叶黄素和槲皮万寿菊素的工业化制备方法,与实施例5相比,其区别在于,所述步骤2)中浓缩至固含量为70%。
实施例6
本实施例涉及一种叶黄素和槲皮万寿菊素的工业化制备方法,与实施例5相比,其区别在于,所述步骤2)中浓缩至固含量为60%。
实施例7
本实施例涉及一种叶黄素和槲皮万寿菊素的工业化制备方法,与实施例5相比,其区别在于,所述步骤2)中浓缩至固含量为95%。
实施例8
与实施例1相比,其区别在于,所述步骤1)中丙酮溶液的用量为500L。
实施例9
与实施例1相比,其区别在于,所述步骤2)中使用的萃取剂为石油醚。
对比例1
与实施例1相比,其区别在于,采用丙醇对万寿菊花颗粒进行提取。
对比例2
与实施例1相比,其区别在于,采用正己烷对万寿菊花颗粒进行提取。
对比例3
与实施例1相比,其区别在于,采用乙酸乙酯对万寿菊花颗粒进行提取。
对比例4
与实施例1相比,其区别在于,采用体积分数为85%的丙酮溶液对万寿菊花颗粒进行提取。
对比例5
与实施例1相比,其区别在于,所述步骤1)中采用体积分数100%的丙酮进行提取。
对比例6
与实施例1相比,其区别在于,所述步骤2)中浓缩至固含量为100%。
实验例
采用高效液相法对得到槲皮万寿菊素进行检测,检测条件为:
流动相:A相为2‰的磷酸溶液,B相为乙腈,采用梯度洗脱进行分析(梯度洗脱的条件如表1);洗脱流速:1ml/min;柱温:40℃;色谱柱:CORTECS C18柱(4.6mm×50mm,粒径2.7μm);紫外检测器波长:260nm;进样量:2μL。采用紫外分光光度法在474nm的条件下对叶黄素的含量进行检测。检测结果如表2。
表1
时间,min 流速,mL/min A,% B,%
初始 1 88.0 12.0
5.0 1 88.0 12.0
5.5 1 10.0 90.0
7.5 1 10.0 90.0
8.0 1 88.0 12.0
9.0 1 88.0 12.0
表2
Figure PCTCN2020114159-appb-000001
Figure PCTCN2020114159-appb-000002
由以上实施例可以看出,采用本发明的方法,提取得到的叶黄素和槲皮万寿菊素的得率和纯度均很高,尤其是槲皮万寿菊素的含量是目前工业化生产的中所不能达到的。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
工业实用性
本发明提供一种从万寿菊花颗粒中提取叶黄素和槲皮万寿菊素的工业化方法,其包括如下步骤:1)用体积分数为90~99%的丙酮溶液对万寿菊花颗粒进行提取,得提取液;2)将所述提取液浓缩至固形物含量为60~95%,用低极性溶剂对浓缩液进行萃取,得槲皮万寿菊素产品和叶黄素产品。针对于万寿菊花颗粒,本发明选择丙酮作为提取剂,可以对叶黄素和槲皮万寿菊素同时进行提取,并且通过严格控制丙酮浓度能够提高两种产品的得率。通过控制浓缩程度能够保证两种有效成分的有效分离,得到高得率,高纯度的槲皮万寿菊素和叶黄素,具有较好的经济价值和应用前景。

Claims (10)

  1. 一种从万寿菊花颗粒中提取叶黄素和槲皮万寿菊素的工业化方法,其特征在于,包括如下步骤:
    1)用体积分数为90~99%的丙酮溶液对万寿菊花颗粒进行提取,得提取液;
    2)将所述提取液浓缩至固形物含量为60~95%,然后向浓缩物中添加低极性溶剂进行萃取,得槲皮万寿菊素产品和叶黄素产品。
  2. 根据权利要求1所述的工业化方法,其特征在于,所述低极性溶剂为戊烷的同分异构体、己烷的同分异构体或它们中两种或者几种的混合物。
  3. 根据权利要求1或2所述的工业化方法,其特征在于,所述万寿菊花颗粒与所述丙酮溶液的质量体积比为1:4~20,优选1:5~10。
  4. 根据权利要求1~3任一项所述的工业化方法,其特征在于,所述提取在温度30~60℃的条件下进行,和/或,提取时间为2~6h。
  5. 根据权利要求1~4任一项所述的工业化方法,其特征在于,所述丙酮溶液中丙酮的体积分数为94~99%。
  6. 根据权利要求1~5任一项所述的工业化方法,其特征在于,浓缩至固形物含量为70%~90%。
  7. 根据权利要求1~6任一项所述的工业化方法,其特征在于,所述浓缩的条件为在温度50~90℃的条件下进行真空浓缩。
  8. 根据权利要求1~7任一项所述的工业化方法,其特征在于,所述浓缩物与所述低极性溶剂的质量体积比为1:1~5。
  9. 根据权利要求1~8任一项所述的工业化方法,其特征在于,所述萃取在温度30~50℃的条件下进行,和/或,萃取时间为2~6h。
  10. 权利要求1~9任一项所述工业化方法制备得到的叶黄素产品和槲皮万寿菊素产品。
PCT/CN2020/114159 2019-10-22 2020-09-09 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法 WO2021077926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911007664.XA CN110746331B (zh) 2019-10-22 2019-10-22 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法
CN201911007664.X 2019-10-22

Publications (1)

Publication Number Publication Date
WO2021077926A1 true WO2021077926A1 (zh) 2021-04-29

Family

ID=69279396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114159 WO2021077926A1 (zh) 2019-10-22 2020-09-09 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法

Country Status (2)

Country Link
CN (1) CN110746331B (zh)
WO (1) WO2021077926A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003071B (zh) * 2019-05-14 2021-03-23 晨光生物科技集团股份有限公司 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110746331B (zh) * 2019-10-22 2021-04-09 晨光生物科技集团股份有限公司 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法
CN114052246B (zh) * 2020-08-06 2023-06-16 晨光生物科技集团股份有限公司 一种含槲皮万寿菊素和没食子酸的抗氧化组合物
CN112516621A (zh) * 2020-11-16 2021-03-19 晨光生物科技集团股份有限公司 一种高含量花椒黄酮的制备方法
CN112999252B (zh) * 2021-03-03 2022-05-20 晨光生物科技集团股份有限公司 一种连续提取高含量万寿菊黄酮的工业化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003071A (zh) * 2019-05-14 2019-07-12 晨光生物科技集团股份有限公司 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110105257A (zh) * 2019-05-15 2019-08-09 晨光生物科技集团股份有限公司 一种同步提取叶黄素和槲皮万寿菊素的工业化方法
CN110372554A (zh) * 2019-06-28 2019-10-25 晨光生物科技集团股份有限公司 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110746331A (zh) * 2019-10-22 2020-02-04 晨光生物科技集团股份有限公司 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法
CN110776449A (zh) * 2019-10-22 2020-02-11 晨光生物科技集团股份有限公司 一种提取叶黄素和槲皮万寿菊素的工业化方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693676B (zh) * 2014-11-28 2018-07-24 天津耀宇生物技术有限公司 从万寿菊中分离纯化槲皮万寿菊素的方法
CN105541775A (zh) * 2016-02-26 2016-05-04 中国农业大学 一种槲皮万寿菊素工业化制备方法
CN109232346B (zh) * 2018-10-12 2020-04-14 晨光生物科技集团股份有限公司 一种叶黄素和万寿菊黄酮的工业化制备方法
CN109394811B (zh) * 2018-10-12 2021-07-27 晨光生物科技集团股份有限公司 一种工业化提取万寿菊黄酮的方法及其万寿菊黄酮
CN109212094B (zh) * 2018-10-30 2021-03-30 晨光生物科技集团股份有限公司 万寿菊渣中槲皮万寿菊素的检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003071A (zh) * 2019-05-14 2019-07-12 晨光生物科技集团股份有限公司 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110105257A (zh) * 2019-05-15 2019-08-09 晨光生物科技集团股份有限公司 一种同步提取叶黄素和槲皮万寿菊素的工业化方法
CN110372554A (zh) * 2019-06-28 2019-10-25 晨光生物科技集团股份有限公司 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110746331A (zh) * 2019-10-22 2020-02-04 晨光生物科技集团股份有限公司 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法
CN110776449A (zh) * 2019-10-22 2020-02-11 晨光生物科技集团股份有限公司 一种提取叶黄素和槲皮万寿菊素的工业化方法

Also Published As

Publication number Publication date
CN110746331B (zh) 2021-04-09
CN110746331A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2021077926A1 (zh) 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法
WO2020259565A1 (zh) 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN107337586B (zh) 一种从汉麻中提取纯化大麻二酚的方法
CN110776449B (zh) 一种提取叶黄素和槲皮万寿菊素的工业化方法
CN109232346B (zh) 一种叶黄素和万寿菊黄酮的工业化制备方法
CN109394811B (zh) 一种工业化提取万寿菊黄酮的方法及其万寿菊黄酮
CN106588616B (zh) 一种姜黄素的制备方法
WO2020228786A1 (zh) 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110105257B (zh) 一种同步提取叶黄素和槲皮万寿菊素的工业化方法
CN102516325B (zh) 一种以栀子为原料生产纯度大于95%的藏红花素的方法
CN104372045A (zh) 一种高纯度萝卜硫素的制备方法
CN105647227A (zh) 一种辣椒红色素黄红分离的方法
CN111039914A (zh) 一种大麻酚的提取分离方法
CN108059628A (zh) 一种蓝莓花青素的快速制备方法
CN102924537B (zh) 从罗布麻叶中同时制备金丝桃苷和异槲皮苷的方法
CN108047016B (zh) 一种从姜黄中提取双脱甲氧基姜黄素的方法
TW201918467A (zh) 純化奇壬醇的方法
CN107382943B (zh) 一种亚临界水萃取高粱麸皮中二氢槲皮素的方法
CN112999252B (zh) 一种连续提取高含量万寿菊黄酮的工业化方法
CN105130867A (zh) 一种提取富集枸杞子中玉米黄质的方法
CN104974041B (zh) 一种高纯度绿原酸及其制备方法和用途
CN106946833A (zh) 一种从猫须草中提取高纯度橙黄酮的方法
CN111138400A (zh) 一种大麻色烯的提取分离方法
CN114685416A (zh) 一种大麻素的分离方法
CN105030891B (zh) 一种异叶青兰黄酮类组分的制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879908

Country of ref document: EP

Kind code of ref document: A1