WO2021077915A1 - 连续制热控制系统、方法及空调设备 - Google Patents
连续制热控制系统、方法及空调设备 Download PDFInfo
- Publication number
- WO2021077915A1 WO2021077915A1 PCT/CN2020/113188 CN2020113188W WO2021077915A1 WO 2021077915 A1 WO2021077915 A1 WO 2021077915A1 CN 2020113188 W CN2020113188 W CN 2020113188W WO 2021077915 A1 WO2021077915 A1 WO 2021077915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- valve
- control system
- control
- pipeline
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/41—Defrosting; Preventing freezing
- F24F11/42—Defrosting; Preventing freezing of outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/008—Refrigerant heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2347/00—Details for preventing or removing deposits or corrosion
- F25B2347/02—Details of defrosting cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/01—Heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0403—Refrigeration circuit bypassing means for the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0411—Refrigeration circuit bypassing means for the expansion valve or capillary tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2519—On-off valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present disclosure relates to the technical field of units, and in particular, to a continuous heating control system, method, and air conditioning equipment.
- the refrigerant in the outdoor heat exchanger will evaporate and absorb heat, which will cause frost on the outdoor heat exchanger. If the frost is serious, it will affect the heat exchange effect of the outdoor heat exchanger, and then affect the indoor unit's heating. Thermal effect.
- the unit when it is detected that the outdoor heat exchanger is severely frosted, the unit will switch the four-way valve to allow the high temperature and high pressure refrigerant from the compressor exhaust to enter the outdoor heat exchanger to provide heat Used for defrosting. But at this time, the indoor unit is in a cooling state, and the indoor temperature will drop, which affects comfort.
- a continuous heating control method known to the inventors of the present disclosure is a partitioned defrosting method for outdoor units. That is, the outdoor heat exchanger is divided into two pieces, and when it needs to be defrosted, the defrosting takes turns, and the internal machine can continue to maintain the heating state.
- a continuous heating control system in one aspect of the present disclosure, includes a defrosting solenoid valve arranged on a bypass pipeline, one end of the bypass pipeline is connected to an oil separator, and the other end is connected to the outdoor
- the heat exchanger and the heating structure are arranged at the bottom of the steam separator for heating the steam separator.
- the heating structure includes: a heating tank arranged at the bottom of the vapor separator, a first pipeline is provided at the bottom of the vapor separator to connect to the heating tank; and a first electric heating component arranged Outside the heating tank.
- the system further includes: a first branch, the first end of which is arranged on the pipeline between the rear end of the subcooler electronic expansion valve and the subcooler, and the second end is connected to an enthalpy tube.
- a second electric heating part and a first enthalpy increasing valve are provided on the first branch, and the third end of the first branch is provided on the second electric heating part and the first The heating tank is connected between the enthalpy increasing valves.
- an inlet valve is provided on the first pipeline.
- the system further includes: a second pipeline connected between the outlet pipe of the steam separator and the heating tank, and a pressure balance valve is provided on the second pipeline.
- the system further includes: a third pipeline, one end of which is connected to the heating tank, and the other end is connected to two branches, one of the two branches is connected to the suction of the compressor The other of the two branches is connected to an enthalpy increasing tube.
- an exhaust valve is provided on the branch connected to the suction pipe of the compressor, and a second enthalpy increasing valve is provided on the branch connected to the enthalpy increasing pipe.
- one end of the defrost solenoid valve is connected to the front part or the back part of the capillary tube of the outdoor heat exchanger.
- the heating structure includes: a third electric heating component, which is arranged at the bottom of the steam separator, or at the inlet pipe of the steam separator, or at the outlet pipe of the steam separator.
- an air-conditioning device wherein the air-conditioning device includes the above-mentioned continuous heating control system.
- a continuous heating control method is provided, which is applied to the above continuous heating control system, wherein the method includes: after receiving a defrosting start instruction, controlling the defrosting solenoid valve to open, Control the opening of the subcooling solenoid valve, the opening of the inlet valve, the opening of the exhaust valve, the closing of the heating electronic expansion valve, the opening of the subcooler electronic expansion valve to the maximum number of steps; and the control of the first electric heating component to start working ;
- the subcooling solenoid valve is provided between the steam separator and the subcooler
- the heating electronic expansion valve is provided between the subcooler and the outdoor heat exchanger.
- the method further includes: after receiving the defrosting end instruction, controlling the defrosting solenoid valve to close, controlling the liquid inlet valve to close, controlling the exhaust valve to close, controlling the supercooling solenoid valve and the heating electronic expansion valve , The electronic expansion valve of the subcooler all resumes normal control; and, the first electric heating component is controlled to stop working.
- a computer-readable storage medium on which a computer program is stored, wherein the program is executed by a processor to implement the above-mentioned method.
- a bypass pipeline is provided, one end of the bypass pipeline is connected to an oil separator, the other end is connected to an outdoor heat exchanger, a defrost solenoid valve is installed on the bypass pipeline, and a A heating structure is provided at the bottom of the separator, and the heating structure is used to heat the vapor separator. In this way, the effect of no attenuation of heating capacity and fast defrosting can be achieved as much as possible.
- Fig. 1 is a schematic structural diagram of a continuous heating control system according to some embodiments of the present disclosure
- Fig. 2 is another structural schematic diagram of a continuous heating control system according to some embodiments of the present disclosure
- Fig. 3 is a schematic diagram of heating operation according to some embodiments of the present disclosure.
- Fig. 4 is a schematic diagram of defrosting operation according to some embodiments of the present disclosure.
- FIG. 5 is a flowchart of a continuous heating control method according to some embodiments of the present disclosure.
- the words “if” and “if” as used herein can be interpreted as “when” or “when” or “in response to determination” or “in response to detection”.
- the phrase “if determined” or “if detected (statement or event)” can be interpreted as “when determined” or “in response to determination” or “when detected (statement or event) )” or “in response to detection (statement or event)”.
- the method of defrosting the outdoor unit by partition may have drawbacks. For example, during defrosting, the heat exchange area on the evaporation side of the air conditioning system becomes smaller, and the heat exchange area on the condensing side becomes larger, which will make the internal heat transfer effect worse. In addition, the defrosting in turns in different zones will also make the defrosting time longer. Therefore, the defrosting method of the outdoor unit may have the problem of slow defrosting and attenuation of heating capacity.
- the embodiments of the present disclosure provide a continuous heating control system to achieve the effects of no attenuation of heating capacity and rapid defrosting as much as possible.
- the optional embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
- Fig. 1 is a schematic structural diagram of a continuous heating control system according to some embodiments of the present disclosure.
- a bypass pipeline is added.
- the system includes a defrosting solenoid valve 1 and a heating structure.
- the defrosting solenoid valve 1 is arranged on the bypass pipeline, one end of the bypass pipeline is connected to the oil separator 2 and the other end is connected to the outdoor heat exchanger 3.
- one end of the defrost solenoid valve 1 can be directly connected to the front part or the back part of the capillary tube of the outdoor heat exchanger 3.
- the heating structure is arranged at the bottom of the steam separator 4 for heating the steam separator 4.
- the heating structure includes a heating tank 5.
- the heating tank 5 is arranged at the bottom of the steam separator 4.
- the bottom of the steam separator 4 is provided with a first pipeline connected to the heating tank 5.
- the heating structure also includes a first electric heating component 6.
- the first electric heating part 6 is arranged outside the heating tank.
- An inlet valve 7 is provided on the first pipeline.
- a bypass pipeline is provided, one end of the bypass pipeline is connected to an oil separator, the other end is connected to an outdoor heat exchanger, a defrosting solenoid valve is installed on the bypass pipeline, and a steam A heating structure is provided at the bottom of the separator, and the heating structure is used to heat the vapor separator. In this way, the effect of no attenuation of heating capacity and fast defrosting can be achieved as much as possible.
- the system further includes: a first branch, the first end of which is arranged on the pipeline between the rear end of the subcooler electronic expansion valve (ie, the subcooler EXV) 8 and the subcooler 9, The second end is connected with an enthalpy tube.
- a second electric heating component 10 and a first enthalpy increasing valve 11 are provided on the first branch road.
- the third end of the first branch is arranged between the second electric heating component 10 and the first enthalpy increasing valve 11 and is connected to the heating tank 5.
- the system may further include: a second pipeline connected between the outlet pipe of the vapor separator 4 and the heating tank 5.
- a pressure balance valve 12 is provided on the second pipeline.
- the system also includes: a third pipeline, one end of which is connected to the heating tank 5, and the other end is connected to two branches.
- One of the two branches is connected to the suction pipe of the compressor 13, and an exhaust valve 14 is provided on the branch.
- the other branch of the two branches is connected to an enthalpy increasing pipe, and a second enthalpy increasing valve 15 is provided on the branch.
- An exhaust valve 14 is provided on the branch connected to the suction pipe of the compressor 13, and a second enthalpy increasing valve 15 is provided on the branch connected to the enthalpy increasing pipe.
- a heating electronic expansion valve ie, heating EXV
- An enthalpy injection electronic expansion valve ie, injection enthalpy EXV
- a supercooling solenoid valve 18 is provided on the pipeline from the supercooler 9 to the steam separator 4.
- the system also includes a four-way valve 19.
- the high temperature and high pressure refrigerant exhausted can be directly passed to the outdoor heat exchanger for defrosting and to the indoor heat exchanger for production during defrosting. heat.
- the condensed refrigerant directly enters the steam separator, and then enters the heating tank from the steam separator, where it is heated and evaporated in the heating tank to maintain the heating capacity without attenuation.
- the above-mentioned system of the present disclosure can realize the effects of no switching of the four-way valve during defrosting, no attenuation of heating capacity, and fast defrosting.
- Fig. 2 is another structural schematic diagram of a continuous heating control system according to some embodiments of the present disclosure.
- the bypass line from the exhaust pipe of the compressor 13 is connected to the front part of the capillary tube of the outdoor heat exchanger 3.
- the flowing refrigerant will pass through the capillary throttling before entering the heat exchanger to defrost.
- the electric heating component 6 is directly arranged at the bottom of the steam separator, or can also be arranged at the inlet pipe or the outlet pipe of the steam separator.
- the heating structure may include: a third electric heating component, which is arranged at the bottom of the vapor separator, or at the inlet pipe of the vapor separator, or at the outlet pipe of the vapor separator. But in comparison, the use of a heating tank can adjust the flow of refrigerant.
- a bypass pipeline is added, and one end of the bypass pipeline is connected to the oil separator from the compressor exhaust pipe. 2. The other end of the bypass pipe is connected to the capillary tube of the outdoor heat exchanger.
- a defrosting solenoid valve 1 is provided on the bypass pipeline.
- a branch ie, the first branch
- the first end of the branch is arranged on the pipeline between the rear end of the electronic expansion valve of the subcooler and the subcooler.
- An electric heating component 10 (that is, the above-mentioned second electric heating component 10) and an enthalpy increasing valve 11 (that is, the above-mentioned first enthalpy increasing valve 11) are arranged on this branch.
- the third end of this branch enters the heating tank 5 below the vapor separator 4, and the second end of this branch is connected to an enthalpy increasing tube.
- a heating tank 5 is arranged under the vapor separator 4, and an electric heating component 6 (that is, the above-mentioned first electric heating component 6) is arranged on the outside of the heating tank 5.
- the bottom of the steam separator 4 is provided with a pipeline connected to the heating tank 5, and a liquid inlet valve 7 is provided on this pipeline.
- a pipeline is connected between the outlet pipe of the steam separator 4 and the heating tank 5, and a pressure balance valve 12 is provided on the pipeline.
- this pipeline is connected with two branches, one branch is connected to the compressor suction pipe with an exhaust valve 14, and the other branch is connected with an enthalpy increasing pipe with an enthalpy increasing pipe.
- Valve 15 (that is, the above-mentioned second enthalpy increasing valve 15).
- This embodiment also provides an air conditioning device, including the continuous heating control system described above.
- the control equipment adopts hot gas bypass and steam separation heating technology.
- the high temperature and high pressure refrigerant exhausted can be directly sent to the outdoor heat exchanger for defrosting and to the indoor heat exchanger for heating, while condensing
- the latter refrigerant enters the steam separator directly, and then enters the heating tank from the steam separator.
- the refrigerant is heated and evaporated in the heating tank to maintain the heating capacity without decay.
- the air conditioner can achieve the effects of the four-way valve 19 not switching during defrosting, and the heating capacity is not attenuated and the defrosting is fast.
- Fig. 3 is a schematic diagram of heating operation according to some embodiments of the present disclosure. As shown in Fig. 3, the direction of the arrow indicates the flow direction of the refrigerant.
- the four-way valve 19 is in the power-on state. After the compressor 13 compresses the refrigerant into a high-temperature and high-pressure gas, it passes through the oil separator 2 and then through the four-way valve 19 to an indoor unit (not shown in the figure). After the refrigerant condenses in the indoor unit and releases heat, it becomes a liquid and then returns to the outdoor unit.
- the refrigerant returned from the indoor unit passes through the subcooler 9, it is throttled and pressure-reduced by the heating electronic expansion valve 16 to become a low-temperature and low-pressure liquid, and then evaporates and absorbs heat in the outdoor heat exchanger 3 to become a gas.
- the gaseous refrigerant comes out of the outdoor heat exchanger 3, passes through the four-way valve 19, enters the steam separator 4, and is sucked into the compressor 13 from the steam separator 4 to be compressed, thus completing a heating cycle.
- Fig. 4 is a schematic diagram of defrosting operation according to some embodiments of the present disclosure. As shown in Fig. 4, the direction of the arrow indicates the flow direction of the refrigerant.
- the defrosting solenoid valve 1 is opened, the subcooling solenoid valve 18 is opened, the inlet valve 7 is opened, the exhaust valve 14 is opened, the heating electronic expansion valve 16 is closed, and the subcooler electronically expands
- the valve 8 is opened to the maximum number of steps, and the electric heating element 6 starts to work.
- the refrigerant compressed by the compressor 13 is divided into two paths.
- the defrosting solenoid valve 1 After defrosting, the defrosting solenoid valve 1 is closed, the inlet valve 7 is closed, the exhaust valve 14 is closed, the electric heating component 6 stops working, the subcooling solenoid valve 18, the heating electronic expansion valve 16, and the supercooler electronic expansion Valve 8 resumes normal control.
- a compressor frequency higher than the compressor frequency during normal heating operation can be used to maintain heating and Defrosting effect.
- the above method is different from the partition defrosting method in that the use of the steam separator to heat the components can improve the heat exchange effect of the evaporation side of the system, so that the overall heating effect of the system is not attenuated.
- FIG. 5 is a flowchart of a continuous heating control method according to some embodiments of the present disclosure. This continuous heating control method is applied to the above-mentioned continuous heating control system. As shown in Fig. 5, the method includes steps S501 to S502.
- step S501 after receiving the defrosting start instruction, control the defrost solenoid valve to open, control the subcooling solenoid valve to open, control the inlet valve to open, control the exhaust valve to open, control the heating electronic expansion valve to close, and control the subcooler
- the electronic expansion valve is opened to the maximum number of steps.
- step S502 the first electric heating component is controlled to start working.
- the supercooling solenoid valve is arranged between the steam separator and the supercooler, and the heating electronic expansion valve is arranged between the supercooler and the outdoor heat exchanger.
- the method may further include: after receiving the defrosting end instruction, controlling the defrosting solenoid valve to close, controlling the liquid inlet valve to close, controlling the exhaust valve to close, controlling the supercooling solenoid valve, heating electronics Both the expansion valve and the electronic expansion valve of the subcooler return to normal control; and, the first electric heating component is controlled to stop working.
- This embodiment adopts hot gas bypass and vapor separation heating technology.
- the high-temperature and high-pressure refrigerant exhausted can be directly sent to the outdoor heat exchanger for defrosting and indoor heat exchanger heating, and the condensed refrigerant directly enters the steam
- the separator enters the heating tank from the steam separator and is heated and evaporated in the heating tank to maintain the heating capacity without attenuation.
- the method of the present disclosure can realize the effects of no switching of the four-way valve during defrosting, no attenuation of heating capacity and fast defrosting.
- the embodiments of the present disclosure provide a piece of software, which is used to execute the technical solutions described in the above-mentioned embodiments and preferred implementations.
- the embodiments of the present disclosure provide a non-transitory computer storage medium that stores computer executable instructions, and the computer executable instructions can execute the continuous heating control method in any of the foregoing method embodiments.
- the above-mentioned storage medium stores the above-mentioned software, and the storage medium includes, but is not limited to: optical disks, floppy disks, hard disks, and erasable memory.
- the present disclosure adds a hot gas bypass branch at the outlet pipe of the oil separator, which is connected between the heating electronic expansion valve and the outdoor heat exchanger for defrosting. There is a solenoid valve on this branch.
- a heating tank is installed at the vapor separator to heat the vapor during defrosting and evaporate the liquid refrigerant.
- the device embodiments described above are merely illustrative.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- each implementation manner can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
- the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., and includes several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute each Examples or methods described in some parts of the examples.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Combustion & Propulsion (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种连续制热控制系统、方法及空调设备。该系统包括:化霜电磁阀(1),设置在旁通管路上,所述旁通管路的一端连接油分离器(2),另一端连接室外换热器(3);和加热结构,设置在汽分离器(4)的底部,用于对汽分离器(4)进行加热。通过该系统,可以实现化霜时制热能力不衰减和化霜快的效果。
Description
相关申请的交叉引用
本申请是以CN申请号为201911014181.2,申请日为2019年10月23日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
本公开涉及机组技术领域,具体而言,涉及一种连续制热控制系统、方法及空调设备。
目前,空调正在成为重要的供暖设备。而对于空调设备来说,制热运行时出现的结霜化霜现象,会严重影响到用户使用的舒适性。
当空调制热运行时,室外换热器中冷媒蒸发吸热,会导致室外换热器上结霜,结霜严重后将影响到室外换热器的换热效果,进而影响到室内机的制热效果。
在本公开的发明人已知的空调中,当检测到室外换热器结霜严重时,机组会切换四通阀,令压缩机排气口出来的高温高压冷媒进入室外换热器,提供热量用于化霜。但此时室内机处于制冷状态,室内温度将会下降,影响舒适性。
鉴于上述问题,在相关技术中,提供了一种效率高且可靠的连续制热控制方法,以实现化霜时四通阀不切换,室内机持续制热。例如,本公开的发明人已知的一种连续制热控制方式为室外机分区化霜的方式。即,将室外换热器分为两块,需要化霜时轮流化霜,内机则可以持续保持制热状态。
发明内容
在本公开的一个方面,提供了一种连续制热控制系统,该系统包括:化霜电磁阀,设置在旁通管路上,所述旁通管路的一端连接油分离器,另一端连接室外换热器;和加热结构,设置在汽分离器的底部,用于对汽分离器进行加热。
在一些实施例中,所述加热结构包括:加热罐,设置在汽分离器的底部,所述汽分离器的底部设置有第一管路连接所述加热罐;和第一电加热部件,设置在所述加热罐外部。
在一些实施例中,所述系统还包括:第一支路,其第一端设置在过冷器电子膨胀阀的后端与过冷器之间的管路上,第二端连接增焓管。
在一些实施例中,所述第一支路上设置有第二电加热部件和第一增焓阀,所述第一支路的第三端设置在所述第二电加热部件和所述第一增焓阀之间,连接所述加热罐。
在一些实施例中,所述第一管路上设置有进液阀。
在一些实施例中,所述系统还包括:连接在所述汽分离器的出管与所述加热罐之间的第二管路,所述第二管路上设置有压力平衡阀。
在一些实施例中,所述系统还包括:第三管路,其一端连接所述加热罐,另一端连接两条支路,所述两条支路中的一条支路连接压缩机的吸气管,所述两条支路中的另一条支路连接增焓管。
在一些实施例中,在连接压缩机的吸气管的支路上设置有排气阀,在连接增焓管的支路上设置有第二增焓阀。
在一些实施例中,所述化霜电磁阀的一端连接所述室外换热器的毛细管的前面部分或后面部分。
在一些实施例中,所述加热结构包括:第三电加热部件,设置在所述汽分离器的底部,或者所述汽分离器的进管处,或者所述汽分离器的出管处。
在本公开的另一个方面,提供了一种空调设备,其中,所述空调设备包括:上述的连续制热控制系统。
在本公开的另一个方面,提供了一种连续制热控制方法,应用于上述的连续制热控制系统,其中,所述方法包括:接收到化霜开始指令后,控制化霜电磁阀开启,控制过冷电磁阀开启,控制进液阀开启,控制排气阀开启,控制制热电子膨胀阀关闭,控制过冷器电子膨胀阀开启至最大步数;以及,控制第一电加热部件开始工作;其中,所述过冷电磁阀设置在汽分离器和过冷器之间,所述制热电子膨胀阀设置在过冷器和室外换热器之间。
在一些实施例中,所述方法还包括:接收到化霜结束指令后,控制化霜电磁阀关闭,控制进液阀关闭,控制排气阀关闭,控制过冷电磁阀、制热电子膨胀阀、过冷器电子膨胀阀均恢复正常控制;以及,控制第一电加热部件停止工作。
在本公开的另一个方面,提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如上述的方法。
在上述连续制热控制系统中,设置了旁路管路,该旁通管路的一端连接油分离器, 另一端连接室外换热器,在旁通管路上设置化霜电磁阀,以及在汽分离器的底部设置加热结构,该加热结构用于对汽分离器进行加热。这样可以尽量实现制热能力不衰减和化霜快的效果。
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开一些实施例的连续制热控制系统的结构示意图;
图2是根据本公开一些实施例的连续制热控制系统的另一结构示意图;
图3是根据本公开一些实施例的制热运行示意图;
图4是根据本公开一些实施例的化霜运行示意图;
图5是根据本公开一些实施例的连续制热控制方法的流程图。
应当明白,附图中所示出的各个部分的尺寸并不必须按照实际的比例关系绘制。此外,相同或类似的参考标号表示相同或类似的构件。
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作在一些实施例中详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在本公开实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时” 或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
本公开的发明人发现,室外机分区化霜的方式可能存在弊端。例如,在化霜时,空调系统中蒸发侧换热面积变小了,冷凝侧换热面积变大了,将会使得内机制热效果变差。另外,分区轮流化霜也会使得化霜时间变长。因此,室外机分区化霜的方式可能存在化霜较慢且制热能力衰减的问题。
鉴于此,本公开的实施例提供了一种连续制热控制系统,以尽量实现制热能力不衰减和化霜快的效果。下面结合附图详细说明本公开的可选实施例。
实施例1
图1是根据本公开一些实施例的连续制热控制系统的结构示意图。如图1所示,在该系统中,在已知的热泵系统的基础上,增加一条旁通管路。该系统包括化霜电磁阀1和加热结构。化霜电磁阀1设置在旁通管路上,旁通管路的一端连接油分离器2,另一端连接室外换热器3。具体地,化霜电磁阀1的一端可以直接连接室外换热器3的毛细管的前面部分或后面部分。加热结构设置在汽分离器4的底部,用于对汽分离器4进行加热。该加热结构包括加热罐5。加热罐5设置在汽分离器4的底部。汽分离器4的底部设置有第一管路连接加热罐5。该加热结构还包括第一电加热部件6。第一电加热部件6设置在加热罐外部。第一管路上设置有进液阀7。
在上述连续制热控制系统中,设置了旁路管路,该旁通管路的一端连接油分离器,另一端连接室外换热器,在旁通管路上设置化霜电磁阀,以及在汽分离器的底部设置加热结构,该加热结构用于对汽分离器进行加热。这样可以尽量实现制热能力不衰减和化霜快的效果。
在一些实施例中,该系统还包括:第一支路,其第一端设置在过冷器电子膨胀阀(即过冷器EXV)8的后端与过冷器9之间的管路上,第二端连接增焓管。第一支路 上设置有第二电加热部件10和第一增焓阀11。第一支路的第三端设置在第二电加热部件10和第一增焓阀11之间,连接加热罐5。
在一些实施例中,所述系统还可以包括:连接在汽分离器4的出管与加热罐5之间的第二管路。第二管路上设置有压力平衡阀12。该系统还包括:第三管路,其一端连接加热罐5,另一端连接两条支路。所述两条支路中的一条支路连接压缩机13的吸气管,该支路上设置有排气阀14。所述两条支路中的另一条支路连接增焓管,该支路上设置有第二增焓阀15。。在连接压缩机13的吸气管的支路上设置有排气阀14,在连接增焓管的支路上设置有第二增焓阀15。图1系统中,室外换热器3和过冷器9之间的管路上设置有制热电子膨胀阀(即制热EXV)16。从第一增焓阀11至过冷器9的管路上设置有喷焓电子膨胀阀(即喷焓EXV)17。由过冷器9到汽分离器4的管路上设置有过冷电磁阀18。另外,如图1中所示,该系统还包括四通阀19。
应用本公开的技术方案,采用热气旁通和汽分加热技术,化霜时可直接将排气出来的高温高压冷媒通往室外换热器以进行化霜和通往室内换热器以进行制热。冷凝后的冷媒直接进入汽分离器,再从汽分离器进入加热罐,在加热罐内加热蒸发,可维持制热能力不衰减。本公开的上述系统可以实现化霜时四通阀不切换,且制热能力不衰减、化霜快的效果。
图2是根据本公开一些实施例的连续制热控制系统的另一结构示意图。如图2所示,从压缩机13的排气管出来的旁通管路连接到室外换热器3的毛细管的前面部分。此时流过来的冷媒进入换热器化霜前会经过毛细管节流。电加热部件6则直接设置在汽分离器的底部,或者也可以设置在汽分离器的进管处或者出管处。即在一些实施方式中,加热结构可以包括:第三电加热部件,设置在汽分离器的底部,或者汽分离器的进管处,或者汽分离器的出管处。但是相比较而言,使用加热罐可以调节冷媒流量。
基于上述分析可知,在本公开的一些实施例中,在已知的热泵系统的基础上,增加一条旁通管路,该旁通管路的一端连接到压缩机排气管出来的油分离器2,该旁通管路的另一端连接到室外换热器的毛细管。该旁路管路上设置有化霜电磁阀1。再者,增设一条支路(即第一支路),该支路的第一端设置在过冷器电子膨胀阀的后端与过冷器之间的管路上。此支路上设置有电加热部件10(即上述第二电加热部件10)和增焓阀11(即上述第一增焓阀11)。此支路的第三端进入汽分离器4下面的加热罐5,此支路的第二端连接到增焓管。汽分离器4的下面设置有加热罐5,加热罐5的外部设有电加热部件6(即上述第一电加热部件6)。汽分离器4的底部设有一条管路连 接加热罐5,此管路上设置有进液阀7。汽分离器4的出管与加热罐5之间连接一条管路,此管路上设置有压力平衡阀12。从加热罐5出来另有一条管路,此管路连接2条支路,一条支路连接压缩机吸气管,设置有排气阀14,另一条支路连接增焓管,设置有增焓阀15(即上述第二增焓阀15)。
本实施例还提供了一种空调设备,包括上述介绍的连续制热控制系统。该控制设备采用热气旁通和汽分加热技术,化霜时可直接将排气出来的高温高压冷媒通往室外换热器以进行化霜和通往室内换热器以进行制热,而冷凝后的冷媒直接进入汽分离器,再从汽分离器进入加热罐。冷媒在加热罐内加热蒸发,可维持制热能力不衰减。该空调设备可以实现化霜时四通阀19不切换,且制热能力不衰减和化霜快的效果。
图3是根据本公开一些实施例的制热运行示意图。如图3所示,箭头方向表示冷媒流向。空调系统在制热运行时,四通阀19处于上电状态。压缩机13将冷媒压缩为高温高压的气体后,经过油分离器2,再经过四通阀19,通往室内机(图中未示出)。冷媒在室内机中冷凝放热后,成为液体,再回到室外机中。从室内机回来的冷媒经过过冷器9后,再经制热电子膨胀阀16节流降压成为低温低压的液体,然后在室外换热器3中蒸发吸热,成为气体。气态冷媒从室外换热器3出来,经过四通阀19,进入汽分离器4中,再从汽分离器4中被吸入压缩机13中压缩,如此完成一个制热循环。
图4是根据本公开一些实施例的化霜运行示意图。如图4所示,箭头方向表示冷媒流向。当空调系统收到化霜命令后,化霜电磁阀1开启,过冷电磁阀18开启,进液阀7开启,排气阀14开启,制热电子膨胀阀16关死,过冷器电子膨胀阀8开到最大步数,电加热部件6开始工作。此时压缩机13压缩后的冷媒分为两路,一路仍然通往室内机(图中未示出)制热,另一路经过旁通支路到达室外换热器3,给室外换热器3化霜,之后进入汽分离器4。从室内机回来的液态冷媒不再进入室外换热器3,而是直接经过过冷器9后进入汽分离器4。进入汽分离器4中的液态冷媒较多,液态冷媒会通过进液阀7进入加热罐5,在加热罐5中蒸发吸热后变为气态冷媒,从排气阀14出来,进入压缩机13的吸气管。化霜结束后,化霜电磁阀1关闭,进液阀7关闭,排气阀14关闭,电加热部件6停止工作,过冷电磁阀18、制热电子膨胀阀16、和过冷器电子膨胀阀8恢复正常控制。
化霜时,由于压缩机出来的气态冷媒需要给室内机制热以及给室外换热器化霜,因此可以采用比正常制热运行时的压缩机频率更高的压缩机频率,以维持制热及化霜的效果。上述方法不同于分区化霜方法的是,利用汽分离器加热部件可以使得系统的 蒸发侧换热效果提升,使得系统整体制热效果不衰减。
实施例2
图5是根据本公开一些实施例的连续制热控制方法的流程图。该连续制热控制方法应用于上述的连续制热控制系统。如图5所示,该方法包括步骤S501至S502。
在步骤S501,接收到化霜开始指令后,控制化霜电磁阀开启,控制过冷电磁阀开启,控制进液阀开启,控制排气阀开启,控制制热电子膨胀阀关闭,控制过冷器电子膨胀阀开启至最大步数。
在步骤S502,控制第一电加热部件开始工作。
过冷电磁阀设置在汽分离器和过冷器之间,制热电子膨胀阀设置在过冷器和室外换热器之间。
在一些实施例中,所述方法还可以包括:在接收到化霜结束指令后,控制化霜电磁阀关闭,控制进液阀关闭,控制排气阀关闭,控制过冷电磁阀、制热电子膨胀阀、过冷器电子膨胀阀均恢复正常控制;以及,控制第一电加热部件停止工作。
本实施例采用热气旁通和汽分加热技术,化霜时可直接将排气出来的高温高压冷媒通往室外换热器化霜和室内换热器制热,而冷凝后的冷媒直接进入汽分离器,再从汽分离器进入加热罐,在加热罐内加热蒸发,可维持制热能力不衰减。本公开的方法可以实现化霜时四通阀不切换,且制热能力不衰减和化霜快的效果。
实施例3
本公开实施例提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
本公开实施例提供了一种非瞬时性计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的连续制热控制方法。
上述存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
本公开在油分离器的出管处增加一条热气旁通支路,连接到制热电子膨胀阀与室外换热器之间,用于化霜。此支路上设置有一电磁阀。在汽分离器处设置一加热罐,用于化霜时加热汽分,蒸发液态冷媒。本公开的实施例可以实现化霜时四通阀不切换,且制热能力不衰减和化霜快的效果,从而尽量不影响舒适性。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可 以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件来实现。基于这样的理解,上述技术方案本质上或者说对已知技术做出贡献的部分可以以软件产品的形式体现出来。该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制。尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
Claims (14)
- 一种连续制热控制系统,包括:化霜电磁阀,设置在旁通管路上,所述旁通管路的一端连接油分离器,另一端连接室外换热器;和加热结构,设置在汽分离器的底部,用于对汽分离器进行加热。
- 根据权利要求1所述的连续制热控制系统,其中,所述加热结构包括:加热罐,设置在所述汽分离器的底部,所述汽分离器的底部设置有第一管路连接所述加热罐;和第一电加热部件,设置在所述加热罐外部。
- 根据权利要求2所述的连续制热控制系统,还包括:第一支路,其第一端设置在过冷器电子膨胀阀的后端与过冷器之间的管路上,第二端连接增焓管。
- 根据权利要求3所述的连续制热控制系统,其中,所述第一支路上设置有第二电加热部件和第一增焓阀,所述第一支路的第三端设置在所述第二电加热部件和所述第一增焓阀之间,连接所述加热罐。
- 根据权利要求2所述的连续制热控制系统,其中,所述第一管路上设置有进液阀。
- 根据权利要求2所述的连续制热控制系统,还包括:连接在所述汽分离器的出管与所述加热罐之间的第二管路,所述第二管路上设置有压力平衡阀。
- 根据权利要求2所述的连续制热控制系统,还包括:第三管路,其一端连接所述加热罐,另一端连接两条支路,所述两条支路中的一条支路连接压缩机的吸气管,所述两条支路中的另一条支路连接增焓管。
- 根据权利要求7所述的连续制热控制系统,其中,在连接压缩机的吸气管的支路上设置有排气阀,在连接增焓管的支路上设置有第二增焓阀。
- 根据权利要求1所述的连续制热控制系统,其中,所述化霜电磁阀的一端连接所述室外换热器的毛细管的前面部分或后面部分。
- 根据权利要求1所述的连续制热控制系统,其中,所述加热结构包括:第三电加热部件,设置在所述汽分离器的底部,或者所述汽分离器的进管处,或者所述汽分离器的出管处。
- 一种空调设备,包括:权利要求1至10中任一项所述的连续制热控制系统。
- 一种连续制热控制方法,应用于权利要求1至10中任一项所述的连续制热控制系统,所述方法包括:接收到化霜开始指令后,控制化霜电磁阀开启,控制过冷电磁阀开启,控制进液阀开启,控制排气阀开启,控制制热电子膨胀阀关闭,控制过冷器电子膨胀阀开启至最大步数;以及,控制第一电加热部件开始工作;其中,所述过冷电磁阀设置在汽分离器和过冷器之间,所述制热电子膨胀阀设置在过冷器和室外换热器之间。
- 根据权利要求12所述的连续制热控制方法,还包括:接收到化霜结束指令后,控制化霜电磁阀关闭,控制进液阀关闭,控制排气阀关闭,控制过冷电磁阀、制热电子膨胀阀、过冷器电子膨胀阀均恢复正常控制;以及,控制第一电加热部件停止工作。
- 一种非瞬时性计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如权利要求12或13所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/641,713 US12038211B2 (en) | 2019-10-23 | 2020-09-03 | Continuous heating control system and method, and air-conditioning device |
EP20878401.7A EP4012300A4 (en) | 2019-10-23 | 2020-09-03 | SYSTEM AND METHOD FOR CONTINUOUS HEATING AND AIR CONDITIONING CONTROL |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911014181.2 | 2019-10-23 | ||
CN201911014181.2A CN110645746B (zh) | 2019-10-23 | 2019-10-23 | 一种连续制热控制系统、方法及空调设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021077915A1 true WO2021077915A1 (zh) | 2021-04-29 |
Family
ID=69013412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/113188 WO2021077915A1 (zh) | 2019-10-23 | 2020-09-03 | 连续制热控制系统、方法及空调设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12038211B2 (zh) |
EP (1) | EP4012300A4 (zh) |
CN (1) | CN110645746B (zh) |
WO (1) | WO2021077915A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110645746B (zh) * | 2019-10-23 | 2024-03-19 | 珠海格力电器股份有限公司 | 一种连续制热控制系统、方法及空调设备 |
CN110645745A (zh) * | 2019-10-23 | 2020-01-03 | 珠海格力电器股份有限公司 | 可连续制热的空调及其控制方法 |
CN111412709A (zh) * | 2020-03-02 | 2020-07-14 | 珠海格力电器股份有限公司 | 空调器 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4215555A (en) * | 1978-10-02 | 1980-08-05 | Carrier Corporation | Hot gas defrost system |
CN2816701Y (zh) * | 2005-07-28 | 2006-09-13 | 江苏天舒电器有限公司 | 热电耦合化霜空气能热泵热水器 |
CN101086405A (zh) * | 2007-07-13 | 2007-12-12 | 深圳市丽阳洁净技术有限公司 | 一种高效除霜的热泵热水机及其控制方法 |
CN101476801A (zh) * | 2009-01-14 | 2009-07-08 | 广东美的电器股份有限公司 | 不间断制热除霜的热泵式空调器 |
CN101539348A (zh) * | 2008-03-18 | 2009-09-23 | Lg电子株式会社 | 空调及其控制方法 |
CN101858631A (zh) * | 2009-04-10 | 2010-10-13 | 乐金电子(天津)电器有限公司 | 具有感应加热器的空调器除霜运行控制方法 |
CN104634020A (zh) * | 2015-01-23 | 2015-05-20 | 西安交通大学 | 一种用于空气源热泵的除霜系统 |
CN205403232U (zh) * | 2016-02-29 | 2016-07-27 | 珠海格力电器股份有限公司 | 多联机装置和系统 |
US10024588B2 (en) * | 2012-12-14 | 2018-07-17 | Mitsubishi Electric Corporation | Air-conditioning apparatus and control method therefor |
CN110173941A (zh) * | 2019-06-21 | 2019-08-27 | 珠海格力电器股份有限公司 | 空调系统 |
CN110645745A (zh) * | 2019-10-23 | 2020-01-03 | 珠海格力电器股份有限公司 | 可连续制热的空调及其控制方法 |
CN110645746A (zh) * | 2019-10-23 | 2020-01-03 | 珠海格力电器股份有限公司 | 一种连续制热控制系统、方法及空调设备 |
CN210154145U (zh) * | 2019-06-21 | 2020-03-17 | 珠海格力电器股份有限公司 | 空调系统 |
CN210801719U (zh) * | 2019-10-23 | 2020-06-19 | 珠海格力电器股份有限公司 | 一种连续制热控制系统及空调设备 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4771721B2 (ja) * | 2005-03-16 | 2011-09-14 | 三菱電機株式会社 | 空気調和装置 |
KR100929192B1 (ko) * | 2008-03-18 | 2009-12-02 | 엘지전자 주식회사 | 공기 조화기 |
CN101338951B (zh) * | 2008-08-18 | 2011-07-06 | 南京天加空调设备有限公司 | 水冷热泵型多联式空调机组 |
US9518754B2 (en) | 2012-01-24 | 2016-12-13 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
CN103727714B (zh) * | 2013-12-18 | 2015-10-21 | 西安交通大学 | 一种热泵热水器的除霜系统及其控制方法 |
CN106196792A (zh) | 2016-08-24 | 2016-12-07 | 珠海格力电器股份有限公司 | 一种气液分离器的积液控制方法、装置及空调器系统 |
CN106352613A (zh) * | 2016-09-26 | 2017-01-25 | 珠海格力电器股份有限公司 | 一种空调器及其化霜系统 |
CN106500213B (zh) | 2016-10-31 | 2022-06-03 | 广东美的制冷设备有限公司 | 一种空气调节系统、空调器及空气调节方法 |
CN107560217A (zh) * | 2017-09-07 | 2018-01-09 | 珠海格力电器股份有限公司 | 热泵系统及其控制方法 |
CN107677008A (zh) * | 2017-11-09 | 2018-02-09 | 青岛海尔空调器有限总公司 | 空调制热循环系统及空调器 |
CN109442788B (zh) * | 2018-10-08 | 2021-02-23 | 珠海格力电器股份有限公司 | 空调的化霜方法和空调 |
CN109798701B (zh) * | 2019-03-21 | 2023-09-12 | 珠海格力电器股份有限公司 | 用于连续制热的空调控制系统、空调控制方法及空调 |
CN110173947B (zh) | 2019-05-09 | 2021-04-23 | 青岛海尔电冰箱有限公司 | 制冷装置及其防凝露控制方法 |
CN210154745U (zh) | 2019-07-02 | 2020-03-17 | 昆山利特自动化设备有限公司 | 单孔封堵密封测试机构 |
-
2019
- 2019-10-23 CN CN201911014181.2A patent/CN110645746B/zh active Active
-
2020
- 2020-09-03 WO PCT/CN2020/113188 patent/WO2021077915A1/zh unknown
- 2020-09-03 US US17/641,713 patent/US12038211B2/en active Active
- 2020-09-03 EP EP20878401.7A patent/EP4012300A4/en active Pending
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4215555A (en) * | 1978-10-02 | 1980-08-05 | Carrier Corporation | Hot gas defrost system |
CN2816701Y (zh) * | 2005-07-28 | 2006-09-13 | 江苏天舒电器有限公司 | 热电耦合化霜空气能热泵热水器 |
CN101086405A (zh) * | 2007-07-13 | 2007-12-12 | 深圳市丽阳洁净技术有限公司 | 一种高效除霜的热泵热水机及其控制方法 |
CN101539348A (zh) * | 2008-03-18 | 2009-09-23 | Lg电子株式会社 | 空调及其控制方法 |
CN101476801A (zh) * | 2009-01-14 | 2009-07-08 | 广东美的电器股份有限公司 | 不间断制热除霜的热泵式空调器 |
CN101858631A (zh) * | 2009-04-10 | 2010-10-13 | 乐金电子(天津)电器有限公司 | 具有感应加热器的空调器除霜运行控制方法 |
US10024588B2 (en) * | 2012-12-14 | 2018-07-17 | Mitsubishi Electric Corporation | Air-conditioning apparatus and control method therefor |
CN104634020A (zh) * | 2015-01-23 | 2015-05-20 | 西安交通大学 | 一种用于空气源热泵的除霜系统 |
CN205403232U (zh) * | 2016-02-29 | 2016-07-27 | 珠海格力电器股份有限公司 | 多联机装置和系统 |
CN210154145U (zh) * | 2019-06-21 | 2020-03-17 | 珠海格力电器股份有限公司 | 空调系统 |
CN110173941A (zh) * | 2019-06-21 | 2019-08-27 | 珠海格力电器股份有限公司 | 空调系统 |
CN110645745A (zh) * | 2019-10-23 | 2020-01-03 | 珠海格力电器股份有限公司 | 可连续制热的空调及其控制方法 |
CN110645746A (zh) * | 2019-10-23 | 2020-01-03 | 珠海格力电器股份有限公司 | 一种连续制热控制系统、方法及空调设备 |
CN111102770A (zh) * | 2019-10-23 | 2020-05-05 | 珠海格力电器股份有限公司 | 连续制热的空调系统 |
CN111102771A (zh) * | 2019-10-23 | 2020-05-05 | 珠海格力电器股份有限公司 | 空调系统及其控制方法 |
CN111102773A (zh) * | 2019-10-23 | 2020-05-05 | 珠海格力电器股份有限公司 | 一种可连续制热的循环系统、其控制方法及空调 |
CN111288694A (zh) * | 2019-10-23 | 2020-06-16 | 珠海格力电器股份有限公司 | 可连续制热的空调及其控制方法 |
CN210801719U (zh) * | 2019-10-23 | 2020-06-19 | 珠海格力电器股份有限公司 | 一种连续制热控制系统及空调设备 |
CN211739589U (zh) * | 2019-10-23 | 2020-10-23 | 珠海格力电器股份有限公司 | 空调系统 |
CN211739592U (zh) * | 2019-10-23 | 2020-10-23 | 珠海格力电器股份有限公司 | 连续制热的空调系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4012300A4 * |
Also Published As
Publication number | Publication date |
---|---|
US12038211B2 (en) | 2024-07-16 |
CN110645746B (zh) | 2024-03-19 |
US20220412621A1 (en) | 2022-12-29 |
EP4012300A4 (en) | 2022-09-28 |
EP4012300A1 (en) | 2022-06-15 |
CN110645746A (zh) | 2020-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021169542A1 (zh) | 连续制热的空调系统 | |
WO2021077915A1 (zh) | 连续制热控制系统、方法及空调设备 | |
CN112050399B (zh) | 一种空调装置 | |
US20170074552A1 (en) | Air conditioner | |
US20210341192A1 (en) | Heat pump device | |
JPH10205933A (ja) | 空気調和機 | |
CN112728800A (zh) | 空调器 | |
CN210801719U (zh) | 一种连续制热控制系统及空调设备 | |
CN114377740B (zh) | 一种长期低温运行的设备的温度耦合控制系统 | |
CN214891574U (zh) | 热泵系统及其空调设备 | |
CN213089945U (zh) | 一种空调装置 | |
JPH10232073A (ja) | 空気調和機 | |
CN205425229U (zh) | 空调系统 | |
CN113266890A (zh) | 热泵系统及其控制方法、装置以及空调设备、存储介质 | |
CN111578450A (zh) | 一种空调系统及其除霜方法 | |
CN110986440A (zh) | 热氟除霜装置、空调机组及除霜控制方法 | |
JPH06281273A (ja) | 空気調和装置 | |
CN108151352A (zh) | 一种热泵空调系统 | |
JP2911253B2 (ja) | 冷媒加熱式マルチ冷凍サイクル | |
WO2024148685A1 (zh) | 空调装置、控制方法、装置及存储介质 | |
CN210951964U (zh) | 风冷热泵机组 | |
JP2000337720A (ja) | 空気調和装置 | |
CN117212909A (zh) | 一种换热结构、空调器及控制方法 | |
JPS5825233Y2 (ja) | 空気調和装置 | |
CN117663551A (zh) | 制冷设备及其制冷系统、控制方法、控制装置、存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20878401 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020878401 Country of ref document: EP Effective date: 20220310 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |