WO2021077886A1 - 一种耐磨泵体及其制造方法 - Google Patents

一种耐磨泵体及其制造方法 Download PDF

Info

Publication number
WO2021077886A1
WO2021077886A1 PCT/CN2020/110852 CN2020110852W WO2021077886A1 WO 2021077886 A1 WO2021077886 A1 WO 2021077886A1 CN 2020110852 W CN2020110852 W CN 2020110852W WO 2021077886 A1 WO2021077886 A1 WO 2021077886A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
resistant
resistant plate
fired
pump body
Prior art date
Application number
PCT/CN2020/110852
Other languages
English (en)
French (fr)
Inventor
肖琼
Original Assignee
广州市拓道新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市拓道新材料科技有限公司 filed Critical 广州市拓道新材料科技有限公司
Publication of WO2021077886A1 publication Critical patent/WO2021077886A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0056Means for inserting the elements into the mould or supporting them in the mould
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/428Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4286Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps inside lining, e.g. rubber

Definitions

  • the invention relates to the field of rotary power pump equipment, in particular to a wear-resistant pump body and a manufacturing method thereof.
  • centrifugal pumps are often used to transport abrasive solid-liquid two-phase flows, and wear-resistant pumps are often used.
  • Common wear-resistant pumps are made of wear-resistant alloys such as Cr26, Cr15Mo3, or wear-resistant materials such as rubber. Pumps made of these wear-resistant materials are difficult to meet the requirements of use under many working conditions.
  • wear-resistant ceramics have much higher wear resistance than wear-resistant alloys, such as silicon carbide ceramics, silicon nitride ceramics, alumina ceramics, dual-phase sintered ceramics, etc., and their wear resistance can be several times or even higher than wear-resistant alloys. Dozens of times.
  • Documents such as CN108533501A disclose some technical solutions for ceramic wear-resistant pump bodies. Judging from the current technical situation, the ceramic materials used to manufacture wear-resistant pump bodies are mainly aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), dual-phase sintered ceramics, etc. .
  • the wear resistance of alumina ceramics is relatively poor, and it is not easy to be large-scaled. It is obviously limited in the areas where wear resistance and large-scale wear-resistant pumps are required; silicon nitride is relatively expensive due to process reasons. It is also difficult to apply; silicon carbide ceramic has excellent wear resistance and relatively low cost, but due to process reasons, it is difficult to scale up, so its application is also limited; bonded silicon carbide ceramic is composed of silicon carbide as the main phase and combination A material formed by the combination, in which the main phase silicon carbide has good wear resistance and low cost; the function of the binding phase is to combine the particles of the main phase into one.
  • bonded silicon carbide ceramics there are many types of bonded silicon carbide ceramics, the common ones are: silicon nitride bonded silicon carbide, oxide bonded silicon carbide, oxynitride bonded silicon carbide, Sialon bonded silicon carbide, and so on.
  • the microstructures and manufacturing processes of the above-mentioned bonded silicon carbide ceramics are all similar.
  • the main phase particles are covered by the binding phase in a network, wherein the weight ratio of silicon carbide is about 70-90%, and the weight ratio of the binding phase is about 10-30%.
  • the above-mentioned bonded silicon carbide ceramics hardly change in size during the sintering process, and the network-like bonding phase contains a certain number of tiny pores.
  • tiny pores are not only conducive to avoiding defects such as cracks during sintering, and conducive to the enlargement of the pump body, but also conducive to the absorption of impact energy during operation of the pump body and improve the impact resistance of the material. Therefore, combined with silicon carbide ceramics has developed rapidly in the field of wear-resistant pumps in recent years, not only with lower cost, but also with better wear resistance. At present, it can be used to manufacture larger-sized pump bodies.
  • the manufacturing process of silicon nitride bonded silicon carbide is: mixing about 70-75% by weight of silicon carbide particles and 20-25% by weight of silicon powder and bonding agent, drying after molding, and heating in a nitriding furnace to 1410- At 1430°C, high-purity nitrogen gas is introduced, and the nitrogen gas reacts with silicon powder to form silicon nitride.
  • the silicon nitride is formed into a network to coat the silicon carbide particles and form a combination with a certain strength.
  • a small amount generally no more than 5%
  • alumina, silica, mullite, etc. are added to the mixture.
  • oxide-bonded silicon carbide is: about 70-75% by weight of silicon carbide particles and 20-25% by weight of silicon powder and binder (sometimes a small amount of alumina, calcium oxide, mullite, etc.) These properties) are mixed and dried after molding; put in a sintering furnace and heated to 1410-1430°C. Oxygen in the air reacts with silicon powder to form silicon dioxide. The silicon carbide particles are covered by the silicon carbide particles in a network shape. The formation of a certain strength of the combination.
  • the manufacturing process of oxynitride combined with silicon carbide is: mixing silicon carbide particles, silicon powder, silicon dioxide, clay and binding agent, forming and drying, putting them in a sintering furnace and heating to 1410-1430°C, and then introducing nitrogen to react.
  • the generated silicon oxynitride is networked to coat the silicon carbide particles and form a combination with a certain strength.
  • the manufacturing process of Cylon bonded silicon carbide is: mixing silicon carbide particles, silicon powder, alumina, and bonding agent, forming and drying, putting them in a sintering furnace and heating to 1410-1430°C, and introducing Cylon produced by nitrogen reaction.
  • the silicon carbide particles are covered in a network and form a combination with a certain strength.
  • CN208950968U discloses a wear-resistant silicon carbide ceramic volute, as shown in Figure 19, which includes a shell 1 and a wear-resistant lining layer 2 fixed on the inner wall of the shell 1.
  • Wear-resistant blocks 4 are provided at the partition tongues 3 of the lining layer 2.
  • the wear-resistant inner lining layer is made of silicon carbide ceramic material
  • the wear-resistant block is made of silicon carbide ceramic, silicon nitride combined with silicon carbide ceramic or silicon oxide combined with silicon carbide ceramic.
  • the wear-resistant block 4 is arranged at the tongue of the wear-resistant lining layer 2, and the tongue 3 is a protruding part on the wear-resistant lining layer 2. It is not only difficult to fix the wear block 4 there, but also The reliability is not high; even if it can be reliably fixed during manufacture, the wear resistance of the wear-resistant inner lining layer 2 is significantly lower than that of the wear-resistant block 4 in use.
  • the wear-resistant inner lining layer around the wear-resistant block 4 is After wear, the reliability of the fixing of the wear block 4 becomes a problem. Once the wear block 4 falls off, the life of the pump body will be much lower than expected.
  • the placement of the wear-resistant block is placed after the wear-resistant lining layer 2 is sintered, which requires a suitable gap between the wear-resistant lining layer 2 and the wear block 4. If the gap is too small, it is difficult to place the wear block 4 in place; if the gap is too large, the resin in the gap is easy to wear and cause the wear block to fall off. Due to the complicated shape of the part of the tongue where the wear block 4 is located, neither the wear block 4 nor the inner lining 2 can be machined to ensure the matching accuracy of the two to ensure a small fit gap between the two. .
  • the wear-resistant block 4 is put into the groove after the lining 2 is sintered. Obviously, if it is not bonded by an adhesive, the wear-resistant block 4 will come out of the groove in the direction of the flow surface , which makes the fixing reliability of the wear block 4 poor.
  • the prior art ceramic pump body has the problems of poor reliability, unstable quality, and difficult manufacturing process.
  • the purpose of the present invention is to provide a wear-resistant pump body and a manufacturing method thereof, which can prolong the service life of the pump body, has stable quality, and is easy to produce and process.
  • the present invention provides a wear-resistant pump body, comprising an inner lining body and a shell, the lining body is made of bonded silicon carbide ceramics, and the lining body is provided with holes in the tongue part of the pump body A cavity, in which a first pre-fired wear-resistant plate is embedded, and the material of the first pre-fired wear-resistant plate is silicon carbide or silicon nitride; the cavity and the first pre-fired wear-resistant plate are both The contour fits.
  • a buffer layer is provided between the shell and the lining body, and the buffer layer contains a first adhesive; the first adhesive contains wear-resistant particles, and the wear-resistant particles include One or any combination of silicon carbide, corundum, garnet, silicon nitride, and quartz.
  • the axial dimension b1 of the first pre-fired wear-resistant plate along the pump body is larger than the width b of the outlet of the pump body matched with the impeller.
  • the outline size of the first pre-fired wear-resistant plate on a section farther from the flow surface is larger than its outline size on another parallel section closer to the flow surface.
  • part or all of the outer surface of the first pre-fired wear-resistant plate is bonded to the buffer layer as a whole.
  • the outer surface or inner surface of the first pre-fired wear-resistant plate is partially or completely covered with a bonded silicon carbide ceramic layer integrally formed with the inner lining body.
  • the first pre-fired wear-resistant plate is made up of at least two ceramic plates.
  • an air gap is provided at the joint between the cavity and the first pre-fired wear-resistant plate, the average width of the air gap does not exceed 1 mm, and the air gap is filled with a second adhesive Agent; the second adhesive contains wear-resistant particles.
  • the lining body is provided with a groove at the position of the pump body matching the impeller outlet radially projected, and the groove extends from the edge of the cavity to the diffuser along the direction of rotation of the impeller.
  • a second pre-fired wear-resistant plate is embedded in the groove.
  • the axial dimension b2 of the groove along the pump body is greater than the width b of the outlet of the pump body matching impeller;
  • the second pre-fired wear-resistant plate is made of at least two pieces of silicon carbide or nitrogen The second pre-fired wear-resistant plate is bonded in the groove through the third adhesive; the third adhesive contains wear-resistant particles.
  • the present invention also provides a method for manufacturing a wear-resistant pump body, which includes the following steps:
  • the wear-resistant pump body and the manufacturing method thereof of the present invention have the following advantages:
  • the first pre-fired wear-resistant plate is placed in the mold to cast the lining body, and the lining body and the first pre-fired wear-resistant plate can be poured into a whole to make the inner
  • the cavity on the lining body naturally forms a contour compatible with the first pre-fired wear-resistant plate. It is possible to ensure that the first pre-burned wear-resistant plate and the cavity are compatible without the need for mechanical cutting of the first pre-burned wear-resistant plate and the cavity, and there is a small fit gap between the two, so that the It avoids the phenomenon that the resin is easily worn out and the wear-resistant block falls off due to the excessively large fitting gap that occurs in the prior art.
  • the material of the lining body is combined with silicon carbide ceramics. Because this material has an appropriate amount of tiny pores, it is not only easy to enlarge the pump body, but also has good impact resistance and low cost.
  • the first pre-fired wear-resistant plate is made of silicon carbide or silicon nitride ceramics, such as reaction sintered silicon carbide, pressureless sintered silicon carbide, reaction sintered silicon nitride, hot-pressed sintered silicon nitride, etc., with better wear resistance Silicon carbide ceramics should be more than 3-5 times higher. If it can be reliably installed on the part with severe wear such as the tongue, it will greatly improve the overall life of the pump body.
  • the thickness of the first pre-fired wear-resistant plate is less than the thickness of the lining body, its outer or inner surface may be partially covered by the cast material during the casting process. Or cover all. Obviously, this kind of coverage will not have a big impact on the performance of the pump body. Therefore, it is allowed to cover part or all of the outer surface or inner surface of the first pre-fired wear-resistant plate and the integrated silicon carbide ceramic layer of the lining body integrally formed structure, which is beneficial to reduce the process difficulty and manufacturing cost.
  • the cavity is formed naturally during the pouring process.
  • the increase in the size and complexity of the shape of the first burn-in wear-resistant plate does not increase the difficulty of manufacturing the cavity. Therefore, the first burn-in wear plate can be made larger, and it is easy to realize that the axial dimension b1 of the pump body is larger than the width b of the outlet of the matching impeller, so that the first burn-in wear plate has better resistance.
  • the shaft size of the wear plate 4 is large, it is difficult to place the wear plate on the tongue, so the wear effect is poor.
  • the first burn-in wear-resistant plate is constrained in the cavity, it can only come out from the direction of the flow surface; if the first burn-in wear plate is equipped to prevent it from coming out from the cavity to the direction of the flow surface Section structure, for example, as long as the outline size of a section away from the flow surface is greater than the outline size of a parallel section close to the flow surface, the first burn-in wear plate is like a wedge with a large inner and a small outer surface. In the cavity, restricted by the contour of the cavity, it cannot escape to the direction of the flow surface. Therefore, in addition to the bonding force of the adhesive, the fixing of the first pre-fired wear-resistant plate of the present invention also has the wedging force between the lining body and the first pre-fired wear plate at the joint, and the reliability is greatly improved.
  • the pre-fired wear-resistant plate refers to a ceramic plate that has been sintered before being fixed at a predetermined position. Silicon carbide ceramics or silicon nitride ceramics not only have much better wear resistance than bonded silicon carbide ceramics, but also have close thermal expansion coefficients to bonded silicon carbide ceramics. The sintering process of the lining body is not easy to cause expansion or contraction. The lining body or the first pre-fired wear-resistant plate is broken, so the use of these two materials to manufacture the first pre-fired wear plate is also beneficial to improve the qualification rate of the pump body.
  • the organic glue is beneficial to the first pre-fired wear-resistant plate and the lining body.
  • the blank is bonded into a whole, so that the blank of the inner lining body embedded with the first pre-fired wear-resistant plate has better strength.
  • the second is that the organic rubber can be burned and vaporized before sintering, so that the first
  • the joint between the pre-fired wear-resistant plate and the lining body blank forms an air gap of suitable width due to the gasification of the organic glue, so as to avoid the slight difference in the thermal expansion coefficient between the two causing the lining body blank or the first pre-fired
  • the wear-resistant plate was cracked and damaged during the sintering process.
  • the pump body manufactured by the method provided in this solution can easily ensure that the joint part of the two has air with an average width of not more than 1mm without mechanical cutting the cavity and the first pre-burned wear-resistant plate. Gap. Such a small gap makes the second adhesive impregnated therein not easily subject to abrasion, which is beneficial to improve the fixing reliability of the first pre-fired wear-resistant plate.
  • the radial part of the impeller outlet is the most severely worn part.
  • a second pre-fired wear-resistant plate made of silicon carbide or silicon nitride is extended to the diffuser tube along the direction of rotation of the impeller. This can significantly increase the life of the pump body.
  • the groove provided on the inner lining body can provide installation space for the second pre-fired wear-resistant plate.
  • the axial dimension b2 of the second pre-burned wear-resistant plate along the pump body is greater than the width b of the outlet of the matching impeller, so as to ensure the life of the pump body. Due to the large size of the second pre-fired wear-resistant plate, the second pre-fired wear-resistant plate is assembled from a plurality of ceramic plates, which can reduce the manufacturing difficulty and cost.
  • Figure 1 is a cross-sectional view of the wear-resistant pump body in Example 1;
  • FIG. 2 is a perspective view of the combination of the lining body and the first pre-fired wear-resistant plate in embodiment 1;
  • FIG. 3 is a cross-sectional view of the combination of the lining body and the first pre-fired wear-resistant plate in embodiment 1;
  • FIG. 4 is a perspective cross-sectional view of the lining body after removing the first pre-fired wear-resistant plate in Embodiment 1;
  • Figure 5 is a perspective view of the first pre-fired wear-resistant plate in Example 1;
  • Figure 6 is a cross-sectional view of Figure 5 A-A;
  • Figure 7 is a B-B sectional view of Figure 5;
  • Fig. 8 is a diagram showing the relationship of relevant dimensions when the impeller is installed in the pump body in embodiment 1;
  • Figure 9 is a schematic diagram of the casting molding of the lining body in Example 1.
  • Figure 10 is a cross-sectional view of the wear-resistant pump body in Example 2.
  • Figure 11 is a C-C cross-sectional view of Figure 10;
  • Figure 12 is a cross-sectional view of the lining body in Embodiment 2.
  • Figure 13 is a perspective view of the first pre-fired wear-resistant plate in Example 3.
  • Figure 14 is a cross-sectional view of the wear-resistant pump body in Example 4.
  • Figure 16 is a cross-sectional view of the wear-resistant pump body in Example 5.
  • FIG. 17 is a schematic diagram of the formation of the lining body in Embodiment 5.
  • Figure 18 is a cross-sectional view of the wear-resistant pump body in Example 6;
  • Figure 19 is a cross-sectional view of the CN208950968U solution.
  • a wear-resistant pump body includes an inner lining body 300 and a shell 100.
  • the lining body 300 is made of bonded silicon carbide ceramics.
  • the lining body 300 is provided with a cavity 301 at the tongue part of the pump body.
  • the cavity 301 is embedded with a first pre-fired wear-resistant plate 400.
  • the material of the grinding plate 400 is silicon carbide or silicon nitride.
  • the contours of the cavity 301 and the first pre-fired wear-resistant plate 400 are adapted to each other.
  • a buffer layer 200 is arranged between the shell 100 and the lining body 300, and the buffer layer 200 contains a first adhesive.
  • the first adhesive contains wear-resistant particles, and the wear-resistant particles include one or any combination of silicon carbide, corundum, garnet, silicon nitride, and quartz.
  • the housing 100 can be made of metal.
  • the bonded silicon carbide ceramic used in the lining body 300 is one of silicon nitride bonded silicon carbide ceramics, oxide bonded silicon carbide ceramics, oxynitride bonded silicon carbide ceramics, and Sialon bonded silicon carbide ceramics.
  • the lining body 300 is made of silicon nitride combined with silicon carbide
  • the first pre-fired wear-resistant plate 400 is made of reaction sintered silicon carbide.
  • the main components of the buffer layer 200 are resin and wear-resistant particles.
  • the cavity 301 is a through hole.
  • the outer surface of the first pre-fired wear-resistant plate 400 is adhered to the buffer layer 200 by the adhesive in the buffer layer 200, and the contour of the cavity 301 and the contour of the first pre-fired wear-resistant plate 400 are adapted.
  • the outline size of the first pre-fired wear-resistant plate 400 on a section farther from the flow surface is larger than its outline size on another parallel section near the flow surface.
  • the AA plane and the BB plane are parallel, and the AA plane is farther from the flow surface than the BB plane.
  • the first burn-in wear plate 400 is in AA
  • the longitudinal profile size L1 on the plane is greater than the longitudinal profile size L2 on the BB plane, and the transverse profile size L3 on the AA plane is greater than the transverse profile size L4 on the BB plane.
  • the outline size of the cavity 301 on the lining body 300 on the BB plane must be smaller than that of the first burn-in wear plate 400
  • the contour size on the AA plane makes the first burn-in wear plate 400 constrained by the cavity 301 and cannot move in the direction of the flow surface. Therefore, even if there is no adhesive in this embodiment, the first pre-fired wear-resistant plate 400 will not fall off from the cavity 300.
  • the second adhesive infiltrated in the air gap will further fix the first burn-in wear plate 400, which makes the fixing of the first burn-in wear plate 400 more reliable than the prior art.
  • the first adhesive and the second adhesive are of the same material, and both use epoxy resin.
  • the buffer layer 200 also contains wear-resistant particles, and the wear-resistant particles are silicon carbide.
  • Figure 8 is a schematic diagram of the relative positional relationship between the pump body and the matched impeller after assembly. It can be seen from the figure that the axial dimension b1 of the first pre-burned wear-resistant plate 400 along the pump body is larger than the outlet width dimension b of the matching impeller 500, so that the pump body is located at the severely scoured part of the impeller 500 outlet at the tongue. It can be completely covered with the first pre-fired wear-resistant plate 400, and the lining body 300 at the joint with the first pre-fired wear plate 400 on both sides of the axial direction will not be affected by the impeller 500 because it is outside the projection of the exit of the impeller 500.
  • the direct scouring of the outlet particles can significantly increase the service life, which is beneficial to prevent the first wear plate 400 from losing its restraint and falling off due to the rapid wear of the joint of the lining body 300.
  • the width of the impeller outlet refers to the axial distance between the impeller wheel cover and the impeller disc at the outlet position.
  • the average size of the air gap between the first pre-fired wear-resistant plate 400 and the cavity 301 is 0.2 mm. This size can prevent the second adhesive infiltrated from being worn out, so as to further improve the second adhesion.
  • wear-resistant particles with a particle size of about 0.05mm can be added to it.
  • Figure 9 is a schematic diagram of the pouring of the lining body.
  • the first pre-fired wear-resistant plate 400 is fixed at the corresponding positions of the inner lining casting outer mold 601 and the inner lining casting inner mold 602.
  • the mixed silicon nitride combined with silicon carbide mixture is injected into the mold from the pouring hole 6011, so that the mold is filled with the casting mixture.
  • the mold is removed, and the first pre-fired wear-resistant plate 400 is embedded on the blank of the lining body 300.
  • the blank of the lining body 300 will naturally form a cavity 301 that matches the contour of the first pre-fired wear-resistant plate 400.
  • air is blown in and heated to 1410 to 1450°C to obtain the lining body 300 embedded with the first pre-fired wear-resistant plate 400.
  • the air introduced is heated to about 1430°C;
  • the difference from Embodiment 1 is that the material of the first pre-fired wear-resistant plate 400 is hot-pressed sintered silicon nitride, and the lining body 300 made of oxide-bonded silicon carbide is also used.
  • a second pre-fired wear-resistant plate 700 made of reaction sintered silicon carbide is provided. It can be seen from Figures 10 and 11 that the second burn-in wear-resistant plate 700 extends along the edge of the first burn-in wear plate 400 in the direction of the diffuser along the direction of rotation of the impeller (the counterclockwise direction shown in Figure 10). In this embodiment, the extension angle of the second pre-fired wear-resistant plate 700 is approximately 160 degrees.
  • the extension angle of the second pre-fired wear-resistant plate 700 can also be reduced to 10-30 degrees. .
  • the axial dimension b2 of the second burn-in wear plate 400 is greater than the width dimension b of the outlet of the impeller 500.
  • the second pre-fired wear-resistant plate 700 is assembled from seven ceramic plates, and the inner lining body 300 is provided with a groove 302 for receiving the second pre-fired wear plate 700.
  • the second pre-fired wear-resistant plate 700 is bonded in the groove 302 by a third adhesive.
  • the first adhesive is vinyl resin
  • the second and third adhesives are epoxy resin.
  • the wear-resistant particles contained in the first adhesive, the second adhesive, and the third adhesive include one or any combination of silicon carbide, corundum, garnet, silicon nitride, and quartz.
  • the difference from Embodiment 1 is that the first pre-fired wear-resistant plate 400 is composed of two pressureless sintered silicon carbide ceramic plates, and the two ceramic plates are arranged symmetrically.
  • the material of the lining body is oxynitride combined with silicon carbide ceramic, and Sialon combined with silicon carbide ceramic can also be selected.
  • the processing process is basically the same as that of Embodiment 1, and the specific manufacturing process will not be described here.
  • the difference from Embodiment 1 is that the outer surface of the first pre-fired wear-resistant 400 is partially or completely bonded to the buffer layer 200.
  • the inner surface of the first pre-fired wear-resistant plate 400 is partially or completely covered with a bonded silicon carbide ceramic layer integrally formed with the lining body 300, specifically a silicon nitride bonded silicon carbide material layer.
  • a bonded silicon carbide ceramic layer integrally formed with the lining body 300 specifically a silicon nitride bonded silicon carbide material layer.
  • the thickness of the first pre-fired wear-resistant plate 400 is less than the thickness of the inner lining body 300, and the first pre-fired wear-resistant plate 400 is fixed on the corresponding position of the inner liner casting outer mold 601 During pouring, the pouring mixture will partially or completely cover the inner surface of the first pre-fired wear-resistant plate 400, and after sintering, it will form a covering layer that is integrally formed with the lining body 300. Obviously, this structure can reduce the dimensional accuracy requirements of the mold and the first pre-fired wear-resistant plate 400, and reduce the manufacturing cost without significant impact on the performance.
  • the difference from Embodiment 4 is that the inner surface of the first pre-fired wear-resistant plate 400 is partially or completely covered with silicon nitride bonded silicon carbide with an integral structure with the lining body 300 Material layer.
  • the thickness of the first pre-fired wear-resistant plate 400 is smaller than the thickness of the lining body 300, and the first pre-fired wear-resistant plate 400 is fixed to the lining during casting.
  • the pouring mixture will partially or completely cover the outer surface of the first pre-fired wear-resistant plate 400 during pouring. After sintering, it will form a covering layer that is integrally formed with the lining body 300.
  • This structure can also be used without Under the premise of significantly reducing the performance, the accuracy of the mold and the first pre-fired wear-resistant plate 400 is reduced, and the manufacturing cost is reduced.
  • this embodiment is substantially the same as Embodiment 4 and Embodiment 5, except that part or all of the inner and outer surfaces of the first pre-fired wear plate 400 are covered with the lining body 300 as a whole
  • the silicon nitride of the molded structure is combined with the silicon carbide material layer.
  • the first pre-fired wear-resistant plate 400 may not be firmly fixed on the mold, resulting in that the castable will cover the first pre-fired wear-resistant plate during forming.
  • the inner surface and outer surface of 400 after sintering, will form a covering layer integrally formed with the lining body 300 on the inner surface and outer surface of the first pre-fired wear-resistant plate 400.
  • This structure is the same as that of Example 4 and Example 5.
  • the accuracy of the mold and the first pre-fired wear-resistant plate 400 can be reduced without significantly reducing the performance, and the manufacturing cost can be reduced.
  • the cavity 301 may be a through hole, a blind hole, or a cavity whose exterior is completely closed under different manufacturing conditions. Therefore, no matter what the cavity 301 is, it is the coverage of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种耐磨泵体,泵体包括内衬本体(300)和外壳(100),内衬本体(300)的材质为结合碳化硅陶瓷,内衬本体(300)在泵体的隔舌部位设有孔腔(301),在孔腔(301)内嵌有第一预烧耐磨板(400),第一预烧耐磨板(400)的材质为碳化硅或氮化硅;孔腔(301)与第一预烧耐磨板(400)两者的轮廓相适应。该耐磨泵体的制造方法,包括将表面涂有有机胶的第一预烧耐磨板(400)固定在模具内与泵体隔舌对应的位置;将混合料浇注在模具内,待混合料硬化后得到嵌有第一预烧耐磨板(400)的内衬本体(300)坯件,并对其进行干燥;加热直至有机胶烧蚀;最后将内衬本体(300)、外壳(100)和第一预烧耐磨板(400)结合成一个整体。该耐磨泵体及其制造方法,能延长泵体的使用寿命,且其质量稳定,易于生产加工。

Description

一种耐磨泵体及其制造方法 技术领域
本发明涉及回转动力泵设备领域,尤其涉及一种耐磨泵体及其制造方法。
背景技术
在选矿和冶炼等行业,经常要用离心泵输送一些有磨蚀性的固液两相流,这时常选用耐磨泵。常见的耐磨泵由Cr26、Cr15Mo3等耐磨合金或橡胶等耐磨材料制造,这些耐磨材料制造的泵在很多工况下难以满足使用要求。
众所周知,耐磨陶瓷有比耐磨合金高得多的耐磨性,如碳化硅陶瓷、氮化硅陶瓷、氧化铝陶瓷、双相烧结陶瓷等,其耐磨性可比耐磨合金高数倍甚至数十倍。CN108533501A等文件公开了一些陶瓷材质耐磨泵体的技术方案。从目前的技术状况看,制造耐磨泵体的陶瓷材质主要是氧化铝(Al 2O 3)、氮化硅(Si 3N 4)、碳化硅(SiC)、双相烧结陶瓷等几种材质。其中氧化铝陶瓷的耐磨性相对较差,且不易于大型化,在耐磨泵对耐磨性和大型化均有要求的领域受到明显限制;氮化硅由于工艺原因,其成本较高,也难以应用;碳化硅陶瓷有极好的耐磨性,成本也相对较低,但由于工艺原因,难以大型化,使其应用也受到限制;结合碳化硅陶瓷是由碳化硅为主相和结合相结合而成的一种材料,其中主相碳化硅的耐磨性好、成本较低;结合相的作用是将主相的颗粒结合成一体。根据结合相的不同,结合碳化硅陶瓷的种类有多种,常见的有:氮化硅结合碳化硅、氧化物结合碳化硅、氮氧化物结合碳化硅、赛隆结合碳化硅等。上述几种结合碳化硅陶瓷的显微结构和制造工艺均类似。显微结构均为结合相以网络状将主相颗粒包覆,其中碳化硅重量比约为70-90%,结合相的重量比约为10-30%。上述几种结合碳化硅陶瓷由于在烧结过程中尺寸几乎不发生变化,且网络状的结合 相中包含有一定数量的微小气孔。这些微小气孔不仅有利于烧结时不产生开裂等缺陷,有利于泵体的大型化,而且有利于泵体在运行时吸收冲击的能量,提高材料的耐冲击性能。因此,结合碳化硅陶瓷近年来在耐磨泵的领域发展较快,不但成本较低,耐磨性也较好,目前已能用于制造较大尺寸的泵体。
氮化硅结合碳化硅的制造工艺是:将约70-75%重量的碳化硅颗粒和20-25%重量的硅粉和结合剂混合,成型后干燥,放入氮化炉中加热至1410-1430℃,通入高纯氮气,氮气和硅粉反应生成氮化硅,生成的氮化硅呈网络状将碳化硅颗粒包覆,并形成有一定强度的结合体。有时为提高某些性能,混合料中还会加入少量(一般不超过5%)的氧化铝、氧化硅、莫莱石等。
氧化物结合碳化硅的制造工艺是:将约70-75%重量的碳化硅颗粒和20-25%重量的硅粉和结合剂(有时还加入少量氧化铝、氧化钙、莫莱石等提高某些性能)混合,成型后干燥;放入烧结炉中加热至1410-1430℃,空气中的氧气和硅粉反应生成二氧化硅,生成的二氧化硅呈网络状将碳化硅颗粒包覆,并形成有一定强度的结合体。
氧氮化物结合碳化硅的制造工艺是:将碳化硅颗粒、硅粉、二氧化硅、粘土和结合剂混合,成型后干燥,放入烧结化炉中加热至1410-1430℃,通入氮气反应生成氧氮化硅呈网络状将碳化硅颗粒包覆,并形成有一定强度的结合体。
赛龙结合碳化硅的制造艺是:将碳化硅颗粒、硅粉、氧化铝、结合剂混合,成型后干燥,放入烧结化炉中加热至1410-1430℃,通入氮气反应生成的赛龙呈网络状将碳化硅颗粒包覆,并形成有一定强度的结合体。
然而,上述几种结合碳化硅泵体在应用于介质中有大颗粒的工况时效果较差,特别是在泵体的隔舌部位,其磨损速度是其它部位的三倍以上。这种情况导致泵体的寿命大大低于预期,其原因是结合碳化硅陶瓷中结合相的耐磨性较 主相的耐磨性要差得多,当结合相被磨损后,主相颗粒会因没有结合相的把持而脱落。为解决这一问题,CN208950968U公开了一种耐磨碳化硅陶瓷蜗壳,如图19所示,包括壳体1和固设于壳体1内壁上的耐磨内衬层2,在耐磨内衬层2的隔舌3处设有耐磨块4。优选的方案,耐磨内衬层由碳化硅陶瓷材料制成,耐磨块由碳化硅陶瓷、氮化硅结合碳化硅陶瓷或氧化硅结合碳化硅陶瓷制成。这种方案存在以下问题:
1)耐磨块的固定问题:设置耐磨块4的原因是其耐磨性明显高于耐磨内衬层2。该方案将耐磨块设置在耐磨内衬层2的隔舌处,而隔舌3是耐磨内衬层2上一个凸出的部位,将耐磨块4固定在该处不但难度大,可靠性也不高;即便制造时可以可靠的固定,但在使用中由于耐磨内衬层2的耐磨性明显低于耐磨块4,当耐磨块4周边的耐磨内衬层被磨损后,耐磨块4固定的可靠性就成为一个问题。一旦耐磨块4脱落,泵体的寿命将大大低于预期。
2)耐磨块的安放问题:耐磨块4是在耐磨内衬层2烧结后再安放上去的,这就要求耐磨内衬层2和耐磨块4之间有合适的间隙。间隙太小,耐磨块4难以安放到位;间隙太大,间隙内的树脂易被磨损,并导致耐磨块脱落。由于耐磨块4所处的隔舌部位形状复杂,无论是耐磨块4还是内衬层2均难以通过进行机械加工以保证二者的配合精度以保证二者之间有较小的配合间隙。
3)耐磨块4的尺寸越大,在内衬2上设置的安放耐磨块4的凹槽形状就越复杂,制造的难度就越大。
4)耐磨块4是在内衬2烧结完成后再放入凹槽内的,显然,如果不通过粘接剂粘接,耐磨块4会从所述凹槽内向过流面方向脱出,这使得耐磨块4的固定可靠性较差。
综上所述,现有技术的陶瓷泵体存在可靠性差,质量不稳定,制造工艺难度大的问题。
发明内容
本发明的目的是提供一种耐磨泵体及其制造方法,能延长泵体的使用寿命,且其质量稳定,易于生产加工。
为实现上述目的,本发明提供一种耐磨泵体,包括内衬本体和外壳,所述内衬本体的材质为结合碳化硅陶瓷,所述内衬本体在泵体的隔舌部位设有孔腔,在所述孔腔内嵌有第一预烧耐磨板,所述第一预烧耐磨板的材质为碳化硅或氮化硅;孔腔与第一预烧耐磨板两者的轮廓相适应。
作为本发明的进一步改进,所述外壳和内衬本体之间设置有缓冲层,所述缓冲层内含有第一粘接剂;第一粘接剂中含有耐磨颗粒,所述耐磨颗粒包括碳化硅、刚玉、石榴石、氮化硅、石英的一种或其任意组合。
作为本发明的更进一步改进,所述第一预烧耐磨板沿泵体的轴向尺寸b1大于泵体配套叶轮的出口的宽度b。
作为本发明的更进一步改进,第一预烧耐磨板在一个距过流面较远的截面上的轮廓尺寸大于其在另一个距过流面较近的平行截面上的轮廓尺寸。
作为本发明的更进一步改进,所述第一预烧耐磨板的外侧表面部分或全部和缓冲层粘接成一体。
作为本发明的更进一步改进,所述第一预烧耐磨板的外侧表面或内侧表面上局部或全部覆盖有和内衬本体整体成形的结合碳化硅陶瓷层。
作为本发明的更进一步改进,所述第一预烧耐磨板由至少两块陶瓷板拼合而成。
作为本发明的更进一步改进,所述孔腔与第一预烧耐磨板两者的接合部位设置有空气隙,所述空气隙平均宽度不超过1mm,在空气隙中填充有第二粘接剂;第二粘接剂中含有耐磨颗粒。
作为本发明的更进一步改进,所述内衬本体在位于泵体配套叶轮出口径向 投影的部位设置有凹槽,所述凹槽自孔腔的边沿顺着叶轮的旋向向扩散管延伸,在所述凹槽内嵌入有第二预烧耐磨板。
作为本发明的更进一步改进,所述凹槽沿泵体的轴向尺寸b2大于泵体配套叶轮的出口的宽度b;所述第二预烧耐磨板由至少两块材质为碳化硅或氮化硅的陶瓷板拼合而成;第二预烧耐磨板通过第三粘接剂粘接在凹槽内;第三粘接剂中含有耐磨颗粒。
为实现上述目的,本发明还提供一种耐磨泵体的制造方法,包括以下步骤:
1)制造第一预烧耐磨板;
2)在第一预烧耐磨板表面覆涂有机胶,并使有机胶硬化;
3)将涂有有机胶的第一预烧耐磨板固定在外模和内模之间与泵体隔舌对应的位置;
4)将碳化硅颗粒、金属硅粉、结合剂按比例混合成均匀的混合料,将混合料浇注在由所述外模和内模构成的模具内;
5)待混合料硬化后拆模,得到嵌有第一预烧耐磨板的内衬本体坯件,并对其进行干燥;
6)将嵌有第一预烧耐磨板的内衬本体坯件放入烧结炉中,加温到300℃-500℃,将所述有机胶烧蚀;
7)通入高纯氮气,加温至1410-1450℃,得到嵌有第一预烧耐磨板的内衬本体;或通入空气,加热至1410-1450℃,得到嵌有第一预烧耐磨板的内衬本体;
8)将嵌有第一预烧耐磨板的内衬本体装入外壳内定位,向两者之间注入组成缓冲层的混合料;待混合料硬化后形成缓冲层,并将内衬本体、外壳和第一预烧耐磨板结合成一个整体。
有益效果
与现有技术相比,本发明的耐磨泵体及其制造方法的优点为:
1、采用本技术方案提供的制造方法,将第一预烧耐磨板放置在模具内进行内衬本体的浇注,可以将内衬本体和第一预烧耐磨板浇注成一个整体,使内衬 本体上的孔腔自然形成和第一预烧耐磨板相适应的轮廓。可以在无需对第一预烧耐磨板和孔腔进行机械切削加工的前提下保证第一预烧耐磨板和孔腔相适应,并使二者之间有较小的配合间隙,从而可以避免出现现有技术易发生的配合间隙过大导致树脂易被磨损并使耐磨块脱落的现象。
2、内衬本体的材料为结合碳化硅陶瓷,由于这种材质中有适量的微小气孔,不但易于泵体的大型化,且耐冲击性能好,成本较低。
3、第一预烧耐磨板为碳化硅或氮化硅陶瓷,如反应烧结碳化硅、无压烧结碳化硅、反应烧结氮化硅、热压烧结氮化硅等,其耐磨性较结合碳化硅陶瓷要高3-5倍以上,如能可靠地将其设置在隔舌等磨损严重的部位,将大大提高泵体的整体寿命。
4、由于第一预烧耐磨板的外形尺寸相对内衬本体要小得多,采用碳化硅陶瓷或氮化硅陶瓷制造不但在工艺上易于实现,且成本增加较少。
5、当第一预烧耐磨板外侧表面部分或全部和缓冲层粘接在成一体时,第一预烧耐磨板和缓冲层之间有较大的粘接面积,且该粘接面不会受到冲刷磨损,其粘接比现有技术更可靠。
6、在按本技术方案提供的方法制造泵体过程中,如果第一预烧耐磨板的厚度小于内衬本体的厚度,其外侧表面或内侧表面在浇注过程中则有可能被浇注料局部或全部覆盖。显然这种覆盖并不会对泵体的性能带来较大的影响。因此,允许第一预烧耐磨板的外表面或内表面的局部或全部覆盖和内衬本体整体成形结构的结合碳化硅陶瓷层,其有利于降低工艺难度和制造成本。
7、孔腔是在浇注过程中自然形成的。第一预烧耐磨板尺寸的增大和形状的复杂程度增加并不会增加孔腔的制造难度。因此,第一预烧耐磨板可以做得较大,容易实现使其沿泵体的轴向尺寸b1大于配套叶轮的出口的宽度b,从而使第一预烧耐磨板有更好的耐磨效果;而现有技术当耐磨板4的轴尺寸较大时,耐磨板难以安放在隔舌上,因此耐磨效果较差。
8、第一预烧耐磨板由于在孔腔中受到约束,只可能从过流面方向脱出;如果在第一预烧耐磨板上设有防止其自孔腔向过流面方向脱出的剖面构造,例如,只要使其一个远离过流面的剖面的轮廓尺寸大于其一个靠近过流面的平行剖面的轮廓尺寸,第一预烧耐磨板就像一个内大外小的楔子嵌在孔腔内,受到孔腔轮廓的限制,不能向过流面方向脱出。因此本发明第一预烧耐磨板的固定除了粘接剂的粘接力,还有内衬本体和第一预烧耐磨板在结合处的楔合力,可靠性大大提高。
9、预烧耐磨板是指固定在预定位置前已烧结成型的陶瓷板。碳化硅陶瓷或氮化硅陶瓷这两种材质不但其耐磨性大大优于结合碳化硅陶瓷,其热膨胀系数和结合碳化硅陶瓷也较接近,在内衬本体烧结过程不易因膨胀或收缩原因导致内衬本体或第一预烧耐磨板破裂,因此采用这两种材质制造第一预烧耐磨板还有利于提高泵体的合格率。
10、内衬本体浇注前,在第一预烧耐磨板的表面覆涂一定厚度有机胶的目的有两个,其一是有机胶有利于将第一预烧耐磨板和内衬本体的坯件粘接成一个整体,使嵌有第一预烧耐磨板的内衬本体的坯件有较好的强度,其二是可在烧结前将有机胶烧损气化,从而使第一预烧耐磨板和内衬本体坯件的接合处因有机胶的气化形成合适宽度的气隙,避免因二者之间的热膨胀系数的微小差异导致内衬本体坯件或第一预烧耐磨板在烧结过程中开裂损坏。
11、采用本方案提供的方法制造的泵体,在不对孔腔和第一预烧耐磨板进行机械切削的前提下,可以很容易的保证二者的接合部位有平均宽度不超过1mm的空气隙。这种小的间隙使浸渍其中的第二粘接剂不易受到磨损,有利于提高第一预烧耐磨板的固定可靠性。
12、叶轮出口的径向部位是磨损最严重的部位,除了在隔舌部位,还将碳化硅或氮化硅材质的第二预烧耐磨板沿叶轮的旋向延伸至扩散管部位。这样可以显著提高泵体的寿命。在内衬本体上设置的凹槽,可以为第二预烧耐磨板提 供安装空间。
13、第二预烧耐磨板沿泵体的轴向尺寸b2大于配套叶轮的出口的宽度b,才能保证泵体的寿命。由于第二预烧耐磨板的尺寸较大,将第二预烧耐磨板由多块陶瓷板拼合而成,可以降低其制造难度和成本。
通过以下的描述并结合附图,本发明将变得更加清晰,这些附图用于解释本发明的实施例。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中耐磨泵体的剖视图;
图2为实施例1中内衬本体和第一预烧耐磨板相结合的立体图;
图3为实施例1中内衬本体和第一预烧耐磨板相结合的剖视图;
图4为实施例1中去除第一预烧耐磨板后内衬本体的立体剖视图;
图5为实施例1中第一预烧耐磨板的立体图;
图6为图5的A—A剖面图;
图7为图5的B—B剖面图;
图8为实施例1中叶轮安装在泵体内时相关尺寸的关系图;
图9为实施例1中内衬本体浇注成型的示意图;
图10为实施例2中耐磨泵体的剖视图;
图11为图10的C-C剖面图;
图12为实施例2中内衬本体的剖视图;
图13为实施例3中第一预烧耐磨板的立体图;
图14为实施例4中耐磨泵体的剖视图;
图15为实施例4中内衬本体成型的示意图;
图16为实施例5中耐磨泵体的剖视图;
图17为实施例5中内衬本体成形的示意图;
图18为实施例6中耐磨泵体的剖视图;
图19为CN208950968U方案的剖视图。
具体实施方式
现在参考附图描述本发明的实施例。
实施例1
本发明的具体实施方式如图1至图9所示,一种耐磨泵体,包括内衬本体300和外壳100。内衬本体300的材质为结合碳化硅陶瓷,内衬本体300在泵体的隔舌部位设有孔腔301,在孔腔301内嵌有第一预烧耐磨板400,第一预烧耐磨板400的材质为碳化硅或氮化硅。孔腔301与第一预烧耐磨板400两者的轮廓相适应。外壳100和内衬本体300之间设置有缓冲层200,缓冲层200内含有第一粘接剂。第一粘接剂中含有耐磨颗粒,耐磨颗粒包括碳化硅、刚玉、石榴石、氮化硅、石英的一种或其任意组合。外壳100可以采用金属材质。
上述内衬本体300采用的结合碳化硅陶瓷为氮化硅结合碳化硅陶瓷、氧化物结合碳化硅陶瓷、氮氧化物结合碳化硅陶瓷、赛隆结合碳化硅陶瓷的其中一种。
本实施例中,内衬本体300材质为氮化硅结合碳化硅,第一预烧耐磨板400材质为反应烧结碳化硅。缓冲层200主要成份为树脂和耐磨颗粒。如图4所示,孔腔301为通孔。第一预烧耐磨板400的外表面被缓冲层200中的粘接剂粘接 在缓冲层200上,孔腔301的轮廓和第一预烧耐磨板400的轮廓相适应。
第一预烧耐磨板400在一个距过流面较远的截面上的轮廓尺寸大于其在另一个距过流面较近的平行截面上的轮廓尺寸。在本实施例中,如图5所示,A-A平面和B-B平面平行,A-A平面相对B-B平面距过流面较远,如图6、图7所示,第一预烧耐磨板400在A-A平面上的纵向轮廓尺寸L1大于B-B平面上的纵向轮廓尺寸L2,在A-A平面上的横向轮廓尺寸L3大于B-B平面上的横向轮廓尺寸L4。
由于内衬本体300上孔腔301的轮廓和第一预烧耐磨板400的轮廓相适应,内衬本体300上孔腔301在B-B平面上的轮廓尺寸必然小于第一预烧耐磨板400在A-A平面上的轮廓尺寸,这使第一预烧耐磨板400受到孔腔301的约束,不能向过流面方向移动。因此,本实施例即使没有粘接剂的作用,第一预烧耐磨板400也不会从孔腔300中脱落。在泵体后续的制作中,在空气隙中渗入的第二粘接剂会进一步固定第一预烧耐磨板400,这使得第一预烧耐磨板400的固定较现有技术要可靠得多。在本实施例中,第一粘接剂和第二粘接剂为同一种材料,均采用环氧树脂。缓冲层200中除含有第二粘接剂外,还含有耐磨颗粒,耐磨颗粒为碳化硅。
图8是泵体和配套的叶轮在装配后的相对位置关系的示意图。从图中可以看出,第一预烧耐磨板400沿泵体的轴向尺寸b1大于配套的叶轮500的出口宽度尺寸b,使得泵体在隔舌处处于叶轮500出口的受严重冲刷部位可以全部覆盖有第一预烧烧耐磨板400,而和第一预烧耐磨板400轴向两侧接合部位的内衬本体300由于处于叶轮500的出口投影之外,不会受到叶轮500出口颗粒的直接冲刷,寿命可以得到显著提高,这有利于防止因内衬本体300接合处的快速磨损而导致第一耐磨板400失去约束而脱落。其中,叶轮出口宽度是指叶轮轮盖和叶轮轮盘在出口位置的轴向距离。
在本实施例中,第一预烧耐磨板400和孔腔301之间的空气隙平均尺寸为0.2mm,这个尺寸可以防止渗入其中的第二粘接剂被磨损,为进一步提高第二粘接剂的耐磨性,可在其中加入粒度为0.05mm左右的耐磨颗粒。
图9是内衬本体浇注的示意图。在图9中,第一预烧耐磨板400被固定在内衬浇注外模601和内衬浇注内模602的对应位置上。将混合好的氮化硅结合碳化硅混合料从浇注孔6011注入模具内,使模具内充满浇混合料。待混合料硬化后拆除模具,第一预烧耐磨板400就被嵌在内衬本体300的坯件上。内衬本体300坯件在这个过程中会自然形成和第一预烧耐磨板400轮廓相适应的孔腔301。
本实施例耐磨泵体的制造方法其具体实施步骤是:
1)制造第一预烧耐磨板400的坯件;
2)在真空炉中烧结第一预烧耐磨板400;
3)将烧成的第一预烧耐磨板400表面覆涂适当厚度的有机胶一般为(0.2-1mm),并使有机胶硬化;
4)将涂了有机胶的第一预烧耐磨板400固定在外模601和内模602的对应位置;
5)将碳化硅颗粒、金属硅粉、结合剂按比例混合成均匀的混合料,将混合料浇注在模具内;
6)待混合料硬化后拆模;
7)干燥嵌有第一预烧耐磨板400的内衬本体300的坯件;
8)将嵌有第一预烧耐磨板400的内衬本体300的坯件放入烧结炉中,加温到300-500℃,将有机胶烧蚀,使第一预烧耐磨板400和内衬本体300之间形成0.2-1mm的空气隙;
9)通入高纯氮气,加温至1410-1450℃,得到嵌有第一预烧耐磨板400的内衬本体300;本实施例中,通入的高纯氮气,加温至1430℃左右;
或通入空气,加温至1410-1450℃,得到嵌有第一预烧耐磨板400的内衬本体300。本实施例中,通入的空气,加温至1430℃左右;
10)将嵌有第一预烧耐磨板400的内衬本体300装入外壳100内定位,将二者之间注入缓冲层200的混合料,待混合料硬化后形成缓冲200,并将内衬本体300、外壳100和第一预烧耐磨板400结合成一个整体;
11)向第一预烧耐磨板400和内衬本体300之间的空气隙内渗入第二粘接剂;固化第二粘接剂。
实施例2
如图10至12所示,与实施例1的不同之处在于,第一预烧耐磨板400的材质为热压烧结氮化硅,在氧化物结合碳化硅材质的内衬本体300上还设有材质为反应烧结碳化硅的第二预烧耐磨板700。从图10、11可以看到,第二预烧耐磨板700沿第一预烧耐磨板400的边沿顺着叶轮的旋向(图10所示为逆时针方向)向扩散管方向延伸,在本实施例中,第二预烧耐磨板700延伸的角度约为160度,在一些轻磨损的实施例中,第二预烧耐磨700延伸的角度也可以减小至10-30度。第二预烧耐磨板400的轴向尺寸b2大于叶轮500出口的宽度尺寸b。第二预烧耐磨板700由7块陶瓷板拼合而成,内衬本体300上设置有容纳第二预烧耐磨板700的凹槽302。第二预烧耐磨板700通过第三粘接剂粘接在凹槽302内。本实施例中,第一粘接剂为乙烯基树脂,第二粘接剂和第三粘接剂为环氧树脂。第一粘接剂、第二粘接剂和第三粘接剂内含有的耐磨颗粒包括碳化硅、刚玉、石榴石、氮化硅、石英的一种或其任意组合。
实施例3
如图13所示,与实施例1的不同之处在于,第一预烧耐磨板400由两块无压烧结碳化硅陶瓷板拼合而成,两陶瓷板对称布置。内衬本体的材质为氧氮化物结合碳化硅陶瓷,也可以选用赛隆结合碳化硅陶瓷,其加工过程和实施例1基本相同,此处不再对具体制造工艺进行描述。
实施例4
如图14和图15所示,与实施例1的不同之处在于,第一预烧耐磨400的外表面局部或全部粘接在缓冲层200上。第一预烧耐磨板400的内表面局部或全部覆盖有和内衬本体300整体成形结构的结合碳化硅陶瓷层,具体为氮化硅结合碳化硅材质层。在图15本实施例浇注的示意图中,第一预烧耐磨板400的厚度小于内衬本体300的厚度,将第一预烧耐磨板400固定在内衬浇注外模601的相应位置上浇注时,浇注混合料会部分或全部覆盖第一预烧耐磨板400的内 表面,烧结后会形成与内衬本体300整体成型结构的覆盖层。显然,这种结构可以在对性能不造成明显影响的前提下降低模具和第一预烧耐磨板400的尺寸精度要求,并降低制造成本。
实施例5
如图16和图17所示,与实施例4的不同之处在于,第一预烧耐磨板400的内表面部分或全部覆盖有和内衬本体300整体成型结构的氮化硅结合碳化硅材质层。在图17所示的本实施例的内衬本体浇注示意图中,第一预烧耐磨板400的厚度小于内衬本体300的厚度,浇注时第一预烧耐磨板400固定在内衬浇注内模602上,浇注时浇注混合料会部分或全部覆盖第一预烧耐磨板400的外表面,烧结后会形成与内衬本体300整体成型结构的覆盖层,这种结构同样可以在不明显降低性能的前提下降低模具和第一预烧耐磨板400的精度,并降低制造成本。
实施例6
如图18所示,本实施例和实施例4和实施例5大致相同,不同之处在于第一预烧耐磨板400的内表面和外表面的部分或全部覆盖有和内衬本体300整体成型结构的氮化硅结合碳化硅材质层。在实施例4或实施例5的制造过程中,由于某些原因,第一预烧耐磨板400可能不能牢固的固定在模具上,导致成形时浇注料会覆盖在第一预烧耐磨板400的内表面和外表面,烧结后会在第一预烧耐磨板400的内表面和外表面形成与内衬本体300整体成型结构的覆盖层,这种结构和实施例4和实施例5一样可以在不明显降低性能的前提下降低模具和第一预烧耐磨板400的精度,并降低制造成本。
显然,以上实施例中,孔腔301在不同的制造条件下,可以是通孔,也可以是盲孔,还可以是外部全部封闭的腔室。因此不论孔腔301是哪种状况,均是本发明的覆盖范围。
以上结合最佳实施例对本发明进行了描述,但本发明并不局限于以上揭示的实施例,而应当涵盖各种根据本发明的本质进行的修改、等效组合。

Claims (10)

  1. 一种耐磨泵体,包括内衬本体(300)和外壳(100),其特征在于,所述内衬本体(300)的材质为结合碳化硅陶瓷,所述内衬本体(300)在泵体的隔舌部位设有孔腔(301),在所述孔腔(301)内嵌有第一预烧耐磨板(400),所述第一预烧耐磨板(400)的材质为碳化硅或氮化硅;孔腔(301)与第一预烧耐磨板(400)两者的轮廓相适应。
  2. 根据权利要求1所述的一种耐磨泵体,其特征在于,所述外壳(100)和内衬本体(300)之间设置有缓冲层(200),所述缓冲层(200)内含有第一粘接剂;第一粘接剂中含有耐磨颗粒,所述耐磨颗粒包括碳化硅、刚玉、石榴石、氮化硅、石英的一种或其任意组合。
  3. 根据权利要求1所述的一种耐磨泵体,其特征在于,所述第一预烧耐磨板(400)沿泵体的轴向的尺寸b1大于泵体配套叶轮的出口的宽度b;第一预烧耐磨板(400)在一个距过流面较远的截面上的轮廓尺寸大于其在另一个距过流面较近的平行截面上的轮廓尺寸。
  4. 根据权利要求1所述的一种耐磨泵体,其特征在于,所述第一预烧耐磨板(400)的外侧表面部分或全部和缓冲层(200)粘接成一体。
  5. 根据权利要求1至4任意一项所述的一种耐磨泵体,其特征在于,所述第一预烧耐磨板(400)的外侧表面或内侧表面上局部或全部覆盖有和内衬本体(300)整体成形的结合碳化硅陶瓷层。
  6. 根据权利要求1至4任意一项所述的一种耐磨泵体,其特征在于,所述第一预烧耐磨板(400)由至少两块陶瓷板拼合而成。
  7. 根据权利要求1至4任意一项所述的一种耐磨泵体,其特征在于,所述孔腔(301)与第一预烧耐磨板(400)两者的接合部位设置有空气隙,所述空气隙平均宽度不超过1mm,在空气隙中填充有第二粘接剂。
  8. 根据权利要求1至4任意一项所述的一种耐磨泵体,其特征在于,所述内衬本体(300)在位于泵体配套叶轮出口径向投影的部位设置有凹槽(302),所述凹槽(302)自孔腔(301)的边沿顺着叶轮的旋向向扩散管延伸,在所述凹槽(302)内嵌入有第二预烧耐磨板(700)。
  9. 根据权利要求8所述的一种耐磨泵体,其特征在于,所述凹槽(302)沿泵体的轴向尺寸b2大于泵体配套叶轮的出口的宽度b;所述第二预烧耐磨板(700)由至少两块材质为碳化硅或氮化硅的陶瓷板拼合而成;第二预烧耐磨板(700)通过第三粘接剂粘接在凹槽(302)内;第三粘接剂中含有耐磨颗粒。
  10. 根据权利要求1所述的一种耐磨泵体的制造方法,其特征在于包括以下步骤:
    1)制造第一预烧耐磨板(400);
    2)在第一预烧耐磨板(400)表面覆涂有机胶,并使有机胶硬化;
    3)将涂有有机胶的第一预烧耐磨板(400)固定在外模(601)和内模(602)之间与泵体隔舌对应的位置;
    4)将碳化硅颗粒、金属硅粉、结合剂按比例混合成均匀的混合料,将混合料浇注在由所述外模(601)和内模(602)构成的模具内;
    5)待混合料硬化后拆模,得到嵌有第一预烧耐磨板(400)的内衬本体(300)坯件,并对其进行干燥;
    6)将嵌有第一预烧耐磨板(400)的内衬本体(300)坯件加温到300℃-500℃,将所述有机胶烧蚀;
    7)通入高纯氮气,加温至1410-1450℃,得到嵌有第一预烧耐磨板(400)的内衬本体(300);或通入空气,加热至1410-1450℃,得到嵌有第一预烧耐磨板(400)的内衬本体(300);
    8)将嵌有第一预烧耐磨板(400)的内衬本体(300)装入外壳(100)内定位,向两者之间注入组成缓冲层(200)的混合料;待混合料硬化后形成缓冲层(200),并将内衬本体(300)、外壳(100)和第一预烧耐磨板(400)结合成一个整体。
PCT/CN2020/110852 2019-10-25 2020-08-24 一种耐磨泵体及其制造方法 WO2021077886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911022099.4A CN112709717A (zh) 2019-10-25 2019-10-25 一种耐磨泵体及其制造方法
CN201911022099.4 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021077886A1 true WO2021077886A1 (zh) 2021-04-29

Family

ID=75541426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110852 WO2021077886A1 (zh) 2019-10-25 2020-08-24 一种耐磨泵体及其制造方法

Country Status (2)

Country Link
CN (1) CN112709717A (zh)
WO (1) WO2021077886A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113404723B (zh) * 2021-07-30 2022-11-25 汉江弘源襄阳碳化硅特种陶瓷有限责任公司 一种复相反应烧结碳化硅陶瓷泵及其制作方法
CN117324670B (zh) * 2023-12-01 2024-02-06 大耐泵业有限公司 一种耐磨板的加工方法及其加工的耐磨板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923369A (en) * 1987-03-06 1990-05-08 Giw Industries, Inc. Slurry pump having increased efficiency and wear characteristics
CN108331763A (zh) * 2018-02-27 2018-07-27 中交疏浚技术装备国家工程研究中心有限公司 一种提高使用寿命的耐用型泥泵的设计实现方法
CN109185227A (zh) * 2018-08-08 2019-01-11 江苏大学镇江流体工程装备技术研究院 一种固液两相流离心泵隔舌设计方法
CN208950968U (zh) * 2018-10-24 2019-06-07 汉江弘源襄阳碳化硅特种陶瓷有限责任公司 一种耐磨碳化硅陶瓷蜗壳
WO2019119043A1 (en) * 2017-12-19 2019-06-27 Weir Minerals Australia Ltd Composite metal component and method of producing same
CN110282978A (zh) * 2019-06-28 2019-09-27 汉江弘源襄阳碳化硅特种陶瓷有限责任公司 碳化硅复合陶瓷泵和该陶瓷泵的生产工艺
CN210859340U (zh) * 2019-10-25 2020-06-26 广州市拓道新材料科技有限公司 一种耐磨泵体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923369A (en) * 1987-03-06 1990-05-08 Giw Industries, Inc. Slurry pump having increased efficiency and wear characteristics
WO2019119043A1 (en) * 2017-12-19 2019-06-27 Weir Minerals Australia Ltd Composite metal component and method of producing same
CN108331763A (zh) * 2018-02-27 2018-07-27 中交疏浚技术装备国家工程研究中心有限公司 一种提高使用寿命的耐用型泥泵的设计实现方法
CN109185227A (zh) * 2018-08-08 2019-01-11 江苏大学镇江流体工程装备技术研究院 一种固液两相流离心泵隔舌设计方法
CN208950968U (zh) * 2018-10-24 2019-06-07 汉江弘源襄阳碳化硅特种陶瓷有限责任公司 一种耐磨碳化硅陶瓷蜗壳
CN110282978A (zh) * 2019-06-28 2019-09-27 汉江弘源襄阳碳化硅特种陶瓷有限责任公司 碳化硅复合陶瓷泵和该陶瓷泵的生产工艺
CN210859340U (zh) * 2019-10-25 2020-06-26 广州市拓道新材料科技有限公司 一种耐磨泵体

Also Published As

Publication number Publication date
CN112709717A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2021077886A1 (zh) 一种耐磨泵体及其制造方法
US10100656B2 (en) Coated seal slot systems for turbomachinery and methods for forming the same
JP4318858B2 (ja) セラミック母材複合物の高温断熱材を有するガスタービン
US11506073B2 (en) Multilayer abradable coatings for high-performance systems
JP5074065B2 (ja) 耐熱性金属金属間複合材の製造方法、並びに関連する物品及び組成物
EP3037394A1 (en) Environmental barrier coating with abradable coating for ceramic matrix composites
US20150354392A1 (en) Abradable coatings
WO2020259343A1 (zh) 一种用于抵御酸性以及高温环境的渣浆泵及其制备方法
JP2003148103A (ja) タービンおよびその製造方法
BRPI0620696A2 (pt) bloco carbonoso de união protegida para alto-forno e método para a construção do alto-forno com blocos carbonosos
US20150354393A1 (en) Methods of manufacturing a shroud abradable coating
JPH0379277A (ja) 高速研削用超硬砥粒砥石
CN210859340U (zh) 一种耐磨泵体
US20150354394A1 (en) Shroud abradable coatings and methods of manufacturing
JPS5910709A (ja) タ−ビンシユラウド
US20190077692A1 (en) Repair methods for silicon-based components
JP2012240126A (ja) 超砥粒砥石
CN211678282U (zh) 一种耐磨旋流器
JP2000212624A (ja) 混銑車内張り耐火物の補修方法
CN112539195A (zh) 一种耐磨陶瓷叶轮及其制造方法
WO2021109625A1 (zh) 一种陶瓷泵体
CN210769503U (zh) 一种耐磨陶瓷叶轮
CN219197703U (zh) 一种耐磨陶瓷叶轮
JPH11300467A (ja) 不定形耐火物ライニングの補修施工方法
US10166598B2 (en) Precision-casting core, precision-casting core manufacturing method, and precision-casting mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878540

Country of ref document: EP

Kind code of ref document: A1