WO2021077676A1 - 浓缩方法以及设备 - Google Patents

浓缩方法以及设备 Download PDF

Info

Publication number
WO2021077676A1
WO2021077676A1 PCT/CN2020/080868 CN2020080868W WO2021077676A1 WO 2021077676 A1 WO2021077676 A1 WO 2021077676A1 CN 2020080868 W CN2020080868 W CN 2020080868W WO 2021077676 A1 WO2021077676 A1 WO 2021077676A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
pressure
stage
reverse osmosis
unit
Prior art date
Application number
PCT/CN2020/080868
Other languages
English (en)
French (fr)
Inventor
俞伟祖
张�杰
樊梦原
于声波
张永宏
刘兴海
董和谦
任宪峰
王慧
白茹
石红丽
刘文婷
王旭
Original Assignee
内蒙古蒙牛乳业(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内蒙古蒙牛乳业(集团)股份有限公司 filed Critical 内蒙古蒙牛乳业(集团)股份有限公司
Priority to US17/802,023 priority Critical patent/US20230116498A1/en
Priority to EP20879685.4A priority patent/EP4074183A4/en
Publication of WO2021077676A1 publication Critical patent/WO2021077676A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C1/00Concentration, evaporation or drying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/14Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment
    • A23C9/142Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment by dialysis, reverse osmosis or ultrafiltration
    • A23C9/1427Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment by dialysis, reverse osmosis or ultrafiltration by dialysis, reverse osmosis or hyperfiltration, e.g. for concentrating or desalting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01JMANUFACTURE OF DAIRY PRODUCTS
    • A01J11/00Apparatus for treating milk
    • A01J11/06Strainers or filters for milk
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01JMANUFACTURE OF DAIRY PRODUCTS
    • A01J11/00Apparatus for treating milk
    • A01J11/16Homogenising milk
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C1/00Concentration, evaporation or drying
    • A23C1/14Concentration, evaporation or drying combined with other treatment
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C3/00Preservation of milk or milk preparations
    • A23C3/04Preservation of milk or milk preparations by freezing or cooling
    • A23C3/045Freezing in loose unpacked form
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C3/00Preservation of milk or milk preparations
    • A23C3/04Preservation of milk or milk preparations by freezing or cooling
    • A23C3/05Preservation of milk or milk preparations by freezing or cooling in packages
    • A23C3/055Freezing in packages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C7/00Other dairy technology
    • A23C7/04Removing unwanted substances other than lactose or milk proteins from milk
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/15Reconstituted or recombined milk products containing neither non-milk fat nor non-milk proteins
    • A23C9/1512Reconstituted or recombined milk products containing neither non-milk fat nor non-milk proteins containing isolated milk or whey proteins, caseinates or cheese; Enrichment of milk products with milk proteins in isolated or concentrated form, e.g. ultrafiltration retentate
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C2210/00Physical treatment of dairy products
    • A23C2210/15High pressure treatment
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C2210/00Physical treatment of dairy products
    • A23C2210/20Treatment using membranes, including sterile filtration

Definitions

  • the present invention relates to a concentration method and equipment, in particular to a concentration method for concentrating dairy products using reverse osmosis technology and corresponding concentration equipment.
  • Concentration is the process of increasing the concentration of the solvent in the solution by evaporation; it is widely used in the chemical, food, biopharmaceutical and other industries.
  • concentration is the process of removing part of the solvent (usually water) from the solution, and it is also a process of partial separation of a homogeneous mixture of solute and solvent.
  • Concentration can remove a large amount of water in food, reduce quality and volume, and reduce food packaging, storage and transportation costs; concentration can increase product concentration, increase osmotic pressure, reduce water activity, inhibit microbial growth, and extend shelf life; concentration can be used as The pretreatment process of drying, crystallization or complete dehydration; concentration can reduce the energy consumption in the process of food dehydration and reduce production costs; concentration can also effectively remove undesirable volatile substances and bad flavors, and improve product quality.
  • the material will lose some flavor or nutrients during the concentration process. Therefore, it is very important to choose a reasonable concentration method and suitable conditions.
  • Concentration can remove the moisture in the material liquid, thereby increasing the content of specific components in the material liquid; or concentrating can make the material liquid in a state suitable for long-term storage.
  • concentration methods such as high-temperature evaporation.
  • this method consumes a lot of energy to heat the material liquid, and high temperature will have potential risks for the material liquid, for example, it will destroy some components in the material liquid, thereby making the material liquid lose its usefulness in application.
  • the commonly used concentration processing equipment is usually evaporation equipment and conventional reverse osmosis equipment.
  • the evaporation equipment usually adds the material liquid to the evaporation kettle, heats the evaporation kettle, so that the temperature of the material liquid in the evaporation kettle reaches the boiling point and vaporizes the material liquid.
  • the secondary steam generated during vaporization is continuously discharged to remove water, so that the concentration of the material liquid is continuously increased until the predetermined concentration is reached.
  • this kind of equipment uses high temperature and high pressure methods to remove the water in the liquid.
  • the disadvantages are: 1.
  • the energy cost is high, the process needs to be heated to generate a large amount of steam, which consumes a lot of energy; 2.
  • this A kind of traditional evaporation equipment needs to heat the material liquid. Low heating intensity will lead to low evaporation efficiency, and too strong intensity will cause some active substances and some nutrients that may be contained in the material liquid to be destroyed; 3. Through the evaporation equipment Only 10% of the water can be removed, which often fails to meet the requirements of the enterprise for a relatively high degree of concentration, so the efficiency of this kind of concentration equipment is low.
  • concentration equipment is conventional reverse osmosis equipment.
  • the reverse osmosis equipment is composed of a material liquid diversion network, a pure water diversion network, a reverse osmosis membrane, a pump, etc., so that the treated material liquid passes through a predetermined flow channel, and the water in the material liquid The molecules pass through the reverse osmosis membrane and are collected into the central collection pipe, and finally a concentrated liquid is obtained.
  • the disadvantages of this kind of concentration equipment are: 1. High energy consumption. As the concentration of the total solid content in the material and liquid gradually increases, in order to overcome the higher osmotic pressure, it is necessary to provide the power increase of the standby operating pump of the system. The energy consumption is increased. Second, limited by the maximum pressure of conventional reverse osmosis technology, membrane core and equipment, the concentration multiple that can be achieved by the concentration technology is low, about 2 times, which cannot meet the higher concentration requirements.
  • concentration of cow's milk will bring many benefits.
  • concentration can increase the milk solids content in dairy products to meet the nutritional needs of consumers; on the other hand, concentration can reduce the volume of milk, increase the preservation of milk, and reduce the cost of preserving milk.
  • the convenience of transportation is improved, thereby overcoming the problems of seasonal and regional differences in milk sources.
  • cow milk is a heat-sensitive substance, and heat treatment has great effects on various physical, chemical, microbiological and biochemical indicators of cow milk. influences. So from a nutritional point of view, the lower the degree of heat treatment, the smaller the impact on the quality of the product. In addition, preventing the excessive reproduction of microorganisms and bacteria during the milk concentration process is also a problem that must be considered.
  • the present invention is made in response to the above-mentioned problems in the prior art, and provides a concentration method.
  • the concentration method includes:
  • a method for concentrating dairy products includes the step of using a reverse osmosis membrane to perform reverse osmosis concentration treatment on raw milk; the reverse osmosis concentration treatment includes low-pressure reverse osmosis membrane concentration treatment and high-pressure reverse osmosis membrane concentration treatment.
  • the low-pressure reverse osmosis membrane concentration treatment uses a first predetermined pressure to perform reverse osmosis concentration treatment on the feed
  • the high-pressure reverse osmosis membrane concentration treatment uses a second predetermined pressure to perform reverse osmosis concentration treatment on the feed
  • the first The predetermined pressure is less than the second predetermined pressure
  • the low-pressure reverse osmosis membrane treatment includes multi-stage concentration treatment (preferably 1-14 concentration treatment, more preferably 6-11 concentration treatment).
  • one or more membrane modules are used for each stage of low-pressure reverse osmosis membrane treatment.
  • each membrane module includes one or more membranes, and the multiple membranes are connected in series, in parallel, or combined in series and parallel.
  • the pressure used in the first three stages is 1-50 bar (preferably 1-40 bar, more preferably 25-35 bar).
  • the pressure used in the fourth and subsequent stages is 30-60 bar (preferably 40-50 bar, more preferably 43-47 bar).
  • the high-pressure reverse osmosis membrane treatment includes a multi-stage concentration treatment (preferably 1-6 concentration treatment, more preferably 2-4 concentration treatment).
  • one or more membrane modules are used for each stage of high-pressure reverse osmosis membrane treatment.
  • each membrane module includes one or more membranes, and the multiple membranes are connected in series, in parallel, or combined in series and parallel.
  • the pressure used in the high-pressure reverse osmosis membrane treatment is 50-200 bar (preferably 60-80 bar, more preferably 60-65 bar).
  • the temperature of the concentrated liquid in the concentration method is below 20°C (preferably 0-15°C, more preferably 7-15°C).
  • the temperature of the concentrated liquid is maintained below 15°C by a high-pressure radiator; more preferably, the temperature is maintained at 10-14°C.
  • the high-pressure radiator is arranged at the feed port of the high-pressure reverse osmosis membrane processing unit at a predetermined level. Or the discharge port.
  • the reverse osmosis concentration treatment step further includes: i) a temporary storage step; ii) a pretreatment step; and/or iii) a homogenization step.
  • the step of temporarily storing includes filtering the raw milk; preferably, the filtering is a two-stage filtration; more preferably, the filter pore size of the first-stage filtration is 0.990mm-1.165mm, and the second-stage filtration has a pore size of 0.990mm-1.165mm.
  • the aperture is 0.495mm-0.589mm.
  • the pretreatment step includes a low-temperature sterilization separation treatment; preferably, the low-temperature sterilization separation adopts two-stage filtration; preferably, the temperature of the sterilization separation is controlled at 45-50°C.
  • the homogenization step adopts two-stage homogenization; preferably, the working temperature of the homogenization step is maintained at 10-30°C (more preferably 15-20°C); more preferably, the first-stage homogenization
  • the pressure of the mass is 100-140 bar (more preferably 120 bar), and the pressure of the second stage homogenization is 40-60 bar (more preferably 50 bar).
  • the reverse osmosis concentration treatment step further includes: v) a cooling step; vi) a filling step; vii) a freezing step; and/or viii) a washing step.
  • the cooling step adopts two stages of cooling.
  • ice water is used as a refrigerant in the first stage of cooling; preferably, an aqueous glycol solution is used as a refrigerant in the second stage of cooling.
  • the temperature of the first stage of cooling is maintained at 2-10°C (more preferably 4-7°C); preferably, the temperature of the second stage of cooling is maintained at -1 to -4°C (more preferably -2 to -3°C).
  • the filling temperature of the filling step is maintained at 1 to -4°C, more preferably -2 to -3°C.
  • the freezing temperature of the freezing step is maintained at -10 to -24°C, more preferably -18 to -22°C.
  • the concentrated dairy product prepared by the above-mentioned concentration method has a total solid content of 30-50%, preferably 35-45%, more preferably 40-45%.
  • the detected furosine content is 4-20mg/100g protein, preferably 8-15mg/100g protein.
  • the detected furosine content drops by 60-80mg/100g protein, which is 4-10 times lower .
  • the detected IgG (immunoglobulin G) retention is higher than 95% (there is no content in the concentrated milk produced by the hot concentrated milk process). Check out).
  • the detected GMP (glycomacropeptide) retention rate is 100% (the GMP content in the concentrated milk produced by the thermal concentration process is about 65%).
  • a concentration device by which the material liquid can be efficiently concentrated to a predetermined concentration.
  • the material liquid concentration device includes:
  • Temporary storage unit the temporary storage unit includes a storage container to store the material to be concentrated
  • the homogenizing unit is arranged downstream of the temporary storage unit, and applies a predetermined temperature and pressure to the material liquid, so that the material liquid is refined and mixed more uniformly under the action of pressure and impact ;as well as
  • the concentration unit is arranged downstream of the homogenization unit, and includes a low-pressure reverse osmosis membrane processing unit and a high-pressure reverse osmosis membrane processing unit in sequence, wherein the low-pressure reverse osmosis membrane processing unit is under a first predetermined pressure Reverse osmosis concentration processing is performed on the flowing material liquid, and the high-pressure reverse osmosis membrane processing unit performs reverse osmosis concentration processing on the flowing material liquid under a second predetermined pressure, the first predetermined pressure being less than the second predetermined pressure .
  • the low-pressure reverse osmosis membrane processing unit preferably includes multiple stages, and each stage of the low-pressure reverse osmosis membrane processing unit includes one or more membrane modules, and each membrane module includes one or more membranes, and the multiple membranes are connected in series. , Parallel or a combination of series and parallel.
  • the pressures of each stage in the multi-stage low-pressure reverse osmosis membrane processing unit are different.
  • the concentration unit further includes a low-pressure radiator, the low-pressure radiator is arranged at the inlet or outlet of the low-pressure reverse osmosis membrane processing unit of a predetermined stage to maintain the temperature of the concentrated liquid at 15 °C below.
  • the high-pressure reverse osmosis membrane processing unit includes multiple stages, each stage of the high-pressure reverse osmosis membrane processing unit includes one or more membrane modules, and each membrane module includes one or more membranes. Between series, parallel or combination of series and parallel.
  • the pressures of each stage in the multi-stage high-pressure reverse osmosis membrane processing unit are different.
  • the concentration unit further includes a high-pressure radiator, the high-pressure radiator is arranged at the inlet or outlet of the high-pressure reverse osmosis membrane processing unit of a predetermined stage to maintain the temperature of the concentrated liquid at 15°C under.
  • the temperature of the material liquid below 15°C during the concentration process, on the one hand, the reproduction of bacteria and microorganisms in the material liquid can be inhibited, and on the other hand, the influence of too low temperature on the life of the reverse osmosis membrane can be avoided.
  • all concentration units can be composed of 6-11 concentration modules.
  • Different modules design flow channels of different sizes according to the concentration, viscosity, and particle size of the concentrated milk to ensure the concentration. effectiveness. Since the first 2-4 levels of concentrated milk have low concentration, good fluidity, and dirt is not easy to deposit, you can use a low flow channel of about 30mil, and the pressure is 1-40bar to ensure that the raw milk can be quickly pre-concentrated under a certain pressure. Pre-concentration target. In the middle 2-4 level, the concentrated milk reaches a certain concentration, the viscosity increases, the fluidity decreases, the osmotic pressure increases, and the particle size increases, it is easy to deposit on the membrane, and further concentration becomes difficult.
  • the middle flow channel of about 45mil is selected, and the pressure is increased to 40 -50bar, increase the flow channel aperture and pressure to ensure concentration efficiency.
  • the high pressure 2-4 level the concentrated milk has reached the target concentration, concentration, viscosity, particle size reached the maximum, the fluidity is the lowest, the osmotic pressure is the highest, and the dirt is most likely to deposit on the membrane, so the 65-80mil high flow channel is selected.
  • the pressure is increased to 50-200bar to ensure that the concentrated milk can effectively flow in the membrane to ensure production time.
  • the concentration equipment further includes: a pretreatment unit, the pretreatment unit is arranged downstream of the temporary storage unit and upstream of the homogenization unit to pre-treat the material and liquid from the temporary storage unit .
  • the pretreatment may include sterilization treatment to remove bacteria and unfavorable microorganisms in the feed liquid.
  • the pretreatment unit may be a low-temperature sterilization separator.
  • the low-temperature sterilization separator may include two stages, the first stage has a filtration pore size of 0.990mm-1.165mm, the second stage has a pore size of 0.495mm-0.589mm, and the sterilization temperature is controlled at 45-50°C .
  • the material liquid can first pass through the large filter hole to filter out larger substances, and then pass through the filter with a smaller pore size to prevent only one stage
  • the filter holes are quickly blocked during filtration.
  • the sterilization temperature between 45-50°C, using such a low temperature while ensuring the sterilization effect can control the growth of microorganisms and try to maintain the activity of more nutrients in the liquid.
  • the concentration equipment further includes: a cooling unit, which cools the material liquid concentrated by the concentration unit.
  • the cooling unit includes a first cooling unit and a second cooling unit.
  • the first cooling unit cools the material liquid to a first cooling temperature
  • the second cooling unit passes through the first cooling unit.
  • the material liquid cooled by the cooling unit is further cooled to a second cooling temperature lower than the first cooling temperature.
  • the first cooling unit may include, for example, a sandwich tank, and the sandwich tank includes a refrigerant liquid chamber to contain the refrigerant liquid.
  • the second cooling unit includes, for example, a plate heat exchanger.
  • the material liquid will be reduced from the concentrated material liquid at about 15 degrees to 4-7 degrees C, so as to be stored in the buffer tank. Ensure that the concentrated liquid can be stored in the buffer tank in the best state while controlling the reproduction of microorganisms in the product.
  • the purpose of the second cooling unit is to quickly bring the temperature of the liquid product to -2 to -3°C before filling. Its purpose is to lower the temperature of the liquid product such as concentrated milk when it is stored in the warehouse, which is beneficial to quickly freeze the product to the target temperature and freeze the product. Prevent the occurrence of fat floating, lactose, protein crystallization and other problems that affect the quality of concentrated milk in subsequent use.
  • the concentrating device further includes a canning unit, which cans the material and liquid cooled by the cooling unit into a predetermined package.
  • the concentration equipment further includes a cleaning unit, and the cleaning unit cleans the material-liquid concentration equipment after the material-liquid concentration is completed.
  • the dirt remaining on the surface of the reverse osmosis membrane can be removed after the liquid is concentrated, thereby restoring the flux of the reverse osmosis membrane, so that the equipment can continue to produce.
  • the concentration equipment of the present invention for the feed liquid that needs to be concentrated, especially for dairy products, part of the water in the milk can be removed, the volume of the raw milk is reduced, the preservation is increased, the preservation cost is saved, and the transportation is more improved. Convenience.
  • by concentrating and freezing raw milk it is possible to balance the problem of uneven seasons and production areas of raw milk.
  • Fig. 1 is a schematic diagram showing a concentration device according to the present invention
  • Fig. 2 is a schematic diagram of an exemplary pre-processing unit that can be used in the apparatus shown in Fig. 1;
  • FIG. 3 is a schematic diagram showing an exemplary homogenization unit that can be used in the concentration device of FIG. 1;
  • FIG. 4 is a schematic diagram showing an exemplary concentration unit that can be used in the concentration device of FIG. 1;
  • FIG. 5 is a schematic diagram showing an exemplary secondary cooling unit that can be used in the concentration device of FIG. 1;
  • Fig. 6 is a flowchart showing an exemplary operation method of the concentration device according to the present invention.
  • upstream and downstream are used to indicate directional terms, where upstream refers to the direction from which the material liquid comes, and downstream refers to the direction the material liquid will flow. Therefore, when describing a unit in When the other unit is upstream, the feed liquid will flow from the one unit to the other unit, and vice versa.
  • the concentration equipment 100 includes a temporary storage tank 110, a pretreatment unit 120, a homogenization unit 130, a concentration unit 140, a cooling unit 150 and a canning unit 160.
  • the concentration device 100 further includes a cleaning unit (CIP unit) (not shown) to clean the entire device after the concentration is completed.
  • CIP unit cleaning unit
  • optional storage tanks and feed pumps are included.
  • the physical and chemical indicators are tested first, and the raw milk that meets the requirements is temporarily stored in the temporary storage unit (temporary storage tank) 110.
  • the temporarily stored raw milk in the temporary storage tank 110 is then pretreated.
  • the pretreatment may be performed in the pretreatment unit 120 and may include sterilization filtration treatment.
  • the pretreatment unit 120 may include, for example, a sterilization separator,
  • the sterilization separator can include two stages to remove bacteria and spores in raw milk.
  • the raw milk will be sent to the homogenizer for homogenization.
  • a buffer tank T12 can be set, and the material in the buffer tank T12 can be transferred through the feed pump P13.
  • the liquid is fed into the homogenizer.
  • two-stage homogenization is adopted.
  • the pressure of the first stage homogenization is, for example, 120 bar
  • the pressure of the second stage homogenization is, for example, 50 bar
  • the temperature of the homogenizer is 13 degrees, thereby making the raw milk
  • the fat is broken more finely, and the product system is more stable.
  • the homogenized raw milk can enter a temporary storage tank, such as temporary storage tank T13 for temporary storage, but this is not necessary.
  • the raw milk that has been homogenized is sent to the concentration unit 140, for example, by the feed pump P14, and the concentration unit 140 uses a reverse osmosis membrane to perform the concentration treatment.
  • the concentration unit 140 includes at least a low-pressure reverse osmosis membrane processing unit and a high-pressure reverse osmosis membrane processing unit to concentrate raw milk.
  • the concentrated raw milk can be sent to a temporary storage tank for temporary storage, but this is not necessary.
  • the concentration unit 140 may include a supply buffer tank T21, and include a circulating supply pump P21 and the like.
  • the concentrated raw milk is then cooled to minus 2.5°C in the cooling unit 150, and then canned in the canning unit 160.
  • the canning unit 160 includes, for example, a big bag canning machine to can can the concentrated raw milk into a sterile octagonal bag, and the entire canning temperature is maintained at minus 2°C.
  • the canned concentrated milk is packed into cartons and palletized into the instant cold storage.
  • the temperature in the instant cold storage is, for example, minus 22°C
  • the front wind speed is 7m/s
  • after freezing for 18 hours wait until the center temperature of the concentrate package reaches below zero.
  • the concentrated milk was transferred to a freezer for storage, and the temperature of the freezer was minus 18°C, thereby obtaining frozen concentrated milk.
  • the total solid content of the concentrated milk is 40.5%, protein content 10.22%, fat content 12.0%, and lactoferrin content 90%. Recovered after 12 months of freezing, the index is stable, there is no fat floating, and there is no gravel phenomenon after boiling.
  • the obtained frozen concentrated milk can be stored in the freezer for more than 12 months, and can be reduced to milk through an appropriate reduction process.
  • the nutrient content of the reduced milk is basically the same as that of the collected raw milk, thus meeting the long-term storage needs .
  • the entire concentration equipment 100 will be cleaned by the cleaning unit 170.
  • the cleaning unit for example, performs standard CIP tilt, thereby cleaning the residues in the entire equipment and making the reverse osmosis membrane of the concentration unit.
  • the flux returns to the previous level.
  • the pretreatment unit 120 includes a low-temperature sterilization separator, for example, an ecoclear low-temperature sterilization machine from GEA can be used.
  • a low-temperature sterilization separator for example, an ecoclear low-temperature sterilization machine from GEA can be used.
  • the present invention is not limited to this.
  • a two-stage low-temperature sterilization machine is used, the first-stage filtration pore size is 0.991mm-1.165mm, and the second-stage filtration pore size is 0.495mm-0.589mm, and the temperature of the low-temperature sterilization machine is controlled Between 45-50°C.
  • the low-temperature sterilization separator includes, for example, a housing; a rotating drum contained in the housing, the rotating drum includes a plurality of stacked discs, with a small gap between the discs and the discs; driving the rotating drum to rotate The motor; the transmission shaft that transmits the motor's transmission to the drum; the slag discharge device and the control cabinet, etc.
  • the suspension (or emulsion) is fed into the drum from the feed pipe located in the center of the drum, and the drum is driven to rotate by the motor.
  • the suspension (or emulsion) flows through the gap between the discs, the solid particles ( (Or droplets) settle on the disc under the action of the centrifuge to form a sediment (or liquid layer).
  • the sludge slides along the surface of the disc to separate from the disc and accumulate in the largest diameter part of the drum.
  • the separated liquid is discharged from the drum through the liquid outlet, and the sludge is discharged by the slag discharge device.
  • the function of the disc is to shorten the settlement distance of solid particles (or liquid droplets) and expand the settlement area of the drum.
  • the installation of the disc in the drum greatly increases the production capacity of the separator.
  • the solids accumulated in the drum are removed manually after the separator is shut down by disassembling the drum, or discharged from the drum through the slag discharge mechanism without stopping the machine.
  • the disc separator can complete two operations: liquid-solid separation (ie separation of the bottom concentration suspension), called clarification operation; liquid-liquid separation (or liquid-liquid-solid) separation (ie, emulsion separation).
  • the separation operation can remove most of the bacteria and microbial spores in the milk, extend the shelf life of the product, obtain better flavor, control the total number of product colonies, achieve the quality target, and meet the product specifications and Legal requirements.
  • the homogenization unit 130 homogenizes the pretreated raw milk.
  • the homogenization unit 130 includes a two-stage homogenization unit, the first-stage homogenization unit works at a pressure of 120 bar, and the second-stage homogenization unit Work under 50bar pressure, and keep the working temperature of the homogenization unit between 10-13C to inhibit the reproduction of microorganisms, protect the activity of active substances in milk, and ensure that the entire concentration process is carried out at a temperature of 50°C .
  • the homogenizer constituting the homogenizing unit is not particularly limited.
  • various types of homogenizers such as collision type or through-beam type can be used.
  • a homogenizer manufactured by APV in Denmark is used.
  • the homogenizer has a two-stage homogenization mechanism.
  • Each stage of the homogenization mechanism includes a rotor and a stator, and there is a gap between the rotor and the stator.
  • the raw milk is supplied to the gap between the rotor and the stator. Rotate to form high-frequency, strong circular tangential velocity, angular velocity and other comprehensive kinetic energy efficiency.
  • a combination of strong, reciprocating hydraulic shear, friction, centrifugal squeezing, liquid flow collision and other comprehensive effects on the raw milk in the reasonably narrow gap between the stator and the rotor makes the material liquid (raw milk) in the container Repeat the above working process and finally get the product.
  • the concentration process adopts RO reverse osmosis technology.
  • the reverse osmosis technology applies an external pressure higher than the osmotic pressure of the solution on the solution side of the semi-permeable membrane.
  • the concentration unit 140 includes a liquid storage tank 143, a low-pressure concentration unit 141, and a high-pressure concentration unit 142. Between the liquid storage tank 143 and the low-pressure concentration unit 141, and between the low-pressure concentration unit 141 and the high-pressure concentration unit 142, an increase in Press pumps 144 and 145.
  • a filter before entering the low-pressure concentration unit, a filter may be provided, for example, the filter F21 shown in FIG. 1.
  • the low-pressure concentration unit 141 can also be called a low-pressure reverse osmosis membrane processing unit, and can include multiple stages. As shown in the figure, the low-pressure reverse osmosis membrane processing unit includes two stages, namely the first-stage low-pressure reverse osmosis membrane processing unit 1411 and the second-stage low-pressure reverse osmosis membrane processing unit 1411.
  • the first-stage low-pressure reverse osmosis membrane processing unit 1412, the first-stage low-pressure reverse osmosis membrane processing unit 1411 can receive raw milk from the homogenization unit 130, and preferably, a liquid storage tank 143 is provided between the two to temporarily store the passing Homogeneous raw milk.
  • a booster pump 144 is provided between the liquid storage tank 143 and the first-stage low-pressure reverse osmosis membrane processing unit 1411 of the low-pressure concentration unit 141.
  • the booster pump 144 can pressurize the raw milk in the liquid storage tank 143 to, for example, The pressure is within 1-40bar and the surface flow rate is controlled at 4-7m/s.
  • Booster pumps 146 and 145 are provided to make the pressure of the raw milk in the first-stage low-pressure reverse osmosis membrane processing unit 1411, the pressure of the raw milk in the second-stage low-pressure reverse osmosis membrane processing unit 1412, and the high-pressure reverse osmosis membrane processing
  • the pressure of the raw milk in the unit 1413 gradually increases.
  • each stage of low-pressure reverse osmosis membrane processing unit 1411, 1412 may include multiple membrane modules.
  • the first-stage low-pressure reverse osmosis membrane processing unit 1411 as an example, it includes six membrane modules 1411-1 ⁇ 1411-6, these membrane modules are connected in parallel with each other.
  • the present invention is not limited to this, but may include more or fewer membrane modules, and each membrane module may be connected in series, parallel, or a mixture of series and parallel.
  • a pressure sensor (not shown) can be installed at the inlet or outlet of each stage, and the signal of the pressure sensor can be provided as a feedback signal to the control system for the control system to control
  • the booster pump changes the pressure of the raw milk supplied to the processing unit.
  • a heat exchanger can be installed at the inlet or outlet of each stage of the low-pressure reverse osmosis membrane processing unit, as shown in Figure 1, E21 and E22, to control the temperature of the raw milk entering the low-pressure reverse osmosis membrane processing unit at 10°C the following.
  • the high-pressure concentration unit 142 or the high-pressure reverse osmosis membrane processing unit 142 is shown in the figure as including one stage, it can adopt a structure similar to the low-pressure concentration unit 141, including multiple stages, such as 2-4 stages (shown in the figure) One stage), and each stage of the high-pressure reverse osmosis membrane processing unit 142 may similarly include a plurality of membrane modules (three membrane modules are shown in the figure), and the respective membrane modules are connected in series, parallel, or a mixture of series and parallel.
  • a booster pump may be provided, and similarly, a pressure sensor may be provided at each stage to control the pressure of each stage.
  • the pressure of the high-pressure concentration unit is set in the range of 40-200 bar, and is gradually increased.
  • a heat exchanger is provided at the inlet or outlet of each stage or predetermined stage of the high-pressure concentration unit 142 to ensure that the concentration temperature is controlled below 15°C.
  • the number can be one per level matching or one multi-level matching.
  • the present invention is not limited, as long as the temperature of the concentrated raw milk can be kept below 15°C.
  • the reason for adopting the multi-stage concentration system is that the multi-stage concentrated milk process can significantly reduce the pre-concentration time, which is beneficial to the continuous production of equipment.
  • the concentrated milk with increasing concentration repeatedly passes through the same membrane core of a fixed system.
  • the membrane flux decreases and the surface flow rate becomes slower, which easily leads to blockage of the membrane surface and increases the energy of the equipment. Consumption, reduce the continuous operation time of the equipment.
  • the advantage of the multi-stage concentration according to the present invention is that the concentrated milk is sequentially cleaned, smooth, and clean, the membrane flux performance is in the best state that the membrane can achieve, the best membrane surface, the surface flow rate loss is less, and the dirt is on the membrane surface There are fewer residues on the surface, the auxiliary power required during operation is relatively low, and the time required for cleaning, the temperature and dosage of the cleaning agent are relatively low, so as to achieve more energy saving and environmental protection.
  • the first-stage low-pressure reverse osmosis membrane processing unit has a set pressure of 1-40 bar, a surface flow rate of 4-7 m/s, and a temperature controlled below 10°C.
  • the present invention uses KOCH HP 8038 RO reverse osmosis membrane, but the present invention is not limited to this, and cellulose acetate membranes, aromatic polyhydrazine membranes, aromatic polyamide membranes, and polyamide membranes can also be used. Various materials such as amide film.
  • the type of membrane is also not particularly limited. It can be hollow, rolled, plate and other forms.
  • the preferred high-pressure-resistant rolled polyamide reverse osmosis membrane of the present invention has a pressure level of 40-200bar and a surface flow rate of 6-9m/ s, the temperature is controlled below 20°C.
  • Multi-stage concentration design is adopted, and all concentration units are composed of multi-stage concentration modules.
  • Different modules design flow channels of different sizes according to the concentration, viscosity, and particle size of the concentrated milk to ensure the efficiency of concentration.
  • the concentrated milk In the low-pressure concentration unit, the concentrated milk has a low concentration, good fluidity, and dirt is not easy to deposit. It uses a low flow channel of about 30mil and a pressure of 1-40bar to ensure that the raw milk can be quickly pre-concentrated under a certain pressure to achieve pre-concentration the goal.
  • the concentrated milk reaches a certain concentration, the viscosity increases, the fluidity decreases, the osmotic pressure increases, and the particle size increases, it is easy to deposit on the membrane, and further concentration becomes difficult. Therefore, the middle flow channel of about 45mil is selected, the pressure is increased to 40-50bar, and the flow channel aperture and pressure are increased to ensure the concentration efficiency.
  • the high pressure 2-4 level the concentrated milk has reached the target concentration, concentration, viscosity, particle size reached the maximum, the fluidity is the lowest, the osmotic pressure is the highest, and the dirt is most likely to deposit on the membrane, so the 65-80mil high flow channel is selected. The pressure is increased to 50-200bar to ensure that the concentrated milk can effectively flow in the membrane and ensure the production time.
  • Pressure control includes the time and value of pressure increase.
  • the pressure control can greatly reduce the pre-concentration time and shorten the pre-concentration time to 1h. If the pressure is increased too fast in the early stage of production, the membrane flux will decrease rapidly, which will affect the subsequent pre-concentration time and subsequent production time. If the pressure is too slow, it will increase the pre-concentration time to reach the target concentration and reduce the production efficiency. Through experiments in this experiment, it is preferable to gradually increase the pressure to 40-42bar within 40-45min after the start of production, and increase the pressure to 60-80bar until the end of production after pre-concentration.
  • the temperature control of the concentrated milk plays an important role in the quality of the concentrated product and the control of microbial indicators.
  • the high cooling efficiency can increase the freezing effect of the concentrated milk in the later stage.
  • the concentrated milk freezes quickly, prevents the floating of fat, prevents the crystallization of lactose into gravel, and prevents The reproduction of microorganisms ensures the quality of restoration.
  • the cooling unit 150 includes a first cooling unit 151 and a second cooling unit 152, and a buffer tank is preferably provided downstream of the second cooling unit 152 to temporarily Store raw milk that has been cooled in two stages.
  • the first refrigeration unit 151 preferably includes a storage tank with a jacket, and 2-3°C ice water is pumped through the jacket of the storage tank as a refrigerant, thereby reducing the concentrated milk in the storage tank from about 12-14°C. Reduce to 4-7°C.
  • the concentrated milk cooled by the first cooling unit 151 can be sent to a buffer tank for temporary storage.
  • the second cooling unit 152 preferably includes a low-temperature critical tube heat exchanger.
  • the heat exchanger includes a main body 1521, a refrigerant chamber 1522, and a pipe 1523 passing through the refrigerant chamber.
  • the concentrated milk from the first cooling unit 151 is pumped to the pipe 1523 and exchanges heat with the refrigerant in the refrigerant chamber 1522 while passing through the pipe 1523, and is rapidly cooled to -2 to 3°C.
  • the refrigerant is preferably a 50% ethylene glycol aqueous solution.
  • the pipe between the outlet of the second cooling unit 1522 and the filling machine is an insulated pipe or preferably, the pipe is a pipe with a jacket, and ice water at 1°C is passed through the jacket as Coolant to prevent the concentrated milk from being heated by the outside temperature when it flows through the pipeline.
  • the reason for using two-stage cooling is that after the first stage of cooling, after the concentrated milk is discharged, the concentrated milk at about 15 degrees Celsius is reduced to 4-7 degrees Celsius and stored in the buffer tank. Ensure that the concentrated milk can be stored in the buffer tank in the best state while controlling the reproduction of microorganisms in the product.
  • the purpose of the second stage of cooling is to quickly bring the product temperature to -2 ⁇ -3°C before filling. Its purpose is to reduce the temperature of concentrated milk products when they are stored in the warehouse, which is conducive to the rapid freezing of the products to the target temperature. Prevent the occurrence of fat floating, lactose, protein crystallization and other problems that affect the quality of concentrated milk in subsequent use.
  • a cleaning unit includes a high-pressure pump to supply different cleaning fluids to each unit under pressure and under control, so that the cleaning unit can perform a cleaning process on the entire device to ensure that the membrane is cleaned after cleaning.
  • the amount returns to the value before production. This plays an important role in production efficiency, cost reduction and energy consumption.
  • the cleaning process proceeds as follows:
  • alkali+surfactant cycle cleaning In the second step, alkali+surfactant cycle cleaning.
  • concentration of alkali is 0.4-0.6w/w%, and the PH value is 10.9-11.1.
  • the surfactant concentration is 0.2-0.3w/w%.
  • the flushing flow rate is 5000l/h.
  • the purpose is to flush out the cleaning agent in the system.
  • alkali + enzyme cycle cleaning wherein the alkali concentration is 0.6-0.8 w/w%, and the pH value is 10-10.8.
  • the enzyme concentration is 0.2-0.3w/w%.
  • the fifth step, flushing, flushing with water for 900s, the flushing flow rate is 5000l/h.
  • the purpose is to flush out the cleaning agent in the system.
  • the seventh step, rinse, rinse with water for 900s, and the rinse flow is 5000l/h.
  • the purpose is to flush out the cleaning agent in the system.
  • the eighth step alkali+surfactant cycle cleaning, wherein the alkali concentration is 0.4-0.6w/w%, and the PH value is 10.9-11.1.
  • the surfactant concentration is 0.2-0.3w/w%.
  • the ninth step water flushing, water flushing for 1800s, the flushing flow is 5000l/h.
  • the purpose is to flush out the cleaning agent in the system.
  • step S1 after the raw milk arrives at the factory, the physical and chemical index test TS 12-13%, fat 2.8-3.0%, protein 2.8-3.3% is performed, and the raw milk that meets the requirements is filtered to remove physical impurities.
  • the pore size of the primary filter is 1.00mm
  • the pore size of the secondary filter is 0.50mm.
  • step S2 after the raw milk is temporarily stored, a pretreatment operation or a sterilization separation operation is performed. In this operation, the spores in the raw milk are removed, the spore separation rate is greater than 95%, and the total solid content in the obtained raw milk is 12.35% After processing, cool the raw milk to 7 degrees Celsius and store it.
  • step S3 the raw milk that has been sterilized and separated enters the homogenization unit for cold homogenization.
  • the temperature is set to 13 degrees, and the two-stage pressure is 170 bar in total.
  • the first-stage homogenization pressure is 120 bar, and the second-stage homogenization pressure is 120 bar.
  • the pressure is 50 bar.
  • step S4 the raw milk that has been homogenized by the homogenization unit enters the concentration unit.
  • the concentration unit includes a low-pressure concentration unit and a high-pressure concentration unit. Therefore, step S4 may include a low-pressure concentration operation S41 and a high-pressure concentration operation S42.
  • the low-pressure reverse osmosis membrane processing unit has 7 stages, and the first 3 stages use a low flow channel of 30 mils and a pressure of 40 bar. The last 4 stages use a 45mil middle runner and a pressure of 50bar. The flow velocity on the membrane surface is 5m/s.
  • the high-pressure reverse osmosis membrane unit adopts a high flow channel of 65 mil, a pressure of 80 bar, a flow rate of 7 m/s on the membrane surface, and a reverse osmosis membrane.
  • the temperature has been maintained below 15°C, and the total solid content of the concentrated milk obtained through the high-pressure reverse osmosis membrane treatment is 40-45%;
  • step S5 the concentrated milk is pumped into the first cooling unit of the cooling unit.
  • the temperature in the tank of the first cooling unit is controlled at 4°C, and ice water at 1°C is used as the refrigerant.
  • the concentrated milk that has been preliminarily cooled enters the second cooling unit via the booster pump, that is, the low-temperature critical tubular heat exchanger, which uses a 50% ethylene glycol aqueous solution at -5°C as the refrigerant.
  • the concentrated milk and the refrigerant exchange heat, so that the outlet temperature of the second cooling unit is -2.5°C.
  • the concentrated milk is sent to the filling machine for filling through a pipe with a clamp pipe for cooling.
  • step S6 the concentrated milk is filled into the customized aseptic octagonal bag by the big bag filling machine, and the filling temperature is kept at minus 2 degrees;
  • step S7 put the concentrated milk into a carton matching the octagonal bag, stack it into the quick-freezer, the temperature of the freezer is minus 22 degrees, the front wind speed is 7m/s, after freezing for 18 hours, the center temperature reaches -8°C and then move it in It is stored in a freezer, and the temperature of the freezer is -18°C to obtain frozen concentrated milk.
  • the cleaning unit is used to perform a standard CIP process to clean the concentration equipment. This cleaning step has been described in detail above, so it will not be repeated here.
  • Evaporative concentration method use the heating effect of the equipment to add standardized raw milk to the evaporator, and heat the evaporator at high temperature.
  • the raw milk is vaporized at its boiling point, and the secondary steam generated during the vaporization is continuously removed, thereby removing the water in the milk, so that the concentration of the milk is continuously increased until the desired concentration is reached.
  • This method uses high temperature and high pressure to remove the water in the liquid; the disadvantages are: 1.
  • the energy cost is high, the process needs to be heated to generate a large amount of steam, and the energy consumption is large; 2.
  • concentration process this traditional method The evaporation method requires heating the milk.
  • the second method is 2) the conventional reverse osmosis method: the reverse osmosis equipment is composed of a material liquid diversion net, a pure water diversion net, a reverse osmosis membrane, a pump, etc., so that the treated material liquid passes through a predetermined flow channel, and the The water molecules pass through the reverse osmosis membrane and are collected into the central collecting pipe, and finally a concentrated liquid is obtained.
  • the disadvantages of this kind of concentration equipment are: 1. High energy consumption. As the concentration of the total solid content in the material and liquid gradually increases, in order to overcome the higher osmotic pressure, it is necessary to provide the power increase of the standby operating pump of the system. The energy consumption is increased.
  • the concentration multiple that can be achieved by the concentration technology is low, about 2 times, which cannot meet the higher concentration requirements.
  • the limitation of this method is that the concentration ratio is limited, and the current use of conventional reverse osmosis technology can only concentrate milk to 32%.
  • the third method is 3) the forward osmosis method: the current emerging technology has no examples of being applied to dairy production; make the feed liquid and the draw liquid flow on both sides of the forward osmosis membrane, and use the osmosis produced by the different salt concentrations on both sides of the membrane
  • the water passes through the forward osmosis membrane from the side of the feed liquid with low salt concentration and enters the side of the draw liquid with higher salt concentration in order to remove the water in the feed liquid and concentrate the feed liquid;
  • the limitation of this method is that there is currently no An example of industrial application, the size of the membrane is limited by the manufacturing capacity, and large-area membrane cannot be produced, which makes the ability to process milk low; the operating cost is high, the forward osmosis membrane is easy to block, and the cost of replacing the membrane is high.
  • the reverse osmosis concentration method of the present application includes two types of reverse osmosis membrane concentration treatments: low pressure reverse osmosis membrane concentration treatment and high pressure reverse osmosis membrane concentration treatment.
  • the low-pressure reverse osmosis membrane concentration treatment uses a first predetermined pressure to perform reverse osmosis concentration treatment on the feed
  • the high-pressure reverse osmosis membrane concentration treatment uses a second predetermined pressure to perform reverse osmosis concentration treatment on the feed
  • the first The predetermined pressure is less than the second predetermined pressure.
  • This application adopts the above-mentioned reverse osmosis concentration method, which overcomes the above-mentioned problems of concentration in the food industry (especially dairy products), realizes the high concentration of dairy products, reduces energy consumption and operating costs, and avoids the various physical and chemical effects of heat treatment on dairy products. , The influence of microorganisms and biochemical indicators, and to avoid the excessive reproduction of microorganisms and bacteria in the concentration process of dairy products.
  • this application also preferably adopts multi-stage concentration, including multi-stage high-pressure RO concentration and multi-stage low-pressure RO concentration.
  • multi-stage concentration only circulates on a set of membranes, and the parameters of single-stage membranes cannot be adjusted. As the concentration progresses, fats and other substances will deposit on the membrane surface, and the deposition rate will become faster and faster; Grade concentration can greatly reduce the pre-concentration time, which is beneficial to the continuous production of equipment.
  • the concentrated milk repeatedly passes through the same membrane core.
  • the membrane flux decreases and the surface flow rate becomes slower, which will easily cause blockage of the membrane surface and increase the energy consumption of the equipment; multi-stage concentration
  • the advantages also include that the concentrated milk passes through the membrane surface that is cleaned in turn, the membrane flux performance is the best, the surface flow rate loss is less, and the dirt remains on the membrane surface less, so as to achieve more energy saving and environmental protection.
  • the pretreatment temperature of the general RO process is 65-70°C, which affects the quality of dairy products.
  • the temperature in the membrane concentration stage is controlled below 15 degrees. Keep as low as possible to control the reproduction of microorganisms and ensure that the active substances in the milk are not destroyed.
  • This application adopts a combination of a variety of low-temperature pretreatment processes and adjusts the parameters of each step, which advantageously controls the entire processing temperature.
  • the pore size of the primary filter is 1.00mm
  • the pore size of the secondary filter is 0.50. mm.
  • the raw milk enters the homogenizer for cold homogenization, the temperature is 13 degrees Celsius, and the two-stage pressure is 170bar. Among them, the first-stage homogenization pressure is 120bar, and the second-stage homogenization pressure is 50bar, and then it enters the sterilization separator for sterilization.
  • the separation rate of spores and spores is greater than 95%, and the total solid content in the obtained raw milk is 12.35%.
  • the raw milk enters the normal pressure reverse osmosis membrane processing unit, where the normal pressure reverse osmosis membrane group has 7 stages, and the first 3 stages use a low flow channel of 30 mils and a pressure of 40 bar. The last 4 stages use a 45mil middle runner and a pressure of 50bar.
  • the flow rate of the membrane surface is 5m/s, and it enters the high-pressure reverse osmosis membrane processing unit when it is concentrated to about 25% of the total solids.
  • the high-pressure reverse osmosis membrane unit uses a high flow channel of 65mil, a pressure of 80bar, and a membrane surface flow rate of 7m/s, reverse osmosis
  • the temperature in the membrane has been maintained below 15°C, and the total solid content of the concentrated milk obtained in the high-pressure reverse osmosis part is 40.2%; the concentrated milk enters the concentrated milk temporary storage tank.
  • the concentrated milk enters the storage tank for continuous cooling, that is, a period of cooling.
  • the temperature in the tank is controlled at 4°C, and 1°C ice water is used as the refrigerant.
  • the post-concentrated milk enters the low-temperature critical tubular heat exchanger via the material pump, that is, the second stage cooling, using a 50% ethylene glycol aqueous solution at -5°C as the refrigerant.
  • the inlet temperature of the second stage cooling is 4°C, and the outlet temperature after cooling is -2.5°C.
  • Concentrated milk is quickly filled by the filling machine by using ice water at 1°C as a refrigerant through a pipe with a clamp pipe for cooling.
  • the concentrated milk is filled into the customized aseptic octagonal bag through the big bag filling machine, and the filling temperature is kept at minus 2 degrees.
  • the cleaning process is the above-mentioned standard CIP cleaning.
  • the pore size of the primary filter is 1.00mm
  • the pore size of the secondary filter is 0.50. mm.
  • the raw milk enters the homogenizer for cold homogenization, the temperature is 13 degrees Celsius, and the two-stage pressure is 170bar. Among them, the first-stage homogenization pressure is 120bar, and the second-stage homogenization pressure is 50bar, and then it enters the sterilization separator for sterilization.
  • the separation rate of spores and spores is greater than 95%, and the total solid content in the obtained raw milk is 12.35%.
  • the raw milk enters the normal pressure reverse osmosis membrane processing unit.
  • the normal pressure reverse osmosis membrane group has 7 stages, and the first 3 stages use a low flow channel of 30 mils and a pressure of 40 bar. The last 4 stages use a 45mil middle runner and a pressure of 50bar.
  • the flow rate of the membrane surface is 5m/s, and it enters the high-pressure reverse osmosis membrane processing unit when it is concentrated to about 25% of the total solids.
  • the high-pressure reverse osmosis membrane unit uses a high flow channel of 65mil, a pressure of 80bar, and a membrane surface flow rate of 7m/s, reverse osmosis
  • the temperature in the membrane has been maintained below 15°C, and the total solid content of the concentrated milk obtained in the high-pressure reverse osmosis section is 42.5%; the concentrated milk enters the concentrated milk temporary storage tank.
  • the concentrated milk enters the storage tank for continuous cooling, that is, a period of cooling.
  • the temperature in the tank is controlled at 4°C, and 1°C ice water is used as the refrigerant.
  • the post-concentrated milk enters the low-temperature critical tubular heat exchanger via the material pump, that is, the second stage cooling, using a 50% ethylene glycol aqueous solution at -5°C as the refrigerant.
  • the inlet temperature of the second stage cooling is 4°C, and the outlet temperature after cooling is -2.5°C.
  • Concentrated milk is quickly filled by the filling machine by using ice water at 1°C as a refrigerant through a pipe with a clamp pipe for cooling.
  • the concentrated milk is filled into the customized aseptic octagonal bag through the big bag filling machine, and the filling temperature is kept at minus 2 degrees.
  • the cleaning process is the above-mentioned standard CIP cleaning.
  • the primary filter has a pore size of 1.00mm and the secondary filter has a pore size of 0.50. mm.
  • the raw milk enters the homogenizer for cold homogenization, the temperature is 13 degrees Celsius, and the two-stage pressure is 170bar. Among them, the first-stage homogenization pressure is 120bar, and the second-stage homogenization pressure is 50bar, and then it enters the sterilization separator for sterilization.
  • the separation rate of spores and spores is greater than 95%, and the total solid content in the obtained raw milk is 12.35%.
  • the raw milk enters the normal pressure reverse osmosis membrane processing unit, where the normal pressure reverse osmosis membrane group has 7 stages, and the first 3 stages use a low flow channel of 30 mils and a pressure of 40 bar. The last 4 stages use a 45mil middle runner and a pressure of 50bar.
  • the flow rate of the membrane surface is 5m/s, and it enters the high-pressure reverse osmosis membrane processing unit when it is concentrated to about 25% of the total solids.
  • the high-pressure reverse osmosis membrane unit uses a high flow channel of 65mil, a pressure of 80bar, and a membrane surface flow rate of 7m/s, reverse osmosis
  • the temperature in the membrane has been maintained below 15°C, and the total solid content of the concentrated milk obtained in the high-pressure reverse osmosis part is 44.3%; the concentrated milk enters the concentrated milk temporary storage tank.
  • the concentrated milk enters the storage tank for continuous cooling, that is, a period of cooling.
  • the temperature in the tank is controlled at 4°C, and 1°C ice water is used as the refrigerant.
  • the post-concentrated milk enters the low-temperature critical tubular heat exchanger via the material pump, that is, the second stage cooling, using a 50% ethylene glycol aqueous solution at -5°C as the refrigerant.
  • the inlet temperature of the second stage cooling is 4°C, and the outlet temperature after cooling is -2.5°C.
  • Concentrated milk is quickly filled by the filling machine by using ice water at 1°C as a refrigerant through a pipe with a clamp pipe for cooling.
  • the concentrated milk is filled into the customized aseptic octagonal bag through the big bag filling machine, and the filling temperature is kept at minus 2 degrees.
  • the cleaning process is the above-mentioned standard CIP cleaning.
  • the pore size of the primary filter is 1.00mm
  • the pore size of the secondary filter is 0.50. mm.
  • the raw milk enters the homogenizer for cold homogenization, the temperature is 22°C, and the two-stage pressure is 170bar. Among them, the first-stage homogenization pressure is 120bar, and the second-stage homogenization pressure is 50bar, and then it enters the sterilization separator for removal. The separation rate of spores and spores is greater than 95%, and the total solid content in the obtained raw milk is 12.35%.
  • the raw milk enters the normal pressure reverse osmosis membrane processing unit, where the normal pressure reverse osmosis membrane group has 7 stages, and the first 3 stages use a low flow channel of 30 mils and a pressure of 40 bar. The last 4 stages use a 45mil middle runner and a pressure of 50bar.
  • the flow rate of the membrane surface is 5m/s, and it enters the high-pressure reverse osmosis membrane processing unit when it is concentrated to about 25% of the total solids.
  • the high-pressure reverse osmosis membrane unit uses a high flow channel of 65mil, a pressure of 80bar, and a membrane surface flow rate of 7m/s, reverse osmosis
  • the temperature in the membrane has been maintained below 15°C, and the total solid content of the concentrated milk obtained in the high-pressure reverse osmosis section is 43.1%; the concentrated milk enters the concentrated milk temporary storage tank.
  • the concentrated milk enters the storage tank for continuous cooling, that is, a period of cooling.
  • the temperature in the tank is controlled at 4°C, and 1°C ice water is used as the refrigerant.
  • the post-concentrated milk enters the low-temperature critical tubular heat exchanger via the material pump, that is, the second stage cooling, using a 50% ethylene glycol aqueous solution at -5°C as the refrigerant.
  • the inlet temperature of the second stage cooling is 4°C, and the outlet temperature after cooling is -2.5°C.
  • Concentrated milk is quickly filled by the filling machine by using ice water at 1°C as a refrigerant through a pipe with a clamp pipe for cooling.
  • the concentrated milk is filled into the customized aseptic octagonal bag through the big bag filling machine, and the filling temperature is kept at minus 2 degrees.
  • the cleaning process is the above-mentioned standard CIP cleaning.
  • the primary filter has a pore size of 1.00mm and the secondary filter has a pore size of 0.50. mm.
  • the raw milk enters the homogenizer for cold homogenization, the temperature is 13 degrees, and the two-stage pressure is 170bar. Among them, the first-stage homogenization 3 pressure is 120bar, and the second-stage homogenization pressure is 50bar, and then enters the sterilization separator In addition to spores, the spore separation rate is greater than 95%, and the total solid content in the obtained raw milk is 12.35%.
  • the raw milk enters the normal pressure reverse osmosis membrane processing unit, where the normal pressure reverse osmosis membrane group has 7 stages, and the first 3 stages use a low flow channel of 30 mils and a pressure of 40 bar. The last 4 stages use a 45mil middle runner and a pressure of 50bar.
  • the flow rate of the membrane surface is 5m/s, and it enters the high-pressure reverse osmosis membrane processing unit when it is concentrated to about 25% of the total solids.
  • the high-pressure reverse osmosis membrane unit uses a high flow channel of 65mil, a pressure of 80bar, and a membrane surface flow rate of 7m/s, reverse osmosis
  • the temperature in the membrane has been maintained below 15°C, and the total solid content of the concentrated milk obtained in the high-pressure reverse osmosis section is 42.1%; the concentrated milk enters the concentrated milk temporary storage tank.
  • the concentrated milk enters the storage tank for continuous cooling, that is, a period of cooling.
  • the temperature in the tank is controlled at 4°C, and 1°C ice water is used as the refrigerant.
  • the post-concentrated milk enters the low-temperature critical tubular heat exchanger via the material pump, that is, the second stage cooling, using ice water at 1°C as the refrigerant.
  • the inlet temperature of the second stage cooling is 4°C, and the outlet temperature after cooling is 3.5°C.
  • Concentrated milk is quickly filled by the filling machine by using ice water at 1°C as a refrigerant through a pipe with a clamp pipe for cooling.
  • the concentrated milk is filled into the customized aseptic octagonal bag through the big bag filling machine, and the filling temperature is kept at minus 2 degrees.
  • the cleaning process is the above-mentioned standard CIP cleaning.
  • the pore size of the primary filter is 1.00mm
  • the pore size of the secondary filter is 0.50. mm.
  • the raw milk enters the homogenizer for cold homogenization, the temperature is 13 degrees, and the two-stage pressure is 170bar. Among them, the first-stage homogenization pressure is 120bar, and the second-stage homogenization pressure is 50bar, and then enters the sterilization separator for removal The separation rate of spores and spores is greater than 95%, and the total solid content in the obtained raw milk is 12.35%.
  • the raw milk enters the normal pressure reverse osmosis membrane processing unit, where the normal pressure reverse osmosis membrane group has 7 stages, and the first 3 stages use a low flow channel of 30 mils and a pressure of 40 bar. The last 4 stages use a 45mil middle runner and a pressure of 50bar.
  • the flow rate of the membrane surface is 5m/s, and it enters the high-pressure reverse osmosis membrane processing unit when it is concentrated to about 25% of the total solids.
  • the high-pressure reverse osmosis membrane unit uses a high flow channel of 65mil, a pressure of 80bar, and a membrane surface flow rate of 7m/s, reverse osmosis
  • the temperature in the membrane has been maintained below 15°C, and the total solid content of the concentrated milk obtained in the high-pressure reverse osmosis section is 42.2%; the concentrated milk enters the concentrated milk temporary storage tank.
  • the concentrated milk enters the storage tank for continuous cooling, that is, a period of cooling.
  • the temperature in the tank is controlled at 4°C, and 1°C ice water is used as the refrigerant.
  • the post-concentrated milk enters the low-temperature critical tubular heat exchanger via the material pump, that is, the second stage cooling, using a 50% ethylene glycol aqueous solution at -5°C as the refrigerant.
  • the inlet temperature of the second stage cooling is 4°C, and the outlet temperature after cooling is -2.5°C.
  • Concentrated milk is quickly filled by the filling machine by using ice water at 1°C as a refrigerant through a pipe with a clamp pipe for cooling.
  • the concentrated milk is filled into the customized aseptic octagonal bag through the big bag filling machine, and the filling temperature is kept at minus 2 degrees.
  • the cleaning process is the above-mentioned standard CIP cleaning.
  • the total solid content of the product is 42.2%, protein content is 9.98%, fat content is 11.50%, furoic acid content is 13.1 mg/L, IgG storage capacity is 94%, and GMP storage capacity is 100%.
  • the concentrated milk is produced normally, and the concentrated milk freezes faster, and can be quickly transported out of the warehouse.
  • the indicators are stable, no fat floating, and no gravelization after boiling, but the energy consumption of the factory is twice as much as the implementation profit 1, which wastes energy and increases the carbon emissions of the factory.
  • the primary filter has a pore size of 1.00mm and the secondary filter has a pore size of 0.50. mm.
  • the raw milk enters the homogenizer for cold homogenization, the temperature is 13 degrees, and the two-stage pressure is 170bar. Among them, the first-stage homogenization pressure is 120bar, and the second-stage homogenization pressure is 50bar, and then enters the sterilization separator for removal The separation rate of spores and spores is greater than 95%, and the total solid content in the obtained raw milk is 12.35%.
  • the raw milk enters the normal pressure reverse osmosis membrane processing unit, where the normal pressure reverse osmosis membrane group has 7 stages, and the first 3 stages use a low flow channel of 30 mils and a pressure of 40 bar. The last 4 stages use a 45mil middle runner and a pressure of 50bar.
  • the flow rate of the membrane surface is 5m/s, and the concentrated milk concentrated to 25% of the total solid enters the concentrated milk temporary storage tank.
  • the concentrated milk enters the storage tank for continuous cooling, that is, a period of cooling.
  • the temperature in the tank is controlled at 4°C, and 1°C ice water is used as the refrigerant.
  • the post-concentrated milk enters the low-temperature critical tubular heat exchanger via the material pump, that is, the second stage cooling, using a 50% ethylene glycol aqueous solution at -5°C as the refrigerant.
  • the inlet temperature of the second stage cooling is 4°C, and the outlet temperature after cooling is -2.5°C.
  • Concentrated milk is quickly filled by the filling machine by using ice water at 1°C as a refrigerant through a pipe with a clamp pipe for cooling.
  • the concentrated milk is filled into the customized aseptic octagonal bag through the big bag filling machine, and the filling temperature is kept at minus 2 degrees.
  • the cleaning process is the above-mentioned standard CIP cleaning.
  • the total solid content of the product is 25%
  • the protein content is 5.62%
  • the fat content is 6.30%.
  • the comparative ratio that uses conventional reverse osmosis technology to produce concentrated milk fails to produce 35-45% of the total Requirements for solids concentrated milk.
  • the fat content, protein content, lactoferrin content, furoic acid, IgG, and GMP content also did not meet the standards.
  • the primary filter has a pore size of 1.00 mm and the secondary filter has a pore size of 0.50. mm.
  • the raw milk enters the homogenizer for cold homogenization, the temperature is 13 degrees, and the two-stage pressure is 170bar. Among them, the first-stage homogenization pressure is 120bar, and the second-stage homogenization pressure is 50bar, and then enters the sterilization separator for removal The separation rate of spores and spores is greater than 95%, and the total solid content in the obtained raw milk is 12.35%.
  • the raw milk enters the normal pressure reverse osmosis membrane processing unit, where the normal pressure reverse osmosis membrane group has 7 stages, and the first 3 stages use a low flow channel of 30 mils and a 40 bar pressure. The last 4 stages use a 45mil middle runner and a pressure of 50bar.
  • the flow rate of the membrane surface is 5m/s, and it enters the high-pressure reverse osmosis membrane processing unit when it is concentrated to about 25% of the total solids.
  • the high-pressure reverse osmosis membrane unit uses a high flow channel of 65mil, a pressure of 80bar, and a membrane surface flow rate of 7m/s, reverse osmosis
  • the temperature in the membrane has been maintained below 15°C, and the total solid content of the concentrated milk obtained in the high-pressure reverse osmosis section is 40.2%; the concentrated milk enters the concentrated milk temporary storage tank.
  • the concentrated milk enters the storage tank for continuous cooling, that is, a period of cooling.
  • the temperature in the tank is controlled at 4°C, and 1°C ice water is used as the refrigerant.
  • the post-concentrated milk enters the conventional tube-and-tube heat exchanger via the material pump, that is, the second stage cooling, and uses 50% ethylene glycol aqueous solution at -5°C as the refrigerant.
  • the inlet temperature of the second stage cooling is 4°C, and the outlet temperature after cooling is -2.5°C.
  • Concentrated milk is quickly filled by the filling machine by using ice water at 1°C as a refrigerant through a pipe with a clamp pipe for cooling.
  • the concentrated milk is filled into the customized aseptic octagonal bag through the big bag filling machine, and the filling temperature is kept at minus 2 degrees.
  • the cleaning process is the above-mentioned standard CIP cleaning.
  • the pore size of the primary filter is 1.00mm
  • the pore size of the secondary filter is 0.50. mm.
  • the raw milk enters the homogenizer for cold homogenization, the temperature is 13 degrees, and the two-stage pressure is 170bar. Among them, the first-stage homogenization pressure is 120bar, and the second-stage homogenization pressure is 50bar, and then enters the sterilization separator for removal The separation rate of spores and spores is greater than 95%, and the total solid content in the obtained raw milk is 12.35%.
  • the raw milk enters the normal pressure reverse osmosis membrane processing unit, where the normal pressure reverse osmosis membrane group has 7 stages, and the first 3 stages use a low flow channel of 30 mils and a pressure of 40 bar. The last 4 stages use a 45mil middle runner and a pressure of 50bar.
  • the flow rate of the membrane surface is 5m/s, and it enters the high-pressure reverse osmosis membrane processing unit when it is concentrated to about 25% of the total solids.
  • the high-pressure reverse osmosis membrane unit uses a high flow channel of 65mil, a pressure of 80bar, and a membrane surface flow rate of 7m/s, reverse osmosis
  • the temperature in the membrane has been maintained below 15°C, and the total solid content of the concentrated milk obtained in the high-pressure reverse osmosis section is 44.2%; the concentrated milk enters the concentrated milk temporary storage tank.
  • the concentrated milk enters the storage tank for continuous cooling, that is, a period of cooling.
  • the temperature in the tank is controlled at 4°C, and 1°C ice water is used as the refrigerant.
  • the post-concentrated milk enters the low-temperature critical tubular heat exchanger via the material pump, that is, the second stage cooling, using a 50% ethylene glycol aqueous solution at -5°C as the refrigerant.
  • the inlet temperature of the second stage cooling is 4°C, and the outlet temperature after cooling is -2.5°C.
  • Concentrated milk is quickly filled by the filling machine by using ice water at 1°C as a refrigerant through a pipe with a clamp pipe for cooling.
  • the concentrated milk is filled into the customized aseptic octagonal bag through the big bag filling machine, and the filling temperature is kept at minus 2 degrees.
  • the pore size of the primary filter is 1.00mm
  • the pore size of the secondary filter is 0.50. mm.
  • the raw milk enters the homogenizer for cold homogenization, the temperature is 13 degrees, and the two-stage pressure is 170bar. Among them, the first-stage homogenization pressure is 120bar, and the second-stage homogenization pressure is 50bar, and then enters the sterilization separator for removal The separation rate of spores and spores is greater than 95%, and the total solid content in the obtained raw milk is 12.35%.
  • the raw milk directly enters the high-pressure reverse osmosis membrane processing unit.
  • the high-pressure reverse osmosis membrane unit uses a 65mil high flow channel, a pressure of 80bar, a membrane surface flow rate of 7m/s, and the temperature inside the reverse osmosis membrane has been maintained below 15°C.
  • the total solid content of the obtained concentrated milk is 36.5%; the concentrated milk enters the concentrated milk temporary storage tank.
  • the concentrated milk enters the storage tank for continuous cooling, that is, a period of cooling.
  • the temperature in the tank is controlled at 4°C, and 1°C ice water is used as the refrigerant.
  • the post-concentrated milk enters the low-temperature critical tubular heat exchanger via the material pump, that is, the second stage cooling, using a 50% ethylene glycol aqueous solution at -5°C as the refrigerant.
  • the inlet temperature of the second stage cooling is 4°C, and the outlet temperature after cooling is -2.5°C.
  • Concentrated milk is quickly filled by the filling machine by using ice water at 1°C as a refrigerant through a pipe with a clamp pipe for cooling.
  • the concentrated milk is filled into the customized aseptic octagonal bag through the big bag filling machine, and the filling temperature is kept at minus 2 degrees.
  • the cleaning process is the above-mentioned standard CIP cleaning.
  • the primary filter has a pore size of 1.00mm and the secondary filter has a pore size of 0.50. mm.
  • the raw milk enters the homogenizer for cold homogenization, the temperature is 13 degrees, and the two-stage pressure is 170bar. Among them, the first-stage homogenization pressure is 120bar, and the second-stage homogenization pressure is 50bar, and then enters the sterilization separator for removal The separation rate of spores and spores is greater than 95%, and the total solid content in the obtained raw milk is 12.35%.
  • the raw milk enters the normal pressure reverse osmosis membrane processing unit, where the normal pressure reverse osmosis membrane group is level 1, the middle flow channel is 45mil, the pressure is 50bar, the membrane surface flow rate is 5m/s, and when it is concentrated to about 25% of the total solids Enter the high-pressure reverse osmosis membrane processing unit, a total of 1 stage, the high-pressure reverse osmosis membrane unit uses a 65mil high flow channel, a pressure of 80bar, a flow rate of 7m/s on the surface of the membrane, and the temperature in the reverse osmosis membrane has been maintained below 15°C. In the permeating part, the total solid content of the obtained concentrated milk is 42.3%; the concentrated milk enters the concentrated milk temporary storage tank.
  • the concentrated milk enters the storage tank for continuous cooling, that is, a period of cooling.
  • the temperature in the tank is controlled at 4°C, and 1°C ice water is used as the refrigerant.
  • the post-concentrated milk enters the low-temperature critical tubular heat exchanger via the material pump, that is, the second stage cooling, using a 50% ethylene glycol aqueous solution at -5°C as the refrigerant.
  • the inlet temperature of the second stage cooling is 4°C, and the outlet temperature after cooling is -2.5°C.
  • Concentrated milk is quickly filled by the filling machine by using ice water at 1°C as a refrigerant through a pipe with a clamp pipe for cooling.
  • the concentrated milk is filled into the customized aseptic octagonal bag through the big bag filling machine, and the filling temperature is kept at minus 2 degrees.
  • the cleaning process is the above-mentioned standard CIP cleaning.
  • the total solid content of the product is 42.3%, protein content is 10.42%, fat content is 11.90%, furoic acid content is 17.5 mg/L, IgG storage capacity is 94%, and GMP storage capacity is 100%. It meets the product requirements.
  • the pre-concentration time for concentrated milk production is increased, the membrane flux drops sharply after 5 hours of production, the production is stopped, and the membrane surface is found to have serious fouling after cleaning.

Abstract

一种浓缩方法以及设备,所述浓缩方法,包括使用反渗透膜对生乳进行反渗透浓缩处理的步骤;所述反渗透浓缩处理包括低压反渗透膜浓缩处理和高压反渗透膜浓缩处理;其中,所述低压反渗透膜浓缩处理采用第一预定压力对进料进行反渗透浓缩处理,所述高压反渗透膜浓缩处理采用第二预定压力对进料进行反渗透浓缩处理,所述第一预定压力小于所述第二预定压力。所述浓缩设备,包括:暂存单元、均质单元,以及相应的浓缩单元。

Description

浓缩方法以及设备 技术领域
本发明涉及一种浓缩方法以及设备,尤其涉及采用反渗透技术对乳制品进行浓缩的浓缩方法以及相应的浓缩设备。
背景技术
浓缩是使溶液中溶剂蒸发溶液浓度增大的过程;其广泛应用于化学、食品、生物制药等工业中。
在食品工业中,浓缩就是从溶液中除去部分溶剂(通常是水)的操作过程,也是溶质和溶剂均匀混合液的部分分离过程。通过浓缩可除去食品中大量的水分,减少质量和体积,降低食品包装、贮存和运输费用;浓缩可以提高制品浓度,增大渗透压,降低水分活度,抑制微生物生长,延长保质期;浓缩可作为干燥、结晶或完全脱水的预处理过程;通过浓缩可以降低食品脱水过程中的能耗,降低生产成本;浓缩还可以有效除去不理想的挥发性物质和不良风味,改善产品质量。但是物料在浓缩过程中会丧失某些风味或营养物质,因此,选择合理的浓缩方法和适宜的条件是非常重要的。
在食品工业的大规模生产中,存在多种料液需要浓缩的需求。通过浓缩可以将料液中的水分去除,由此增加料液中特定成分的含量;或者通过浓缩可以使得料液处于适于长期存放的状态。为了满足这些需求,提出了多种浓缩方法,例如采用高温蒸发的方法。但是这种方法会消耗大量的能量来加热料液,并且高温会对料液存在潜在的风险,例如,会破坏料液中的某些成分,由此使得料液失去应用的效用。
目前常用的浓缩加工设备通常是蒸发设备和常规反渗透设备,蒸发设备通常是将料液加入到蒸发釜中,加热蒸发釜,使得蒸发釜内的料液的温度达到沸点并使得料液汽化,并将汽化时产生的二次蒸汽不断排出,从而去除水分,使得料液的浓度不断提高,直至达到预定浓度。但是这种设备是通过高温、高压的方法将料液中的水分去除,存在缺点在于:一、能耗成本高,过程需要加热以产生大量蒸汽,能源消耗大;二、在浓缩过程中,这种传统蒸发设备需要对料液实施加热,加热的强度低会导致蒸发效率低,强度过强则 会导致某些料液中有可能包含的活性物质和部分营养物质被破坏;三、通过蒸发设备只能去除10%的水分,往往达不到企业对于比较高的浓缩度的要求,因此这种浓缩设备的效率较低。
另外一种浓缩设备是常规反渗透设备,反渗透设备由料液疏导网、纯水疏导网、反渗透膜、泵等构成,使得处理过的料液通过预定的流道,料液中的水分子透过反渗透膜而被采集到中央集水管,而最终得到浓缩的料液。但是这种浓缩设备的缺点在于:一、能耗较高,随着浓缩的进行料液中的总固形物含量逐渐升高,为了克服更高的渗透压需要提供系统备用的运行泵的功率增大,故而能耗增高;二、受到常规反渗透技术、膜芯及设备最高压力的限制,使得浓缩技术所能实现的浓缩倍数低,约为2倍左右,不能满足较高的浓缩要求。
尤其是在乳制品行业中,对牛乳进行浓缩会带来诸多的益处。一方面,通过浓缩可以使得乳制品中牛乳固形物含量增加,满足消费者的营养需求;另一方面,通过浓缩,可以减小牛奶的体积,增加牛乳的保存性,使得保存牛乳的成本降低并提高了运输的便利性,由此克服了奶源季节性和地域性差异的问题。但是,对于牛乳这种料液,除了上面常规浓缩方法带来的问题,还需要考虑的是,牛乳是一种热敏性物质,热处理对于牛乳的各种理化、微生物及生物化学指标都有较大的影响。所以从营养的角度看,热处理程度越低对于产品的品质影响越小。并且,防止牛乳在浓缩处理过程中微生物和细菌过渡繁殖也是必须考虑的一个问题。
发明内容
本发明是针对现有技术中的上述问题做出,并且提供了一种浓缩方法,所述浓缩方法包括:
一种乳制品的浓缩方法,包括使用反渗透膜对生乳进行反渗透浓缩处理的步骤;所述反渗透浓缩处理包括低压反渗透膜浓缩处理和高压反渗透膜浓缩处理。
其中,所述低压反渗透膜浓缩处理采用第一预定压力对进料进行反渗透浓缩处理,所述高压反渗透膜浓缩处理采用第二预定压力对进料进行反渗透浓缩处理,所述第一预定压力小于所述第二预定压力。
一方面,其中,所述低压反渗透膜处理包括多级浓缩处理(优选1-14级浓缩处理,更优选6-11级浓缩处理)。
优选地,每级低压反渗透膜处理采用一个或多个膜组件。
更优选地,每个膜组件包括一支或多支膜,所述多支膜之间串联、并联或串联和并联结合。
另一方面,其中,所述低压反渗透膜处理的多级浓缩处理中各级所采用的压力不同。
优选地,所述低压反渗透膜处理中,前3级所采用的压力为1-50bar(优选1-40bar,更优选25-35bar)。
优选地,所述低压反渗透膜处理中,第4级及以后级所采用的压力为30-60bar(优选40-50bar,更优选43-47bar)。
一方面,其中,所述高压反渗透膜处理包括多级浓缩处理(优选1-6浓缩处理,更优选2-4级浓缩处理)。
优选地,每级高压反渗透膜处理采用一个或多个膜组件。
更优选地,每个膜组件包括一支或多支膜,所述多支膜之间串联、并联或串联和并联结合。
另一方面,其中,所述高压反渗透膜处理的多级浓缩处理中各级所采用的压力不同。
优选地,所述高压反渗透膜处理中,所采用的压力为50-200bar(优选60-80bar,更优选60-65bar)。
一方面,所述浓缩方法中被浓缩的料液温度为20℃以下(优选0-15℃,更优选7-15℃)。
优选地,通过高压散热器使被浓缩的料液温度保持在15℃以下;更优选地,保持在10-14℃所述高压散热器设置在预定级的高压反渗透膜处理单元的进料口或出料口。
一方面,在所述反渗透浓缩处理步骤前,还包括:i)暂存步骤;ii)预处理步骤;和/或iii)均质步骤。
一方面,其中,所述暂存步骤包括对生乳进行过滤;优选地,所述过滤为两级过滤;更优选地,第一级过滤的过滤孔径为0.990mm-1.165mm,第二级过滤的孔径为0.495mm-0.589mm。
一方面,其中,所述预处理步骤包括低温除菌分离处理;优选地,所述低温除菌分离采用两级过滤;优选地,除菌分离的温度控制在45-50℃。
一方面,其中,所述均质步骤采用两级均质;优选地,所述均质步骤的工作温度保持在10-30℃(更优选15-20℃);更优选地,第一级均质的压力为100-140bar(更优选120bar),而第二级均质的压力40-60bar(更优选50bar)。
另一方面,在所述反渗透浓缩处理步骤后,还包括:v)打冷步骤;vi)灌装步骤;vii)冷冻步骤;和/或viii)清洗步骤。
一方面,所述打冷步骤采用两段打冷。优选地,第一段打冷用冰水作为冷媒;优选地,第二段打冷用乙二醇水溶液作为冷媒。
另一方面,优选地,第一段打冷的温度保持在2-10℃(更优选4-7℃);优选地,第二段打冷的温度保持在-1至-4℃(更优选-2至-3℃)。
另一方面,所述灌装步骤的灌装温度保持在1至-4℃,更优选-2至-3℃。
另一方面,所述冷冻步骤的冷冻温度保持在-10至-24℃,更优选-18至-22℃。
如上所述的浓缩方法所制备的浓缩乳制品,其中总固含量为30-50%,优选为35-45%,更优选为40-45%。
优选地,所述浓缩乳制品按浓缩比例稀释到生奶总固形物含量水平后,所检测出的糠氨酸含量为4-20mg/100g蛋白质,优选为8-15mg/100g蛋白质。
相较于热浓缩生产的浓缩乳,所述浓缩乳制品按浓缩比例稀释到生奶总固形物含量水平后,所检测出的糠氨酸含量下降60-80mg/100g蛋白质,下降4-10倍。
优选地,所述浓缩乳制品按浓缩比例稀释到生奶总固形物含量水平后,所检测出的IgG(免疫球蛋白G)留存量高于95%(热浓缩乳工艺生产的浓缩乳中未检出)。
优选地,所述浓缩乳制品按浓缩比例稀释到生奶总固形物含量水平后,所检测出的GMP(糖巨肽)留存率为100%(热浓缩工艺生产的浓缩乳中GMP含量约为65%)。
根据本发明的另一个方面,提供了一种浓缩设备,通过该浓缩设备可以高效地将料液浓缩到预定浓度。
根据本发明的一个方面,提供了一种浓缩设备,所述料液浓缩设备包括:
暂存单元,所述暂存单元包括存储容器以存储待浓缩的料液;
均质单元,所述均质单元设置在所述暂存单元的下游,对所述料液施加预定的温度和压力,使得所述料液在压力和冲击作用下细化并且更均匀的相互混合;以及
浓缩单元,所述浓缩单元设置在所述均质单元的下游,并依次包括低压反渗透膜处理单元和高压反渗透膜处理单元,其中,所述低压反渗透膜处理单元在第一预定压力下对流经的料液进行反渗透浓缩处理,且所述高压反渗透膜处理单元在第二预定压力下对流经的料液进行反渗透浓缩处理,所述第一预定压力小于所述第二预定压力。
通过采用低压和高压反渗透膜处理单元,可以提高浓缩效率。
所述低压反渗透膜处理单元优选地包括多级,每级低压反渗透膜处理单元包括一个或多个膜组件,每个膜组件包括一支或多支膜,所述多支膜之间串联、并联或串联和并联结合。
优选地是,所述多级低压反渗透膜处理单元中各级的压力不同。
优选地是,所述浓缩单元还包括低压散热器,所述低压散热器设置在预定级的低压反渗透膜处理单元的进料口或出料口,以保持被浓缩的料液的温度在15℃之下。进一步优选地是,其中,所述高压反渗透膜处理单元包括多级,每级高压反渗透膜处理单元包括一个或多个膜组件,每个膜组件包括一支或多支膜,多支膜之间串联、并联或串联和并联结合。
优选地,所述多级高压反渗透膜处理单元中各级的压力不同。
优选地,所述浓缩单元还包括高压散热器,所述高压散热器设置在预定级的高压反渗透膜处理单元的进料口或出料口,以保持被浓缩的料液的温度在15℃之下。
通过在浓缩过程中将被料液的温度保持在15℃之下,一方面可以抑制料液中细菌和微生物的繁殖,另一方面可以避免温度过低对反渗透膜的寿命的影响。
通过采用多级浓缩设计,全部浓缩单元可以由6-11级浓缩模组组成,不同模组根据浓缩乳的浓度,不同的粘度,不同的粒径大小设计大小不同的流道,以保证浓缩的效率。前2-4级由于浓缩乳浓度较低,流动性较好,污垢 不易沉积,可以使用30mil左右的低流道,压力为1-40bar,保证在一定的压力下使原奶可以快速预浓缩达到预浓缩目标。中间2-4级,浓缩乳达到一定浓度,粘度增加流动性降低,渗透压增大,粒径增大易在膜上沉积,进一步浓缩变难,故选用45mil左右的中流道,压力增加到40-50bar,增大流道孔径和压力以保证浓缩效率。最后高压2-4级,浓缩乳已经达到目标浓度,浓度,粘度,粒径达到最大值,流动性最低,渗透压最大,污垢最易在膜上沉积,故选用65-80mil的高流道,压力升高到50-200bar以保证浓缩乳可以有效的在膜内流动,保证生产时间。
优选地是,所述浓缩设备还包括:预处理单元,所述预处理单元设置在所述暂存单元的下游,所述均质单元的上游,以对来自暂存单元的料液进行预先处理。所述预处理可以包括除菌处理,以去除料液中的细菌和不利的微生物。在除菌处理的情况下,所述预处理单元可以是低温除菌分离机。优选地是,该低温除菌分离机可以包括两级,第一级的过滤孔径为0.990mm-1.165mm,第二级的孔径为0.495mm-0.589mm,并且除菌温度控制在45-50℃。
通过采用两级除菌分离,并且两级除菌分离所用的过滤孔孔径不同,料液可以先经过大过滤孔,过滤掉较大物质,之后通过较小孔径的过滤器,防止了只有一级过滤时过滤孔被迅速堵塞。同时,通过将除菌温度控制在45-50℃之间,在保证除菌效果的同时使用如此低的温度,可以控制微生物增长,尽量保持料液中更多的营养物质的活性。
优选地是,所述浓缩设备还包括:打冷单元,所述打冷单元对经过所述浓缩单元浓缩的料液进行冷却。所述打冷单元包括第一打冷单元和第二打冷单元,所述第一打冷单元将所述料液冷却到第一冷却温度,而所述第二打冷单元将经过第一打冷单元冷却的料液进一步冷却到低于第一冷却温度的第二冷却温度。
所述第一打冷单元例如可以包括夹层罐,所述夹层罐包括制冷液腔室以容纳制冷液。而所述第二打冷单元例如包括板式热交换器。
通过第一打冷单元,料液将从15度左右的浓缩料液降到4-7℃,以在缓存罐中保存。保证浓缩料液可以在最好的状态保存在缓存罐中同时控制产品中微生物的繁殖。第二打冷单元的目的在于在灌装之前,快速的将料液产品 温度到-2~-3℃。其目的在于降低例如浓缩乳的料液产品入库时的温度有利于将产品迅速冷冻到目标温度,将产品冻实。防止出现脂肪上浮、乳糖,蛋白质结晶等影响浓缩乳后续使用品质的问题。
优选地是,浓缩设备还包括罐装单元,所述罐装单元将经过打冷单元冷却的料液罐装到预定包装中。
优选地是,浓缩设备还包括清洗单元,所述清洗单元在所述料液浓缩完成后对所述料液浓缩设备进行清洗。
通过设置清洗单元,在料液浓缩后可以去除残留在反渗透膜表面上的污垢,从而恢复反渗透膜的通量,使得该设备可以持续生产。
通过本发明的浓缩设备,对于需要浓缩的料液,尤其是对于牛乳制品,可以去除牛乳中的部分水分,减小了生牛乳的体积,增加了保存性,节约了保存成本,同时使得运输更加方便。另外,通过将生牛乳浓缩并冷冻,可以平衡生牛乳季节和产地不均衡的问题。
附图说明
上述和其他目的和特征将从下面参照附图的描述中变得清楚,图中,相同的附图标记在若干图中一直表示相同零件,除非另有指定,且图中:
图1是示出根据本发明的浓缩设备的示意图;
图2是可以用在如图1所示的设备中的示例性预处理单元的示意图;
图3是示出可以用在图1的浓缩设备中的示例性均质单元的示意图;
图4是示出可以用在图1的浓缩设备中的示例性浓缩单元的示意图;
图5是示出可以用在图1的浓缩设备中采用的示例性二级打冷单元的示意图;以及
图6是示出根据本发明的浓缩设备的一种示例性操作方法的流程图。
具体实施方式
下面参照附图,详细描述根据本发明的浓缩设备以及相应的浓缩方法。虽然结合以上数个优选实施例公开了本发明,然而其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,可作任意的更动与润饰,因此本发明的保护范围应当以附上的权利要求所界定 的为准。
在下面的描述中,采用了“上游”、“下游”等表示方向性的术语,其中上游是指料液来自的方向,而下游是指料液将流向的方向,因此,当描述一个单元在另一个单元上游时,料液将从所述一个单元流向另一个单元,反之亦然。
一、概述
下面,参照附图描述根据本发明的浓缩设备100。
如图1所示,浓缩设备100包括暂存罐110、预处理单元120、均质单元130、浓缩单元140、打冷单元150和罐装单元160。另外,浓缩设备100还包括清洗单元(CIP单元)(未图示),以在浓缩结束后对整个设备进行清洗。另外,在每个单元之间,可选的,包括缓存罐和供料泵(未标记)。
例如生牛乳的料液采集后首先进行理化指标检验,并且对符合要求的生牛乳暂时存放在暂存单元(暂存罐)110中。然后对暂存罐110内的暂存的生牛乳进行预处理,该预处理可以在预处理单元120中进行,并且可以包括除菌过滤处理,该预处理单元120例如可以包括除菌分离机,该除菌分离机可以包括两级,以去除生牛乳中的细菌以及芽孢。
经过预处理之后的生牛乳将被送入均质机中进行均质,可选地是,在进入均质机之前,可以设置缓存罐T12,并且通过供料泵P13将缓存罐T12内的料液供入均质机。根据本发明,采用两级均质,第一级均质的压力例如为120bar,而第二级均质的压力例如为50bar,并且将均质机的温度为13度,由此使得生牛乳中的脂肪破碎得更加细小,产品体系更加稳定。均质处理后的生牛乳可以进入暂存罐,例如暂存罐T13进行暂存,但这不是必须的。
通过均质处理后的生牛乳例如通过供料泵P14被送入浓缩单元140,该浓缩单元140采用反渗透膜进行浓缩处理。优选地是,该浓缩单元140至少包括低压反渗透膜处理单元和高压反渗透膜处理单元,以对生牛乳进行浓缩处理。浓缩处理后的生牛乳可以送入暂存罐进行暂存,但这不是必须的。另外,浓缩单元140可以包括供料缓存罐T21,并且包括循环供料泵P21等。
浓缩的生牛乳然后在打冷单元150中被冷却至零下2.5℃,然后进行罐装单元160中罐装。罐装单元160例如包括大袋罐装机,以将浓缩后的生牛乳罐装到无菌八角袋中,整个罐装温度保持在零下2℃。
罐装后的浓缩乳被装入纸箱并码垛进入速冷库中,该速冷库中的温度例如为零下22℃,迎面风速7m/s,冷冻18小时之后,等到浓缩物包装的中心温度达到零下8℃后将浓缩乳移入冷冻库保存,冷冻库的温度为零下18℃,由此得到冷冻浓缩乳。
经上述工艺生产后,得到稳定的淡黄色块状冷冻浓缩乳,经检测打冷之前,浓缩乳总固含量40.5%,蛋白质含量10.22%,脂肪含量12.0%,乳铁蛋白含保存量90%,冷冻12个月后复原,指标稳定,无脂肪上浮,煮沸后无沙砾化现象。
得到的冷冻浓缩乳可以在冷冻库中保存12个月以上,并可以通过适当的还原过程还原成牛乳,还原的牛乳的营养成分与采集的生牛乳基本上相同,由此满足了长期存放的需求。
在生产特定批量的浓缩乳之后,将利用清洗单元170对整个浓缩设备100进行清洗,该清洗单元例如执行标准CIP倾斜,由此清洁整个设备中的残留物并使得浓缩单元的反渗透膜的膜通量恢复到之前的水平。
二、预处理单元120
预处理单元120包括低温除菌分离机,例如可以采用GEA公司的ecoclear低温除菌机,当然,本发明并不局限于此。优选地是,在本发明中,采用两级低温除菌机,一级过滤孔径为0.991mm-1.165mm,而第二级过滤孔径为0.495mm-0.589mm,并且将低温除菌机的温度控制在45-50℃之间。
低温除菌分离机例如包括:外壳;容纳在外壳中的转鼓,所述转鼓包括多个叠置在一起的碟片,碟片和碟片之间保留较小的间隙;驱动转鼓转动的电机;将电机的传动传递到转鼓的传动轴;排渣装置和控制柜等。
悬浮液(或乳浊液)由位于转鼓中心的进料管加入转鼓,转鼓被电机驱动旋转,当悬浮液(或乳浊液)流过碟片之间的间隙时,固体颗粒(或液滴)在离心机作用下沉降到碟片上形成沉渣(或液层)。沉渣沿碟片表面滑动而脱离碟片并积聚在转鼓内直径最大的部位,分离后的液体从出液口排出转鼓,而沉渣由排渣装置排出。
碟片的作用是缩短固体颗粒(或液滴)的沉降距离、扩大转鼓的沉降面积,转鼓中由于安装了碟片而大大提高了分离机的生产能力。积聚在转鼓内 的固体在分离机停机后拆开转鼓由人工清除,或通过排渣机构在不停机的情况下从转鼓中排出。
碟式分离机可以完成两种操作:液-固分离(即底浓度悬浮液的分离),称澄清操作;液-液分离(或液-液-固)分离(即乳浊液的分离)。对于生牛乳而言,通过分离操作,可以清除牛奶中的绝大部分细菌和微生物孢子,延长产品的货架期,是产品获得更好的风味,控制产品菌落总数,达到质量目标,符合产品规范和法律要求。
三、均质单元130
均质单元130将经过预处理的生牛乳进行均质,优选地是,均质单元130包括两级均质单元,第一级均质单元在120bar的压力下工作,而第二级均质单元在50bar压力下工作,并且将均质单元的工作温度保持在10-13C之间,以抑制微生物繁殖,保护牛乳中的活性物质的活性,同时保证了整个浓缩流程在50℃的温度之下进行。
作为构成均质单元的均质机,没有特别的限制,例如采用碰撞型或者对射型等各种类型的均质机均可以采用。作为一个示例,采用丹麦APV生产的均质机。
该均质机具有两级均质机构,每一级均质机构包括转子和定子,并且在转子和定子之间具有间隙,生乳被供应到转子和定子之间的间隙,并且通过转子高速平稳的旋转,形成高频、强烈的圆周切线速度、角向速度等综合动能效能。在转子和定子的作用下,定、转子合理狭窄的间隙中对生乳形成强烈、往复的液力剪切、摩擦、离心挤压、液流碰撞等综合效应,使得料液(生乳)在容器中循环往复以上工作过程,最终获得产品。
四、浓缩单元140
浓缩工艺采用RO反渗透技术,反渗透技术为在半透膜的溶液一侧施加比溶液渗透压高的外界压力,溶液透过半透膜时只允许一定大小的物质通过,通常只允许水分子或比水分子小的物质通过,已达到浓缩牛奶的目的。浓缩单元140包括储液罐143、低压浓缩单元141和高压浓缩单元142,在储液罐143和低压浓缩单元141之间以及在低压浓缩单元141和高压浓缩单元142 之间,还可以设置有增压泵144和145。
另外,在进入低压浓缩单元之前,还可以设置过滤器,例如,如图1所示的过滤器F21。
低压浓缩单元141也可以称作低压反渗透膜处理单元,可以包括多级,如图所示,低压反渗透膜处理单元包括两级,分别为第一级低压反渗透膜处理单元1411和第二级低压反渗透膜处理单元1412,第一级低压反渗透膜处理单元1411可以接收来自均质单元130的生牛乳,并且优选地是,在二者之间设置储液罐143,以暂存经过均质的生牛乳。在储液罐143和低压浓缩单元141的第一级低压反渗透膜处理单元1411之间,设置有增压泵144,该增压泵144可以将储液罐143内的生牛乳加压到例如1-40bar内的压力并且表面流速控制为4-7m/s。另外,在第一级低压反渗透膜处理单元1411和第二级低压反渗透膜处理单元1412之间以及在第二级低压反渗透膜处理单元1412和高压反渗透膜处理单元142之间,还设置有增压泵146和145,以使得第一级低压反渗透膜处理单元1411内的生牛乳的压力、第二级低压反渗透膜处理单元1412内的生牛乳的压力、高压反渗透膜处理单元1413内的生牛乳的压力逐渐增大。
如图所示,在每一级低压反渗透膜处理单元1411、1412内可以包括多个膜组件,以第一级低压反渗透膜处理单元1411为例,其包括六个膜组件1411-1~1411-6,这些膜组件彼此并联。但是本发明并不局限于此,而是可以包括更多或更少的膜组件,并且各个膜组件可以相互串联、并联或者串联和并联混合连接。
为了控制每级低压反渗透膜处理单元内的压力,可以在每级的入口或出口处设置压力传感器(未示出),并且压力传感器的信号可以作为反馈信号提供给控制系统,以便控制系统控制增压泵来改变供给到处理单元内的生牛乳的压力。
另外,在每级低压反渗透膜处理单元的入口或出口处还可以设置热交换器,如图1所示E21和E22,以将进入低压反渗透膜处理单元的生牛乳的温度控制在10℃以下。
尽管图中仅示出高压浓缩单元142或高压反渗透膜处理单元142包括一级,但是其可以采用与低压浓缩单元141类似的结构,包括多个级,例如2-4 级(图中示出一级),并且每一级高压反渗透膜处理单元142类似地可以包括多个膜组件(图中示出三个膜组件),各个膜组件相互串联、并联或者串联和并联混合连接。
在高压浓缩单元142的各级之间,以及在低压浓缩单元141和高压浓缩单元之间,可以设置增压泵,并类似地可以在每一级设置压力传感器,以控制每一级的压力。优选地是,高压浓缩单元的压力设定在40-200bar的范围内,并且逐级增大。
类似地,为了保证浓缩过程在低温下进行,在高压浓缩单元142的每一级或者预定级的入口或出口处,设置有热交换器,以保证浓缩温度控制在15℃以下,换热器的数量可以采用每级匹配一个或多级匹配一个,本发明没有限制,只要能够实现将被浓缩的生牛乳的温度保持在15℃之下即可。
根据本发明,采用多级浓缩系统的原因在于多级浓缩乳工艺可以显著大大减少预浓缩的时间,有利于设备连续化生产。单级浓缩时,浓度不断提升的浓缩乳反复经过固定制式的同一膜芯,随着浓缩乳浓度变高,膜通量减小,表面流速变慢,容易导致膜面的堵塞,增加设备的能耗,降低设备连续运行的时间。
根据本发明的多级浓缩的优势在于浓缩乳依次经过清洁,光滑,干净,膜通量表现处于该膜可实现的最优的状态最好的膜面,表面流速损失较少,污垢在膜面上残留更少,运行时所需的辅助动力相对较低,清洗时需要的时间和清洗剂温度、用量都相对较低,从而做到更加节能环保。
本系统采用低压和高压浓缩单元这种分段浓缩单元的结构,目的在于提升浓缩乳的品质。其中,第一段低压反渗透膜处理单元设定压力为1-40bar,其表面流速为4-7m/s,温度控制在10℃以下。
第二段高压反渗透单元中,本发明采用KOCH公司HP 8038 RO反渗透膜,但本发明并不局限于此,也可以采用醋酸纤维膜,芳香族聚肼膜,芳香族聚酰胺膜,聚酰胺膜等多种材质。膜的类型也没有特别限制,可以采用中空式,卷式,板式等多种形式,本发明优选耐高压的卷式聚酰胺反渗透膜,压力位40-200bar,其表面流速为6-9m/s,温度控制在20℃以下。
采用多级浓缩设计,全部浓缩单元由多级浓缩模组组成,不同模组根据浓缩乳的浓度,不同的粘度,不同的粒径大小设计大小不同的流道,以保证 浓缩的效率。低压浓缩单元中,浓缩乳浓度较低,流动性较好,污垢不易沉积,使用30mil左右的低流道,压力为1-40bar,保证在一定的压力下使原奶可以快速预浓缩达到预浓缩目标。在低压浓缩单元的末端以及高压浓缩单元的前端的2-4级中,浓缩乳达到一定浓度,粘度增加流动性降低,渗透压增大,粒径增大易在膜上沉积,进一步浓缩变难,故选用45mil左右的中流道,压力增加到40-50bar,增大流道孔径和压力以保证浓缩效率。最后高压2-4级,浓缩乳已经达到目标浓度,浓度,粘度,粒径达到最大值,流动性最低,渗透压最大,污垢最易在膜上沉积,故选用65-80mil的高流道,压力升高到50-200bar以保证浓缩乳可以有效的在膜内流动,保证生产时间。
通过压力传感器的反馈控制,可以对压力进行精准控制,压力控制对于生产浓缩乳的效率和品质有至关重要的影响。压力控制包括升压的时间和压力数值大小。通过压力控制可以大大降低预浓缩时间,将预浓缩时间缩短至1h。生产时如果前期升压过快会导致膜通量迅速降低,影响后续的预浓缩时间和之后的生产时间。升压过慢会增加到达目标浓度的预浓缩时间降低生产效率。本实验经过实验,优选生产开始以后的40-45min中内逐步将压力增加到40-42bar,预浓缩结束后,将压力升高到60-80bar直至生产结束。
五、打冷单元150
浓缩乳的温度控制对于浓缩成品的质量及微生物指标控制起到重要作用,打冷效率高可以使后期浓缩乳冷冻效果增加,浓缩乳迅速冻实,阻止脂肪上浮,阻止乳糖结晶成沙砾化,阻止微生物的繁殖,保证复原质量。
本发明采用两段打冷技术,由此,打冷单元150包括第一打冷单元151和第二打冷单元152,并且在第二打冷单元152的下游,优选地提供缓存罐,以暂时存放经过两级打冷的生牛乳。
第一打冷单元151优选地包括带有夹套的储存罐,2-3℃冰水作为冷媒被泵送通过储存罐的夹套,由此将储存罐内的浓缩乳从约12-14℃降低到4-7℃。经过第一打冷单元151冷却的浓缩乳可以被送入缓存罐暂存。
第二打冷单元152优选地包括低温临界列管换热器,如图所示,该换热器包括主体1521、冷媒室1522以及穿过冷媒室的管道1523。来自第一打冷单元151的浓缩乳被泵送到管道1523中,并且在穿过管道1523的同时与冷 媒室1522内的冷媒进行热交换,并被迅速冷却至-2~3℃。该冷媒优选地采用50%乙二醇水溶液。
经过两段打冷的浓缩乳然后可以被送入灌装机。优选地是,在第二打冷单元1522的出口至灌装机之间的管道为保温管道或者优选地,该管道为带有夹套的管道,在夹套中通有1℃的冰水作为冷却剂,以防止在浓缩乳流经该管道的过程中被外界温度加热。
采用两段打冷的原因在于第一段打冷在浓缩乳出料后,将15度左右的浓缩乳降到4-7℃在缓存罐中保存。保证浓缩乳可以在最好的状态保存在缓存罐中同时控制产品中微生物的繁殖。第二段打冷的目的在于在灌装之前,快速的将产品温度到-2~-3℃。其目的在于降低浓缩乳产品入库时的温度有利于产品迅速冷冻到目标温度。防止出现脂肪上浮、乳糖,蛋白质结晶等影响浓缩乳后续使用品质的问题。
六、清洗单元(图中未标识)
浓缩乳生产结束后会有一定的污垢残留在反渗透膜表面,导致膜通量降低,影响继续生产。根据本发明,设置了清洗单元,该清洗单元包括高压泵,以在压力下在控制下将不同的清洗液供给到各个单元,从而该清洗单元可以对整个设备进行清洗工艺,保证清洗后膜通量回复至生产前的数值。这对于生产效率和降低成本,能耗有重要作用。
例如,清洗工艺如下进行:
(1)第一步,50-55℃热水水冲900s,冲洗流量为5000l/h。目的在于冲洗掉系统内残留的生产后的浓缩乳。
(2)第二步,碱+表面活性剂循环清洗。其中碱的浓度0.4-0.6w/w%,PH值为10.9-11.1。表面活性剂浓度为0.2-0.3w/w%,添加清洗剂后将系统预热至50-55℃,清洗流量为5000l/h,循环1800s。
(3)第三步,冲洗,水冲900s,冲洗流量为5000l/h。目的在于冲洗掉系统内的清洗剂。
(4)第四步,碱+酶循环清洗,其中碱的浓度0.6-0.8w/w%,PH值为10-10.8。酶浓度为0.2-0.3w/w%,添加清洗剂后将系统预热至47-50℃,清洗流量为5000l/h,循环2700s。
(5)第五步,冲洗,水冲900s,冲洗流量为5000l/h。目的在于冲洗掉系统内的清洗剂。
(6)第六步,酸循环清洗,其中酸的浓度0.3-0.4w/w%,PH值为1.8-2.0,添加清洗剂后将系统预热至47-50℃,清洗流量为5000l/h,循环1800s。
(7)第七步,冲洗,水冲900s,冲洗流量为5000l/h。目的在于冲洗掉系统内的清洗剂。
(8)第八步,碱+表面活性剂循环清洗,其中碱的浓度0.4-0.6w/w%,PH值为10.9-11.1。表面活性剂浓度为0.2-0.3w/w%,添加清洗剂后将系统预热至50-55℃,清洗流量为5000l/h,循环1800s。
(9)第九步,水冲,水冲1800s,冲洗流量为5000l/h。目的在于冲洗掉系统内的清洗剂。
(10)第十步,通量测试,常温水系统内循环,观察RO渗透液流量,根据同初始流量比较判定。
七、操作过程
下面参照图6,描述根据本发明的示例性实施例的浓缩设备的操作过程。如图6所示,在步骤S1,生乳到厂后进行理化指标检验TS 12-13%,脂肪2.8-3.0%,蛋白质2.8-3.3%,对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm,二级过滤器孔径0.50mm。
2)在步骤S2,生乳暂存后进行预处理操作或除菌分离操作,在这个操作中,生乳中的芽孢被去除,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%,处理后将生乳冷却至7摄氏度,并储存。
3)在步骤S3,经过除菌分离操作的生乳进入均质单元中进行冷均质,温度设定为13度,两级压力共170bar,其中,一级均质压力为120bar,二级均质压力为50bar。
4)在步骤S4,经过均质单元均质化的生牛乳进入浓缩单元,该浓缩单元包括低压浓缩单元和高压浓缩单元,因此,步骤S4可以包括低压浓缩操作S41和高压浓缩操作S42。作为示例,低压反渗透膜处理单元为7级,前3级使用低流道30mil使用40bar压力。后4级采用中流道45mil,压力为50bar。膜表面流速为5m/s。在生牛乳浓缩至总固体含量25%左右时,被泵入高压反 渗透膜处理单元,高压反渗透膜单元采用高流道65mil,压力为80bar,膜表面流速为7m/s,反渗透膜内的温度一直维持在15℃以下,经过高压反渗透膜处理部分得到的浓缩乳总固体含量在40-45%;
5)在步骤S5,经过浓缩的浓缩乳被泵入打冷单元的第一打冷单元中,该第一打冷单元的罐内温度控制在4℃,使用1℃冰水作为冷媒。被初步打冷后的浓缩乳经由增压泵进入第二打冷单元,即,低温临界列管式换热器,使用-5℃的50%的乙二醇水溶液作为冷媒,在浓缩乳通过换热器管道时,浓缩乳与冷媒进行热交换,使得第二打冷单元的出口温度为-2.5℃。然后,浓缩乳经带有夹管冷却的管道被送入灌装机灌装。
6)在步骤S6,浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度;
7)在步骤S7,将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下22度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)可选的,在浓缩设备生产完成后或者在预定生产批次之后,使用清洗单元执行标准CIP工艺来清洗浓缩设备,该清洗步骤已经在上面详细描述,因此,在此不再赘述。
有益效果
为解决食品工业(特别是乳制品)中的浓缩问题,通常包括以下方法:1)蒸发浓缩法:利用设备的加热作用,将标准化后的生牛乳加入蒸发釜中,加热蒸发釜,在高温下使生牛乳在其沸点时汽化,并将汽化时产生的二次蒸汽不断排除,从而除去牛乳中的水分,使得牛乳的浓度不断提高,直到达到预想浓度。这种方法通过高温、高压的方法将料液中的水分去除;存在缺点在于:一、能耗成本高,过程需要加热以产生大量蒸汽,能源消耗大;二、在浓缩过程中,这种传统蒸发方法需要对牛乳实施加热,加热的强度低会导致蒸发效率低,强度过强则会导致某些料液中有可能包含的活性物质和部分营养物质被破坏;三、通过这种浓缩方法,只能去除10%的水分,往往达不到企业对于比较高的浓缩度的要求,因此这种浓缩方法的效率比较低。特别是对于乳制品,蒸发浓缩在高温下实现,能耗高,增加了乳制品的成本;同时, 蒸发浓缩所需要的温度较高,过程中不仅有物理变化还存在化学变化,造成牛乳中的热敏性营养物质和风味物质损失,牛乳的颜色也会改变。
第二种方法为2)常规反渗透方法:反渗透设备由料液疏导网、纯水疏导网、反渗透膜、泵等构成,使得处理过的料液通过预定的流道,料液中的水分子透过反渗透膜而被采集到中央集水管,而最终得到浓缩的料液。但是这种浓缩设备的缺点在于:一、能耗较高,随着浓缩的进行料液中的总固形物含量逐渐升高,为了克服更高的渗透压需要提供系统备用的运行泵的功率增大,故而能耗增高;二、受到常规反渗透技术、膜芯及设备最高压力的限制,使得浓缩技术所能实现的浓缩倍数低,约为2倍左右,不能满足较高的浓缩要求。这种方法的局限性在于浓缩倍数受限,目前使用常规反渗透技术只能将牛乳浓缩到32%。
第三种方法为3)正渗透方法:目前的新兴技术,没有应用于乳品生产的实例;使料液和汲取液在正渗透膜的两边流动,利用膜两侧的盐浓度不同所产生的渗透压,水从盐浓度小的料液一侧通过正渗透膜,进入盐浓度较大的汲取液一侧,以实现除去料液中的水份使料液浓缩;此法局限性在于,目前没有工业应用的实例,膜的大小受制造能力的限制,不能生产大面积的膜,使得处理牛乳的能力低;运行成本高,正渗透膜易堵塞,更换膜的成本很高。
本申请的反渗透浓缩方法,包括低压反渗透膜浓缩处理和高压反渗透膜浓缩处理的两种反渗透膜浓缩处理。其中,所述低压反渗透膜浓缩处理采用第一预定压力对进料进行反渗透浓缩处理,所述高压反渗透膜浓缩处理采用第二预定压力对进料进行反渗透浓缩处理,所述第一预定压力小于所述第二预定压力。本申请采用上述反渗透浓缩方法,克服了食品工业(特别是乳制品)浓缩的上述问题,实现了乳制品的高度浓缩,降低了能耗和运行成本,避免了热处理对乳制品的各种理化、微生物及生物化学指标的影响,以及避免了乳制品在浓缩处理中微生物和细菌过度繁殖。
通常条件下,常规RO只能将原奶浓缩至TS 20%左右,受浓缩乳浓度、渗透压、粘度、膜的种类等因素的影响,浓缩比无法提高,无法得到浓度更高的浓缩乳。现在市面上没有现成的针对食品工业(特别是乳制品)的高压RO设备,常规高压RO设备通常都无法满足乳品生产的要求(包括设计要求、清洗要求、耐高压要求等);并且,直接使用常规高压RO设备会导致膜的流 道变窄,使得膜更易污染、堵塞。本申请采用先低压反渗透浓缩、再高压反渗透浓缩的方式,并对高压RO设备进行特殊设计,避免了上述问题。
并且,本申请还优选采用多级浓缩,包括多级高压RO浓缩和多级低压RO浓缩。对于浓缩乳制品,单级浓缩只在一组膜上循环,单级膜的参数无法调整,随着浓缩的进行,脂肪等物质会在膜表面沉积,沉积的速率会越来越快;采用多级浓缩,可以大大减少预浓缩的时间,有利于设备连续化生产。并且,单级浓缩时,浓缩乳反复经过同一膜芯,随着浓缩乳浓度变高,膜通量减小,表面流速变慢,容易导致膜面的堵塞,增加设备的能耗;多级浓缩的优势,还包括浓缩乳依次经过干净,膜通量表现最好的膜面,表面流速损失较少,污垢在膜面上残留更少,从而做到更加节能环保。
另外,一般RO工艺的前处理温度为65-70℃,影响了乳制品的品质。本申请的冷浓缩工艺,温度全程控制在50度以下,膜浓缩阶段的温度控制在15度以下。尽最大可能保持低温,以控制微生物繁殖和保证最大限度保证牛奶中的活性物质不被破坏。本申请采用多种低温前处理工艺的组合和调整了各步骤参数,有利地控制了全程处理温度。
实施例
原奶验收采用国家标准GB 19301-2010、NY/T 1172-2006。
实施例1
1)生乳到厂后进行理化指标检验TS 12.33%,脂肪3.2%,蛋白质3.1%,对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm,二级过滤器孔径0.50mm。
2)生乳暂存后进行除菌分离操作,后将生乳冷却至7摄氏度,并储存。
3)生乳进入均质机中进行冷均质,温度13摄氏度,两级压力共170bar,其中,一级均质压力为120bar,二级均质压力为50bar,后进入除菌分离机中进行除芽孢,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%。
4)生乳进入常压反渗透膜处理单元,其中,常压反渗透膜组为7级,前3级使用低流道30mil使用40bar压力。后4级采用中流道45mil,压力为50bar。膜表面流速为5m/s,选用浓缩至总固25%左右时进入高压反渗透膜 处理单元,高压反渗透膜单元采用高流道65mil,压力为80bar,膜表面流速为7m/s,反渗透膜内的温度一直维持在15℃以下,高压反渗透部分,得到的浓缩乳总固含量在40.2%;浓缩乳进入浓缩乳暂存罐。
5)浓缩乳进入贮存罐中持续打冷即一段打冷,罐内温度控制在4℃,使用1℃冰水作为冷媒。后浓缩乳经由物料泵进入低温临界列管式换热器即二段打冷,使用-5℃的50%的乙二醇水溶液作为冷媒。二段打冷的入口温度为4℃,经过打冷出口温度为-2.5℃。浓缩乳经带有夹管打冷的管道使用1℃的冰水作为冷媒,快速到达灌装机灌装。
6)浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度。
7)将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下22度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)清洗工艺为上述标准CIP清洗。
结果:经上述工艺生产后,得到稳定的淡黄色块状冷冻浓缩乳,经检测打冷之前,浓缩乳总固含量40.5%,蛋白质含量10.22%,脂肪含量12.0%,乳铁蛋白含保存量90%,糠胺酸含量为11.3mg/L,IgG保存量为95%,GMP保存量为100%。冷冻12个月后复原,指标稳定,无脂肪上浮,煮沸后无沙砾化现象。CIP后经检测膜通量回复到使用前数值。竞速冻库冷冻,14小时后,浓缩乳中心温度达到-8℃。
实施例2
1)生乳到厂后进行理化指标检验TS 13.1%,脂肪2.9%,蛋白质3.2%,对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm,二级过滤器孔径0.50mm。
2)生乳暂存后进行除菌分离操作,后将生乳冷却至7摄氏度,并储存。
3)生乳进入均质机中进行冷均质,温度13摄氏度,两级压力共170bar,其中,一级均质压力为120bar,二级均质压力为50bar,后进入除菌分离机中进行除芽孢,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%。
4)生乳进入常压反渗透膜处理单元,其中,常压反渗透膜组为7级,前 3级使用低流道30mil使用40bar压力。后4级采用中流道45mil,压力为50bar。膜表面流速为5m/s,选用浓缩至总固25%左右时进入高压反渗透膜处理单元,高压反渗透膜单元采用高流道65mil,压力为80bar,膜表面流速为7m/s,反渗透膜内的温度一直维持在15℃以下,高压反渗透部分,得到的浓缩乳总固含量在42.5%;浓缩乳进入浓缩乳暂存罐。
5)浓缩乳进入贮存罐中持续打冷即一段打冷,罐内温度控制在4℃,使用1℃冰水作为冷媒。后浓缩乳经由物料泵进入低温临界列管式换热器即二段打冷,使用-5℃的50%的乙二醇水溶液作为冷媒。二段打冷的入口温度为4℃,经过打冷出口温度为-2.5℃。浓缩乳经带有夹管打冷的管道使用1℃的冰水作为冷媒,快速到达灌装机灌装。
6)浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度。
7)将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下22度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)清洗工艺为上述标准CIP清洗。
结果:经上述工艺生产后,得到稳定的淡黄色块状冷冻浓缩乳,经检测打冷之前,浓缩乳总固含量41.3%,蛋白质含量10.31%,脂肪含量12.1%,乳铁蛋白含量保存量92%,糠胺酸含量为11.5mg/L,IgG保存量为95%,GMP保存量为100%。冷冻12个月后复原,指标稳定,无脂肪上浮,煮沸后无沙砾化现象。CIP后经检测膜通量回复到使用前数值。竞速冻库冷冻,14小时后,浓缩乳中心温度达到-8℃。
实施例3
1)生乳到厂后进行理化指标检验TS 12.7%,脂肪3.1%,蛋白质3.3%,对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm,二级过滤器孔径0.50mm。
2)生乳暂存后进行除菌分离操作,后将生乳冷却至7摄氏度,并储存。
3)生乳进入均质机中进行冷均质,温度13摄氏度,两级压力共170bar,其中,一级均质压力为120bar,二级均质压力为50bar,后进入除菌分离机中 进行除芽孢,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%。
4)生乳进入常压反渗透膜处理单元,其中,常压反渗透膜组为7级,前3级使用低流道30mil使用40bar压力。后4级采用中流道45mil,压力为50bar。膜表面流速为5m/s,选用浓缩至总固25%左右时进入高压反渗透膜处理单元,高压反渗透膜单元采用高流道65mil,压力为80bar,膜表面流速为7m/s,反渗透膜内的温度一直维持在15℃以下,高压反渗透部分,得到的浓缩乳总固含量在44.3%;浓缩乳进入浓缩乳暂存罐。
5)浓缩乳进入贮存罐中持续打冷即一段打冷,罐内温度控制在4℃,使用1℃冰水作为冷媒。后浓缩乳经由物料泵进入低温临界列管式换热器即二段打冷,使用-5℃的50%的乙二醇水溶液作为冷媒。二段打冷的入口温度为4℃,经过打冷出口温度为-2.5℃。浓缩乳经带有夹管打冷的管道使用1℃的冰水作为冷媒,快速到达灌装机灌装。
6)浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度。
7)将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下22度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)清洗工艺为上述标准CIP清洗。
结果:经上述工艺生产后,得到稳定的淡黄色块状冷冻浓缩乳,经检测打冷之前,浓缩乳总固含量44.3%,蛋白质含量10.61%,脂肪含量12.9%,乳铁蛋白含保存量92%,糠胺酸含量为11.4mg/L,IgG保存量为94%,GMP保存量为100%。冷冻12个月后复原,指标稳定,无脂肪上浮,煮沸后无沙砾化现象。CIP后经检测膜通量回复到使用前数值。竞速冻库冷冻,14小时后,浓缩乳中心温度达到-8℃。
对比例1(采用常规均质机和低温均质机的对比)
1)生乳到厂后进行理化指标检验TS 12.5%,脂肪3.0%,蛋白质3.1%,对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm,二级过滤器孔径0.50mm。
2)生乳暂存后进行除菌分离操作,后将生乳冷却至7摄氏度,并储存。
3)生乳进入均质机中进行冷均质,温度22℃,两级压力共170bar,其中,一级均质压力为120bar,二级均质压力为50bar,后进入除菌分离机中进行除芽孢,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%。
4)生乳进入常压反渗透膜处理单元,其中,常压反渗透膜组为7级,前3级使用低流道30mil使用40bar压力。后4级采用中流道45mil,压力为50bar。膜表面流速为5m/s,选用浓缩至总固25%左右时进入高压反渗透膜处理单元,高压反渗透膜单元采用高流道65mil,压力为80bar,膜表面流速为7m/s,反渗透膜内的温度一直维持在15℃以下,高压反渗透部分,得到的浓缩乳总固含量在43.1%;浓缩乳进入浓缩乳暂存罐。
5)浓缩乳进入贮存罐中持续打冷即一段打冷,罐内温度控制在4℃,使用1℃冰水作为冷媒。后浓缩乳经由物料泵进入低温临界列管式换热器即二段打冷,使用-5℃的50%的乙二醇水溶液作为冷媒。二段打冷的入口温度为4℃,经过打冷出口温度为-2.5℃。浓缩乳经带有夹管打冷的管道使用1℃的冰水作为冷媒,快速到达灌装机灌装。
6)浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度。
7)将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下22度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)清洗工艺为上述标准CIP清洗。
结果:经检测,产品总固含量为43.1%,蛋白质含量10.22%,脂肪含量为12.30%,糠胺酸含量为11.1mg/L,IgG保存量为93%,GMP保存量为100%。符合产品要求,但是微生物增值严重,菌落总数1080000CFU/mL(g),产品pH过低,pH=5.90不符合相关法规,并且遇高温易结块。
对比例2(第二段打冷未使用乙二醇灌装温度不够)
1)生乳到厂后进行理化指标检验TS 12.43%,脂肪3.2%,蛋白质3.1%,对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm,二级过滤器孔径0.50mm。
2)生乳暂存后进行除菌分离操作,后将生乳冷却至7摄氏度,并储存。
3)生乳进入均质机中进行冷均质,温度13度,两级压力共170bar,其中,一级均质3压力为120bar,二级均质压力为50bar,后进入除菌分离机中进行除芽孢,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%。
4)生乳进入常压反渗透膜处理单元,其中,常压反渗透膜组为7级,前3级使用低流道30mil使用40bar压力。后4级采用中流道45mil,压力为50bar。膜表面流速为5m/s,选用浓缩至总固25%左右时进入高压反渗透膜处理单元,高压反渗透膜单元采用高流道65mil,压力为80bar,膜表面流速为7m/s,反渗透膜内的温度一直维持在15℃以下,高压反渗透部分,得到的浓缩乳总固含量在42.1%;浓缩乳进入浓缩乳暂存罐。
5)浓缩乳进入贮存罐中持续打冷即一段打冷,罐内温度控制在4℃,使用1℃冰水作为冷媒。后浓缩乳经由物料泵进入低温临界列管式换热器即二段打冷,使用1℃的冰水作为冷媒。二段打冷的入口温度为4℃,经过打冷出口温度为3.5℃。浓缩乳经带有夹管打冷的管道使用1℃的冰水作为冷媒,快速到达灌装机灌装。
6)浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度。
7)将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下22度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)清洗工艺为上述标准CIP清洗。
结果:经检测,产品总固含量为42.1%,蛋白质含量10.43%,脂肪含量为12.40%,糠胺酸含量为10.9mg/L,IgG保存量为95%,GMP保存量为100%。符合产品要求,但是第二段打冷未使用乙二醇水溶液,浓缩乳成品进入速冻库时温度过高不达标,浓缩乳冻结速度过慢,脂肪上浮,体系不稳定,复溶后产品有分层情况发生,并且嗜冷菌增殖迅速,380CFU/mL(g)影响了产品的风味。
对比例3(速冻库温度、成本对比)
1)生乳到厂后进行理化指标检验TS 12.60%,脂肪3.3%,蛋白质3.2%,对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm, 二级过滤器孔径0.50mm。
2)生乳暂存后进行除菌分离操作,后将生乳冷却至7摄氏度,并储存。
3)生乳进入均质机中进行冷均质,温度13度,两级压力共170bar,其中,一级均质压力为120bar,二级均质压力为50bar,后进入除菌分离机中进行除芽孢,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%。
4)生乳进入常压反渗透膜处理单元,其中,常压反渗透膜组为7级,前3级使用低流道30mil使用40bar压力。后4级采用中流道45mil,压力为50bar。膜表面流速为5m/s,选用浓缩至总固25%左右时进入高压反渗透膜处理单元,高压反渗透膜单元采用高流道65mil,压力为80bar,膜表面流速为7m/s,反渗透膜内的温度一直维持在15℃以下,高压反渗透部分,得到的浓缩乳总固含量在42.2%;浓缩乳进入浓缩乳暂存罐。
5)浓缩乳进入贮存罐中持续打冷即一段打冷,罐内温度控制在4℃,使用1℃冰水作为冷媒。后浓缩乳经由物料泵进入低温临界列管式换热器即二段打冷,使用-5℃的50%的乙二醇水溶液作为冷媒。二段打冷的入口温度为4℃,经过打冷出口温度为-2.5℃。浓缩乳经带有夹管打冷的管道使用1℃的冰水作为冷媒,快速到达灌装机灌装。
6)浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度。
7)将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下40度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)清洗工艺为上述标准CIP清洗。
结果:经检测,产品总固含量为42.2%,蛋白质含量9.98%,脂肪含量为11.50%,糠胺酸含量为13.1mg/L,IgG保存量为94%,GMP保存量为100%。符合产品要求,浓缩乳正常生产,浓缩乳冷冻速率更快,可快速运输离场入仓库。指标稳定,无脂肪上浮,煮沸后无沙砾化现象,但是工厂能耗是实施利1的2倍,浪费能源,增加了工厂的碳排放。
对比例4(只使用常规RO膜浓缩)
1)生乳到厂后进行理化指标检验TS 12.53%,脂肪3.5%,蛋白质3.3%, 对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm,二级过滤器孔径0.50mm。
2)生乳暂存后进行除菌分离操作,后将生乳冷却至7摄氏度,并储存。
3)生乳进入均质机中进行冷均质,温度13度,两级压力共170bar,其中,一级均质压力为120bar,二级均质压力为50bar,后进入除菌分离机中进行除芽孢,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%。
4)生乳进入常压反渗透膜处理单元,其中,常压反渗透膜组为7级,前3级使用低流道30mil使用40bar压力。后4级采用中流道45mil,压力为50bar。膜表面流速为5m/s,浓缩至总固25%的浓缩乳进入浓缩乳暂存罐。
5)浓缩乳进入贮存罐中持续打冷即一段打冷,罐内温度控制在4℃,使用1℃冰水作为冷媒。后浓缩乳经由物料泵进入低温临界列管式换热器即二段打冷,使用-5℃的50%的乙二醇水溶液作为冷媒。二段打冷的入口温度为4℃,经过打冷出口温度为-2.5℃。浓缩乳经带有夹管打冷的管道使用1℃的冰水作为冷媒,快速到达灌装机灌装。
6)浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度。
7)将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下22度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)清洗工艺为上述标准CIP清洗。
经检测,产品总固含量为25%,蛋白质含量5.62%,脂肪含量为6.30%,与实施例1相比,该使用常规反渗透技术生产浓缩乳的对比例未能达到生产35-45%总固形物浓缩乳的要求。同时脂肪含量、蛋白质含量、乳铁蛋白含量、糠胺酸、IgG、GMP含量也未达标。
对比例5(常规换热器和低温临界管换热器的对比)
1)生乳到厂后进行理化指标检验TS 12.21%,脂肪3.3%,蛋白质3.15%,对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm, 二级过滤器孔径0.50mm。
2)生乳暂存后进行除菌分离操作,后将生乳冷却至7摄氏度,并储存。
3)生乳进入均质机中进行冷均质,温度13度,两级压力共170bar,其中,一级均质压力为120bar,二级均质压力为50bar,后进入除菌分离机中进行除芽孢,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%。
4)生乳进入常压反渗透膜处理单元,其中,常压反渗透膜组为7级,前3级使用低流道30mil使用40bar压力。后4级采用中流道45mil,压力为50bar。膜表面流速为5m/s,选用浓缩至总固25%左右时进入高压反渗透膜处理单元,高压反渗透膜单元采用高流道65mil,压力为80bar,膜表面流速为7m/s,反渗透膜内的温度一直维持在15℃以下,高压反渗透部分,得到的浓缩乳总固含量在40.2%;浓缩乳进入浓缩乳暂存罐。
5)浓缩乳进入贮存罐中持续打冷即一段打冷,罐内温度控制在4℃,使用1℃冰水作为冷媒。后浓缩乳经由物料泵进入常规列管式换热器即二段打冷,使用-5℃的50%的乙二醇水溶液作为冷媒。二段打冷的入口温度为4℃,经过打冷出口温度为-2.5℃。浓缩乳经带有夹管打冷的管道使用1℃的冰水作为冷媒,快速到达灌装机灌装。
6)浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度。
7)将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下22度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)清洗工艺为上述标准CIP清洗。
结果:经检测,产品总固含量为40.2%,蛋白质含量9.22%,脂肪含量为10.50%,糠胺酸含量为14.6mg/L,IgG保存量为94%,GMP保存量为100%。符合产品要求,与低温临界管式换热器相比,常规列管式换热器流道少,冷媒流动速度慢,物料流动速度慢导致换热器堵塞,未能得到浓缩乳产品。
对比例6(未按CIP工艺清洗)
1)生乳到厂后进行理化指标检验TS 12.54%,脂肪3.4%,蛋白质3.2%,对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm,二级过滤器孔径0.50mm。
2)生乳暂存后进行除菌分离操作,后将生乳冷却至7摄氏度,并储存。
3)生乳进入均质机中进行冷均质,温度13度,两级压力共170bar,其中,一级均质压力为120bar,二级均质压力为50bar,后进入除菌分离机中进行除芽孢,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%。
4)生乳进入常压反渗透膜处理单元,其中,常压反渗透膜组为7级,前3级使用低流道30mil使用40bar压力。后4级采用中流道45mil,压力为50bar。膜表面流速为5m/s,选用浓缩至总固25%左右时进入高压反渗透膜处理单元,高压反渗透膜单元采用高流道65mil,压力为80bar,膜表面流速为7m/s,反渗透膜内的温度一直维持在15℃以下,高压反渗透部分,得到的浓缩乳总固含量在44.2%;浓缩乳进入浓缩乳暂存罐。
5)浓缩乳进入贮存罐中持续打冷即一段打冷,罐内温度控制在4℃,使用1℃冰水作为冷媒。后浓缩乳经由物料泵进入低温临界列管式换热器即二段打冷,使用-5℃的50%的乙二醇水溶液作为冷媒。二段打冷的入口温度为4℃,经过打冷出口温度为-2.5℃。浓缩乳经带有夹管打冷的管道使用1℃的冰水作为冷媒,快速到达灌装机灌装。
6)浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度。
7)将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下22度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)清洗工艺未按上述标准CIP清洗。
结果:经检测,产品总固含量为44.2%,蛋白质含量11.02%,脂肪含量为12.70%,糠胺酸含量为14.6mg/L,IgG保存量为95%,GMP保存量为100%。符合产品要求,冷冻入库后产品符合冷冻保存要求,浓缩模块经过清洗后通量检测,通量未达到生产前的通量。拆开膜壳厚膜表面有明显污垢,影响下次的生产。
对比例7(仅用高压RO技术)
1)生乳到厂后进行理化指标检验TS 13.5%,脂肪3.0%,蛋白质3.3%,对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm,二级过滤器孔径0.50mm。
2)生乳暂存后进行除菌分离操作,后将生乳冷却至7摄氏度,并储存。
3)生乳进入均质机中进行冷均质,温度13度,两级压力共170bar,其中,一级均质压力为120bar,二级均质压力为50bar,后进入除菌分离机中进行除芽孢,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%。
4)生乳直接进入高压反渗透膜处理单元,其中,高压反渗透膜单元采用高流道65mil,压力为80bar,膜表面流速为7m/s,反渗透膜内的温度一直维持在15℃以下,高压反渗透部分,得到的浓缩乳总固含量在36.5%;浓缩乳进入浓缩乳暂存罐。
5)浓缩乳进入贮存罐中持续打冷即一段打冷,罐内温度控制在4℃,使用1℃冰水作为冷媒。后浓缩乳经由物料泵进入低温临界列管式换热器即二段打冷,使用-5℃的50%的乙二醇水溶液作为冷媒。二段打冷的入口温度为4℃,经过打冷出口温度为-2.5℃。浓缩乳经带有夹管打冷的管道使用1℃的冰水作为冷媒,快速到达灌装机灌装。
6)浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度。
7)将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下22度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)清洗工艺为上述标准CIP清洗。
结果:经检测,产品总固含量为36.5%,蛋白质含量8.05%,脂肪含量为8.33%,糠胺酸含量为50.5mg/L,IgG保存量为95%,GMP保存量为90%。不符合产品要求,与实施例工艺相比较,膜浓缩设备膜通量下降迅速,清洗后发现膜表面污阻严重,未能生产出合规的浓缩乳。
对比例8(使用单级浓缩)
1)生乳到厂后进行理化指标检验TS 12.7%,脂肪3.1%,蛋白质3.2%, 对符合要求的生奶进行过滤除去物理杂质,其中,一级过滤器孔径1.00mm,二级过滤器孔径0.50mm。
2)生乳暂存后进行除菌分离操作,后将生乳冷却至7摄氏度,并储存。
3)生乳进入均质机中进行冷均质,温度13度,两级压力共170bar,其中,一级均质压力为120bar,二级均质压力为50bar,后进入除菌分离机中进行除芽孢,芽孢分离率大于95%,所获得的生乳中总固含量为12.35%。
4)生乳进入常压反渗透膜处理单元,其中,常压反渗透膜组为1级,采用中流道45mil,压力为50bar,膜表面流速为5m/s,选用浓缩至总固25%左右时进入高压反渗透膜处理单元,共1级,高压反渗透膜单元采用高流道65mil,压力为80bar,膜表面流速为7m/s,反渗透膜内的温度一直维持在15℃以下,高压反渗透部分,得到的浓缩乳总固含量在42.3%;浓缩乳进入浓缩乳暂存罐。
5)浓缩乳进入贮存罐中持续打冷即一段打冷,罐内温度控制在4℃,使用1℃冰水作为冷媒。后浓缩乳经由物料泵进入低温临界列管式换热器即二段打冷,使用-5℃的50%的乙二醇水溶液作为冷媒。二段打冷的入口温度为4℃,经过打冷出口温度为-2.5℃。浓缩乳经带有夹管打冷的管道使用1℃的冰水作为冷媒,快速到达灌装机灌装。
6)浓缩乳通过大袋灌装机灌入订制的无菌八角袋中,灌装温度保持在零下2度。
7)将浓缩乳装入与八角袋匹配的纸箱中,码垛进入速冻库,冷库温度零下22度,迎面风速7m/s,冷冻18小时后,中心温度达到-8℃后移入冷冻库保存,冷冻库温度为-18℃,得到冷冻浓缩乳。
8)清洗工艺为上述标准CIP清洗。
结果:经检测,产品总固含量为42.3%,蛋白质含量10.42%,脂肪含量为11.90%,糠胺酸含量为17.5mg/L,IgG保存量为94%,GMP保存量为100%。符合产品要求,与实施例浓缩工艺相比较,浓缩乳生产预浓缩时间增加,生产5小时后膜通量剧烈下降,停止生产,清洗后发现膜表面污阻严重。

Claims (31)

  1. 一种乳制品的浓缩方法,包括使用反渗透膜对生乳进行反渗透浓缩处理的步骤;所述反渗透浓缩处理包括低压反渗透膜浓缩处理和高压反渗透膜浓缩处理;
    其中,所述低压反渗透膜浓缩处理采用第一预定压力对进料进行反渗透浓缩处理,所述高压反渗透膜浓缩处理采用第二预定压力对进料进行反渗透浓缩处理,所述第一预定压力小于所述第二预定压力。
  2. 如权利要求1所述的浓缩方法,其中,所述低压反渗透膜处理包括多级浓缩处理(优选1-14级浓缩处理,更优选6-11级浓缩处理);优选地,每级低压反渗透膜处理采用一个或多个膜组件;更优选地,每个膜组件包括一支或多支膜,所述多支膜之间串联、并联或串联和并联结合。
  3. 如权利要求2所述的浓缩方法,其中,所述低压反渗透膜处理的多级浓缩处理中各级所采用的压力不同;优选地,所述低压反渗透膜处理中,前3级所采用的压力为1-50bar(优选1-40bar,更优选25-35bar);优选地,所述低压反渗透膜处理中,第4级及以后级所采用的压力为30-60bar(优选40-50bar,更优选43-47bar)。
  4. 如权利要求1-3中任一项所述的浓缩方法,其中,所述高压反渗透膜处理包括多级浓缩处理(优选1-6级浓缩处理,更优选2-4级浓缩处理);优选地,每级高压反渗透膜处理采用一个或多个膜组件;更优选地,每个膜组件包括一支或多支膜,所述多支膜之间串联、并联或串联和并联结合。
  5. 如权利要求4所述的浓缩方法,其中,所述高压反渗透膜处理的多级浓缩处理中各级所采用的压力不同;优选地,所述高压反渗透膜处理中,所采用的压力为50-200bar(优选60-80bar,更优选60-65bar)。
  6. 如权利要求1-5中任一项所述的浓缩方法,所述浓缩方法中被浓缩的料液温度为20℃以下(优选0-15℃,更优选7-15℃);
    优选地,通过高压散热器使被浓缩的料液温度保持在15℃以下(更优选地,保持在10-14℃);优选地,所述高压散热器设置在预定级的高压反渗透膜处理单元的进料口或出料口。
  7. 如权利要求1-6中任一项所述的浓缩方法,在所述反渗透浓缩处理步 骤前,还包括:i)暂存步骤;ii)预处理步骤;和/或iii)均质步骤。
  8. 如权利要求7所述的浓缩方法,其中,所述暂存步骤包括对生乳进行过滤;优选地,所述过滤为两级过滤;更优选地,第一级过滤的过滤孔径为0.990mm-1.165mm,第二级过滤的孔径为0.495mm-0.589mm。
  9. 如权利要求7所述的浓缩方法,其中,所述预处理步骤包括低温除菌分离处理;优选地,所述低温除菌分离采用两级过滤;优选地,除菌分离的温度控制在45-50℃。
  10. 如权利要求7所述的浓缩方法,其中,所述均质步骤采用两级均质;优选地,所述均质步骤的工作温度保持在10-30℃(更优选15-20℃);更优选地,第一级均质的压力为100-140bar(更优选120bar),而第二级均质的压力40-60bar(更优选50bar)。
  11. 如权利要求1-10中任一项所述的浓缩方法,在所述反渗透浓缩处理步骤后,还包括:v)打冷步骤;vi)灌装步骤;vii)冷冻步骤;和/或viii)清洗步骤。
  12. 如权利要求11所述的浓缩方法,所述打冷步骤采用两段打冷。优选地,第一段打冷用冰水作为冷媒;优选地,第二段打冷用乙二醇水溶液作为冷媒。
  13. 如权利要求11所述的浓缩方法,优选地,第一段打冷的温度保持在2-10℃(更优选4-7℃);优选地,第二段打冷的温度保持在-1至-4℃(更优选-2至-3℃)。
  14. 如权利要求11所述的浓缩方法,所述灌装步骤的灌装温度保持在1至-4℃,更优选-2至-3℃。
  15. 如权利要求11所述的浓缩方法,所述冷冻步骤的冷冻温度保持在-10至-24℃,更优选-18至-22℃。
  16. 如权利要求1-15任一项所述的浓缩方法所制备的浓缩乳制品,其中总固含量为30-50%,优选为35-45%,更优选为40-45%;
    优选地,所述浓缩乳制品按浓缩比例稀释到生奶总固形物含量水平后,所检测出的糠氨酸含量为4-20mg/100g蛋白质,优选为8-15mg/100g蛋白质;
    优选地,所述浓缩乳制品按浓缩比例稀释到生奶总固形物含量水平后,所检测出的IgG(免疫球蛋白G)留存量高于95%;
    优选地,所述浓缩乳制品按浓缩比例稀释到生奶总固形物含量水平后,所检测出的GMP(糖巨肽)留存率为100%。
  17. 一种料液浓缩设备,所述料液浓缩设备包括:
    暂存单元,所述暂存单元包括存储容器以存储待浓缩的料液;
    均质单元,所述均质单元设置在所述暂存单元的下游,对所述料液施加预定的温度和压力,使得所述料液在压力和冲击作用下细化并且更均匀的相互混合;以及
    浓缩单元,所述浓缩单元设置在所述均质单元的下游,并依次包括低压浓缩单元和高压浓缩单元,其中,所述低压浓缩单元在第一预定压力下对流经的料液进行反渗透浓缩处理,且所述高压浓缩单元在第二预定压力下对流经的料液进行反渗透浓缩处理,所述第一预定压力小于所述第二预定压力。
  18. 如权利要求17所述的料液浓缩设备,其中,所述低压浓缩单元包括多级,每级低压浓缩单元包括一个或多个膜组件,每个膜组件包括一支或多支膜,所述多支膜之间串联、并联或串联和并联结合。
  19. 如权利要求18所述的料液浓缩设备,其中,所述多级低压浓缩单元中各级的压力不同。
  20. 如权利要求19所述的料液浓缩设备,其中,所述浓缩单元还包括低压热交换器,所述低压热交换器设置在预定级的低压浓缩单元的进料口或出料口,以保持被浓缩的料液的温度在15℃之下。
  21. 如权利要求17至20中任一项所述的料液浓缩设备,其中,所述高压浓缩单元包括多级,每级高压浓缩单元包括一个或多个膜组件,每个膜组件包括一支或多支膜,多支膜之间串联、并联或串联和并联结合。
  22. 如权利要求21所述的料液浓缩设备,其中,所述多级高压浓缩单元中各级的压力不同。
  23. 如权利要求22所述的料液浓缩设备,其中,所述浓缩单元还包括高压热交换器,所述高压热交换器设置在预定级的高压浓缩单元的进料口或出料口,以保持被浓缩的料液的温度在15℃之下。
  24. 如权利要求17所述的料液浓缩设备,还包括:预处理单元,所述预处理单元设置在所述暂存单元的下游,所述均质单元的上游,以对来自暂存单元的料液进行预先处理。
  25. 如权利要求24所述的料液浓缩设备,其中,所述预处理单元包括低温除菌单元,以去除料液中的细菌和/或微生物孢子。
  26. 如权利要求17所述的料液浓缩设备,还包括:打冷单元,所述打冷单元对经过所述浓缩单元浓缩的料液进行冷却。
  27. 如权利要求26所述的料液浓缩设备,其中,所述打冷单元包括第一打冷单元和第二打冷单元,所述第一打冷单元将所述料液冷却到第一冷却温度,而所述第二打冷单元将经过第一打冷单元冷却的料液进一步冷却到低于第一冷却温度的第二冷却温度。
  28. 如权利要求27所述的料液浓缩设备,其中,所述第一打冷单元包括夹层罐,所述夹层罐包括制冷液腔室以容纳制冷液。
  29. 如权利要求27所述的料液浓缩设备,其中,所述第二打冷单元包括低温临界列管式换热器。
  30. 如权利要求17所述的料液浓缩设备,还包括罐装单元,所述罐装单元将经过打冷单元冷却的料液罐装到预定包装中。
  31. 如权利要求17所述的料液浓缩设备,还包括清洗单元,所述清洗单元在所述料液浓缩完成后对所述料液浓缩设备进行清洗。
PCT/CN2020/080868 2019-10-23 2020-03-24 浓缩方法以及设备 WO2021077676A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/802,023 US20230116498A1 (en) 2019-10-23 2020-03-24 Concentration method and equipment
EP20879685.4A EP4074183A4 (en) 2019-10-23 2020-03-24 CONCENTRATION METHOD AND EQUIPMENT

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911014863.3 2019-10-23
CN201911014863 2019-10-23
CN202010129979.8 2020-02-28
CN202010129979.8A CN111213712B (zh) 2019-10-23 2020-02-28 浓缩方法以及设备
CN202010129991.9 2020-02-28
CN202010129991.9A CN111213713A (zh) 2019-10-23 2020-02-28 浓缩设备

Publications (1)

Publication Number Publication Date
WO2021077676A1 true WO2021077676A1 (zh) 2021-04-29

Family

ID=70807826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080868 WO2021077676A1 (zh) 2019-10-23 2020-03-24 浓缩方法以及设备

Country Status (6)

Country Link
US (1) US20230116498A1 (zh)
EP (1) EP4074183A4 (zh)
CN (2) CN111213713A (zh)
AU (1) AU2020202754B2 (zh)
NZ (1) NZ763909A (zh)
WO (1) WO2021077676A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112136886A (zh) * 2020-09-28 2020-12-29 刘秀荣 一种乳及乳制品的浓缩方法
CN112136899A (zh) * 2020-09-28 2020-12-29 刘秀荣 高品质乳粉及其制备方法
CN112592004A (zh) * 2020-12-28 2021-04-02 上海丰信环保科技有限公司 一种集成电路行业废水回用零排放工艺及系统
CN117147273B (zh) * 2023-10-31 2024-02-02 成都博瑞科传科技有限公司 一种本底样本浓缩装置及其浓缩方法、检测设备校准方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101537312A (zh) * 2009-03-23 2009-09-23 广东加多宝饮料食品有限公司 多级连续反渗透膜浓缩系统及使用该系统进行浓缩的方法
CN103429091A (zh) * 2010-09-08 2013-12-04 卡夫食品环球品牌有限责任公司 高固体浓缩的乳制品液体
CN206391877U (zh) * 2017-01-13 2017-08-11 重庆摩尔水处理设备有限公司 一种牛奶浓缩处理系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227010A (ja) * 1985-07-25 1987-02-05 Shokuhin Sangyo Maku Riyou Gijutsu Kenkyu Kumiai 逆浸透処理方法
SU1837412A1 (ru) * 1989-11-02 1995-09-20 Научно-производственное объединение маслодельной и сыродельной промышленности "Углич" Способ концентрирования молочного сырья в установке обратного осмоса
JPH08108048A (ja) * 1994-10-12 1996-04-30 Toray Ind Inc 逆浸透分離装置及び逆浸透分離方法
CN101530129B (zh) * 2008-03-13 2012-08-22 张保钢 冻干奶粉的生产方法
CN201188850Y (zh) * 2008-05-22 2009-02-04 南京苏邦生物技术有限公司 一种初乳除菌、浓缩成套装置
CN101396049A (zh) * 2008-09-08 2009-04-01 厦门绿邦膜技术有限公司 由鲜奶制备奶粉的方法及设备
CN101390538B (zh) * 2008-11-17 2012-05-02 内蒙古蒙牛乳业(集团)股份有限公司 一种全脂奶及其生产方法
CN104798883A (zh) * 2014-01-26 2015-07-29 内蒙古蒙牛乳业(集团)股份有限公司 一种标准化乳制品基料的制备方法、乳制品基料及酸奶的制备方法
WO2015175710A1 (en) * 2014-05-13 2015-11-19 Select Milk Producers, Inc. Processes for producing treated milk products
CN105325540A (zh) * 2014-08-12 2016-02-17 穆勒加美制冷科技(北京)有限公司 生乳速冷的方法
CN104642537A (zh) * 2015-03-05 2015-05-27 宜兰食品工业股份有限公司 一种牛奶的浓缩方法、一种乳制品的制备方法
US9427705B1 (en) * 2015-05-22 2016-08-30 Basel Abusharkh Method of solvent recovery from a dilute solution
CN205035121U (zh) * 2015-06-29 2016-02-17 斯必克(上海)流体技术有限公司 反渗透膜水处理系统
WO2017078644A2 (en) * 2015-11-04 2017-05-11 Abusharkh Basel Method of solvent recovery from a dilute solution
KR102392316B1 (ko) * 2016-02-02 2022-05-02 트레비 시스템즈 인크. 삼투압 지원 역삼투 공정 및 이를 사용하는 방법
NL2016829B1 (nl) * 2016-05-25 2017-12-12 Van Dalfsen Harm Vloeistofbehandelingssysteem voor het indikken van rauwe melk en werkwijze daarvoor
CN106517632A (zh) * 2016-12-26 2017-03-22 四川绿沃创新环保工程有限公司 一种反渗透膜浓缩硝酸铵废水的浓缩装置及浓缩方法
CN209193720U (zh) * 2018-09-27 2019-08-02 河南倍杰特环保技术有限公司 一种基于中高压特种浓缩膜的废水脱盐处理装置
CN111513134A (zh) * 2019-02-03 2020-08-11 内蒙古蒙牛乳业(集团)股份有限公司 一种基于正渗透原理的乳制品制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101537312A (zh) * 2009-03-23 2009-09-23 广东加多宝饮料食品有限公司 多级连续反渗透膜浓缩系统及使用该系统进行浓缩的方法
CN103429091A (zh) * 2010-09-08 2013-12-04 卡夫食品环球品牌有限责任公司 高固体浓缩的乳制品液体
CN206391877U (zh) * 2017-01-13 2017-08-11 重庆摩尔水处理设备有限公司 一种牛奶浓缩处理系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4074183A4 *

Also Published As

Publication number Publication date
CN111213712B (zh) 2023-09-19
EP4074183A4 (en) 2024-03-20
AU2020202754A1 (en) 2021-05-13
NZ763909A (en) 2022-07-01
AU2020202754B2 (en) 2021-07-08
CN111213712A (zh) 2020-06-02
CN111213713A (zh) 2020-06-02
EP4074183A1 (en) 2022-10-19
US20230116498A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
WO2021077676A1 (zh) 浓缩方法以及设备
Kotsanopoulos et al. Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods
US11571660B2 (en) Methods of dewatering of alcoholic solutions via forward osmosis and related systems
US20230149853A1 (en) Removing components of alcoholic solutions via forward osmosis and related systems
CN109907109B (zh) 一种基于正渗透原理的乳制品制备方法
US20100300946A1 (en) Apparatus and Method for Concentrating A Fluid
CN108479406B (zh) 一种正渗透-膜蒸馏耦合果汁浓缩装置及浓缩方法
CN109692571B (zh) 一种基于正向渗透技术的牛奶浓缩方法及系统
CN101982222B (zh) 一种膜法连续明胶浓缩装置
US5654025A (en) Ultrafiltration of cooled milk
Roy et al. Techniques for the Preconcentration of Milk
CA2965146A1 (en) System and method for production of low thermophile and low spore milk powder
Hasanoğlu et al. Concentration of skim milk and dairy products by forward osmosis
NZ789132A (en) Concentration method and device
Cheryan et al. Reverse osmosis of milk with thin-film composite membranes
JP6417826B2 (ja) 濃縮システムおよび濃縮方法
US11413582B2 (en) Filtration device
AU2017269052B2 (en) Liquid treatment system for concentrating raw milk, and method therefor
JP2004017035A (ja) 目的物質を分離・回収する方法
CN112370969B (zh) 一种低能耗膜分离方法及配套装置
CN212881886U (zh) 一种药物纳滤浓缩装置
CN113769432A (zh) 一种全自动冷冻浓缩设备和制备浓缩液体工艺
CN112138426A (zh) 一种新型的植物萃取设备
CN112136886A (zh) 一种乳及乳制品的浓缩方法
RU2402613C1 (ru) Производственная линия и способ производства жидкого сахара из соргового меда, соргового сока и сахара-сырца (варианты)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020879685

Country of ref document: EP

Effective date: 20220523