WO2021077350A1 - 具有能量回收功能的旋转活塞式高压泵 - Google Patents

具有能量回收功能的旋转活塞式高压泵 Download PDF

Info

Publication number
WO2021077350A1
WO2021077350A1 PCT/CN2019/112930 CN2019112930W WO2021077350A1 WO 2021077350 A1 WO2021077350 A1 WO 2021077350A1 CN 2019112930 W CN2019112930 W CN 2019112930W WO 2021077350 A1 WO2021077350 A1 WO 2021077350A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy recovery
cylinder
rotor assembly
piston
pressure
Prior art date
Application number
PCT/CN2019/112930
Other languages
English (en)
French (fr)
Inventor
朱荣辉
Original Assignee
朱荣辉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱荣辉 filed Critical 朱荣辉
Publication of WO2021077350A1 publication Critical patent/WO2021077350A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/122Details or component parts, e.g. valves, sealings or lubrication means
    • F04B1/124Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2035Cylinder barrels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2042Valves
    • F04B1/205Cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2078Swash plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/22Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • F04B1/24Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons inclined to the main shaft axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the invention belongs to the field of high-pressure pumps, energy recovery devices and other equipment required in reverse osmosis technology, and particularly relates to a rotary piston type high-pressure pump with energy recovery function.
  • Reverse osmosis technology is a technology that uses the principle of membrane reverse osmosis to allow the solvent to pass through a semi-permeable membrane or molecular sieve after the liquid is pressurized to separate the liquid solute and the solvent. It is widely used in liquid concentration, solute separation, sewage treatment, brackish water desalination, seawater desalination and other fields.
  • reverse osmosis technology involves two key equipment: high pressure pump (HP-HighPressurePump) and energy recovery device (ERD-EnergyRecoveryDevice).
  • HP-HighPressurePump high pressure pump
  • ERP-EnergyRecoveryDevice energy recovery device
  • High-pressure pump technologies that have been widely used include plunger pumps and centrifugal pumps.
  • the plunger pump is a positive displacement pump, which applies pressure through the volume change caused by the reciprocating movement of the plunger in the cylinder, and the efficiency can be as high as 90% or more.
  • Plunger pumps are divided into valve distribution and rotary distribution according to different distribution methods. According to the positional relationship between the cylinder block and the main shaft, it is divided into radial piston pumps with the cylinder block axis perpendicular to the main shaft axis and axial piston pumps with the cylinder block axis parallel to the main shaft axis. Since the plunger pump is a reciprocating mechanism after all, the reciprocating inertial force of machinery and fluid will inevitably cause vibration and noise. Regardless of valve distribution or rotation distribution, the PV value of the fluid will be restricted. It is more suitable for small flow and high pressure reverse osmosis devices.
  • the centrifugal pump uses the centrifugal force generated by the high-speed rotation of the rotating blade to drive the fluid to pressurize. In the case of high pressure, it will need to connect multi-stage centrifugal impellers in series to pressurize.
  • the overall efficiency is low, generally around 80%, and high efficiency
  • the zone is relatively narrow, which is suitable for the reverse osmosis device with fixed capacity and large flow rate, medium and high pressure.
  • the early energy recovery device used the principle of hydraulic turbine, and the energy recovery efficiency was below 70%.
  • oil hydraulic motor technology has been gradually developed to transfer direct fluid energy recovery devices, such as energy recovery devices based on axial piston motors, vane motors and gear motors.
  • equal pressure exchange technology with a recovery efficiency of more than 90% has been applied.
  • the most successful are the energy recovery device with or without piston rotating and distributing rotating cylinder structure, and the energy recovery device with valve distributing fixed cylinder.
  • a pistonless energy recovery device there is no physical separation of the piston between the concentrated liquid and the original liquid, which will inevitably produce mixing phenomenon, resulting in a decrease in system efficiency.
  • the high-pressure pump and the energy recovery device are two independent devices. Even in some small applications, in order to simplify the system, the two devices are only installed coaxially, for example, the axial A high-pressure plunger pump and a vane motor, or a high-pressure pump and energy recovery device coupled with another axial plunger motor to save installation space and simplify equipment connection, but the energy recovery efficiency of this structure is still relatively low. In the past ten years, there have also been some attempts to integrate isobaric exchange energy recovery into high-pressure pumps, but they have failed to enter industrial applications due to structural design defects.
  • the Chinese patent application number CN201210324608.0 "Integrated Device for Membrane Desalination High Pressure Pump and Energy Recovery", invented and authorized by me, puts forward the basic idea of completing the functions of high pressure pump and energy recovery device in a single structure:
  • the piston body and the piston cylinder of the single rod rod constitute a rod cavity and a rodless cavity.
  • the rod cavity is used as an energy recovery cavity, and the rodless cavity is used as a high pressure pump cavity.
  • the function of recycling is "one cylinder with two uses”.
  • the invention uses hydraulic pressure instead of centrifugal pressure, and uses piston-isolated isobaric exchange instead of pistonless isobaric exchange.
  • the efficiency of the RO system can be greatly compared with the traditional centrifugal pump plus rotating water piston energy recovery mode. Increase by more than 10%.
  • the pipeline connection is simple, the occupied space is reduced, and the manufacturing difficulty is reduced.
  • it has the characteristics of high efficiency operation in a wide range of flow and pressure, so that it can be used in variable salt content, variable flow and variable Energy supply and other fields play a role.
  • it can be directly coupled and matched with unstable solar energy, wind energy and other new energy sources, which can greatly reduce the cost of new energy; for example, the device can be used in rainwater, brackish water, seawater, reclaimed water and other water sources with different salinity.
  • the automatic matching and adaptation of the system eliminates the need for multiple equipment to deal with, which can greatly simplify the water treatment process and greatly reduce the total investment cost.
  • the system uses hydraulic cylinder drive and valve distribution, involving hydraulic pumps, hydraulic oil circuits, control water valves and corresponding electrical control systems.
  • the system structure is relatively complex, and there is still room for improvement and optimization.
  • the purpose of the present invention is to use the driving mechanism of the axial piston pump and the innovative rotation based on the basic idea of the Chinese patent application number CN201210324608.0 "membrane desalination high-pressure pump and energy recovery integrated device" invented by me.
  • Flow distribution replaces the hydraulic cylinder drive and valve-controlled flow distribution mechanism, and provides a rotary piston high-pressure pump reverse osmosis device that integrates energy recovery functions to achieve:
  • the structure is simpler, the production is easier, and the production cost is lower.
  • the invention discloses a rotary piston high-pressure pump with energy recovery function, which includes a housing, a driving mechanism, a plurality of piston assemblies, a cylinder rotor assembly provided with a plurality of cylinders, and a flow distribution mechanism; the driving mechanism, the piston assembly, The cylinder rotor assembly and the flow distribution mechanism are sequentially installed in the housing; one end of the piston assembly is connected to the driving mechanism, and the other end is located in the cylinder of the cylinder rotor assembly, and the cylinder is divided into a rod-type energy recovery cavity and a rodless type.
  • the flow distribution mechanism includes a flow distribution window and settings for the pressurized fluid and the energy recovery fluid
  • the drive mechanism is a slanted axis mechanism
  • the slanted axis mechanism includes a drive disc, a main shaft one and a return disc one
  • the drive disc is fixedly connected to the main shaft one coaxially and is distributed at equal intervals along the circumferential direction of the drive disc
  • the return disk is threadedly fixedly connected with the driving disk
  • the driving disk and the return disk are connected with one end of the piston assembly to form a spherical hinge connection
  • the axis of the driving disk is connected to the axis of the cylinder rotor assembly
  • There is a first oblique angle therebetween and when the driving disc and the cylinder rotor rotate synchronously, the driving piston assembly reciprocates in the cylinder of the cylinder rotor assembly.
  • the driving mechanism is a swash plate mechanism
  • the swash plate mechanism includes a main shaft two, a swash plate and a return plate two, the return plate two and the swash plate jointly define the sliding connection of one end of the piston assembly on the swash plate
  • the second main shaft is circumferentially fixedly connected to the cylinder block rotor assembly and rotates synchronously. There is a second oblique angle between the axis of the swash plate and the axis line of the cylinder block rotor assembly.
  • the second main shaft drives the cylinder block rotor assembly to rotate and drive the piston When one end of the assembly slides on the swash plate, the other end reciprocates in the cylinder rotor assembly.
  • the ratio of the cross-sectional area of the cavity of the energy recovery cavity to the cross-sectional area of the cavity of the pump cavity is equal to the ratio of the fluid flow rate that needs energy recovery to the fluid flow rate that needs to be pressurized.
  • the distribution mechanism includes a central distribution shaft with two independent energy recovery flow passages of high and low pressure arranged in the center of the cylinder rotor, and the energy recovery distribution window of the distribution mechanism is radially arranged on the central distribution shaft.
  • the distribution mechanism includes an axial energy recovery cavity provided inside each cylinder of the cylinder rotor assembly, and a crescent-shaped energy recovery distribution window correspondingly disposed inside the distribution window of the pump cavity.
  • the energy recovery The second flow distribution window is located between the cylinder rotor assembly and the housing.
  • a static pressure balance zone is provided on the opposite side of the cylinder rotor assembly and the high pressure distribution window of the distribution mechanism.
  • a bearing is provided on the first main shaft or the second main shaft, and the bearing is an oil or grease lubricated rolling bearing
  • the axial piston high-pressure pump with energy recovery function of the present invention simplifies the high-pressure pump, energy recovery device, booster pump and the connected pipeline valves of the traditional reverse osmosis system
  • the efficiency of the system is increased to more than 85% compared to less than 70% with traditional equipment, and energy consumption is therefore reduced by 15%, which greatly reduces the cost of water production.
  • the structure of the high-pressure pump of the present invention is similar to that of existing hydraulic pumps. Existing hydraulic pump manufacturers can start production without purchasing new equipment. Moreover, unlike centrifugal pumps, the applicable flow and pressure ranges for each model are very different. narrow.
  • the pump of the present invention belongs to a positive displacement pump. One model can cover a wide range of flow and pressure downwards, with less model spectrum, less investment in manufacturing equipment, and lower production costs.
  • the reverse osmosis equipment of the present invention can start and stop with one button, and does not require complicated start and stop control, overcurrent, overpressure, and flow balance processing. Moreover, under the condition of the same capacity, the device is small in size and light in weight. In addition, in the present invention, all the wearing parts of the friction pair are independent from the main body, and the embedded structure is adopted, which is easy to disassemble and install the replacement operation. As a result, operation and maintenance costs are reduced.
  • the simplified structure reduces the points of failure; optimized and reasonable design and material selection, and the embedded design of wearing parts, while avoiding failures as much as possible, extend the service life of the pump.
  • Figure 1 The front view of the high-pressure inclined axis pump of embodiment 1 of the present invention
  • Figure 2 A cross-sectional view of the piston body and piston cylinder structure of the high-pressure inclined axis pump of the first embodiment of the present invention
  • Figure 3 The front view of the high-pressure swash plate pump of embodiment 2 of the present invention.
  • Figure 4 A cross-sectional view of the structure of the cylinder and piston bodies of the high-pressure swash plate pumps of embodiments 1 and 2 of the present invention
  • Figure 5 A cross-sectional view of the outlet end of the distribution shaft of the high-pressure swash plate pumps of embodiments 1 and 2 of the present invention
  • Figure 6 A three-dimensional schematic diagram of the cylinder rotor of the high-pressure pump of the first and second embodiments of the present invention
  • Fig. 7 A three-dimensional schematic diagram of the central distribution shaft of the high-pressure pumps of embodiments 1 and 2 of the present invention.
  • Figure 8 a cross-sectional view of the flow distribution of the energy recovery chamber of the high-pressure pump of the first and second embodiments of the present invention
  • Figure 9 A three-dimensional schematic diagram of the energy recovery chamber distribution ring and sliding bearing ring of the high-pressure pumps of embodiments 1 and 2 of the present invention.
  • Figure 10 Schematic diagram of the cylinder rotor back cover and the pump cavity passage of the embodiments 1 and 2 of the present invention
  • Figure 11 Schematic diagram of the distribution plate and distribution window of the embodiments 1 and 2 of the present invention.
  • Figure 12 The front view of the oblique axis pump with end face distribution according to the third embodiment of the present invention.
  • Figure 13 A three-dimensional schematic diagram of the rotor body of the end-face flow distribution inclined axis pump cylinder of the third embodiment of the present invention.
  • Figure 14 A three-dimensional schematic diagram of the rear end cover of the cylinder rotor of the oblique axis pump with the end face distribution of the third embodiment of the present invention
  • Figure 15 A three-dimensional schematic diagram of the valve plate of the end-face valve inclined axis pump according to the third embodiment of the present invention.
  • Ball hinge assembly 231. Central shaft; 232. Double seal ring; 233. Tail bearing; 3. Piston assembly; 31. Piston assembly one; 311. Push Rod big ball; 312. Push rod; 313. Piston rod; 314. Push rod small ball; 315. Push rod small ball socket; 316. Piston disc; 317. Flow hole; 32. Piston assembly two; 321. Piston Rod ball head; 322. Slip shoe; 323. Piston rod one; 324. Piston and seal; 4. Cylinder block rotor assembly; 41. Cylinder head sealing seat; 42. Cylinder block rotor front cover; 43. Cylinder block rotor; 44. .Cylinder block and liner; 45. Cylinder body rotor back cover; 46.
  • a rotary piston high-pressure pump with energy recovery function comprising a housing 1, a driving mechanism 2, a plurality of piston assemblies 3, a cylinder rotor assembly 4 provided with a plurality of cylinders, and a flow distribution mechanism 5; the driving mechanism 2, the piston The assembly 3, the cylinder rotor assembly 4, and the flow distribution mechanism 5 are sequentially installed in the housing 1.
  • the distribution mechanism 5 includes a distribution window C for pressurized fluid and energy recovery fluid, a pressurized fluid arranged on the cylinder rotor assembly 4 and the housing 1, and an inlet and outlet channel D for the energy recovery fluid.
  • the distribution window is connected to the cylinder
  • the body rotor assembly 4 rotates and cooperates.
  • the housing 1 is composed of a front housing 11, a middle housing 12, and a tail housing 13.
  • the driving mechanism 2 is a bevel mechanism 21, including a bevel gear assembly 210, a main shaft 211, a front bearing 212, and a rear bearing 1. 213, end face seal 214, drive plate 215, ball socket 216, radial seal 217, return plate 218, pre-compression spring 219, spindle one 211 and drive plate 215 are installed in the front housing 11, the spindle one 211 passes through the front bearing one 212.
  • the rear bearing 213 is supported in the front housing 11, a pair of bevel gear assemblies 210 with centrally positioned spherical hinges are arranged between the main shaft 211 and the cylinder rotor assembly 4, and the driving disc 211 is fixedly connected to the main shaft 211 coaxially. And there are a number of ball sockets 216 equally spaced along the circumferential direction of the driving disc 215.
  • the return disc 218 is fixedly connected with the driving disc 215 by screwing.
  • the driving disc 215 and the return disc 218 are connected with one end of the piston assembly 3 to form a spherical hinge.
  • the piston assembly 3 in this embodiment is a piston assembly 31.
  • the piston assembly 31 includes a large push rod 311, a push rod 312, a piston rod 313, a small push rod 314, a small push rod socket 315, and a piston disc 316, Through the small hole 317, the piston rod 313 is a tubular hollow structure, the push rod 311 is arranged at one end of the push rod 312, and is arranged in the ball socket 216 formed by the drive disc 215 and the return disc 218, the push rod is small The ball 314 and the other end of the push rod 312 form an integral structure.
  • the push rod ball 314 is sleeved in the push rod ball socket 315 and abuts against the piston rod 313 and the piston disk 316, so that the push rod 312 is on the piston disk 316.
  • the piston rod 313 is smaller than the diameter of the piston disk 316.
  • the piston cylinder of the cylinder rotor is provided with a sliding seal between the piston rod 313 and the piston rod 313 at the extension end of the piston rod 313, and the flow is small.
  • the hole 317 is a small hole through which the axial direction integrally penetrates in the center.
  • the middle shell 12 is installed with the cylinder rotor assembly 4 and the piston assembly 3, etc.
  • the tail shell 13 is mainly installed with the flow distribution mechanism 5 for the flow passages of the pressurized fluid and the energy recovery fluid.
  • the flow distribution mechanism 5 is provided with two axial flow passages and the tail The inlet and outlet flow channels of the concentrated liquid requiring energy recovery on the shell 13 are connected.
  • the cylinder-rotor assembly 4 is arranged in the flow distribution mechanism 5 with a micro-clearance rotation.
  • a number of piston cylinders, usually 7-11, are arranged in the axial direction of the rotor, which are evenly distributed in the circumferential direction; a single-rod piston body is arranged in the piston cylinder.
  • the cylinder block rotor assembly 4 includes a cylinder head sealing seat 41, a cylinder block rotor front cover 42, a cylinder block rotor 43, a cylinder block and cylinder liner 44, a cylinder block rotor rear cover 45, a cylinder block rotor front cover 42, a cylinder block rotor 43,
  • the cylinder body rotor back cover 45 forms a cylinder body
  • the distribution mechanism 5 is an axial distribution 51.
  • the axial distribution 51 includes a distribution plate 511 for the fluid to be pressurized, a central distribution shaft 512, a low pressure inlet for the fluid to be pressurized 513, and a fluid for energy recovery.
  • a low-pressure outlet 514 for the energy-recovered fluid, a high-pressure outlet 515 for the pressurized fluid, and a high-pressure inlet for the energy-recovery fluid 516 are respectively arranged on the tail shell 13, and the center of the cylinder rotor assembly 4 is provided with a fixed on the tail shell 13.
  • the central flow distribution shaft 512, the central flow distribution shaft 512 and the cylinder rotor assembly 4 form a micro-gap rotational fit.
  • the flow distribution mechanism 5 includes a central flow distribution with high and low pressure two independent energy recovery channels E arranged in the center of the cylinder rotor 43 Shaft 512, the energy recovery distribution window F of the distribution mechanism 5 is radially arranged on the central distribution shaft 512, and the tail shell 13 is provided with pressurized fluid and energy recovery fluid inlet and outlet channels D, respectively on the central distribution shaft
  • the high and low pressure two independent energy recovery channels E are connected to each other.
  • the piston rod diameter d is designed to be smaller than the piston diameter, that is, the cylinder hole diameter D, and the open piston extension end of a normal hydraulic pump is sealed with a sliding seal, so that the piston disc 316 and the piston rod 313 are in the cylinder.
  • a rod cavity and a rodless cavity are formed.
  • the rodless cavity is the pump cavity B, and the rod cavity is the energy recovery cavity A.
  • the fluid that needs to be pressurized is introduced into the pump cavity B, and the high pressure fluid that needs energy recovery is introduced into the energy In the recovery chamber A, the pressure acts on the back of the piston disk 316, and the energy is transferred to the fluid to be pressurized during the piston process, thereby completing the process of equal pressure exchange.
  • the ratio of the cross-sectional area of the cavity of the energy recovery cavity A to the cross-sectional area of the cavity of the pump cavity B is equal to the ratio of the fluid flow rate that needs energy recovery to the fluid flow rate that needs to be pressurized.
  • one of the key points of the design is how to distribute the flow to the energy recovery cavity A.
  • a method that is easy to think of is to open a radial distribution channel between the cylinder rotor energy recovery cavity and the outer cylindrical surface, and fix it in the middle shell.
  • the distribution ring constitutes a rotating distribution pair, and its structure is relatively simple, but the problem is that the distribution window on the distribution ring has a long circumferential length, and it is difficult to seal when encountering high-pressure and low-viscosity fluids, and the leakage is large.
  • the processing of the distribution The accuracy requirements are very high.
  • the static pressure thrust caused by the distribution pair is also very large, even if the static pressure balance cavity is provided, the deformation caused by the internal force is also relatively large.
  • a central axis flow distribution method is adopted. Refer to the three-dimensional schematic diagram of the cylinder rotor in FIG. 6, the schematic diagram of the central distribution shaft in FIG. 7, the cross-sectional view of the energy recovery cavity distribution in FIG. 8 and the three-dimensional schematic diagram of the energy recovery cavity distribution ring and sliding bearing ring assembly in FIG. 9.
  • the original central shaft of the cylinder rotor and the rotor synchronously rotating is set as the flow distribution mechanism 5 fixed to the casing.
  • the middle of the shaft is provided with independent high-pressure flow passages and low-pressure flow passages, and the energy recovery cavity A of the cylinder rotor
  • the distribution mechanism 5 is provided with a radial distribution channel, and the distribution window on the distribution shaft forms a rotating distribution pair. In this way, the circumferential length of the distribution window can be shortened by more than half. Under the same processing accuracy, the center distribution method of the present invention can reduce the leakage by more than half compared with the external distribution method.
  • a static pressure balance area G is provided on the opposite side of the cylinder rotor assembly 4 and the high pressure distribution window of the distribution mechanism 5, and the area of the static pressure balance area is close to the area of the high pressure distribution window.
  • the high-pressure flow channel is connected, and the hydrostatic pressure is sealed by the energy recovery cavity distribution ring and the sliding bearing ring 518 to reduce the deformation of the distribution shaft and the rotor under static pressure. Due to the rigidity of the rotor body and the distribution shaft under the action of the balanced static pressure Much higher than the pump housing, the static pressure deformation will be much smaller, and the leakage flow will be much smaller under the same processing accuracy.
  • the main shaft 211 is provided with a bearing, the bearing is an oil or grease lubricated rolling bearing, two sealing rings are arranged between the bearing and the corrosive fluid, and a drain channel is arranged between the sealing rings.
  • the main shaft 211 of the pump The front housing 11 is supported by the front bearing 212 and the rear bearing 213, and an end face seal 214 is provided at the shaft head.
  • the main shaft of the inclined axis pump has to withstand a large axial force and radial force from the drive plate, the drive plate and the main shaft are casted together to provide sufficient strength and rigidity; in addition, reverse osmosis fluid is applied It is usually highly corrosive, such as seawater media in seawater desalination, so the selection of bearings is very important.
  • the present invention preferably adopts conventional oil-lubricated tapered roller bearings, that is, the front bearing 212 and the rear bearing 213, which have large carrying capacity, can bear combined radial and axial loads, have long life, low cost, and are easy to maintain.
  • Two seals are provided between the drive plate and the housing, namely the end seal 214 and the radial seal 217, to isolate the fluid and lubricating oil, and a leak hole 14 is set between the two seals to eliminate possible leakage from the pump. In addition, it not only prevents the mutual mixing of the two fluids, but also facilitates the observation and analysis of seal wear and maintenance, which is a solution with better comprehensive performance.
  • the pump driving disk is provided with a driving disk 215 and a return disk 218, which limit the push rod 311 of the piston body to form a spherical hinge connection.
  • the purpose of setting the ball socket is to take into account that the ball socket is subject to greater force and easy to wear, and it is made into a replaceable wearing part, which improves the maintainability.
  • the surface material of the large connecting rod ball head is selected to be a high-molecular polymer composite material containing graphite, polytetrafluoroethylene and carbon fiber that is resistant to pressure, wear, and corrosion, and is injected or thermally sprayed on the surface of the stainless steel ball. In this way, the ball head and The ball and socket seat and the return disk are matched with different materials, which is not prone to adhesion and wear.
  • the valve plate 511 of the fluid to be pressurized, the valve ring and the sliding bearing ring between the cylinder rotor and the central valve shaft, namely the sliding bearing ring 517 after the rotor, the energy recovery cavity valve ring and the sliding bearing ring 518, all friction pairs are used Similar to the design of the large ball head and ball socket of the putter, the friction pair is designed to be separated from the main body and easy to replace the structure; the friction pair material is preferably a polymer composite with corrosion resistance, fatigue resistance, high strength and wear resistance.
  • Material Polyetheretherketone PEEK is combined with the stainless steel substrate in the form of injection molding or thermal spraying, and matched with stainless steel materials that have been surface strengthened and polished such as thermal spraying wear-resistant and corrosion-resistant ceramic materials or surface nitriding and carburizing.
  • the choice of the friction pair material is related to the nature of the fluid being processed and the design life, and should be adjusted according to specific conditions. Moreover, with the development of material technology, better friction pairing materials and processing techniques can be selected.
  • the driving mechanism drives the piston assembly to reciprocate in the cylinder rotor.
  • the fluid is sucked in during the return stroke, and the liquid is pushed out during the process.
  • the energy recovery cavity can reduce friction through the shaft distribution method.
  • the energy recovery function of the present invention reduces the high-pressure pump of the traditional reverse osmosis system, the energy recovery device, the booster pump and its connected pipeline valves into one device, and the system efficiency is increased to 85% from less than 70% with traditional equipment As a result, energy consumption is reduced by 15%, which greatly reduces the cost of water production.
  • the driving structure 2 in this embodiment is a swash plate mechanism 22.
  • the swash plate mechanism 22 includes two main shafts 221, a rotating lip seal ring 222, a front bearing two 223, an O-ring seal 224, a swash plate 225, and a return stroke.
  • the swash plate mechanism 22 includes a second main shaft 221, a swash plate 225, and a second return plate 226.
  • the second return plate 226 and the swash plate 225 jointly define the sliding connection of one end of the piston assembly 3 on the swash plate 225, and the second main shaft 221 is connected to the swash plate 225.
  • the cylinder rotor assembly 4 is fixedly connected in the circumferential direction and rotates synchronously.
  • the second main shaft 221 is supported in the front housing 11 of the pump through the oil-lubricated front bearing two 223.
  • the front end is provided with a sealed end cover with a sealing ring for limiting.
  • the swash plate 225 rests on the front housing 11, and the second main shaft 221 is removed from the swash plate.
  • the hole in the center of the 225 passes through and is fixedly connected to the front cover 42 of the cylinder rotor with a spline circumferentially to drive the cylinder rotor 43 to rotate synchronously.
  • a bearing is arranged on the second main shaft 221, and the bearing is a rolling bearing lubricated by oil or grease.
  • the structure of the main body of the pump namely the piston cylinder, the central distribution shaft and the tail housing, is the same as that of the inclined axis pump of the first embodiment, but the piston assembly 3 is different from the inclined axis pump.
  • the piston assembly 3 Piston assembly two 32, piston assembly two 32 includes a piston rod ball head 321, a sliding shoe 322, a piston rod 323, a piston and a seal 324, one end of the piston rod 323 is equipped with a piston and seal 324, and the other end is a piston rod ball head 321, there is a sliding shoe 322 arranged on it, the live piston rod 323 and the sliding shoe 322 are connected by a ball hinge; the bottom of the sliding shoe is provided with an annular sealing belt, the inner diameter of the sealing belt is slightly larger than the diameter of the piston rod, and the center of the sealing belt of the sliding shoe A small hole flow channel is opened, passing through the piston rod, the piston and the seal 324, and is in fluid communication with the pump cavity to form
  • the cylinder rotor assembly 4 of this embodiment is different from the implementation. 1 Outer sliding bearing ring 46, for this reason, between the inner shell and the outer cylindrical surface of the cylinder rotor assembly 4, near the outlet end of the piston rod, an outer sliding bearing ring 46 is provided to assist the cylinder rotor to improve the support rigidity , Reduce leakage and improve volumetric efficiency.
  • a better shell structure is to cast the middle shell and the tail shell 13 of the high-pressure pump into one body instead of the middle shell shown in FIG. And the front shell 11 is cast as a whole.
  • the second return plate 226, the return plate ball hinge 228 and the return plate pre-tensioning spring 227 are set to keep the sliding shoes firmly pressed on the surface of the swash plate; when the main shaft drives the cylinder rotor assembly 4 to rotate, the swash plate 225 and the return plate two 226 forces the piston body to reciprocate in the rotor piston cylinder.
  • two sealing rings are installed between the main shaft and the swash plate, and between the front housing and the swash plate, and a drain flow channel is provided between the two sealing rings to lead out of the front housing;
  • the main shaft support bearing adopts an oil-lubricated bearing.
  • the swash plate and return plate in the pump are made of stainless steel, and the friction surface is treated with anti-corrosion and wear resistance and polished; the sliding shoe and return plate spherical hinge also use stainless steel as the matrix, and the friction surface is made of injection molding or thermal spraying.
  • High molecular polymer composite material of graphite, polytetrafluoroethylene and carbon fiber
  • the driving mechanism 2 is the second inclined axis mechanism 23.
  • the second inclined axis mechanism 23 includes a ball hinge assembly 230, a central shaft 231, a double seal ring 232, and a tail bearing. 233.
  • the flow distribution mechanism 5 is the end flow distribution 52.
  • the difference from the shaft distribution 51 in the first embodiment is that the end flow distribution 52 includes the second valve plate 521 for the fluid to be pressurized, the rotating shaft sealing ring 522, and the low pressure of the fluid to be pressurized.
  • the flow distribution mechanism 5 includes an axial energy recovery flow channel H arranged inside each cylinder of the cylinder rotor assembly 4, and a crescent-shaped energy recovery distribution window 2 K correspondingly arranged inside the pump cavity distribution window J.
  • the energy The second K of the recovery flow distribution window is located between the cylinder rotor assembly 4 and the housing 1.
  • the flow distribution window of the energy recovery flow is moved between the cylinder rotor and the tail shell, and merged with the original pump cavity distribution plate.
  • the radial distribution of the central distribution shaft is changed to the axial distribution.
  • a flow channel connected to the energy recovery cavity is provided inside each cylinder of the cylinder body rotor.
  • FIG. 14 a schematic diagram of the rear end cover of the cylinder body rotor.
  • the connecting rod is used to drive the piston rod, and then the piston rod pushes the cylinder rotor to rotate, and the bevel gear transmission in the first embodiment is eliminated.
  • the structure is simple, but the disadvantage is that the connecting rod has a smaller diameter.
  • the wall thickness of the piston rod on the side of the big ball head of the connecting rod is also thin, and its strength and rigidity may be affected. Furthermore, the axial distribution of energy recovery will inevitably generate additional axial force on the cylinder rotor. Therefore, a static pressure balance zone G is provided between the central axis 231 of the cylinder rotor and the spherical hinge assembly 230 to offset The influence of the additional axial force.
  • Embodiment 3 is basically the same as Embodiment 1, and will not be repeated.
  • the mechanism for driving the reciprocating movement of the piston body in the inclined axis pump of embodiment 1 is the inclined axis structure.
  • the advantage of this structure is the clamping between the connecting rod and the piston. The angle is small, the lateral force of the cylinder and the rotor is small, and the PV value of the ball joints at both ends of the connecting rod is low, and the force between the rotor and the valve shaft and the valve plate is relatively uniform, making the three main
  • the friction pair has small friction resistance, high efficiency, and relatively low wear, but the radial and axial forces of the main shaft are relatively large.
  • the present invention adopts oil-lubricated tapered roller bearings to bear it, and the effect is better.
  • the drive structure is relatively more complicated, and the manufacturing cost is higher than that of the swash plate pump, which is more suitable for high-pressure and large-flow reverse osmosis systems.
  • the piston body is subjected to the reaction force of the swash plate to generate large lateral forces between the piston and the cylinder, between the cylinder and the valve shaft, and the valve plate, resulting in high friction and wear.
  • the present invention is improved by installing a larger auxiliary sliding bearing outside the rotor, but it cannot solve the problem of the lateral force of the piston and the piston-cylinder friction pair.
  • the high PV value of the piston rod shoe running on the swash plate also brings many challenges. Therefore, the angle of the swash plate should not be too large, and the diameter of the swash plate should not be too large. It can only be used in some small reverse osmosis systems.
  • the driving mechanism is an oblique axis mechanism, and the difference is the flow distribution mechanism for energy recovery.
  • the embodiment 3 has a simpler structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种具有能量回收功能的旋转活塞式高压泵,包括壳体(1)、驱动机构(2)、若干活塞组件(3)、缸体转子组件(4)和配流机构(5);驱动机构(2)、活塞组件(3)、缸体转子组件(4)和配流机构(5)依次安装在壳体(1)内;活塞组件(3)一端与驱动机构(2)连接,另一端位于缸体转子组件(4)的缸体内,将缸体分为有杆的能量回收腔(A)和无杆的泵腔(B),随着缸体转子组件(4)的转动,活塞组件(3)在驱动机构(2)的作用下在缸体转子组件(4)中的缸体内往复运动;配流机构(5)包括配流窗口(C)和设置在缸体转子组件(4)和壳体(1)上的加压流体以及能量回收流体的进、出流道(D),将缸体转子组件(4)上各缸体的泵腔(B)流道与壳体(1)上加压流体的低压进口和高压出口流道交替对接,能量回收腔(A)与相应的能量回收流道接通,提高高压加压与能量回收的效率。

Description

具有能量回收功能的旋转活塞式高压泵 技术领域
本发明属于反渗透技术中所需要的高压泵、能量回收器等设备领域,特别是一种具有能量回收功能的旋转活塞式高压泵。
背景技术
反渗透技术是一种利用膜法反渗透原理,将液体加压后使溶剂穿过半透膜或者说分子筛,将液体溶质和溶剂进行分离的技术。被广泛应用于液体浓缩,溶质分离、污水处理、苦咸水淡化、海水淡化等领域。
在该项技术中,对液体实施高压力的加压需要消耗很多的能量,同时,要将浓缩液中的高压势能进行有效的回收,以节约反渗透过程所消耗的能量。因此,反渗透技术涉及两项关键的设备:高压泵(HP-HighPressurePump)和能量回收器(ERD-EnergyRecoveryDevice)。在采用反渗透原理的膜法海水淡化厂中,即便采用了高效的能量回收器,总的能耗成本,依然占据到运行成本的50%以上。如何进一步提高这两个设备的效率,降低其成本,是反渗透技术设备的发展方向。
1.高压泵:
已经得以广泛应用的高压泵技术包括柱塞泵和离心泵两类。
柱塞泵是容积泵,通过柱塞在缸体中往复运动引起的容积变化来施压,效率可高达90%以上。柱塞泵根据配流方式的不同又分为阀配流和旋转配流。根据缸体和主轴的位置关系又分为缸体轴线和主轴轴线垂直的径向柱塞泵以及缸体轴线和主轴轴线平行的轴向柱塞泵。由于柱塞泵毕竟是往复运动机构,机械和流体的往复运动惯性力必然会引起振动和噪声,无论阀配流还是旋转配流,其流体PV值都将受到制约,比较适合小流量高压反渗透装置。
离心泵是利用旋转叶片驱动流体高速旋转所产生的离心力来加压,在需要高压的情况下,就会需要串联多级离心叶轮来加压,总体效率较低,一般在80%左右,且高效区比较窄,适应于固定产能大流量中高压的反渗透装置。
2.能量回收器:
早期的能量回收器采用水轮机原理,能量回收效率在70%以下。在一些小型应用中,逐步发展出将油液压马达技术转移到直接的流体能量回收器中,如基于轴向柱塞式马达,叶片式马达和齿轮马达的能量回收器面世。随着技术的进步,回收效率高达90%以上的等压交换技术得到应用,其中最为成功的有无活塞旋转配流转动缸体结构的能量回收器,以及阀配流固定缸体的能量回收器。在无活塞的能量回收器中,在浓缩液和原液间没有物理分割的活塞,必然会产生参混现象,导致系统效率降低。在以阀配流的能量回收器中,需要降低冲击振动以提高使用寿命,以及如何减少阀控导致的系统复杂化。
在目前的大中型反渗透系统中,高压泵和能量回收器是两个独立的设备,即便在一些小型的应用中,为了简化系统,也只是将两个设备同轴安装,比如,将轴向高压柱塞泵和叶片式马达,或者与另一个轴向柱塞式马达联轴组成高压泵与能量回收装置,以便节省安装空间,简化设备连接,但这种结构的能量回收效率仍然比较低。最近十几年间,也曾出现过一些试图将等压交换能量回收结合到高压泵中来的设想,都因结构设计上的缺陷而未能进入工业应用。
由本人发明并获得授权的中国专利申请号CN201210324608.0“膜法海水淡化高压泵与能量回收一体化装置”,提出了将高压泵和能量回收器功能在单一结构上完成的基本思路:通过一组单出杆的活塞体和活塞缸构成有杆腔和无杆腔,将有杆腔作为能量回收腔,把无杆腔作为高压泵腔,在活塞运动时,即可同时完成加压与能量回收的功能,即“一缸二用”。该发明用液压加压代替离 心加压,用有活塞隔离的等压交换代替无活塞的等压交换,实践证明,可使得RO系统效率相比传统离心泵加旋转水活塞能量回收器模式大幅度提高达10%以上。管路连接简单,所占空间减少,制造难度降低,特别是其具有的能在很宽的流量、压力范围内高效运行的特点,使其能在可变含盐量、可变流量以及可变能源供应等领域发挥作用。比如和不稳定的太阳能、风能等新能源直接耦合匹配使用,可大幅度降低新能源的成本;又比如该装置能在雨水、苦咸水、海水、再生水等不同含盐量多种水源供应时的自动匹配和适应,从而无需配套多种设备来应对,能极大简化水处理的流程,大大降低总投资成本。但该系统采用液压缸驱动和阀配流,涉及液压泵,液压油路,控制水阀和相应的电气控制系统,系统结构相对还是比较复杂,还存在可以改进和优化的空间。
综上所述,目前反渗透技术存在的问题,也即发展的方向是如何进一步提高能效,简化结构,降低设备的投资成本和运行成本。
发明内容
本发明的目的,旨在基于本人发明的中国专利申请号CN201210324608.0“膜法海水淡化高压泵与能量回收一体化装置”的基本思路,改用轴向柱塞泵的驱动机制和创新的旋转配流替代液压缸驱动和阀控配流的机制,提供一种集能量回收功能于一体的旋转活塞式高压泵反渗透装置,实现:
1.进一步提高高压加压与能量回收的效率;
2.结构更简单,制作更容易,生产成本更低。
3.系统更可靠,维修更方便。
本发明的目的是这样实现的:
本发明公开了一种具有能量回收功能的旋转活塞式高压泵,包括壳体、驱动机构、若干活塞组件、设置有若干缸体的缸体转子组件和配流机构;所述驱 动机构、活塞组件、缸体转子组件和配流机构依次安装在壳体内;所述活塞组件一端与驱动机构连接,另一端位于缸体转子组件的缸体内,将缸体分为有杆的能量回收腔和无杆的泵腔,随着缸体转子组件的转动,活塞组件在驱动机构的作用下在缸体转子组件中的缸体内往复运动;所述配流机构包括加压流体和能量回收流体的配流窗口和设置在缸体转子组件和壳体上的加压流体以及能量回收流体的进、出流道,其配流窗口与缸体转子组件转动配合,在缸体转子组件转动时,将缸体转子组件上各缸体的泵腔流道与壳体上加压流体的低压进口和高压出口流道交替对接,同步地,将缸体转子组件上各缸体的能量回收腔流道与壳体上需要进行能量回收的流体的低压出口和高压进口流道交替接通。
进一步地,所述驱动机构为斜轴机构,所述斜轴机构包括驱动盘、主轴一和回程盘一,所述驱动盘与主轴一同轴固定连接,且沿着驱动盘周向等间距分布有若干球窝,所述回程盘一与驱动盘螺纹固定连接,所述驱动盘和回程盘一一起与活塞组件的一端构成球铰连接,所述驱动盘的轴线与缸体转子组件轴心线之间有第一斜角,在所述驱动盘和缸体转子同步旋转时,驱动活塞组件在缸体转子组件的缸体中往复运动。
进一步地,所述驱动机构为斜盘机构,所述斜盘机构包括主轴二、斜盘和回程盘二,所述回程盘二和斜盘共同限定活塞组件的一端在斜盘上的滑动连接,所述主轴二与缸体转子组件周向固定连接并同步旋转,所述斜盘的轴线与缸体转子组件轴心线之间有第二斜角,主轴二带动缸体转子组件旋转,驱动活塞组件的一端在斜盘上滑动时,另一端在缸体转子组件中往复运动。
进一步地,所述能量回收腔的腔体截面积与泵腔的腔体截面积之比等于需要能量回收的流体流量与需要加压的流体流量之比。
进一步地,所述配流机构包括一个在缸体转子中心设置的具有高、低压两个独立能量回收流道的中心配流轴,配流机构的能量回收配流窗口一径向设置在中心配流轴上。
进一步地,所述配流机构包括有在缸体转子组件的每一个缸体内侧设置的轴向能量回收腔,以及在泵腔配流窗口内侧对应设置的月牙形能量回收配流窗口二,所述能量回收配流窗口二位于缸体转子组件和壳体之间。
进一步地,在所述缸体转子组件与配流机构高压配流窗口的对面设置有静压平衡区。
进一步地,所述主轴一或主轴二上设置有轴承,所述轴承为油或脂润滑的滚动轴承
本发明的有益效果:
1.系统更加简化,效率进一步提升:
对于大中型的海水淡化系统而言,本发明的具有能量回收功能的轴向活塞式高压泵,将传统反渗透系统的高压泵,能量回收器、增压泵以及其连接的管路阀门都简化为了一个设备,系统效能比用传统设备的不足70%提升到85%以上,能耗因此降低15%,使得造水成本大幅度降低。
2.制造更加容易,生产成本进一步下降:
对于生产商而言,本发明的高压泵,结构和现有液压泵相近,现有液压泵生产厂家无需购置新的设备即可投产,而且,不同于离心泵每个型号适用的流量压力区间很窄。本发明的泵,属于容积泵,一个型号可以向下覆盖相当宽的流量和压力范围,型谱少,制造设备投入少,生产成本降低。
对于设备使用方而言,采用该设备,节省了安装空间、大量管道阀门和设备安装工程费用,初始投资减少。
3.运行操作简单,维修方便,运维成本低:
本发明的反渗透设备,一键启停,无需复杂的启停控制和过流过压、流量平衡处理。而且,在同等产能条件下,本设备体积小,重量轻,加上本发明中,将摩擦副易损件全部与主体独立,采用嵌入式结构,易于拆卸和安装的更换操作。从而,运维成本降低。
4.可靠性提高,无故障时间和使用寿命延长:
简化的结构使故障点减少;优化合理的设计和材料的选择,易损件的嵌入式设计,在尽可能避免发生故障的同时,延长了泵的使用寿命。
附图说明
以下结合三个实施案例和对应的附图,做进一步说明。以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中:
图1:本发明实施例1之高压斜轴泵的主视图;
图2:本发明实施例1之高压斜轴泵的活塞体和活塞缸结构剖视图;
图3:本发明实施例2之高压斜盘泵的主视图;
图4:本发明实施例1及2之高压斜盘泵缸体与活塞体的结构剖视图;
图5:本发明实施例1及2之高压斜盘泵的配流轴出口端剖视图;
图6:本发明实施例1及2之高压泵的缸体转子三维示意图;
图7:本发明实施例1及2之高压泵的中心配流轴三维示意图;
图8:本发明实施例1及2之高压泵的能量回收腔配流断面剖视图;
图9:本发明实施例1及2之高压泵的能量回收腔配流环与滑动轴承环三维示意图;
图10:本发明实施例1及2之缸体转子后盖及泵腔通道示意图;
图11:本发明实施例1及2之配流盘及配流窗口示意图;
图12:本发明实施例3之端面配流斜轴泵主视图;
图13:本发明实施例3之端面配流斜轴泵缸体转子体三维示意图;
图14:本发明实施例3之端面配流斜轴泵缸体转子后端盖三维示意图;
图15:本发明实施例3之端面配流斜轴泵的配流盘三维示意图。
图例:1.壳体;11.前壳;12.中壳;13.尾壳;14.泄流孔一;2.驱动机构;21.斜轴机构一;210.锥齿轮组件;211.主轴一;212.前轴承一;213.后轴承一;214.端面密封;215.驱动盘;216.球窝;217.径向密封;218.回程盘一;219.预压弹簧;22.斜盘机构;221.主轴二;222.旋转唇口密封圈;223.前轴承二;224.O型密封圈;225.斜盘;226.回程盘二;227.回程盘球铰预压弹簧;228.回程盘球铰;23.斜轴机构二;230.球铰接组件;231.中心轴;232.双密封圈;233.尾部轴承;3.活塞组件;31.活塞组件一;311.推杆大球;312.推杆;313.活塞杆;314.推杆小球;315.推杆小球窝;316.活塞盘;317.通流小孔;32.活塞组件二;321.活塞杆球头;322.滑靴;323.活塞杆一;324.活塞及密封;4.缸体转子组件;41.缸盖密封座;42.缸体转子前盖;43.缸体转子;44.缸体及缸套;45.缸体转子后盖;46.外滑动轴承环;5.配流机构;51.轴配流;511.待加压流体配流盘一;512.中心配流轴;513.待加压流体低压进口一;514.待能量回收流体低压出口一;515.待加压流体高压出口一;516.待能量回收流体高压进口一;517.转子后滑动轴承环;518.能量回收腔配流环与滑动轴承环;52.端面配流;521.待加压流体配流盘二;522.旋转轴密封圈;523.待加压流体低压进口二;524.待能量回收流体低压出口二;525.待加压流体高压出口二;526.待能量回收流体高压进口二;527.密封圈;528.泄流孔二;A.能量回收腔;B.泵腔;C.加压流体和能量回收流体的配流窗口;D.加压流体以及能量回收流体的进、出流道;E.高、低压两个独立能量回收流道;F.能量回收配流窗口一;G.静压平衡区;H.轴向能量回收流道;J.泵腔配流窗口;K.能量回收 配流窗口二。
具体实施方式
下面结合附图对本公开实施例进行详细描述。
以下通过特定的具体实例说明本公开的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本公开的其他优点与功效。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。本公开还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本公开的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
一种具有能量回收功能的旋转活塞式高压泵,包括壳体1、驱动机构2、若干活塞组件3、设置有若干缸体的缸体转子组件4和配流机构5;所述驱动机构2、活塞组件3、缸体转子组件4和配流机构5依次安装在壳体1内;所述活塞组件3一端与驱动机构2连接,另一端位于缸体转子组件4的缸体内,将缸体分为有杆的能量回收腔A和无杆的泵腔B,随着缸体转子组件4的转动,活塞组件3在驱动机构2的作用下在缸体转子组件4中的缸体内往复运动;所述配流机构5包括加压流体和能量回收流体的配流窗口C和设置在缸体转子组件4和壳体1上的加压流体以及能量回收流体的进、出流道D,其配流窗口与缸体转子组件4转动配合,在缸体转子组件4转动时,将缸体转子组件4上各缸体的泵腔B流道与壳体1上加压流体的低压进口和高压出口流道交替对接,同步地,将缸体转子组件4上各缸体的能量回收腔A流道与壳体上需要进行能量回收的流体的低压出口和高压进口流道交替接通。
实施例1
参看图1,2,6-11:
本实施例中,壳体1由前壳11、中壳12和尾壳13组成,驱动机构2为斜轴机构一21,包括锥齿轮组件210、主轴一211、前轴承一212、后轴承一213、端面密封214、驱动盘215、球窝216、径向密封217、回程盘一218、预压弹簧219,主轴一211和驱动盘215安装在前壳11内,主轴一211通过前轴承一212、后轴承一213支撑在前壳11中,主轴一211和缸体转子组件4之间设置一对带中心定位球铰的锥齿轮组件210,驱动盘211与主轴一211同轴固定连接,且沿着驱动盘215周向等间距分布有若干球窝216,回程盘一218与驱动盘215螺纹固定连接,驱动盘215和回程盘一218一起与活塞组件3的一端构成球铰连接,驱动盘215的轴线与缸体转子组件4轴心线之间有第一斜角,在所述驱动盘215和缸体转子同步旋转时,驱动活塞组件3在缸体转子组件4的缸体中往复运动。
本实施例中的活塞组件3为活塞组件一31,活塞组件一31包括推杆大球311、推杆312、活塞杆313、推杆小球314、推杆小球窝315、活塞盘316、通流小孔317,活塞杆313为管状空心结构,推杆大球311设置在推杆312的一端,且与设置在驱动盘215和回程盘一218构成的球窝216之中,推杆小球314与推杆312的另一端呈一体结构,推杆小球314套设在推杆小球窝315内,并抵接在活塞杆313、活塞盘316内,使得推杆312在活塞盘316及驱动盘215之间均为球形铰接,活塞杆313直径小于活塞盘316的直径,缸体转子的活塞缸在活塞杆313伸出端设置有与活塞杆313之间的滑动密封,通流小孔317为中心有轴向整体贯通的小孔。
中壳12内安装缸体转子组件4和活塞组件3等,尾壳13主要安装加压流 体与能量回收流体的流道的配流机构5,配流机构5上设置的两条轴向流道与尾壳13上的需能量回收的浓缩液进出口流道连通。缸体转子组件4以微间隙转动设置在配流机构5,转子轴向设置有若干活塞缸,通常为7-11个,环向均布;活塞缸内设置单出杆活塞体。
缸体转子组件4包括缸盖密封座41、缸体转子前盖42、缸体转子43、缸体及缸套44、缸体转子后盖45,缸体转子前盖42、缸体转子43、缸体转子后盖45形成一缸体,配流机构5为轴配流51,轴配流51包括待加压流体配流盘一511、中心配流轴512、待加压流体低压进口一513、待能量回收流体低压出口一514、待加压流体高压出口一515、待能量回收流体高压进口一516、转子后滑动轴承环517、能量回收腔配流环与滑动轴承环518,待加压流体低压进口一513、待能量回收流体低压出口一514、待加压流体高压出口一515、待能量回收流体高压进口一516分别设置在尾壳13上,缸体转子组件4的中心设置一个固定在尾壳13上的中心配流轴512,中心配流轴512和缸体转子组件4形成微间隙的转动配合,配流机构5包括一个在缸体转子43中心设置的具有高、低压两个独立能量回收流道E的中心配流轴512,配流机构5的能量回收配流窗口一F径向设置在中心配流轴512上,尾壳13上设置有加压流体以及能量回收流体的进、出流道D,分别与中心配流轴上的高、低压两个独立能量回收流道E对口连接。
本视图中,为清晰表达尾壳13、配流机构5和缸体转子组件4之间的匹配关系,将尾壳旋转90度,配流轴旋转45度后的剖视图合并在总剖视图中。
参看附图2:实施例一之高压斜轴泵的活塞体和活塞缸结构剖视图
本发明将活塞杆直径d设计成小于活塞直径也即缸孔直径D,将通常液压泵的开放的活塞伸出端用滑动密封封闭起来,这样,活塞盘316和活塞杆313 就在缸体内形成了有杆腔和无杆腔,无杆腔即为泵腔B,有杆腔即为能量回收腔A,把需要加压的流体引入泵腔B中,把需要能量回收的高压流体引入能量回收腔A中,其压力作用在活塞盘316背面,在活塞进程中将能量传递给了需加压的流体,由此完成等压交换的过程。能量回收腔A的腔体截面积与泵腔B的腔体截面积之比等于需要能量回收的流体流量与需要加压的流体流量之比。
这里,设计的关键点之一是如何给能量回收腔A配流,容易想到的一种方法是在缸体转子能量回收腔和外圆柱面间开径向配流通道,与固定设置在中壳内的配流环构成转动配流付,其结构较简单,但问题是,配流环上的配流窗口周向长度长,在遇到高压低粘度流体时的密封很困难,泄漏量大,对配流付的加工精度要求就非常高。而且配流付引起的静压推力也很大,即便设置静压平衡腔,其内力引起的变形也较大。
本发明的该实施例中采用中心轴配流的方式。参看图6的缸体转子三维示意图、附图7的中心配流轴的示意图、附图8的能量回收腔配流断面剖视图和附图9的能量回收腔配流环与滑动轴承环组合件三维示意图。
本发明将缸体转子原有的和转子同步转动的中心轴设置为与壳体固定的配流机构5,轴中间开设相互独立的高压流道和低压流道,缸体转子的能量回收腔A向配流机构5开设径向配流通道,和配流轴上的配流窗口形成转动配流付。这样配流窗口的周向长度可缩短一半以上,在同等加工精度下,本发明的中心配流方式将比外配流方式的泄漏减少一半以上。同时,在所述缸体转子组件4与配流机构5高压配流窗口的对面设置有静压平衡区G,静压平衡区面积和高压配流窗口面积接近,设有通流小孔与配流轴上的高压流道接通,通过能量回收腔配流环与滑动轴承环518将流体静压封闭起来以减少配流轴和转子在静压下的变形,由于在平衡静压作用下转子体和配流轴的刚度远高于泵壳体,静压 变形就会小得多,在同等加工精度条件下,泄漏流量也会小的多。
本实施例中的配流轴,为了加工方便,是在轴中钻了四个通孔,然后在两端通过两两联通的配流窗口槽组成两个相互隔离的通道,参看附图4和附图5。
主轴一211上设置有轴承,轴承为油或脂润滑的滚动轴承,在轴承和腐蚀性流体之间设置有两道密封圈,并在密封圈之间设置有泄流孔道,该泵的主轴一211通过前轴承212和后轴承213支撑在前壳11上,轴头处设置端面密封214。考虑到斜轴泵的主轴一要承受很大的来自驱动盘的轴向力和径向力,故将驱动盘和主轴一体铸造加工,以提供足够的强度和刚度;另外,施加反渗透的流体通常具有强腐蚀性,比如海水淡化中的海水介质等,故轴承的选型非常重要,如常规采用水介质的滑动轴承,则因为在比压较高时难以形成水膜,边界摩擦的摩擦阻力和磨损相对较大,令人头疼,如果采用陶瓷轴承,则其脆性和高昂的价格是头疼的问题。本发明优选采用常规油润滑的圆锥滚子轴承,即前轴承212和后轴承213,承载能力大,又可承受径向和轴向联合载荷,寿命长,成本低,易于维护。通过在驱动盘和壳体间设置两道密封,即端面密封214和径向密封217,来隔离流体和润滑油,并在两道密封间设置泄流孔一14,将可能发生的泄漏排除泵外,既防止了两种流体间的相互混合,又便于观察分析密封磨损情况,便于维修,是一种综合性能比较好的解决方案。
该泵驱动盘上设置有驱动盘215和回程盘一218,将活塞体的推杆大球311限位其中构成球铰连接。设置球窝座的目的是考虑到球窝受力较大容易磨损,把它做成可更换的易损件,提高了可维护性。连杆大球头的表面材料选择为耐压耐磨耐腐蚀的含有石墨、聚四氟乙烯和碳纤维的高分子聚合物复合材料,通过注塑或者热喷涂在不锈钢球体表面上,这样,球头和球窝座以及回程盘之间为异种材料配对,不易发生粘连磨损。
本发明给出的实施例中,在推杆小球314和推杆小球窝315、缸体缸套44和活塞盘316、活塞杆313和缸盖密封座41、缸体转子后盖45和待加压流体配流盘一511、缸体转子和中心配流轴之间的配流环和滑动轴承环,即转子后滑动轴承环517,能量回收腔配流环与滑动轴承环518,所有摩擦副都采用类似于推杆大球头和球窝座的设计,把摩擦副对偶件设计成与主体分离,易于更换的结构形式;摩擦副材料则优选具有抗腐蚀抗疲劳高强度耐磨损的高分子复合材料聚醚醚酮PEEK以注塑或者热喷涂形式与不锈钢基体结合,与经过热喷涂耐磨耐腐蚀陶瓷材料或者表面渗氮渗碳等表面强化和抛光处理的不锈钢材料来配对使用。摩擦副材料的选择和所处理的流体性质、设计寿命有关,根据具体情况调整。而且,随着材料科技的发展,可以优选更好的摩擦付配对材料和加工工艺。
驱动机构驱动活塞组件在缸体转子里面往复运动,回程的时候将流体吸进来,进程的时候将液体推出去,能量回收腔通过轴配流的方式,能够减少摩擦力,以原海水为例,原海水从待加压流体低压进口一进来之后,加压成高压水从待加压流体高压出口一出去,应用到反渗透膜,从反渗透膜出来一种高压浓盐水,高压浓盐水从待能量回收流体高压进口一输送到泵里,把压力释放掉,变成低压的浓盐水,从待能量回收流体低压出口一排除,对于大中型的海水淡化系统而言,本发明的具有能量回收功能的轴向活塞式高压泵,将传统反渗透系统的高压泵,能量回收器、增压泵以及其连接的管路阀门都简化为了一个设备,系统效能比用传统设备的不足70%提升到85%以上,能耗因此降低15%,使得造水成本大幅度降低。
实施例2
附图3-11,
参看附图7,本实施例中驱动结构2为斜盘机构22,斜盘机构22包括主轴二221、旋转唇口密封圈222、前轴承二223、O型密封圈224、斜盘225、回程盘二226、回程盘球铰预压弹簧227、回程盘球铰228,
斜盘机构22包括主轴二221、斜盘225和回程盘二226,所述回程盘二226和斜盘225共同限定活塞组件3的一端在斜盘225上的滑动连接,所述主轴二221与缸体转子组件4周向固定连接并同步旋转,所述斜盘225的轴线与缸体转子组件4轴心线之间有第二斜角,主轴二221带动缸体转子组件4旋转,驱动活塞组件4的一端在斜盘225上滑动时,另一端在缸体转子组件4中往复运动。
主轴二221通过以油润滑的前轴承二223支撑在泵的前壳11内,前端设置带密封圈的密封端盖限位,斜盘225背靠在前壳11上,主轴二221从斜盘225的中心的孔道内穿过,并以花键周向固定连接缸体转子前盖42,以驱动缸体转子43同步旋转。
主轴二221上设置有轴承,轴承为油或脂润滑的滚动轴承。
参看附图3,该泵的主体即活塞缸体、中心配流轴和尾壳的结构和实施例一的斜轴泵一样,但活塞组件3则与斜轴泵不同,本实施例中活塞组件3为活塞组件二32,活塞组件二32包括活塞杆球头321、滑靴322、活塞杆一323、活塞及密封324,活塞杆一323的一头安装活塞及密封324,另一头为活塞杆球头321,其上设置有滑靴322,活活塞杆一323和滑靴322之间为球铰连接;滑靴底部设置有环形密封带,密封带内径略大于活塞杆杆径,滑靴密封带中心开有小孔流道,穿过活塞杆和活塞及密封324,与泵腔流体接通,以形成斜盘对活塞杆的静压滑动支撑。该泵的斜盘往复驱动机构和和通常的斜盘泵大同小异,该专业的技术人员都很熟悉,故无需更细节的描述。
由于斜盘机构的活塞体将给转子缸体施加较大的侧翻力矩,会导致中心配流轴的变形而引起过大的能量回收腔的配流泄漏,本实施例缸体转子组件4不同于实施1外滑动轴承环46,为此在中壳内与缸体转子组件4的外圆柱面之间,靠近活塞杆出口端,设置一个外滑动轴承环46对缸体转子做辅助支撑来提高支撑刚度,减少泄漏,提高容积效率。为保证该滑动轴承环和中心配流轴的位置精度,一种更好的壳体结构是将该高压泵的中壳和尾壳13合铸为一体,而不是附图7中所示,中壳和前壳11合铸为一体。
设置回程盘二226、回程盘球铰228和回程盘预紧压簧227,将滑靴始终紧压在斜盘表面上;当主轴带动缸体转子组件4旋转时,斜盘225和回程盘二226迫使活塞体在转子活塞缸体中往复运动。
和实施例1的斜轴泵一样,在所述主轴与斜盘、前壳与斜盘之间,安装有两道密封环,两道密封环之间设置有泄流流道引出前壳体外;所述主轴支撑轴承采用油润滑轴承。所述泵中的斜盘和回程盘均采用不锈钢为基体,摩擦表面经防腐耐磨处理和抛光;所述滑靴和回程盘球铰也采用不锈钢为基体,其摩擦表面采用注塑或热喷涂含有石墨、聚四氟乙烯和碳纤维的高分子聚合物复合材料。
该活塞式斜盘泵的加压与能量回收原理和实施例一的活塞式斜轴泵是一样的,此处不再重复。
实施例3
参看图12-15,在实施例1及2中,能量回收流体的配流是通过中心配流轴来实现的。
本实施例中驱动机构2为斜轴机构二23,不同于实施例1斜轴机构一21的地方是,斜轴机构二23包括球铰接组件230、中心轴231、双密封圈232、 尾部轴承233,本实施例中配流机构5为端面配流52,不同于实施例1轴配流51的地方是,端面配流52包括待加压流体配流盘二521、旋转轴密封圈522、待加压流体低压进口二523、待能量回收流体低压出口二524、待加压流体高压出口二525、待能量回收流体高压进口二526、密封圈527、泄流孔二528。
配流机构5包括有在缸体转子组件4的每一个缸体内侧设置的轴向能量回收流道H,以及在泵腔配流窗口J内侧对应设置的月牙形能量回收配流窗口二K,所述能量回收配流窗口二K位于缸体转子组件4和壳体1之间,是将能量回收流的配流窗口后移至缸体转子和尾壳之间,和原有的泵腔配流盘合并为一个,当然,也就把中心配流轴的径向配流变成轴向配流。
参看图13的缸体转子体,在缸体转子的每个缸体内侧设置与能量回收腔接通的流道,参看图14,缸体转子的后端盖示意图。参看图15的配流盘示意图,在配流盘上与该流道对应的径向位置,也即在泵腔的月牙形配流窗口内侧设置了也是月牙形的轴向能量回收配流窗口。另外,本实施例中,利用连杆来驱动活塞杆,然后活塞杆推动缸体转子旋转,取消实施例一中的锥齿轮传动,结构简单了,但不利的方面是,连杆直径较小,活塞杆在连杆大球头侧的壁厚也较薄,其强度刚度可能受影响。再有,就是能量回收的轴向配流,必然会对缸体转子产生附加轴向力,因此,在缸体转子的中心轴231和球铰接组件230之间,设静压平衡区G,来抵消该附加轴向力的影响。
其他方面,实施例3和实施例1基本相同,不再重述。
在本发明优选的实施例1和实施例2相比较而言,实施例1的斜轴泵中驱动活塞体往复运动的机构是斜轴结构,该结构的优点是连杆和活塞之间的夹角很小,缸体转子所受的侧向力小,而且连杆两头的球铰所受的PV值较低,转子和配流轴,配流盘之间的受力也比较均匀,使得三大主要摩擦副的摩擦阻力 小,效率高,磨损相对较低,但主轴的径向和轴向受力都比较大,本发明通过选用油润滑圆锥滚子轴承来承担,效果较好。再有,就是驱动结构相对复杂一点,制造成本比斜盘泵也会高一些,比较适合高压大流量的反渗透系统。而实施例二的斜盘泵,活塞体受到斜盘的反力作用产生较大的活塞和缸体之间、缸体和配流轴、配流盘之间的侧向力,造成摩擦力大,磨损较快,本发明通过设置较大的转子外辅助滑动轴承来改善,但不能解决活塞和活塞缸摩擦副的侧向力问题。另外,活塞杆滑靴在斜盘上高PV值运转,也带来不少挑战,因此限制了斜盘角不能太大,斜盘直径也不宜太大,只能适合一些小型反渗透系统使用。
本发明实施例1和实施例3相比,驱动机构都是斜轴机构,不同的是能量回收的配流机构,实施例3相对结构更简单些。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (8)

  1. 一种具有能量回收功能的旋转活塞式高压泵,其特征在于:包括壳体(1)、驱动机构(2)、若干活塞组件(3)、设置有若干缸体的缸体转子组件(4)和配流机构(5);所述驱动机构(2)、活塞组件(3)、缸体转子组件(4)和配流机构(5)依次安装在壳体(1)内;所述活塞组件(3)一端与驱动机构(2)连接,另一端位于缸体转子组件(4)的缸体内,将缸体分为有杆的能量回收腔(A)和无杆的泵腔(B),随着缸体转子组件(4)的转动,活塞组件(3)在驱动机构(2)的作用下在缸体转子组件(4)中的缸体内往复运动;所述配流机构(5)包括加压流体和能量回收流体的配流窗口(C)和设置在缸体转子组件(4)和壳体(1)上的加压流体以及能量回收流体的进、出流道(D),其配流窗口与缸体转子组件(4)转动配合,在缸体转子组件(4)转动时,将缸体转子组件(4)上各缸体的泵腔(B)流道与壳体(1)上加压流体的低压进口和高压出口流道交替对接,同步地,将缸体转子组件(4)上各缸体的能量回收腔(A)流道与壳体上需要进行能量回收的流体的低压出口和高压进口流道交替接通。
  2. 根据权利要求1所述的具有能量回收功能的旋转活塞式高压泵,其特征在于:所述驱动机构(2)为斜轴机构一(21),所述斜轴机构(21)包括驱动盘(215)、主轴一(211)和回程盘一(218),所述驱动盘(211)与主轴一(211)同轴固定连接,且沿着驱动盘(215)周向等间距分布有若干球窝,所述回程盘一(218)与驱动盘(215)螺纹固定连接,所述驱动盘(215)和回程盘一(218)一起与活塞组件(3)的一端构成球铰连接,所述驱动盘(215)的轴线与缸体转子组件(4)轴心线之间有第一斜角,在所述驱动盘(215)和缸体转子同步旋转时,驱动活塞组件(3)在缸体转子组件(4)的缸体中往复运动。
  3. 根据权利要求1所述的具有能量回收功能的旋转活塞式高压泵,其特征在于:所述驱动机构(2)为斜盘机构(22),所述斜盘机构(22)包括主轴二(221)、斜盘(225)和回程盘二(226),所述回程盘二(226)和斜盘(225)共同限定活塞组件(3)的一端在斜盘(225)上的滑动连接,所述主轴二(221)与缸体转子组件(4)周向固定连接并同步旋转,所述斜盘(225)的轴线与缸体转子组件(4)轴心线之间有第二斜角,主轴二(221)带动缸体转子组件(4)旋转,驱动活塞组件(4)的一端在斜盘(225)上滑动时,另一端在缸体转子组件(4)中往复运动。
  4. 根据权利要求1所述的具有能量回收功能的旋转活塞式高压泵,其特征在于:所述能量回收腔(A)的腔体截面积与泵腔(B)的腔体截面积之比等于需要能量回收的流体流量与需要加压的流体流量之比。
  5. 根据权利要求1所述的具有能量回收功能的旋转活塞式高压泵,其特征在于:所述配流机构(5)包括一个在缸体转子(43)中心设置的具有高、低压两个独立能量回收流道(E)的中心配流轴(512),配流机构(5)的能量回收配流窗口一(F)径向设置在中心配流轴(512)上。
  6. 根据权利要求1所述的具有能量回收功能的旋转活塞式高压泵,其特征在于:所述配流机构(5)包括有在缸体转子组件(4)的每一个缸体内侧设置的轴向能量回收流道(H),以及在泵腔配流窗口(J)内侧对应设置的月牙形能量回收配流窗口二(K),所述能量回收配流窗口二(K)位于缸体转子组件(4)和壳体(1)之间。
  7. 根据权利要求1所述的具有能量回收功能的旋转活塞式高压泵,其特征在于:在所述缸体转子组件(4)与配流机构(5)高压配流窗口的对面设置有静压平衡区(G)。
  8. 根据权利要求2或3所述的具有能量回收功能的旋转活塞式高压泵,其特征在于:所述主轴一(211)或主轴二(221)上设置有轴承,所述轴承为油或脂润滑的滚动轴承。
PCT/CN2019/112930 2019-10-22 2019-10-24 具有能量回收功能的旋转活塞式高压泵 WO2021077350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911008113.5A CN110617190B (zh) 2019-10-22 2019-10-22 具有能量回收功能的旋转活塞式高压泵
CN201911008113.5 2019-10-22

Publications (1)

Publication Number Publication Date
WO2021077350A1 true WO2021077350A1 (zh) 2021-04-29

Family

ID=68926443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112930 WO2021077350A1 (zh) 2019-10-22 2019-10-24 具有能量回收功能的旋转活塞式高压泵

Country Status (2)

Country Link
CN (1) CN110617190B (zh)
WO (1) WO2021077350A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115234461A (zh) * 2022-07-22 2022-10-25 中航力源液压股份有限公司 一种航空液压泵齿轮盘与球铰减磨机构
CN116398395A (zh) * 2023-03-28 2023-07-07 广东海洋大学 一种流体压力能回收装置和海水淡化系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115306664A (zh) * 2021-12-28 2022-11-08 兰州理工大学 一种具有防配油轴变形功能的径向柱塞泵及其方法
CN114504869B (zh) * 2022-01-27 2023-05-23 浙江工业大学 一种便携手摇式海水淡化器
CN116221050A (zh) * 2023-03-07 2023-06-06 华侨大学 一种表面自润滑的滑靴及其制备方法及滑靴副

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768569A (en) * 1980-10-15 1982-04-26 Honda Motor Co Ltd Swash plate type hydraulic apparatus
JPH0942147A (ja) * 1995-07-31 1997-02-10 Toyooki Kogyo Co Ltd 可変容量形斜板式ピストンポンプ
CN101539130A (zh) * 2009-04-24 2009-09-23 上海电气液压气动有限公司 一种斜轴式液压柱塞泵或马达
CN105526051A (zh) * 2016-01-19 2016-04-27 沃尔科技有限公司 能量回收的高压柱塞泵
CN106286183A (zh) * 2016-10-10 2017-01-04 燕山大学 可实现流体能量回收的斜盘式轴向活‑柱塞泵
CN106988977A (zh) * 2017-04-30 2017-07-28 浙江大学 海水淡化能量回收及压力提升一体机装置
CN108238664A (zh) * 2017-12-30 2018-07-03 北京工业大学 一体式低脉动海水淡化能量回收增压装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050758A (zh) * 2007-05-11 2007-10-10 华中科技大学 基于齿轮传动的斜轴式海水柱塞泵
US7799221B1 (en) * 2008-01-15 2010-09-21 Macharg John P Combined axial piston liquid pump and energy recovery pressure exchanger
JP6450629B2 (ja) * 2015-04-02 2019-01-09 株式会社日立建機ティエラ 作業機械の油圧駆動装置
CN211082162U (zh) * 2019-10-22 2020-07-24 朱荣辉 具有能量回收功能的旋转活塞式高压泵

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768569A (en) * 1980-10-15 1982-04-26 Honda Motor Co Ltd Swash plate type hydraulic apparatus
JPH0942147A (ja) * 1995-07-31 1997-02-10 Toyooki Kogyo Co Ltd 可変容量形斜板式ピストンポンプ
CN101539130A (zh) * 2009-04-24 2009-09-23 上海电气液压气动有限公司 一种斜轴式液压柱塞泵或马达
CN105526051A (zh) * 2016-01-19 2016-04-27 沃尔科技有限公司 能量回收的高压柱塞泵
CN106286183A (zh) * 2016-10-10 2017-01-04 燕山大学 可实现流体能量回收的斜盘式轴向活‑柱塞泵
CN106988977A (zh) * 2017-04-30 2017-07-28 浙江大学 海水淡化能量回收及压力提升一体机装置
CN108238664A (zh) * 2017-12-30 2018-07-03 北京工业大学 一体式低脉动海水淡化能量回收增压装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115234461A (zh) * 2022-07-22 2022-10-25 中航力源液压股份有限公司 一种航空液压泵齿轮盘与球铰减磨机构
CN115234461B (zh) * 2022-07-22 2023-11-24 中航力源液压股份有限公司 一种航空液压泵齿轮盘与球铰减磨机构
CN116398395A (zh) * 2023-03-28 2023-07-07 广东海洋大学 一种流体压力能回收装置和海水淡化系统
CN116398395B (zh) * 2023-03-28 2023-09-01 广东海洋大学 一种流体压力能回收装置及海水淡化系统

Also Published As

Publication number Publication date
CN110617190B (zh) 2022-10-11
CN110617190A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2021077350A1 (zh) 具有能量回收功能的旋转活塞式高压泵
CN101440828B (zh) 一种压力交换器
US8419940B2 (en) Combined axial piston liquid pump and energy recovery pressure exchanger
US8696337B2 (en) Plunger type water pump
CN103184990B (zh) 倾斜柱塞式纯水液压斜盘泵
CN108238664B (zh) 一体式低脉动海水淡化能量回收增压装置
CN109441749B (zh) 一种水液压柱塞泵的轴阀复合配流方法
CN102155371A (zh) 反渗透海水淡化用高压泵
CN102155370A (zh) 纯水液压通轴式球面配流轴向柱塞泵
US2035465A (en) Hydraulic pump
CN203098171U (zh) 一种内嵌滑动轴承的斜盘式盘配流海水柱塞泵
CN101050758A (zh) 基于齿轮传动的斜轴式海水柱塞泵
CN111022281B (zh) 少摩擦副海水淡化高压泵及能量回收一体化单元
WO2018196256A1 (zh) 一种二维活塞输油泵
CN103075316A (zh) 缸内轴承支撑半轴式纯水液压轴向柱塞泵
CN201129278Y (zh) 基于齿轮传动的斜轴式海水柱塞泵
CN109653973B (zh) 一种水润滑轴阀复合配流的径向柱塞泵
KR101166685B1 (ko) 수압펌프와 수압모터가 일체형으로 구성된 압력 에너지회수기
CN211082162U (zh) 具有能量回收功能的旋转活塞式高压泵
CN205605427U (zh) 一种用流体运动压力和温度平衡的喷水单螺杆无油空气压缩机
CN111075832A (zh) 滑动轴承
CN206668485U (zh) 一种强制回程盘配流柱塞式水泵
CN109538433A (zh) 一种点接触全水润滑轴向多柱塞容积式水泵
CN210290028U (zh) 一种变量径向配油泵
CN210396989U (zh) 一种定量径向配油泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949723

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19949723

Country of ref document: EP

Kind code of ref document: A1