WO2018196256A1 - 一种二维活塞输油泵 - Google Patents

一种二维活塞输油泵 Download PDF

Info

Publication number
WO2018196256A1
WO2018196256A1 PCT/CN2017/101187 CN2017101187W WO2018196256A1 WO 2018196256 A1 WO2018196256 A1 WO 2018196256A1 CN 2017101187 W CN2017101187 W CN 2017101187W WO 2018196256 A1 WO2018196256 A1 WO 2018196256A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
piston
pump
roller
cylinder
Prior art date
Application number
PCT/CN2017/101187
Other languages
English (en)
French (fr)
Inventor
阮健
关成启
李胜
童成伟
邵文清
王灵锋
郭帅帅
潘成剑
路超
张振炎
张亚娟
Original Assignee
北京空天技术研究所
浙江工业大学
河南航天液压气动技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京空天技术研究所, 浙江工业大学, 河南航天液压气动技术有限公司 filed Critical 北京空天技术研究所
Publication of WO2018196256A1 publication Critical patent/WO2018196256A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/04Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
    • F04B7/06Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports the pistons and cylinders being relatively reciprocated and rotated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B1/16Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms

Definitions

  • the invention relates to a two-dimensional piston oil pump, belonging to the technical field of fuel pumps and motors.
  • the function of the oil pump is to deliver a certain flow and pressure of fuel from the fuel tank to the injector. It is a machine that converts the mechanical energy of the prime mover into pressure energy.
  • the gear type, diaphragm type, vane type and piston type oil pump in the existing mechanical oil delivery system all have defects such as poor oil absorption performance, low efficiency, complicated structure, relatively large size and weight.
  • the two-dimensional piston oil pump is a new type of pump designed based on two-dimensional (2D) motion principle. It not only simplifies the structure of the traditional pump body, but also breaks through the constraints of the friction pair (no sliding friction pair) on pump performance.
  • a two-dimensional piston pump that performs both reciprocating and rotational movements is disclosed in the patents US Pat. No. 4,854, 837, A, US Pat. No. 4,040, 091, 426 A1, US Pat.
  • US4854837A realizes the reciprocating motion of the rotor through the cam surface of the rotor (piston) and the cam surface of the stator (pump body).
  • the US20040101426A1 realizes the rotor through the matching structure of the limiting pin on the casing and the S-shaped channel on the outer surface of the rotor.
  • the reciprocating motion; the friction between the two types of two-dimensional piston pump motion pair is sliding friction, in the case of high speed and high pressure, the structure will wear severely and the mechanical efficiency will drop sharply.
  • the rotor proposed in US Pat. No. 7,887,308 B2 is a two-way left and right swing, and two drives are used to realize the two-dimensional movement of the piston. This structure cannot be speeded up.
  • CN101387276 proposes a two-dimensional piston pump with a fixed roller and a movable cam. The high-pressure output of the pump can be realized, but the oil inlet and outlet are unidirectional, and the oil inlet check valve and the oil discharge check valve are used, and the rotation speed is limited and the mechanical speed is limited. The efficiency is low.
  • Patent CN105484962 proposes a two-dimensional double axial piston pump, which adopts a common rail transmission mode. Realize the reciprocation and rotation of the two-dimensional piston.
  • the patent common rail transmission structure is complicated in design, difficult to process, and the precision of the transmission structural component is difficult to ensure, thereby affecting the transmission effect of the entire transmission chain between the pump cores, resulting in the flow pulsation not reaching the ideal value; the two-dimensional piston has a large size.
  • the radius of gyration of the pump core rotor is too large, and the mass is heavy, which is not conducive to the high speed of the pump;
  • the inlet and outlet port flow passage is designed in the pump body, which increases the processing difficulty and outer shape of the pump body;
  • the sealing of the surface is combined to make the sealing effect of the pump poor, which is greatly affected by the ambient temperature, which affects the performance of the pump.
  • the common rail type piston has metal adhesion at the high speed and the piston sticking rod and the rail contact surface, which easily causes the piston to be stuck. .
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a two-dimensional piston oil pump with compact structure, small volume, light weight, good self-priming performance, high efficiency, continuous flow uniformity, and high speed and high pressure.
  • a two-dimensional piston oil pump includes: a pump casing, left and right end covers, a left pump core, a right pump core, a motor coupling, and an intermediate coupling, and the left pump core includes a left cylinder, a left piston, two sets of left transmission wheel assemblies, two sets of left roller assemblies and a pair of left cams, the right pump core comprising a right cylinder, a right piston, two sets of right roller assemblies and a pair of right cams;
  • the left cylinder body is a truncated cone structure, the center of the circular table is axially machined through the center through hole, and the left end of the left cylinder body is machined with a plurality of symmetrically distributed holes as oil inlet holes, and an annular oil groove is opened at the radial center position on the outer circumferential surface as an oil passage passage.
  • the two oil inlet windows and the two oil discharge windows are radially processed in the center of the inner circumferential surface of the central through hole, and the oil inlet window and the oil discharge window are uniformly and staggered on the circumferential surface, wherein the oil inlet windows respectively
  • the oil hole e penetrates, but does not penetrate with the annular oil groove f, thereby forming an oil inlet passage, the oil is sucked from the oil inlet port on the right end cover, and the oil is sucked through the oil inlet hole and the oil inlet window, and the oil discharge window is penetrated to
  • the annular oil groove f of the oil outlet passage does not interfere with the oil inlet hole e, thereby forming an oil passage;
  • Each set of left roller assemblies includes a left roller shaft and a roller, and two ends of the left roller shaft are respectively mounted Pair of rollers; each set of left transmission components includes a left transmission wheel structural member and a transmission wheel, and the transmission wheel is symmetrically mounted on the left transmission wheel structural member through the four roller shafts of the end face of the left transmission wheel structural member; a shoulder is arranged in the middle of the left piston, and the center of the two end faces of the shoulder respectively protrudes from the piston extending rod, and the outer circumferential surface of the shoulder is processed with a groove corresponding to the oil inlet window and the oil discharge window of the left cylinder body, When the piston rotates, the groove will intermittently communicate with the oil inlet window or the oil discharge window to realize the function of suction and discharge oil distribution;
  • the pair of left cams are respectively mounted on the left and right end faces of the left cylinder body, the left piston passes through the center through hole of the left cylinder body and a pair of left cams, and the left roller shaft is installed in the left transmission wheel structural member, and the left piston two
  • the piston extension rod of the end is fixedly connected to the left roller assembly and the left transmission assembly respectively through the left roller shaft and the left transmission wheel structural member, and the roller on the left roller assembly is in contact with the left cam curved surface and can be rolled on the left cam;
  • the right cylinder, the right piston, the right roller assembly and the right cam structure are the same as the left cylinder, the left piston, the left transmission wheel assembly and the left cam, and the pair of right cams are respectively mounted on the left and right end faces of the right cylinder
  • Upper right piston passes through the center through hole of the right cylinder and a pair of right cams, and the piston extension rods at both ends of the right piston are fixedly connected to the right roller assembly through the right roller shaft, and the roller and right cam surface on the right roller assembly Fit the contact and roll on the right cam;
  • One end of the motor coupling and the intermediate coupling is a fork structure;
  • the pump casing is processed with an oil outlet annular passage corresponding to the annular oil groove on the left and right cylinder blocks, and the oil outlet annular passage is connected, and Connected to the oil outlet processed on the pump casing;
  • the fork of the motor coupling is installed in the gap between the two transmission wheels of the same end face of the left end left transmission component, and the fork of the intermediate coupling is installed at The left end of the right end of the left transmission component is fixed in the gap between the two transmission wheels, and the other end is fixed to the left end of the right piston;
  • the left and right pump cores are placed in the pump body through the shoulders on the left and right cylinder blocks and pass through the left and right ends
  • the cover limits the fastening to the pump casing.
  • the invention processes a circular annular oil outlet passage in the pump casing, forms a closed oil outlet passage with the left and right pump cores installed in the pump casing, and processes the oil hole flow passage on the cylinders of the left and right pump cores.
  • the oil circuit is reasonably laid out, and the pump casing is easier to process and the structure is simpler than the existing two-dimensional common rail piston oil pump, so that the pump
  • the shell can be designed as a thin-walled structure, the outer dimensions are reduced, the weight loss is obvious, and the overall structure of the pump becomes more compact while the cylinder is losing weight; in addition, the compact structure avoids the existing two-dimensional common rail type. Due to the limited structure of the piston oil pump, most of them can only adopt the interference fit sealing structure. There are symmetric O-ring seal grooves on the left and right sides of the annular oil groove of the cylinder block, and the oil passage is ensured by installing the O-ring seal. The sealing property can effectively improve the volumetric efficiency of the pump.
  • the left and right pump cores have a phase difference of 45° on the installation plane, and the total flow rate of the two pump core outputs is continuously and evenly stabilized by the phase difference.
  • the invention adopts a motor coupling, a left pump core transmission component, an intermediate coupling device and a right pump core piston transmission route, and combines the fork structure of the motor coupling and the intermediate coupling with the same end surface of the left pump core transmission component.
  • the two rollers cooperate to provide a connection transmission.
  • One of the rollers is used to transmit the torque of the coupling fork, and the other roller is used to limit the circumferential movement of the coupling fork in the transmission. Ensure the smoothness of the entire pump drive chain.
  • the transmission form of the invention compared with the common rail type transmission mode, although the overall transmission chain size of the pump is increased in the axial length, due to the structural optimization of the cylinder block, the piston and the pump casing of the present invention, the whole The axial length of the pump has been greatly reduced. Therefore, the transmission mode of the present invention does not have a significant influence on the axial length of the optimized pump; further, due to the simple transmission structure of the present invention, the processing precision is greatly improved, during assembly, It is easier to ensure the accuracy of the two pump cores in a 45° phase difference, so that the pump output flow pulsation can reach the theoretical design value.
  • the piston extending rod is provided with a dirt hole for containing oil dirt, which is used for preventing a large foreign object from being stuck to the piston, and the nano-scale hole is spirally distributed on a circumferential surface of the piston extending rod. It is used to ensure that the length of the tape seal at each axial section of the piston sticking rod is not too small, thereby affecting the sealing effect of the piston sticking out of the rod.
  • the piston of the invention has a smaller size and shape, which is advantageous for high speed; in operation, the groove and the cylinder on the piston shoulder Oil on or
  • the oil discharge window communicates to realize the distribution of the oil: the chamber whose volume gradually becomes larger will always communicate with the oil inlet window of the above-mentioned cylinder body which penetrates into the small hole of the oil suction passage through the above-mentioned piston groove to suck oil from the oil tank; the volume gradually changes.
  • the small chamber always communicates with the oil drain window of the above-mentioned cylinder body which penetrates the annular groove through the above-mentioned piston groove to discharge the oil.
  • the two left cams or the two right cams are mounted opposite each other and are arranged at 90° offset in the installed position.
  • the left and right cams are all cylindrical, and are equal acceleration or equal deceleration parabola, and the left and right cams have the same curved surface change rule, the top surface of the cylindrical body has an outwardly convex curved curved surface, and the arc is a mounting hole connected to the cylinder body is symmetrically disposed on the cylinder at both ends of the lowest point of the curved surface; a center of the cylindrical body is provided with a through hole that cooperates with the protruding rod of the piston, and a copper ring is mounted on the through hole;
  • the cylinder of the cam has an annular groove in the circumferential direction and is fitted with an O-ring.
  • the left and right piston surfaces are provided with uniformly arranged grooves corresponding to the oil inlet and oil discharge windows on the cylinder block, and the groove positions of the grooves are arranged in a mutually staggered manner in the circumferential direction; the groove and the cylinder are uniformly arranged
  • the distributed oil inlet and drain windows are coupled to each other, and the width of the piston groove is identical to the width of the oil inlet and drain windows on the cylinder.
  • the left and right sides of the annular oil groove of the left and right cylinders respectively have symmetric O-ring seal grooves, and the O-ring seal is installed to ensure the sealing performance of the oil passage, which can effectively improve the volumetric efficiency of the pump.
  • the space enclosed by the left cam, the left end of the piston and the cylinder constitutes a left chamber
  • the space enclosed by the right cam, the right end of the piston and the cylinder constitutes a right chamber
  • the left and right cams are mounted thereon.
  • the O-ring seal greatly improves the sealing performance of the left and right chambers, and improves the pumping and discharging efficiency of the pump.
  • the volume of the left chamber and the right chamber alternates with the reciprocating motion of the piston; when the piston moves axially from the leftmost end to the rightmost end, the volume of the left chamber gradually becomes larger, and the volume of the right chamber gradually becomes smaller; similarly, when When the piston moves axially from the rightmost end to the leftmost end, the volume of the right chamber gradually becomes larger, and the volume of the left chamber gradually becomes smaller.
  • the motor coupling is mounted on the left end cover with the through hole through the retaining ring; the left end cover is installed between the left end cover and the motor coupling for sealing and reducing the friction between the coupling and the end cover
  • the oil seal, the copper piece and the bearing acting on the force; the left end of the motor coupling has a rectangular keyway matched with the motor.
  • the left and right end caps are provided with an annular groove for placing an O-ring.
  • the left and right cams are respectively fixed to the cylinder by positioning pins.
  • the drive wheel of the transmission wheel assembly and the roller of the roller assembly are respectively composed of a wheel sleeve, a rolling bearing, a positioning pin and a locking washer.
  • the pistons of the left and right pump cores are fixedly connected with the roller assembly and the transmission wheel assembly through the positioning pins, and the motor transmits the torque to the rollers on the transmission wheel assembly through the motor coupling to drive the transmission wheel assembly to rotate and simultaneously adhere thereto.
  • the roller assembly rolls on the cam; the transmission wheel assembly causes the piston to rotate in the longitudinal direction, and the roller assembly rolling on the cam causes the piston to reciprocate on the shaft, relying on the two degrees of freedom of the piston to move through the piston
  • the groove and the inlet and outlet oil passages on the cylinder realize the continuous oil transfer of the pump core.
  • the intermediate coupling transmits the torque outputted by the motor to the right pump core through the rotation of the left pump core piston, and drives the right pump core to rotate.
  • the left and right pump cores are driven by the motor and can be sucked and drained at the same time. There is a 45° phase difference between the left and right pump cores.
  • the instantaneous flow rates of the two pump cores are different at the same time, but the total flow of the combined flow is different. Always stay the same.
  • the special transmission and oil circuit design of the invention makes the structure of the pump body and the cylinder body optimized, the processing is simplified, the weight loss is obvious, and the pump is miniaturized;
  • the special oil circuit design of the invention enables the sealing structure to be realized, so that the radius of gyration of the piston becomes smaller, and the optimization of the transmission mode makes the rotation speed of the invention significantly higher than the existing structure, and the rotation speed can reach 10000 RPM. Above every minute), while the existing structure is generally at 5000 RPM (revolution per minute) under;
  • the special piston structure design of the present invention is smaller than the existing two-dimensional common rail piston oil pump, and the radius of gyration of the piston structure of the present invention becomes smaller under the premise that the effective suction and discharge oil area of the two-dimensional piston is the same.
  • the weight reduction effect is obvious and the “back to middle” effect is beneficial to the high speed and miniaturization of the piston pump;
  • the invention adopts a structure in which a scale hole is formed on a piston extending rod and a copper ring is installed in a cylinder bore, which can effectively solve the metal adhesion phenomenon of the piston and the cam contact surface at a high speed rotation, and prevent the piston card. dead;
  • the special structure of the invention realizes the sealing manner of the O-ring seal of the pump cylinder block and the cam cylinder, and replaces the two contact faces of the existing two-dimensional common rail piston oil pump with the sealing method.
  • the pump's tightness is greatly improved, thereby increasing the efficiency of the pump.
  • Figure 1 is a schematic view of the overall structure of the present invention
  • FIG. 2 is a schematic structural view of a left pump core of the present invention
  • Figure 3 is a schematic view showing the structure of the right pump core of the present invention.
  • Figure 4 is a schematic view of the left roller assembly of the present invention.
  • Figure 5 is a schematic view of the left transmission wheel assembly of the present invention.
  • Figure 6 is a schematic view showing the structure of the left cam of the present invention.
  • Figure 7 is a schematic view showing the structure of the left cylinder block of the present invention (taking a rectangular oil inlet window and an oil discharge window as an example);
  • Figure 8 is a schematic view showing the structure of the left piston of the present invention (corresponding to Figure 7, taking a rectangular groove as an example);
  • Figure 9 is a schematic structural view of a motor coupling of the present invention.
  • Figure 10 is a schematic view showing the structure of the intermediate coupling of the present invention.
  • the present invention includes a left end cover 1, a right end cover 11, a left pump core, a right pump core, a motor coupling 2, an intermediate coupling 9, and a pump casing 15.
  • the left and right pump cores are placed in the pump casing 15 through the shoulder (cylinder) designed on the pump core and are restricted by the left end cover 1 and the right end cover 11 to be fastened to the pump casing 15, left and right pumps
  • the cores are connected by the intermediate coupling 9;
  • the pump casing 15 has two annular oil outlet annular passages 151, and the two oil outlet annular passages 151 pass through the process holes and are processed on the pump casing 15.
  • the oil outlet 152 is connected, and the process hole is sealed by the screw plug 14.
  • the oil outlet annular passage on the pump casing 15 forms a closed oil passage with the left and right pump cores installed in the pump casing 15, and both ends of the pump casing 15 pass.
  • the bolt 12 is fixedly mounted with the left and right end covers 1, 11, the left end of the left end cover 1 is mounted with the motor coupling 2, and the right end of the right end cover 11 is machined into the oil inlet 111.
  • the left pump core includes a left cylinder block 8, a left piston 23, a left roller assembly, a transmission wheel assembly, and a left cam 7.
  • the left cylinder block 8 has a through hole at the axial center for mounting the left piston 23, and the size of the through hole is matched with the maximum shoulder diameter of the left piston 23; the left end of the left cylinder 8 has a circumferential distribution
  • the eight oil inlet holes e parallel to the central through hole, the eight oil inlet holes e are symmetrically distributed in a fan shape, and serve as a communication channel for the oil inlet port.
  • the left cylinder block 8 has an annular oil groove f at a radial center position, and forms a closed oil outlet passage with the oil outlet annular passage 151 in the pump casing 15, and the left and right sides of the annular oil groove f of the left cylinder block 8 are respectively symmetrically O-shaped.
  • the seal groove is fitted with an O-ring 24 to ensure the tightness of the oil passage.
  • the left piston 23 is provided with a shoulder at the center of the left piston 23.
  • the circumferential surface of the shoulder is provided with four rectangular grooves h, g, m, n uniformly arranged, and four rectangular groove grooves.
  • the port positions are arranged offset from each other in the circumferential direction; the four rectangular grooves h, g, m, n and the four uniformly distributed rectangular oil discharge and oil inlet windows a, c, b, d open on the left cylinder 8 Paired communication, and the width of the rectangular grooves h, g, m, n of the left piston 23 is the same as the width of the rectangular windows a, b, c, d on the left cylinder 8;
  • the shaft is a piston extending rod 231, and the piston protruding rod 81 is provided with a dirt hole p for containing oil dirt, which is used to prevent a large foreign matter from jamming the left piston 23, and the scale hole p is extended on the circumference of the rod.
  • the upper spiral is distributed; during operation, the rectangular grooves h, g, m, n on the left piston 23 communicate with the rectangular windows a, b, c, d on the left cylinder 8 to realize the distribution of the oil: the volume gradually
  • the enlarged chamber will always communicate with the rectangular window of the left cylinder through the rectangular window of the left cylinder through the oil inlet hole e to absorb oil from the fuel tank; the volume gradually changes.
  • the small chamber always communicates with the rectangular window of the left piston and the rectangular window of the left cylinder that penetrates the annular oil groove f to discharge the oil.
  • the left roller assembly includes a roller shaft 26 and a roller 6.
  • the roller shaft 26 is respectively provided with a set of rollers 6 at two ends thereof; the roller 6 is provided with a bearing 27 and a bearing 28, and the roller 6 is passed through the locking washer 18 and positioning. Pin 19 is limited.
  • the transmission wheel assembly includes a transmission wheel structural member 20 and a transmission wheel 5.
  • the end surface of the transmission wheel structural member 20 has four roller shafts 51 on which the transmission wheels are mounted, and the transmission shaft 5 is mounted on the roller shaft 51.
  • the left cam 7 is as shown in FIG. 6.
  • the left and right end faces of the left cylinder block 8 are respectively fixed with left cams 7 having the same curved surface change rule, and the two left cams 7 are oppositely mounted, and are 90 in the mounting position.
  • the left cam 7 is a cylinder, the top surface of the cylinder has an outwardly convex curved surface, and the cylinder at both ends of the lowest point of the curved surface is symmetrically disposed with the pin 21 (the left cylinder 8 in FIG.
  • the upper part is matched with the mounting hole; the center of the cylinder is provided with a central hole, and the central hole is provided with a copper ring 31 to cooperate with the piston extension rod 231 of the left piston 23; the left cam 7 has an annular groove in the circumferential direction of the cylinder The groove is fitted with an O-ring 22 .
  • the left through hole 23 is mounted in the center through hole of the left cylinder block 8, and the left piston 23 is linearly reciprocated in the axial direction of the center hole of the left cylinder block 8; the left and right end faces of the left cylinder block 8 are respectively fixed
  • the left cam 7 having the same surface change law, the left cam 7 is respectively fixed on the left cylinder 8 by the positioning pin 21, and the left and right ends of the left piston 23 are respectively installed with a set of left roller assemblies and a set of left transmission wheel assemblies;
  • the assembly and the left transmission wheel assembly are respectively fastened to the left and right ends of the left piston 23 by the positioning pin 17, and the roller 6 on the left roller assembly can be brought into contact with the curved surface of the left cam 7 and can be rolled on the left cam 7. .
  • the left drive roller assembly has two rollers 5 on the same end roller shaft, one of which is used to transmit the torque of the motor or the intermediate coupling fork, and the other roller 5 is used to limit the motor or the intermediate coupling fork.
  • the circumferential sway in the transmission ensures the smoothness of the entire pump drive chain.
  • the right pump core is shown in Figure 3, including the right cylinder 8', the right piston 23', the right roller assembly and the right cam 7'; the right cylinder 8', the right piston 23', the right roller assembly and the right cam 7'
  • the structure is consistent with the structure in the left pump core (As shown in Figures 4, 6, 7, and 8), the right pump core has no transmission wheel assembly, and the intermediate coupling 9 is installed at the proximal end of the right pump core and the left pump core for coupling the left and right pump cores, right
  • the right roller assembly on the pump core is fastened by pins 25 and pins 10.
  • the left and right pump cores have a 45° phase difference in the radial plane.
  • the phase difference is used to achieve continuous and uniform total flow of the two pump core outputs.
  • the motor coupling 2 is as shown in Fig. 9, and one end of the shaft is a fork structure.
  • the fork of the motor coupling 2 is installed in the transmission wheel gap of the transmission wheel assembly at the left end of the left pump core, and the left end of the motor coupling 2 has a rectangular keyway matched with the motor, and the motor coupling 2 is installed through the retaining ring.
  • an oil seal 3 and a bearing 4 for sealing and reducing the frictional force of the coupling and the end cover are installed between the left end cover 1 and the motor coupling 2.
  • the intermediate coupling 9 is as shown in Fig. 10, and one end of the shaft is a fork structure.
  • the intermediate coupling 9 is fastened to the right piston 23' of the right pump core by a positioning pin 25 (Fig. 3).
  • An annular groove for placing the O-ring 13 is provided on the left and right end covers 1, 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种二维活塞输油泵,包括泵壳(15)、左端盖(1)、右端盖(11)、左泵芯、右泵芯、电机联轴器(2)和中间联轴器(9),左、右泵芯置于泵壳(15)中并通过左端盖(1)、右端盖(11)限位使其与泵壳(15)固连,左泵芯、右泵芯通过中间联轴器(9)连接并传动。通过特殊的传动及油路设计,使得泵体、缸体的结构优化、加工简化,减重明显,有利于泵的小型化。

Description

一种二维活塞输油泵 技术领域
本发明涉及一种二维活塞输油泵,属于燃油泵及马达技术领域。
背景技术
输油泵的功能是从油箱输送一定流量和压力的燃油至喷油嘴,是一种将原动机的机械能转换成压力能的机械。现有机械式输油系统中的齿轮式、膜片式、叶片式以及活塞式输油泵都存在吸油性能差,效率低,结构比较复杂,尺寸重量相对较大等缺陷。
二维活塞输油泵是基于二维(2D)运动原理设计的新型结构的泵,它不仅简化了传统泵体的结构,还突破了摩擦副(无滑动摩擦副)对泵性能等方面的制约。专利US4854837A、US20040101426A1、US7887308B2和CN101387276中都公开了一种同时做往复运动和旋转运动的二维活塞泵。其中US4854837A通过转子(活塞)凸轮表面与定子(泵体)的凸轮表面限定配合结构实现转子的往复运动;US20040101426A1通过壳体上的限位销与转子外圆表面S型槽道的配合结构实现转子的往复运动;这两种形式的二维活塞泵运动副之间的摩擦都是滑动摩擦,在高速高压的情况下,该种结构会出现磨损严重和机械效率急剧降低。US7887308B2提出的转子是做双向左右摆动,使用了两个驱动实现了活塞的二维运动,这种结构不能高速化。CN101387276提出了一种固定滚轮与活动凸轮配合结构的二维活塞泵,能够实现泵的高压输出,但其进出油单向,使用进油单向阀和出油单向阀,转速受到限制且机械效率偏低。
专利CN105484962提出了一种二维双联轴向活塞泵,采用共轨式传动方式, 实现二维活塞的往复和旋转。该专利共轨式传动结构设计复杂,加工困难,传动结构件的精度难以保证,进而影响泵芯之间整条传动链的传动效果,导致流量脉动未达到理想值;二维活塞尺寸较大,从而决定了泵芯转子的回转半径过大,质量较重,不利于泵的高速化;进出油口流道设计在泵体中,增加了泵体的加工难度和外形尺寸;关键密封部位依靠接触面配合的带密封使得泵的密封效果差,受环境温度影响大,影响泵的性能;共轨式活塞在高转速下活塞伸出杆和导轨接触面存在金属黏连现象,容易导致活塞卡死。
发明内容
本发明的目的在于克服现有技术不足,提供了一种具有结构紧凑、体积小重量轻、自吸性能好、效率高、流量连续均匀、适用于高速高压情况的二维活塞输油泵。
本发明的技术解决方案:一种二维活塞输油泵,包括:泵壳、左、右端盖、左泵芯、右泵芯、电机联轴器和中间联轴器,所述的左泵芯包括左缸体、左活塞、两组左传动轮组件、两组左滚轮组件和一对左凸轮,所述的右泵芯包括右缸体、右活塞、两组右滚轮组件和一对右凸轮;
所述的左缸体为圆台结构,圆台中心轴向加工中心通孔,左缸体端面加工若干对称分布的孔作为进油孔,外圆周面上径向中心位置开有环形油槽作为出油通道,在所述的中心通孔内圆周面中心径向加工2个进油窗口和2个排油窗口,进油窗口和排油窗口在圆周面上均匀且交错分布,其中进油窗口分别与进油孔e贯通,但未与环形油槽f贯穿,以此形成进油通道,油液从右端盖上的进油口吸入,经过进油孔和进油窗口的配流实现吸油,排油窗口贯通至出油通道的环形油槽f但未与进油孔e干涉贯穿,以此形成出油通道;
所述的每组左滚轮组件包括左滚轮轴和滚轮,左滚轮轴的两端分别安装有一 对滚轮;所述的每组左传动组件包括左传动轮结构件和传动轮,传动轮通过左传动轮结构件端面的四根滚轮轴两两对称安装在左传动轮结构件上;所述的左活塞中间设置有台肩,台肩的两端面中心分别伸出活塞伸出杆,所述台肩的外圆周面上加工与左缸体的进油窗口和排油窗口对应的沟槽,在活塞旋转时,沟槽会与进油窗口或排油窗口发生间歇性沟通,实现吸排油配流功能;
所述的一对左凸轮分别安装在左缸体的左右端面上,左活塞穿过左缸体的中心通孔和一对左凸轮,左滚轮轴安装在左传动轮结构件中,左活塞两端的活塞伸出杆通过左滚轮轴和左传动轮结构件分别固定连接一组左滚轮组件和左传动组件,左滚轮组件上的滚轮与左凸轮曲面贴合接触,并可在左凸轮上滚动;
所述的右缸体、右活塞、右滚轮组件和右凸轮结构与左缸体、左活塞、左传动轮组件和左凸轮相同,所述的一对右凸轮分别安装在右缸体的左右端面上,右活塞穿过右缸体的中心通孔和一对右凸轮,右活塞两端的活塞伸出杆通过右滚轮轴分别固定连接一组右滚轮组件,右滚轮组件上的滚轮与右凸轮曲面贴合接触,并可在右凸轮上滚动;
所述的电机联轴器和中间联轴器的一端为拨叉结构;所述的泵壳上加工与左右缸体上的环形油槽对应的出油环形通道,出油环形通道之间连通,并与泵壳上加工的出油口连通;所述的电机联轴器的拨叉安装在左端的左传动组件同一端面的两个传动轮之间的间隙中,中间联轴器的拨叉安装在右端的左传动组件同一端面的两个传动轮之间的间隙中,另一端与右活塞左端固连;所述的左右泵芯通过左右缸体上的台肩置于泵体中并通过左右端盖限位使其与泵壳紧固连接。
本发明在泵壳内加工连通的环形出油环形通道,与装入泵壳内的左、右泵芯形成密闭的出油通路,在左、右泵芯的缸体上加工进油孔流道,合理布局了油路,与现有的二维共轨式活塞输油泵相比,泵壳加工更加容易、结构更简单,使得泵 壳能设计成薄壁结构,外形尺寸减小,减重明显,缸体在减重的同时泵的整体结构也变得更加紧凑;另外,这样紧凑的结构,同时避免现有二维共轨式活塞输油泵由于结构受限,大多只能采用过盈配合的密封结构,在缸体环形油槽左右侧分别开有对称的O形密封圈沟槽,通过安装O形密封圈的方式确保出油通道的密封性,能有效的提高泵的容积效率。
所述的左右泵芯在安装平面上有45°的相位差,依靠此相位差来实现两个泵芯输出的总流量连续均匀平稳。
本发明采用电机联轴器、左泵芯传动组件、中间联轴器、右泵芯活塞传动路线,结合电机联轴器和中间联轴器的拨叉结构与左泵芯传动组件的同一端面上的两个滚轮配合,起到连接传动作用,其中的一个滚轮用来传递上述联轴器拨叉的扭矩,另一个滚轮则用来限制上述联轴器拨叉在传动中的周向窜动,保证整个泵芯传动链的平稳性。采用本发明的传动形式,与共轨式传动方式相比,虽然在轴向长度上有所增加泵整体的传动链尺寸,但由于本发明缸体、活塞、泵壳在结构上的优化,其整个泵的轴向长度已经大大减少,因此,采用本发明传动方式对于优化过后的泵轴向长度并未有明显的影响;进一步,由于本发明传动结构简单,加工的精度大大提高,在装配时,更能容易的确保两个泵芯在错开45°相位差上的精度,使得泵的输出流量脉动能达到理论设计值。
所述的活塞伸出杆上开设有容纳油液污垢的纳垢孔,用来防止较大的异物卡死活塞,所述的纳垢孔在所述活塞伸出杆圆周面上呈螺旋分布,用来确保所述活塞伸出杆上每一个轴向截面处的带密封长度不至于过小,从而影响所述活塞伸出杆处的密封效果。
本发明活塞在泵所需排量一定的情况下,与二维共轨式活塞输油泵相比,活塞尺寸形状更小,有利于高速化;工作时,活塞台肩上的沟槽与缸体上的进油或 排油窗口发生沟通,实现油液的配流:容积逐渐变大的腔室始终都会通过上述活塞沟槽与上述缸体上贯通至吸油通道小孔的进油窗口沟通从而从油箱吸油;容积逐渐变小的腔室始终都会通过上述活塞沟槽与上述缸体上贯通至环形槽的排油窗口沟通从而将油液排出。
所述的两个左凸轮或两个右凸轮相对安装,并且在安装位置上呈90°错开布置。
所述的左右凸轮均呈圆柱体,为等加速或等减速抛物线,左右凸轮要具有相同曲面变化规律,所述的圆柱体的顶面具有向外凸起的弧形曲面,并且所述的弧形曲面的最低点两端的圆柱体上对称设置有与缸体连接的安装孔;所述的圆柱体的中心开设有与活塞伸出杆配合的通孔,通孔上安装有铜环;所述凸轮的圆柱体圆周方向开有环形沟槽,安装有O形密封圈。
所述的左右活塞表面上开设有均匀布置的与缸体上进油和排油窗口对应的沟槽,并且沟槽的槽口位置在圆周方向相互错开布置;沟槽与缸体上开置的均匀分布的进油和排油窗口相互配对沟通,所述活塞沟槽的宽度与所述缸体上的进油和排油窗口的宽度是一致的。
所述的左右缸体的环形油槽左右两侧分别开有对称的O形密封圈沟槽,通过安装O形密封圈的方式确保出油通道的密封性,能有效的提高泵的容积效率。
所述的左凸轮、活塞左端和缸体共同围合的空间构成左腔室,所述的右凸轮、活塞右端和缸体共同围合的空间构成右腔室,所述左、右凸轮上安装的O形密封圈使得左、右腔室的密封性大大提高,提高了泵的吸排油效率。左腔室与右腔室的容积随活塞的往复运动交错变化;当活塞从最左端往最右端轴向运动时,左腔室容积逐渐变大,右腔室容积逐渐变小;同理,当活塞从最右端往最左端轴向运动时,右腔室容积逐渐变大,左腔室容积逐渐变小。
进一步的,所述的电机联轴器通过挡圈安装在开有通孔的左端盖上;所述的左端盖与电机联轴器之间安装用于密封和减少联轴器与端盖的摩擦力作用的油封、铜片和轴承;所述的电机联轴器的左端开有与电机配合的矩形键槽。
所述的左、右端盖上开设有用于放置O形密封圈的环形槽。
所述的左右凸轮分别通过定位销固定在缸体上。
所述的传动轮组件的传动轮和滚轮组件的滚轮分别由轮套、滚动轴承、定位销和锁紧垫片构成。
本发明的工作原理:
左、右泵芯的活塞与滚轮组件、传动轮组件通过定位销固连在一起,电机通过电机联轴器将扭矩传递到传动轮组件上的滚轮,带动传动轮组件转动,同时与其固连的滚轮组件在凸轮上滚动;传动轮组件促使活塞在纵向发生旋转运动,在凸轮上滚动的滚轮组件又促使活塞在轴上发生往复运动,依靠上述活塞的两个自由度上的运动,并通过活塞沟槽和缸体上进出油窗口通道的配合实现泵芯的连续输油工作。同理,中间联轴器将电机输出的扭矩通过左泵芯活塞的转动传递到右泵芯上,带动右泵芯转动。左、右泵芯在电机的带动下,同时能够吸排油工作,左、右泵芯之间又存在45°的相位差,两个泵芯的瞬时流量在同一时刻不相同,但合流的总流量始终保持不变。
本发明与现有技术相比的有益效果:
(1)本发明特殊的传动及油路设计,使得泵体、缸体的结构优化、加工简化,减重明显,有利于泵的小型化;
(2)本发明特殊的油路设计,使得密封结构得以实现,使活塞的回转半径变小,结合传动方式的优化,使得本发明转速比现有结构有了显著增加,转速能达到10000RPM(转每分钟)以上,而现有的结构一般在5000RPM(转每分钟)以 下;
(3)本发明特殊的活塞结构设计,与现有的二维共轨式活塞输油泵相较,在保证二维活塞有效吸排油面积相同的前提下,本发明活塞结构的回转半径变小,减重效果明显以及“回中”作用,有利于活塞泵的高速化和小型化;
(4)本发明泵芯之间的传动部分不再采用共轨式的结构方案,通过采用中间联轴器的方式来连接两个泵芯,简化了结构,在降低加工难度的同时能更加容易的确保两个泵芯之间能错开45°的精度要求,使得泵的流量脉动性能更容易达到理论设计值;
(5)本发明采用活塞伸出杆上开设纳垢孔和凸轮圆柱体内孔安装铜环的结构方式,能有效的解决活塞和凸轮接触面在高速转动时的金属黏连现象,防止活塞的卡死;
(6)本发明的特殊结构实现了泵芯缸体、凸轮圆柱体的O形密封圈的密封方式,替代了现有二维共轨式活塞输油泵两个接触面紧配带密封的方式,大大提高了泵的密封性,从而提高了泵的效率。
附图说明
图1为本发明整体结构示意图;
图2为本发明左泵芯结构示意图;
图3为本发明右泵芯结构示意图;
图4为本发明左滚轮组件示意图;
图5为本发明左传动轮组件示意图;
图6为本发明左凸轮结构示意图;
图7为本发明左缸体结构示意图(以矩形进油窗口和排油窗口为例);
图8为本发明左活塞结构示意图(与图7对应,以矩形沟槽为例);
图9为本发明电机联轴器结构示意图;
图10本发明中间联轴器结构示意图。
具体实施方式
下面结合具体实例及附图对本发明进行详细说明。
本发明如图1所示,包括左端盖1、右端盖11、左泵芯、右泵芯、电机联轴器2、中间联轴器9和泵壳15。左泵芯和右泵芯通过泵芯上设计的台肩(缸体)置于泵壳15中并通过左端盖1、右端盖11限位使其与泵壳15紧固连接,左、右泵芯之间则通过中间联轴器9传动连接;泵壳15内开有两道环形的出油环形通道151,两条出油环形通道151过工艺孔贯通,并与加工在泵壳15上的出油口152连通,工艺孔通过螺堵14密封,泵壳15上的出油环形通道与装入泵壳15内的左、右泵芯形成密闭的出油通路,泵壳15的两端通过螺栓12固定安装有左、右端盖1、11,左端盖1左端安装电机联轴器2,右端盖11右端加工进油口111。
左泵芯如图2所示,包括左缸体8、左活塞23,左滚轮组件、传动轮组件和左凸轮7。左缸体8如图7所示,轴向中心处开通孔,用来安装左活塞23,通孔尺寸大小与左活塞23最大台肩直径尺寸相配合;左缸体8端面上开有圆周分布的八个与中心通孔平行的进油孔e,八个进油孔e呈扇形对称分布,作为进油口吸油的沟通通道。左缸体8在径向中心位置开有环形油槽f,与泵壳15中的出油环形通道151配对形成密闭出油通道,左缸体8的环形油槽f左右侧分别开有对称的O形密封圈沟槽,安装有O形密封圈24确保出油通道的密封性。左缸体8中心通孔径向中心处开有四个均分部分的矩形窗口a、b、c、d,其中矩形窗口a、c为排油窗口,贯通至左缸体8的环形油槽f处但未与圆周方向上的八个进油孔e干涉贯穿,另一组矩形窗口b、d为进油窗口,则分别与对称分布的八个 进油孔e中居于中间位置的两个小通孔贯通,但未与左缸体8的环形油槽f贯穿,进油窗口b、d和排油窗口a、c在圆周上均匀且交错分布。
左活塞23如图8所示,左活塞23中心部位设置台肩,台肩的圆周表面上开设有均匀布置的四个矩形沟槽h、g、m、n,并且四个矩形沟槽的槽口位置在圆周方向相互错开布置;四个矩形沟槽h、g、m、n与左缸体8上开置的四个均匀分布的矩形排油和进油窗口a、c、b、d相互配对沟通,且左活塞23矩形沟槽h、g、m、n的宽度与左缸体8上的矩形窗口a、b、c、d的宽度是一致的;左活塞23台肩两端面伸出轴为活塞伸出杆231,活塞伸出杆81上开设有容纳油液污垢的纳垢孔p,用来防止较大的异物卡死左活塞23,纳垢孔p在活塞伸出杆圆周面上呈螺旋分布;工作时,左活塞23上的矩形沟槽h、g、m、n与左缸体8上的矩形窗口a、b、c、d发生沟通,实现油液的配流:容积逐渐变大的腔室始终都会通过左活塞矩形沟槽与左缸体上贯通至进油孔e的矩形窗口沟通从而从油箱吸油;容积逐渐变小的腔室始终都会通过左活塞矩形沟槽与左缸体上贯通至环形油槽f的矩形窗口沟通从而将油液排出。
左滚轮组件如图4所示,包括滚轮轴26和滚轮6,滚轮轴26的两端分别安装有一组滚轮6;滚轮6内装有轴承27和轴承28,滚轮6通过锁紧垫片18和定位销19限位。
传动轮组件如图5所示,包括传动轮结构件20和传动轮5,传动轮结构件20端面有四根安装传动轮的滚轮轴51,滚轮轴51上安装传动轮5,传动轮5内装有两个轴承29、30,并由锁紧垫片32和限位销16限位;传动轮和滚轮轴两两对称布置。
左凸轮7如图6所示,左缸体8的左、右两个端面上分别固设有具有相同曲面变化规律的左凸轮7,两个左凸轮7相对安装,并且在安装位置上呈90°错开 布置;左凸轮7呈圆柱体,圆柱体的顶面具有向外凸起的弧形曲面,并且弧形曲面的最低点两端的圆柱体上对称设置有与销钉21(图2中左缸体8上)相匹配的安装孔;圆柱体的中心开设有中心孔,中心孔内安装有铜环31,与左活塞23的活塞伸出杆231配合;左凸轮7的圆柱体圆周方向开有环形沟槽,安装有O形密封圈22。
左缸体8的中心通孔安装有左活塞23,并且左活塞23可沿左缸体8中心孔的轴向作直线往复运动;左缸体8的左、右两个端面上分别固设有具有相同曲面变化规律的左凸轮7,左凸轮7分别通过定位销21固定在左缸体8上,左活塞23的左右两端分别安装一组左滚轮组件和一组左传动轮组件;左滚轮组件、左传动轮组件分别通过定位销17紧固在左活塞23的左、右端,安置后的左滚轮组件上的滚轮6可以与左凸轮7曲面贴合接触,并可以在左凸轮7上滚动。左传动轮组件同一端面上的两个滚轮5之间留有间隙,电机联轴器2和中间联轴器9的拨叉恰分别安装在左右两个左传动轮组件同一端面上的两个滚轮5的间隙中,起到连接传动作用。左传动滚轮组件同一端面滚轮轴上的两个滚轮5,其中的一个滚轮5用来传递电机或中间联轴器拨叉的扭矩,另一个滚轮5则用来限制电机或中间联轴器拨叉在传动中的周向窜动,保证整个泵芯传动链的平稳性。
左边的左凸轮7、左活塞23左端和左缸体8共同围合的空间构成左腔室,右边的左凸轮7、左活塞23右端和左缸体8共同围合的空间构成右腔室,左腔室与右腔室的容积随活塞的往复运动交错变化;当左活塞23从最左端往最右端轴向运动时,左腔室容积逐渐变大,右腔室容积逐渐变小;同理,当左活塞23从最右端往最左端轴向运动时,右腔室容积逐渐变大,左腔室容积逐渐变小。
右泵芯如图3所示,包括右缸体8’、右活塞23’、右滚轮组件和右凸轮7’;右缸体8’、右活塞23’、右滚轮组件和右凸轮7’的结构与左泵芯中结构一致 (具体如图4、6、7、8),右泵芯没有传动轮组件,并在右泵芯与左泵芯近端安装了中间联轴器9,用来联结左、右泵芯,右泵芯上的右滚轮组件通过销钉25和销钉10进行紧固。
左右两个泵芯在径向平面上有45°相位差,依靠此相位差来实现两个泵芯输出的总流量连续均匀平稳。
电机联轴器2如图9所示,轴的一端为拨叉结构。电机联轴器2的拨叉安装在左泵芯左端的传动轮组件的传动轮间隙中,电机联轴器2的左端开有与电机配合的矩形键槽,电机联轴器2通过挡圈安装在开有通孔的左端盖1上,左端盖1与电机联轴器2之间安装用于密封和减少联轴器与端盖的摩擦力作用的油封3和轴承4。
中间联轴器9如图10所示,轴的一端为拨叉结构。中间联轴器9通过定位销25紧固在右泵芯的右活塞23’上(如图3)。左、右端盖1、11上开设有用于放置O形密封圈13的环形槽。
本发明未详细说明部分为本领域技术人员公知技术。

Claims (10)

  1. 一种二维活塞输油泵,其特征在于:包括泵壳(15)、左、右端盖(1、11)、左泵芯、右泵芯、电机联轴器(2)和中间联轴器(9),所述的左右泵芯置于泵壳(15)中并通过左右端盖(1、11)限位使其与泵壳固连,左泵芯、右泵芯通过中间联轴器(9)连接并传动;
    所述的左泵芯包括左缸体(8)和左活塞(23),所述的右泵芯包括右缸体(8’)和右活塞(23’);所述的左右缸体(8、8’)中心轴向加工中心通孔,左右缸体(8、8’)端面加工若干进油孔e,外圆周面上径向中心位置开有环形油槽f作为出油通道,在所述的中心通孔内圆周面中心径向加工2个进油窗口和2个排油窗口,进油窗口和排油窗口在圆周面上均匀且交错分布,其中进油窗口分别与进油孔e贯通,但未与环形油槽f贯穿,以此形成进油通道,排油窗口贯通至出油通道的环形油槽f但未与进油孔e干涉贯穿,以此形成出油通道;
    所述的左右活塞(23、23’)中部设置有台肩,所述台肩的外圆周面上加工与左右缸体(8、8’)的进油窗口和排油窗口对应的沟槽,在活塞旋转时,沟槽会与进油窗口或排油窗口发生间歇性沟通,实现吸排油配流功能;
    所述的泵壳(15)上加工与左右缸体(8、8’)上的环形油槽f对应的出油环形通道(151),出油环形通道之间连通,通过加工在泵壳上的出油口(152)排油。
  2. 根据权利要求1所述的一种二维活塞输油泵,其特征在于:所述的左泵芯还包括两组左传动轮组件、两组左滚轮组件和一对左凸轮(7),所述的每组左滚轮组件包括左滚轮轴(26)和滚轮(6),左滚轮轴(26)的两端分别安装有一对滚轮(6),所述的每组左传动组件包括左传动轮结构件(20)和传动轮(5), 传动轮(5)通过左传动轮结构件(20)端面的滚轮轴(51)两两对称安装在左传动轮结构件上,所述的一对左凸轮(7)分别安装在左缸体(8)的左右端面上,左活塞(23)穿过左缸体(8)的中心通孔和一对左凸轮(7),左滚轮轴(26)安装在左传动轮结构件中,左活塞(23)两端的活塞伸出杆通过左滚轮轴(26)和左传动轮结构件(20)分别固定连接一组左滚轮组件和左传动组件,左滚轮组件上的滚轮(6)与左凸轮(7)曲面贴合接触,并可在左凸轮(7)上滚动。
  3. 根据权利要求1所述的一种二维活塞输油泵,其特征在于:所述的右泵芯还包括两组右滚轮组件和一对右凸轮(7’),右滚轮组件和右凸轮(7’)与左滚轮组件和左凸轮(7)结构一致,所述的一对右凸轮(7’)分别安装在右缸体(8’)的左右端面上,右活塞(23’)穿过右缸体(8’)的中心通孔和一对右凸轮(7’),右活塞(23’)两端的活塞伸出杆通过右滚轮轴分别固定连接一组右滚轮组件,右滚轮组件上的滚轮与右凸轮(7’)曲面贴合接触,并可在右凸轮(7’)上滚动。
  4. 根据权利要求1和2所述的一种二维活塞输油泵,其特征在于:所述的电机联轴器(2)和中间联轴器(9)的一端为拨叉结构,所述的电机联轴器(2)的拨叉安装在左端的左传动组件同一端面的两个传动轮之间的间隙中,中间联轴器(9)的拨叉安装在右端的左传动组件同一端面的两个传动轮之间的间隙中,另一端与右活塞左端固连。
  5. 根据权利要求1所述的一种二维活塞输油泵,其特征在于:所述的左右泵芯在安装平面上有45°相位差。
  6. 根据权利要求1所述的一种二维活塞输油泵,其特征在于:所述的活塞伸出杆上开设有容纳油液污垢的纳垢孔p,纳垢孔p在所述活塞伸出杆圆周面上呈螺旋分布。
  7. 根据权利要求2和3所述的一种二维活塞输油泵,其特征在于:所述的两个左、右凸轮(7,7’)相对安装,并且在安装位置上呈90°错开布置。
  8. 根据权利要求7所述的一种二维活塞输油泵,其特征在于:所述的左右凸轮(7,7’)均呈圆柱体,具有相同曲面变化规律,所述的圆柱体的顶面具有向外凸起的弧形曲面;所述的圆柱体的中心开设有与活塞伸出杆配合的通孔,通孔安装有铜环;所述凸轮的圆柱体圆周方向开有环形沟槽,安装有O形密封圈。
  9. 根据权利要求1所述的一种二维活塞输油泵,其特征在于:所述的电机联轴器(2)通过挡圈安装在开有通孔的左端盖(1)上,所述的左端盖(1)与电机联轴器(2)之间安装油封、铜片和轴承。
  10. 根据权利要求2和3所述的一种二维活塞输油泵,其特征在于:所述的传动轮组件的传动轮和滚轮组件的滚轮分别由轮套、轴承、定位销和锁紧垫片构成。
PCT/CN2017/101187 2017-04-25 2017-09-11 一种二维活塞输油泵 WO2018196256A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710275241.0A CN107747531B (zh) 2017-04-25 2017-04-25 一种二维活塞输油泵
CN201710275241.0 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018196256A1 true WO2018196256A1 (zh) 2018-11-01

Family

ID=61255389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101187 WO2018196256A1 (zh) 2017-04-25 2017-09-11 一种二维活塞输油泵

Country Status (2)

Country Link
CN (1) CN107747531B (zh)
WO (1) WO2018196256A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112610438A (zh) * 2020-11-23 2021-04-06 河南航天液压气动技术有限公司 一种活塞泵
CN112594182A (zh) * 2020-11-27 2021-04-02 北京空天技术研究所 一种轴配流双作用柱塞及具有该柱塞的柱塞泵
CN113323862A (zh) * 2021-06-23 2021-08-31 河南航天液压气动技术有限公司 一种2d液压泵
CN114278526A (zh) * 2021-12-13 2022-04-05 浙江工业大学 一种轴配流式双作用轴向柱塞泵
CN114687983A (zh) * 2021-12-16 2022-07-01 北京空天技术研究所 一种活塞结构及串联式活塞泵
CN114645847B (zh) * 2022-05-19 2022-08-05 浙大城市学院 一种二维电机活塞泵

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854837A (en) * 1987-09-15 1989-08-08 Cordray International Corporation Rotary actuated pump or motor
JP2009068421A (ja) * 2007-09-13 2009-04-02 Kayseven Co Ltd 流体吸入吐出装置
CN105484962A (zh) * 2015-12-18 2016-04-13 浙江工业大学 二维双联轴向活塞泵
CN206092302U (zh) * 2016-08-31 2017-04-12 浙江工业大学 入口增压型二维双联活塞泵

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522138C2 (sv) * 2000-11-08 2004-01-13 Octapump Ab Pump
CN106089621B (zh) * 2016-07-19 2019-01-08 浙江工业大学 二维锥滚轮活塞泵
CN207315586U (zh) * 2017-04-25 2018-05-04 北京空天技术研究所 一种二维活塞输油泵

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854837A (en) * 1987-09-15 1989-08-08 Cordray International Corporation Rotary actuated pump or motor
JP2009068421A (ja) * 2007-09-13 2009-04-02 Kayseven Co Ltd 流体吸入吐出装置
CN105484962A (zh) * 2015-12-18 2016-04-13 浙江工业大学 二维双联轴向活塞泵
CN206092302U (zh) * 2016-08-31 2017-04-12 浙江工业大学 入口增压型二维双联活塞泵

Also Published As

Publication number Publication date
CN107747531B (zh) 2020-05-19
CN107747531A (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
WO2018196256A1 (zh) 一种二维活塞输油泵
CN104791208B (zh) 二维等加等减速导轨轴向活塞泵
EP2679820B1 (en) Variable Radial Fluid Device with Counteracting Cams
CN110617190B (zh) 具有能量回收功能的旋转活塞式高压泵
CA2818047C (en) Variable radial fluid device with differential piston control
CN111997865A (zh) 一种滚轮架驱动的微型水液压电机泵
CN105484962A (zh) 二维双联轴向活塞泵
CN104791209B (zh) 二维圆柱导轨轴向活塞泵
CN111396279B (zh) 力平衡式二维柱塞泵
CN108278186A (zh) 一种油水分离式空间凸轮传动的二维柱塞水压泵
US11891997B2 (en) Two-dimensional motor piston pump
CN201896751U (zh) 平动转子式变容装置
CN207315586U (zh) 一种二维活塞输油泵
CN108194298B (zh) 一种油水分离式滚轮导轨传动的二维柱塞水压泵
CN114483512B (zh) 一种微型水液压泵
CN101886631B (zh) 平动转子式变容装置
CN114483506A (zh) 一种机械密封水液压二维柱塞泵
CN114135518A (zh) 一种离心式淡水泵
US2918018A (en) Fluid pump or motor
CN209838611U (zh) 力平衡二维柱塞泵
CN113007061A (zh) 一种圆柱凸轮驱动的二维柱塞电机泵
US2556717A (en) Pump or motor
CN200996365Y (zh) 油泵
CN111502951B (zh) 滚轮式力平衡单元泵
CN109441753B (zh) 偏摆式r塞泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907683

Country of ref document: EP

Kind code of ref document: A1