WO2021077307A1 - 无人飞行器的防破解方法、用户终端以及无人飞行器 - Google Patents

无人飞行器的防破解方法、用户终端以及无人飞行器 Download PDF

Info

Publication number
WO2021077307A1
WO2021077307A1 PCT/CN2019/112614 CN2019112614W WO2021077307A1 WO 2021077307 A1 WO2021077307 A1 WO 2021077307A1 CN 2019112614 W CN2019112614 W CN 2019112614W WO 2021077307 A1 WO2021077307 A1 WO 2021077307A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
user terminal
distance
terminal
Prior art date
Application number
PCT/CN2019/112614
Other languages
English (en)
French (fr)
Inventor
张志鹏
赵丹
王焱
戴劲
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980032901.XA priority Critical patent/CN112189175A/zh
Priority to PCT/CN2019/112614 priority patent/WO2021077307A1/zh
Publication of WO2021077307A1 publication Critical patent/WO2021077307A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • This specification relates to the technical field of unmanned aerial vehicles, in particular to an anti-hacking method for unmanned aerial vehicles, user terminals and unmanned aerial vehicles.
  • flight restricted areas such as clearance zones and no-fly zones are usually set up. According to the location of the unmanned aerial vehicle and/or the location of the user terminal, it is judged whether the unmanned aerial vehicle is in the flight restriction area, and thus whether to take off and the take-off altitude are judged.
  • the existing commonly used method to prevent the positioning device from being cracked is to authenticate the data of the positioning device, but this method still has the possibility of being cracked technically, and the positioning device cannot be found to be cracked through self-check after being cracked.
  • the positioning device can demodulate the wrong position information, and this problem cannot be discovered through the self-check of the positioning device. At this time, other means are needed to determine whether the positioning device is cracked or interfered.
  • this manual provides an anti-hacking method for unmanned aerial vehicles, user terminals, and unmanned aerial vehicles, aiming to solve technologies such as hacking or interfering with the position of unmanned aerial vehicles and/or the position of user terminals into flight restricted areas. problem.
  • this specification provides an anti-hacking method for an unmanned aerial vehicle, which is used in a user terminal, and is characterized in that the method includes:
  • control the unmanned aerial vehicle to perform a preset action.
  • this specification provides an anti-hacking method for unmanned aerial vehicles for use in unmanned aerial vehicles, characterized in that the method includes:
  • this specification provides a user terminal, which is characterized by comprising a memory and a processor;
  • the memory is used to store a computer program
  • the processor is configured to execute the computer program and when executing the computer program, realize:
  • control the unmanned aerial vehicle to perform a preset action.
  • this specification provides an unmanned aerial vehicle, which is characterized by comprising a memory and a processor;
  • the memory is used to store a computer program
  • the processor is configured to execute the computer program and when executing the computer program, realize:
  • this specification provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the processor implements the above-mentioned method.
  • the embodiments of this specification provide an anti-cracking method for an unmanned aerial vehicle, a user terminal, and an unmanned aerial vehicle.
  • the positioning distance is determined by the terminal position of the user terminal and the flight position of the unmanned aerial vehicle, and the positioning distance is determined according to the user terminal and the unmanned aerial vehicle.
  • the delay information of signal transmission between the two determines the communication distance between the user terminal and the UAV; and then judges whether the flight position and the terminal position are accurate according to the communication distance with higher accuracy. If at least one of is inaccurate, the unmanned aerial vehicle performs a preset action to prevent the unmanned aerial vehicle from controlling the unmanned aerial vehicle to fly in the flight restricted area by hacking the user terminal or the positioning device of the unmanned aerial vehicle.
  • FIG. 1 is a schematic flowchart of an anti-hacking method for an unmanned aerial vehicle according to an embodiment of this specification
  • Figure 2 is a schematic diagram of communication between a user terminal and an unmanned aerial vehicle
  • FIG. 3 is a schematic flowchart of an anti-hacking method for an unmanned aerial vehicle according to another embodiment of this specification
  • FIG. 4 is a schematic block diagram of a user terminal according to an embodiment of the present specification.
  • Fig. 5 is a schematic block diagram of an unmanned aerial vehicle according to an embodiment of the present specification.
  • FIG. 1 is a schematic flowchart of an anti-hacking method for an unmanned aerial vehicle according to an embodiment of this specification.
  • the anti-hacking method can be applied to a user terminal to determine whether the flight position and the terminal position are accurate, and to control the unmanned aerial vehicle to perform a process such as a preset action when the flight position and the terminal position are not accurate.
  • the user terminal may include at least one of a mobile terminal, a remote control terminal, and a wearable device.
  • Mobile terminals such as mobile phones, tablet computers, notebook computers, etc.
  • remote control terminals such as remote controllers of unmanned aerial vehicles, etc.
  • wearable devices such as FPV (First Person View, first-person view) glasses, VR (Virtual Reality, virtual reality) Glasses etc.
  • the unmanned aerial vehicle can be, for example, a rotary wing drone, such as a quadrotor drone, a hexarotor drone, an eight rotor drone, or a fixed wing drone.
  • a rotary wing drone such as a quadrotor drone, a hexarotor drone, an eight rotor drone, or a fixed wing drone.
  • the user terminal and the UAV communicate via a wireless channel.
  • the unmanned aerial vehicle can fly according to the control of the user terminal, or the unmanned aerial vehicle can fly autonomously.
  • the user carries the user terminal, and when the unmanned aerial vehicle needs to return home autonomously or according to the control of the user terminal, the unmanned aerial vehicle returns to the location where the user terminal is located.
  • the user terminal may display the position B of the unmanned aerial vehicle and the position A of the user terminal.
  • the anti-hacking method of the unmanned aerial vehicle of this embodiment includes steps S110 to S160.
  • the user terminal is equipped with a positioning device, for example, the location of the user terminal can be determined through a navigation system.
  • the user terminal obtains the latitude and longitude of the user terminal determined by the positioning device mounted on the user terminal.
  • the user terminal periodically obtains the location of the terminal.
  • the unmanned aerial vehicle is also equipped with a positioning device, for example, the position of the unmanned aerial vehicle can be determined through a navigation system.
  • the user terminal may obtain the latitude and longitude of the unmanned aerial vehicle from the unmanned aerial vehicle, and the latitude and longitude of the unmanned aerial vehicle may be determined by a positioning device mounted on the unmanned aerial vehicle.
  • the user terminal periodically requests the unmanned aerial vehicle to obtain the flight position of the unmanned aerial vehicle.
  • the unmanned aerial vehicle sends the flight position to the user terminal according to the request of the user terminal.
  • the unmanned aerial vehicle periodically obtains the flight position, and sends the obtained flight position to the user terminal.
  • the terminal position of the user terminal is (x1, y1)
  • the flight position of the unmanned aerial vehicle is (x2, y2).
  • the determining the positioning distance according to the terminal position and the flight position includes: determining the positioning distance according to the longitude and latitude of the user terminal and the longitude and latitude of the unmanned aerial vehicle.
  • the positioning distance represents the distance between the projection of the terminal position of the user terminal and the flight position of the unmanned aerial vehicle on the same horizontal plane.
  • the positioning distance d can be expressed as:
  • S140 Obtain delay information of signal transmission between the user terminal and the unmanned aerial vehicle, and determine the communication distance between the user terminal and the unmanned aerial vehicle according to the delay information.
  • the user uses an unmanned aerial vehicle
  • there is a certain distance between the unmanned aerial vehicle and the user terminal and it takes a certain time for the communication signal to be transmitted between the unmanned aerial vehicle and the user terminal.
  • the user terminal obtains the round-trip delay of signal transmission between the user terminal and the UAV.
  • the user terminal periodically sends a terminal signal to the unmanned aerial vehicle, and the unmanned aerial vehicle sends a feedback signal to the user terminal in response to the terminal signal sent by the user terminal.
  • the user terminal determines the signal transmission delay information with the UAV according to the time difference between sending the terminal signal and receiving the feedback signal.
  • the user terminal periodically requests the unmanned aerial vehicle to obtain the flight position of the unmanned aerial vehicle, and the unmanned aerial vehicle sends the flight position to the user terminal according to the request of the user terminal.
  • the user terminal determines the signal transmission delay information with the UAV according to the time difference between the sending request and the receiving flight position.
  • the user terminal may obtain signal transmission delay information from the UAV.
  • the unmanned aerial vehicle periodically sends a flight end signal to the user terminal, and the user terminal sends a feedback signal to the user terminal in response to the flight end signal sent by the unmanned aerial vehicle.
  • the unmanned aerial vehicle determines the delay information of signal transmission with the user terminal according to the time difference between sending the flight terminal signal and receiving the feedback signal, and then the unmanned aerial vehicle can send the delay information to the user terminal.
  • the signal transmission delay between the user terminal and the unmanned aerial vehicle includes the signal transmission time from the user terminal to the unmanned aerial vehicle and the signal transmission time from the unmanned aerial vehicle to the user terminal. Therefore, between the user terminal and the unmanned aerial vehicle
  • the delay information of signal transmission includes the round-trip time (Round-Trip Time, RTT) of signal transmission.
  • the user terminal determines the communication distance between the user terminal and the UAV according to the round-trip time delay.
  • the communication distance between the user terminal and the UAV is determined according to the transmission speed of the electromagnetic signal and the round-trip time delay.
  • the maximum error of the round-trip distance between the user terminal and the UAV determined by the round-trip time delay is the distance corresponding to 0.5 sampling points.
  • the maximum error of the communication distance between the user terminal and the UAV can be further reduced, so as to obtain a more accurate communication distance.
  • the obtaining the delay information of the signal transmission between the user terminal and the unmanned aerial vehicle includes: according to the time stamp carried by the signal between the user terminal and the unmanned aerial vehicle and receiving the information The time of the signal determines the delay information.
  • the flight position sent by the unmanned aerial vehicle to the user terminal has the time stamp of the time of sending
  • the user terminal can obtain the time when the unmanned aerial vehicle sends the flight position after receiving the flight position
  • the user terminal can determine the time when the flight position is received
  • the transmission time of the signal from the unmanned aerial vehicle to the user terminal can be obtained, and the communication distance between the user terminal and the unmanned aerial vehicle can be determined according to the transmission time.
  • the communication distance between the user terminal and the UAV determined by the time delay includes the distance error corresponding to the sampling point.
  • the anti-hacking method further includes: adjusting the communication distance according to the distance error.
  • the distance error may be determined according to the sampling frequency of signal transmission between the user terminal and the UAV.
  • the sampling frequency fs is 30Msps
  • the communication distance can be adjusted according to the distance error, and the adjusted communication distance can be D+ ⁇ or D- ⁇ .
  • the communication distance is the accurate calculation of the relative distance between the user terminal and the unmanned aerial vehicle by detecting the time interval between sending and receiving the packet
  • the terminal position and position of the user terminal can be verified based on a more accurate communication distance. Whether the flying position of the unmanned aerial vehicle is accurate.
  • the position range of the user terminal can be determined. If the terminal position of the user terminal exceeds the range, it can be determined that at least one of the flight position and the terminal position is not accurate.
  • the position range of the unmanned aerial vehicle can be determined. If the flight position of the unmanned aerial vehicle exceeds the range, it can be determined that at least one of the flight position and the terminal position is inaccurate.
  • the determining that at least one of the flight position and the terminal position is inaccurate includes: determining that the flight position is inaccurate; or determining that the terminal position is inaccurate; or determining that the flight position and the terminal position are inaccurate. None of the terminal positions mentioned are accurate.
  • the terminal position of the user terminal can be judged to be reliable, then the flight position is judged to be inaccurate; if the flight position of the unmanned aerial vehicle can be judged to be reliable, then the terminal position is judged to be inaccurate.
  • the distance difference between the communication distance and the positioning distance is not greater than a preset deviation threshold, it is determined that the flight position and the terminal position are accurate; if the communication distance and the positioning distance are less than If the distance difference is greater than the deviation threshold, it is determined that at least one of the flight position and the terminal position is inaccurate.
  • the deviation threshold may be determined according to the flying height of the unmanned aerial vehicle, the flying speed of the unmanned aerial vehicle, and the like.
  • the judging whether the flight position and the terminal position are accurate according to the positioning distance and the communication distance includes: determining whether the user terminal and the unmanned aerial vehicle are based on the communication distance. Determine whether the flight position and the terminal position are accurate according to the distance difference between the horizontal distance and the positioning distance.
  • the flying height of the unmanned aerial vehicle is relatively high, such as tens of meters or hundreds of meters, and it is necessary to determine whether the position of the terminal is accurate according to the horizontal distance corresponding to the communication distance.
  • the horizontal distance between the user terminal corresponding to the communication distance and the UAV may be determined by the communication distance.
  • the user terminal obtains the flying height of the unmanned aerial vehicle relative to the user terminal, and determines the horizontal distance between the user terminal and the unmanned aerial vehicle according to the flying height and the communication distance .
  • the return-to-home control method of the unmanned aerial vehicle further includes: obtaining the flying height of the unmanned aerial vehicle relative to the user terminal.
  • the user terminal may obtain the altitude of the unmanned aerial vehicle relative to the ground or relative to the take-off point during flight from the unmanned aerial vehicle, and determine the flight of the unmanned aerial vehicle relative to the user terminal according to the altitude. height.
  • the flying height of the unmanned aerial vehicle relative to the take-off point is determined according to the altitude change of the unmanned aerial vehicle after taking off from the take-off point.
  • the altitude of the unmanned aerial vehicle may change during the flight, for example, the user controls the unmanned aerial vehicle to adjust the flying height through the user terminal.
  • the user terminal periodically requests the unmanned aerial vehicle to obtain the flying height of the unmanned aerial vehicle.
  • the unmanned aerial vehicle sends the flying height to the user terminal according to the request of the user terminal.
  • the unmanned aerial vehicle periodically obtains the flight altitude, and sends the obtained flight altitude to the user terminal. Therefore, the user terminal can obtain the real-time height of the unmanned aerial vehicle, and judge whether the position of the terminal is accurate according to the flying height of the unmanned aerial vehicle, the positioning distance, and the communication distance.
  • the horizontal distance between the user terminal and the unmanned aerial vehicle is: or
  • the determining the communication distance between the user terminal and the UAV according to the delay information in step S140 includes: determining the user according to the delay information and the flight height The horizontal distance between the terminal and the UAV. That is, the horizontal distance is regarded as the communication distance between the user terminal and the UAV.
  • the judging whether the flight position and the terminal position are accurate according to the distance difference between the horizontal distance and the positioning distance includes: if the distance difference between the horizontal distance and the positioning distance is not Is greater than the preset difference threshold, then it is determined that the flight position and the terminal position are accurate; if the distance difference between the horizontal distance and the positioning distance is greater than the difference threshold, then it is determined that the flight position and the terminal position are accurate. At least one of the terminal positions is not accurate.
  • the preset difference threshold is expressed as e, for example, e is 20 meters; the distance difference between the horizontal distance and the positioning distance is the absolute value of the difference between the horizontal distance and the positioning distance. Then if the distance difference is not greater than e, it is determined that the flight position and the terminal position are accurate; if the distance difference is greater than e, it is determined that at least one of the flight position and the terminal position is inaccurate.
  • the difference threshold may be determined according to the flight speed of the unmanned aerial vehicle, the preset upper limit of error, and the like.
  • the total duration of the process of determining the flight position of the unmanned aerial vehicle and sending the flight position to the user terminal is t, for example, t is 50 milliseconds
  • the upper limit of the relative speed between the user and the unmanned aerial vehicle is v, for example, v is At 50 meters per second
  • the difference threshold can be determined as: e+v ⁇ t. It is possible to prevent a terminal position with a small deviation from being misjudged as an inaccurate position.
  • the distance error may be considered in the difference threshold, so that the communication distance may not be adjusted according to the distance error.
  • the anti-hacking method further includes: adjusting the difference threshold according to a distance error, which is determined according to a sampling frequency of signal transmission between the user terminal and the UAV.
  • the distance error may be determined according to the sampling frequency of signal transmission between the user terminal and the UAV.
  • the sampling frequency fs is 30Msps
  • the difference threshold is adjusted according to the distance error, and the adjusted difference threshold is obtained as e+ ⁇ .
  • the unmanned aerial vehicle can be controlled to perform pre-processing.
  • Set actions for example, the user terminal controls the UAV to execute one of descending, returning to home, or prohibiting takeoff.
  • the unmanned aerial vehicle flies away from the user from the take-off point at a certain moment, and the distance between the unmanned aerial vehicle and the user terminal is getting farther and farther, and the communication distance determined according to the delay information of signal transmission is also more accurate, for example,
  • the communication distance cannot be accurately determined due to the existence of the distance error.
  • the influence of the distance error becomes smaller and smaller, and the communication distance becomes more accurate. If at least one of the flight position and the terminal position is determined to be inaccurate according to the positioning distance and the communication distance at a certain moment, the unmanned aerial vehicle is controlled to forcibly descend or return home. To prevent the unmanned aerial vehicle from being controlled to fly in the flight restricted area by hacking the user terminal or the positioning device of the unmanned aerial vehicle.
  • the unmanned aerial vehicle is controlled to forcibly descend.
  • the unmanned aerial vehicle can determine the height relative to the ground through the binocular camera or the downward-looking camera during the descent process, and the descending height can be determined according to the height to prevent the ground from touching the ground.
  • the unmanned aerial vehicle is controlled to return home, or the unmanned aerial vehicle is controlled to prohibit take-off.
  • the state of prohibiting take-off can be released after a preset period of time, then the user terminal The unmanned aerial vehicle can be controlled normally.
  • At least one of the flight position and terminal position of the unmanned aerial vehicle is determined to be inaccurate, and in the process of controlling the return or descent of the unmanned aerial vehicle, if at a certain time according to the positioning distance and the If the communication distance judges that the flight position and the terminal position are both accurate, the user terminal can control the unmanned aerial vehicle normally.
  • the anti-hacking method further includes: if it is determined that at least one of the flight position and the terminal position is inaccurate, sending a prompt message, the prompt message being used to prompt the user of the unmanned aerial vehicle and the At least one of the user terminals is not accurately positioned. For example, it is prompted that the user cannot normally control the flight of the UAV.
  • the anti-cracking method of the unmanned aerial vehicle determines the positioning distance based on the terminal position of the user terminal and the flight position of the unmanned aerial vehicle, and determines the location based on the delay information of the signal transmission between the user terminal and the unmanned aerial vehicle.
  • the human aircraft executes preset actions to prevent the unmanned aircraft from being controlled to fly in the flight restricted area by hacking the user terminal or the positioning device of the unmanned aircraft.
  • FIG. 3 is a schematic flowchart of an anti-hacking method for an unmanned aerial vehicle according to another embodiment of the present application.
  • the anti-hacking method can be applied to an unmanned aerial vehicle to determine whether the flight position and terminal position are accurate, and to control the unmanned aerial vehicle to perform processes such as preset actions when the flight position and terminal position are inaccurate.
  • the user terminal may include at least one of a mobile terminal, a remote control terminal, and a wearable device.
  • Mobile terminals such as mobile phones, tablet computers, notebook computers, etc.
  • remote control terminals such as remote controllers of unmanned aerial vehicles, etc.
  • wearable devices such as FPV (First Person View, first-person view) glasses, VR (Virtual Reality, virtual reality) Glasses etc.
  • the unmanned aerial vehicle can be, for example, a rotary wing drone, such as a quadrotor drone, a hexarotor drone, an eight rotor drone, or a fixed wing drone.
  • a rotary wing drone such as a quadrotor drone, a hexarotor drone, an eight rotor drone, or a fixed wing drone.
  • the anti-hacking method of the unmanned aerial vehicle of this embodiment includes step S210 to step S260.
  • the user terminal is equipped with a positioning device, for example, the location of the user terminal can be determined through a navigation system.
  • the unmanned aerial vehicle may obtain the latitude and longitude of the user terminal from the user terminal, and the latitude and longitude of the user terminal is determined by a positioning device mounted on the user terminal.
  • the unmanned aerial vehicle periodically requests the user terminal to obtain the terminal position of the user terminal.
  • the user terminal sends the terminal position to the unmanned aerial vehicle according to the request of the unmanned aerial vehicle.
  • the user terminal periodically obtains the terminal position, and sends the obtained terminal position to the unmanned aerial vehicle.
  • the unmanned aerial vehicle is also equipped with a positioning device, for example, the position of the unmanned aerial vehicle can be determined through a navigation system.
  • the unmanned aerial vehicle obtains the latitude and longitude of the unmanned aerial vehicle determined by the positioning device mounted on the unmanned aerial vehicle.
  • the unmanned aerial vehicle periodically obtains the flight position.
  • the terminal position of the user terminal is (x1, y1)
  • the flight position of the unmanned aerial vehicle is (x2, y2).
  • the determining the positioning distance according to the terminal position and the flight position includes: an unmanned aerial vehicle determines the positioning distance according to the longitude and latitude of the user terminal and the longitude and latitude of the unmanned aerial vehicle.
  • the positioning distance represents the distance between the projection of the terminal position of the user terminal and the flight position of the unmanned aerial vehicle on the same horizontal plane.
  • the positioning distance d can be expressed as:
  • the user uses an unmanned aerial vehicle
  • there is a certain distance between the unmanned aerial vehicle and the user terminal and it takes a certain time for the communication signal to be transmitted between the unmanned aerial vehicle and the user terminal.
  • the unmanned aerial vehicle acquires the round-trip delay of signal transmission between the UAV and the user terminal.
  • the unmanned aerial vehicle periodically sends a flight end signal to the user terminal, and the user terminal sends a feedback signal to the unmanned aerial vehicle in response to the flight end signal sent by the unmanned aerial vehicle.
  • the unmanned aerial vehicle determines the signal transmission delay information with the user terminal according to the time difference between sending the flight terminal signal and receiving the feedback signal.
  • the unmanned aerial vehicle periodically requests the user terminal to obtain the terminal position of the user terminal, and the user terminal sends the terminal position to the unmanned aerial vehicle according to the request of the unmanned aerial vehicle.
  • the unmanned aerial vehicle determines the signal transmission delay information with the user terminal according to the time difference between the sending request and the receiving terminal position.
  • the UAV can obtain signal transmission delay information from the user terminal.
  • the user terminal periodically sends a terminal signal to the unmanned aerial vehicle, and the unmanned aerial vehicle sends a feedback signal to the unmanned aerial vehicle in response to the terminal signal sent by the user terminal.
  • the user terminal determines the delay information of the signal transmission with the UAV according to the time difference between sending the terminal signal and receiving the feedback signal, and then the user terminal may send the delay information to the UAV.
  • the signal transmission delay between the user terminal and the unmanned aerial vehicle includes the signal transmission time from the user terminal to the unmanned aerial vehicle and the signal transmission time from the unmanned aerial vehicle to the user terminal. Therefore, between the user terminal and the unmanned aerial vehicle
  • the delay information of signal transmission includes the round-trip time (Round-Trip Time, RTT) of signal transmission.
  • the unmanned aerial vehicle determines the communication distance between the user terminal and the unmanned aerial vehicle according to the round-trip time delay.
  • the communication distance between the user terminal and the UAV is determined according to the transmission speed of the electromagnetic signal and the round-trip time delay.
  • the maximum error of the round-trip distance between the user terminal and the UAV determined by the round-trip time delay is the distance corresponding to 0.5 sampling points.
  • the maximum error of the communication distance between the user terminal and the UAV can be further reduced, so as to obtain a more accurate communication distance.
  • the obtaining the delay information of the signal transmission between the user terminal and the unmanned aerial vehicle includes: according to the time stamp carried by the signal between the user terminal and the unmanned aerial vehicle and receiving the information The time of the signal determines the delay information.
  • the terminal position sent by the user terminal to the unmanned aerial vehicle has a time stamp when the terminal was sent, and the unmanned aerial vehicle can obtain the time when the terminal position is sent by the user terminal after receiving the terminal position, and the unmanned aerial vehicle can determine to receive the terminal position. Therefore, the transmission time of the signal from the user terminal to the UAV can be obtained, and the communication distance between the user terminal and the UAV can be determined according to the transmission time.
  • the communication distance between the user terminal and the UAV determined by the time delay includes the distance error corresponding to the sampling point.
  • the anti-hacking method further includes: adjusting the communication distance according to the distance error.
  • the distance error may be determined according to the sampling frequency of signal transmission between the user terminal and the UAV.
  • the sampling frequency fs is 30Msps
  • the communication distance can be adjusted according to the distance error, and the adjusted communication distance can be D+ ⁇ or D- ⁇ .
  • S250 Determine whether the flight position and the terminal position are accurate according to the positioning distance and the communication distance.
  • the communication distance is the accurate calculation of the relative distance between the user terminal and the unmanned aerial vehicle by detecting the time interval between sending and receiving the packet, it is possible to verify the terminal position and the position of the user terminal based on a more accurate communication distance. Whether the flying position of the unmanned aerial vehicle is accurate.
  • the position range of the user terminal can be determined. If the terminal position of the user terminal exceeds the range, it can be determined that at least one of the flight position and the terminal position is not accurate.
  • the position range of the unmanned aerial vehicle can be determined. If the flight position of the unmanned aerial vehicle exceeds the range, it can be determined that at least one of the flight position and the terminal position is inaccurate.
  • the determining that at least one of the flight position and the terminal position is inaccurate includes: determining that the flight position is inaccurate; or determining that the terminal position is inaccurate; or determining that the flight position and the terminal position are inaccurate. None of the terminal positions mentioned are accurate.
  • the terminal position of the user terminal can be judged to be reliable, then the flight position is judged to be inaccurate; if the flight position of the unmanned aerial vehicle can be judged to be reliable, then the terminal position is judged to be inaccurate.
  • the distance difference between the communication distance and the positioning distance is not greater than a preset deviation threshold, it is determined that the flight position and the terminal position are accurate; if the communication distance and the positioning distance are less than If the distance difference is greater than the deviation threshold, it is determined that at least one of the flight position and the terminal position is inaccurate.
  • the deviation threshold may be determined according to the flying height of the unmanned aerial vehicle, the flying speed of the unmanned aerial vehicle, and the like.
  • the judging whether the flight position and the terminal position are accurate according to the positioning distance and the communication distance includes: determining whether the user terminal and the unmanned aerial vehicle are based on the communication distance. Determine whether the flight position and the terminal position are accurate according to the distance difference between the horizontal distance and the positioning distance.
  • the flying height of the unmanned aerial vehicle is relatively high, such as tens of meters or hundreds of meters, and it is necessary to determine whether the position of the terminal is accurate according to the horizontal distance corresponding to the communication distance.
  • the horizontal distance between the user terminal corresponding to the communication distance and the UAV may be determined by the communication distance.
  • the user terminal obtains the flying height of the unmanned aerial vehicle relative to the user terminal from the unmanned aerial vehicle, and determines the user terminal and the unmanned aerial vehicle according to the flying height and the communication distance.
  • the return-to-home control method of the unmanned aerial vehicle further includes: acquiring the flying height of the unmanned aerial vehicle relative to the user terminal.
  • the unmanned aerial vehicle periodically obtains the altitude of the unmanned aerial vehicle relative to the ground or relative to the take-off point during flight, and determines the flying altitude of the unmanned aerial vehicle relative to the user terminal according to the altitude.
  • the flying height of the unmanned aerial vehicle relative to the take-off point is determined according to the altitude change of the unmanned aerial vehicle after taking off from the take-off point.
  • the altitude of the unmanned aerial vehicle may change during the flight, for example, the user controls the unmanned aerial vehicle to adjust the flying height through the user terminal.
  • the unmanned aerial vehicle periodically obtains the flight altitude, can obtain the real-time altitude of the unmanned aerial vehicle, and judges whether the terminal position is accurate according to the flight altitude of the unmanned aerial vehicle, the positioning distance, and the communication distance.
  • the horizontal distance between the user terminal and the unmanned aerial vehicle is: or
  • the determining the communication distance between the user terminal and the UAV according to the delay information in step S240 includes: determining the user according to the delay information and the flight height The horizontal distance between the terminal and the UAV. That is, the horizontal distance is regarded as the communication distance between the user terminal and the UAV.
  • the judging whether the flight position and the terminal position are accurate according to the distance difference between the horizontal distance and the positioning distance includes: if the distance difference between the horizontal distance and the positioning distance is not Is greater than the preset difference threshold, then it is determined that the flight position and the terminal position are accurate; if the distance difference between the horizontal distance and the positioning distance is greater than the difference threshold, then it is determined that the flight position and the terminal position are accurate. At least one of the terminal positions is not accurate.
  • the preset difference threshold is expressed as e, for example, e is 20 meters; the distance difference between the horizontal distance and the positioning distance is the absolute value of the difference between the horizontal distance and the positioning distance. Then if the distance difference is not greater than e, it is determined that the flight position and the terminal position are accurate; if the distance difference is greater than e, it is determined that at least one of the flight position and the terminal position is inaccurate.
  • the difference threshold may be determined according to the flight speed of the unmanned aerial vehicle, the preset upper limit of error, and the like.
  • the total duration of the process of determining the flight position of the unmanned aerial vehicle and sending the flight position to the user terminal is t, for example, t is 50 milliseconds
  • the upper limit of the relative speed between the user and the unmanned aerial vehicle is v, for example, v is At 50 meters per second
  • the difference threshold can be determined as: e+v ⁇ t. It is possible to prevent a terminal position with a small deviation from being misjudged as an inaccurate position.
  • the distance error may be considered in the difference threshold, so that the communication distance may not be adjusted according to the distance error.
  • the anti-hacking method further includes: adjusting the difference threshold according to a distance error, which is determined according to a sampling frequency of signal transmission between the user terminal and the UAV.
  • the distance error may be determined according to the sampling frequency of signal transmission between the user terminal and the UAV.
  • the sampling frequency fs is 30Msps
  • the difference threshold is adjusted according to the distance error, and the adjusted difference threshold is obtained as e+ ⁇ .
  • the unmanned aerial vehicle performs pre-processing.
  • Set an action for example, the unmanned aerial vehicle performs one of descending, returning home, or prohibiting take-off.
  • the unmanned aerial vehicle flies away from the user from the take-off point at a certain moment, and the distance between the unmanned aerial vehicle and the user terminal is getting farther and farther, and the communication distance determined according to the delay information of signal transmission is also more accurate, for example,
  • the communication distance cannot be accurately determined due to the existence of the distance error.
  • the influence of the distance error becomes smaller and smaller, and the communication distance becomes more accurate. If at least one of the flight position and the terminal position is determined to be inaccurate according to the positioning distance and the communication distance at a certain moment, the unmanned aerial vehicle is forced to descend or return home. To prevent the unmanned aerial vehicle from being controlled to fly in the flight restricted area by hacking the user terminal or the positioning device of the unmanned aerial vehicle.
  • the unmanned aerial vehicle if it is determined that the terminal position of the user terminal is inaccurate at a certain moment, the unmanned aerial vehicle is forced to descend.
  • the unmanned aerial vehicle can determine the height relative to the ground through the binocular camera or the downward-looking camera during the descent process, and the descending height can be determined according to the height to prevent the ground from touching the ground.
  • the unmanned aerial vehicle if it is determined that the flight position of the unmanned aerial vehicle is inaccurate at a certain moment, or it is determined that the flight position and the terminal position are both inaccurate, the unmanned aerial vehicle returns home, or the unmanned aerial vehicle is prohibited from taking off.
  • the state of prohibiting take-off can be released after a preset period of time, and the user terminal can Normally control the unmanned aerial vehicle.
  • At least one of the flight position and terminal position of the unmanned aerial vehicle is determined to be inaccurate, and in the process of controlling the return or descent of the unmanned aerial vehicle, if at a certain time according to the positioning distance and the If the communication distance judges that the flight position and the terminal position are both accurate, the user terminal can control the unmanned aerial vehicle normally.
  • the anti-hacking method further includes: if it is determined that at least one of the flight position and the terminal position is inaccurate, the unmanned aerial vehicle sends an error notification to the user terminal, so that the user terminal According to the error notification, the user is prompted that at least one of the unmanned aerial vehicle and the user terminal is not accurately positioned. For example, it is prompted that the user cannot normally control the flight of the UAV.
  • the anti-hacking method of the unmanned aerial vehicle determines the positioning distance through the terminal position of the user terminal and the flight position of the unmanned aerial vehicle, and determines the location based on the delay information of the signal transmission between the user terminal and the unmanned aerial vehicle.
  • the aircraft executes a preset action to prevent the unmanned aircraft from flying in the flight restricted area by hacking the user terminal or the positioning device of the unmanned aircraft.
  • FIG. 4 is a schematic block diagram of a user terminal 600 according to an embodiment of this specification.
  • the user terminal 600 includes a processor 601 and a memory 602.
  • the processor 601 and the memory 602 are connected by a bus 603, and the bus 603 is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 601 may be a micro-controller unit (MCU), a central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU central processing unit
  • DSP Digital Signal Processor
  • the memory 602 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • the processor 601 is used to run a computer program stored in the memory 602, and implement the aforementioned anti-hacking method for an unmanned aerial vehicle of a user terminal when the computer program is executed.
  • the processor 601 is configured to run a computer program stored in the memory 602, and implement the following steps when the computer program is executed:
  • control the unmanned aerial vehicle to perform a preset action.
  • the embodiments of this specification also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the foregoing implementation
  • the example provides the steps of the anti-hacking method for the unmanned aerial vehicle of the user terminal.
  • the computer-readable storage medium may be the internal storage unit of the user terminal described in any of the foregoing embodiments, such as the hard disk or memory of the user terminal.
  • the computer-readable storage medium may also be an external storage device of the user terminal, such as a plug-in hard disk equipped on the user terminal, a smart memory card (Smart Media Card, SMC), and a Secure Digital (SD) ) Card, Flash Card, etc.
  • a plug-in hard disk equipped on the user terminal such as a smart memory card (Smart Media Card, SMC), and a Secure Digital (SD) ) Card, Flash Card, etc.
  • SD Secure Digital
  • FIG. 5 is a schematic block diagram of an unmanned aerial vehicle 700 according to an embodiment of this specification.
  • the unmanned aerial vehicle 700 includes a processor 701 and a memory 702.
  • the processor 701 and the memory 702 are connected by a bus 703, and the bus 703 is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 701 may be a micro-controller unit (MCU), a central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU central processing unit
  • DSP Digital Signal Processor
  • the memory 702 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • the processor 701 is configured to run a computer program stored in the memory 702, and implement the aforementioned anti-hacking method for an unmanned aerial vehicle when the computer program is executed.
  • the processor 701 is configured to run a computer program stored in the memory 702, and implement the following steps when the computer program is executed:
  • the embodiments of this specification also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the foregoing implementation
  • the example provides the steps of the anti-hacking method for unmanned aerial vehicles.
  • the computer-readable storage medium may be the internal storage unit of the unmanned aerial vehicle described in any of the foregoing embodiments, such as the hard disk or memory of the unmanned aerial vehicle.
  • the computer-readable storage medium may also be an external storage device of the UAV, such as a plug-in hard disk equipped on the UAV, a Smart Media Card (SMC), or Secure Digital (Secure Digital). , SD) card, flash card (Flash Card), etc.
  • the user terminal, unmanned aerial vehicle, and computer-readable storage medium provided in the above-mentioned embodiments of this specification determine the positioning distance based on the terminal position of the user terminal and the flight position of the unmanned aerial vehicle, and based on the signal between the user terminal and the unmanned aerial vehicle
  • the transmitted delay information determines the communication distance between the user terminal and the UAV; and then determines whether the flight position and the terminal position are accurate according to the communication distance with higher accuracy. If at least one of the flight position and the terminal position is If it is inaccurate, the unmanned aerial vehicle performs a preset action to prevent the unmanned aerial vehicle from being controlled to fly in the flight restricted area by hacking the user terminal or the positioning device of the unmanned aerial vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

本说明书公开了一种无人飞行器的防破解方法、用户终端以及无人飞行器,包括:获取终端位置(S110);获取飞行位置(S120);确定用户终端和无人飞行器之间的定位距离(S130);根据用户终端和无人飞行器之间的延迟信息确定通信距离(S140);根据定位距离和通信距离判断飞行位置和终端位置是否准确(S150);若不准确,控制无人飞行器执行预设动作(S160)。

Description

无人飞行器的防破解方法、用户终端以及无人飞行器 技术领域
本说明书涉及无人飞行器技术领域,尤其涉及一种无人飞行器的防破解方法、用户终端以及无人飞行器。
背景技术
为保障无人飞行器飞行安全,通常会设置净空区和禁飞区等飞行限制区域。根据无人飞行器的位置和/或用户终端的位置来判断无人飞行器是否处于飞行限制区域内,从而判断是否起飞以及起飞的高度。
但是有时某些用户为了突破这些限制,会采用某些手段来破解或者干扰无人飞行器的位置和/或用户终端的位置,使无人飞行器和/或用户终端上报飞行限制区域外的位置,从而达到在飞行限制区域内自由飞行的目的。例如现有常用的防止定位装置被破解的方法是对定位装置的数据进行认证,但该方法仍然存在技术上被破解的可能,且定位装置被破解后无法通过自检发现被破解。另外,可以通过发射干扰信号,使定位装置解调出错误的位置信息,该问题也无法通过定位装置自检来发现。此时需要有其他手段来判断定位装置是否被破解或干扰。
发明内容
基于此,本说明书提供了一种无人飞行器的防破解方法、用户终端以及无人飞行器,旨在解决通过破解或者干扰无人飞行器的位置和/或用户终端的位置飞入飞行限制区域等技术问题。
第一方面,本说明书提供了一种无人飞行器的防破解方法,用于用户终端,其特征在于,所述方法包括:
获取所述用户终端的终端位置;
获取所述无人飞行器的飞行位置;
根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离;
获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;
根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确;
若判定所述飞行位置和所述终端位置中的至少一个不准确,控制所述无人飞行器执行预设动作。
第二方面,本说明书提供了一种无人飞行器的防破解方法,用于无人飞行器,其特征在于,所述方法包括:
获取用户终端的终端位置;
获取所述无人飞行器的飞行位置;
根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离;
获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;
根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确;
若判定所述飞行位置和所述终端位置中的至少一个不准确,执行预设动作。
第三方面,本说明书提供了一种用户终端,其特征在于,包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现:
获取所述用户终端的终端位置;
获取无人飞行器的飞行位置;
根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离;
获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;
根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否 准确;
若判定所述飞行位置和所述终端位置中的至少一个不准确,控制所述无人飞行器执行预设动作。
第四方面,本说明书提供了一种无人飞行器,其特征在于,包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现:
获取用户终端的终端位置;
获取所述无人飞行器的飞行位置;
根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离;
获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;
根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确;
若判定所述飞行位置和所述终端位置中的至少一个不准确,执行预设动作。
第五方面,本说明书提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述的方法。
本说明书实施例提供了一种无人飞行器的防破解方法、用户终端以及无人飞行器,通过用户终端的终端位置和无人飞行器的飞行位置确定定位距离,并根据用户终端和所述无人飞行器之间信号传输的延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;然后根据准确度较高的通信距离判断飞行位置和终端位置是否均准确,若飞行位置和终端位置中的至少一个不准确,则无人飞行器执行预设动作,以防止通过破解用户终端或者无人飞行器的定位装置控制无人飞行器在飞行限制区域飞行。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本说明书的公开内容。
附图说明
为了更清楚地说明本说明书实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本说明书的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本说明书一实施例提供的一种无人飞行器的防破解方法的流程示意图;
图2是用户终端和无人飞行器通信的示意图;
图3是本说明书另一实施例提供的一种无人飞行器的防破解方法的流程示意图;
图4是本说明书一实施例提供的一种用户终端的示意性框图;
图5是本说明书一实施例提供的一种无人飞行器的示意性框图。
具体实施方式
下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本说明书保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本说明书的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本说明书一实施例提供的一种无人飞行器的防破解方法的流程示意图。所述防破解方法可以应用在用户终端,用于判断飞行位置和终端位置是否准确,并在飞行位置和终端位置不准确时控制无人飞行器执行预设动作等过程。
其中,用户终端可以包括移动终端、遥控终端、可穿戴设备中的至少一种。移动终端例如手机、平板电脑、笔记本电脑等,遥控终端例如为无人飞行器的遥控器等,可穿戴设备例如为FPV(First Person View,第一人称主视角)眼 镜、VR(Virtual Reality,虚拟现实)眼镜等。
无人飞行器例如可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。
进一步而言,如图2所示,用户终端和无人飞行器之间通过无线信道进行通信。无人飞行器可以根据用户终端的控制飞行,或者无人飞行器可以自主飞行。用户携带用户终端,在无人飞行器需要自主返航,或者根据用户终端的控制返航时,无人飞行器返回用户终端所在的位置。
示例性的,如图2所示,用户终端可以显示无人飞行器的位置B以及用户终端的位置A。
如图1所示,本实施例无人飞行器的防破解方法包括步骤S110至步骤S160。
S110、获取所述用户终端的终端位置。
示例性的,用户终端搭载有定位装置,例如可以通过导航系统确定用户终端的位置。
示例性的,用户终端获取所述用户终端搭载的定位装置确定的所述用户终端的经纬度。
示例性的,用户终端周期性的获取终端位置。
S120、获取所述无人飞行器的飞行位置。
示例性的,无人飞行器也搭载有定位装置,例如可以通过导航系统确定无人飞行器的位置。
示例性的,用户终端可以从所述无人飞行器获取所述无人飞行器的经纬度,所述无人飞行器的经纬度是所述无人飞行器搭载的定位装置确定的。
示例性的,用户终端周期性的向无人飞行器请求获取无人飞行器的飞行位置。无人飞行器根据用户终端的请求将飞行位置发送给用户终端。或者,无人飞行器周期性的获取飞行位置,并将获取的飞行位置发送给用户终端。
示例性的,在某一时刻,用户终端的终端位置为(x1,y1),且无人飞行器的飞行位置为(x2,y2)。
S130、根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离。
在一些实施方式中,所述根据所述终端位置和所述飞行位置确定定位距离,包括:根据所述用户终端的经纬度和所述无人飞行器的经纬度确定所述定位距 离。
示例性的,所述定位距离表示用户终端的终端位置、无人飞行器的飞行位置在同一水平面上投影之间的距离。
示例性的,用户终端的终端位置为(x1,y1)且无人飞行器的飞行位置为(x2,y2)时,定位距离d可以表示为:
Figure PCTCN2019112614-appb-000001
S140、获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离。
具体的,由于用户在使用无人飞行器时,无人飞行器距离用户终端存在一定的距离,以及通信信号在无人飞行器和用户终端之间传递时需要一定的时间才能传到,因此用户终端和无人飞行器之间的信号传输具有延迟。
示例性的,用户终端获取和所述无人飞行器之间信号传输的往返时延。
在一些实施方式中,用户终端周期性的向无人飞行器发送终端信号,无人飞行器响应于用户终端发送的终端信号向所述用户终端发送反馈信号。用户终端根据发送终端信号和接收反馈信号的时间差确定和所述无人飞行器之间信号传输的延迟信息。
在一些实施方式中,用户终端周期性的向无人飞行器请求获取无人飞行器的飞行位置,无人飞行器根据用户终端的请求将飞行位置发送给用户终端。用户终端根据发送请求和接收飞行位置的时间差确定和所述无人飞行器之间信号传输的延迟信息。
在一些实施方式中,用户终端可以从所述无人飞行器获取信号传输的延迟信息。
示例性的,无人飞行器周期性的向用户终端发送飞行端信号,用户终端响应于无人飞行器发送的飞行端信号向所述用户终端发送反馈信号。无人飞行器根据发送飞行端信号和接收反馈信号的时间差确定和所述用户终端之间信号传输的延迟信息,然后无人飞行器可以将该延迟信息发送给所述用户终端。
示例性的,用户终端和无人飞行器之间信号传输的延迟包括信号从用户终端向无人飞行器传输的时间和信号从无人飞行器向用户终端传输的时间,因此用户终端和无人飞行器之间信号传输的延迟信息包括信号传输的往返时延(Round-Trip Time,RTT)。
示例性,用户终端根据所述往返时延确定所述用户终端和所述无人飞行器 之间的通信距离。
具体的,根据电磁信号传输的速度,以及所述往返时延确定所述用户终端和所述无人飞行器之间的通信距离。
示例性的,当往返时延为T时,所述用户终端和所述无人飞行器之间的通信距离D可以表示为:D=c×T÷2,其中c表示电磁信号传输的速度。
例如,如果用户终端和无人飞行器的时间同步,则通过往返时延确定的用户终端和无人飞行器之间的往返距离最大误差为0.5个采样点对应的距离。例如采样频率fs为30Msps时,往返距离的估计误差最大为:0.5×c÷fs=5米,其中c表示信号传输的速度,则用户终端和无人飞行器之间单程距离的最大估计误差为5÷2=2.5米。
示例性的,还可以通过增大采样频率,进一步降低用户终端和所述无人飞行器之间的通信距离的最大误差,从而得到更准确的通信距离。
在一些实施方式中,所述获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,包括:根据所述用户终端和所述无人飞行器之间信号携带的时间戳和接收所述信号的时刻确定所述延迟信息。
示例性的,无人飞行器向用户终端发送的飞行位置带有发送时的时间戳,用户终端接收该飞行位置可以得到无人飞行器发送飞行位置的时刻,且用户终端可以确定接收该飞行位置的时刻,从而可以得到信号从无人飞行器向用户终端传输的时间,并根据该传输时间确定户终端和所述无人飞行器之间的通信距离。
具体的,通过时延确定的用户终端和无人飞行器之间的通信距离中包括采样点对应的距离误差。
在一些实施方式中,防破解方法还包括:根据距离误差调整所述通信距离。
例如,可以根据所述用户终端和所述无人飞行器之间信号传输的采样频率确定所述距离误差。当采样频率fs为30Msps时,用户终端和无人飞行器之间单程距离的最大估计误差,即距离误差α为5÷2=2.5米。则可以根据该距离误差调整所述通信距离,得到调整后的通信距离为D+α或者D-α。
S150、根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确。
由于通信距离是通过检测发送包和接收包之间的时间间隔,精确计算出的 用户终端和无人飞行器之间的相对距离,从而可以根据更为准确的通信距离去验证用户终端的终端位置和无人飞行器的飞行位置是否准确。
示例性的,以无人飞行器的飞行位置为圆心,无人飞行器和用户终端之间的通信距离为半径,可以确定用户终端的位置范围。若用户终端的终端位置超出了该范围,可以判定所述飞行位置和所述终端位置中的至少一个不准确。
示例性的,以用户终端的终端位置为圆心,无人飞行器和用户终端之间的通信距离为半径,可以确定无人飞行器的位置范围。若无人飞行器的飞行位置超出了该范围,可以判定所述飞行位置和所述终端位置中的至少一个不准确。
示例性的,所述判定所述飞行位置和所述终端位置中的至少一个不准确,包括:判定所述飞行位置不准确;或者判定所述终端位置不准确;或者判定所述飞行位置和所述终端位置均不准确。
例如,若可以判断用户终端的终端位置可靠,则判定所述飞行位置不准确;若可以判断无人飞行器的飞行位置可靠,则判定所述终端位置不准确。
示例性的,若所述通信距离和所述定位距离的距离差值不大于预设的偏差阈值,则判定所述飞行位置和所述终端位置准确;若所述通信距离和所述定位距离的距离差值大于所述偏差阈值,则判定所述飞行位置和所述终端位置中的至少一个不准确。
示例性的,可以根据无人飞行器的飞行高度、无人飞行器的飞行速度等确定偏差阈值。
在一些实施方式中,所述根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确,包括:根据所述通信距离确定所述用户终端和所述无人飞行器之间的水平距离;根据所述水平距离和所述定位距离的距离差值判断所述飞行位置和所述终端位置是否准确。
在一些实施方式中,无人飞行器飞行的高度较高,例如为数十米或数百米,需要根据通信距离对应的水平距离判断终端位置是否准确。例如可以通过通信距离确定所述通信距离对应的用户终端和所述无人飞行器之间的水平距离。
示例性的,所述用户终端获取所述无人飞行器相对于所述用户终端的飞行高度,根据所述飞行高度和所述通信距离确定所述用户终端和所述无人飞行器之间的水平距离。
在一些实施方式中,所述无人飞行器的返航控制方法还包括:获取所述无 人飞行器相对于所述用户终端的飞行高度。
示例性的,用户终端可以从所述无人飞行器获取所述无人飞行器在飞行中相对于地面或者相对于起飞点的高度,根据该高度确定所述无人飞行器相对于所述用户终端的飞行高度。例如根据所述无人飞行器在从起飞点起飞后的高度变化确定所述无人飞行器相对于所述起飞点的飞行高度。
示例性的,无人飞行器在飞行过程中高度可能会变化,例如用户通过用户终端控制无人飞行器调整飞行高度。
示例性的,用户终端周期性的向无人飞行器请求获取无人飞行器的飞行高度。无人飞行器根据用户终端的请求将飞行高度发送给用户终端。或者,无人飞行器周期性的获取飞行高度,并将获取的飞行高度发送给用户终端。从而用户终端可以获取到无人飞行器的实时高度,并根据无人飞行器的飞行高度和所述定位距离、所述通信距离判断所述终端位置是否准确。
例如,通信距离为D,无人飞行器的飞行高度为h,则所述用户终端和所述无人飞行器之间的水平距离为:
Figure PCTCN2019112614-appb-000002
或者
Figure PCTCN2019112614-appb-000003
在一些实施方式中,步骤S140中的所述根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离,包括:根据所述延迟信息和所述飞行高度确定所述用户终端和所述无人飞行器之间的水平距离。即将水平距离作为用户终端和所述无人飞行器之间的通信距离。
示例性的,所述根据所述水平距离和所述定位距离的距离差值判断所述飞行位置和所述终端位置是否准确,包括:若所述水平距离和所述定位距离的距离差值不大于预设的差值阈值,则判定所述飞行位置和所述终端位置准确;若所述水平距离和所述定位距离的距离差值大于所述差值阈值,则判定所述飞行位置和所述终端位置中的至少一个不准确。
示例性的,若预设的差值阈值表示为e,例如e为20米;所述水平距离和所述定位距离的距离差值为水平距离和定位距离作差的绝对值。则若所述距离差值不大于e,则判定所述飞行位置和所述终端位置准确;若距离差值大于e,则判定所述飞行位置和所述终端位置中的至少一个不准确。
示例性的,可以根据无人飞行器的飞行速度、预设的误差上限等确定差值阈值。
示例性的,无人飞行器确定飞行位置、将飞行位置发送给用户终端等过程 的总时长为t,例如t为50毫秒,用户和无人飞行器之间的相对速度的上限为v,例如v为50米每秒,则可以确定差值阈值为:e+v×t。可以防止将偏差较小的终端位置误判为不准确的位置。
示例性的,若有
Figure PCTCN2019112614-appb-000004
或者
Figure PCTCN2019112614-appb-000005
则判定所述飞行位置和所述终端位置中的至少一个不准确;若有
Figure PCTCN2019112614-appb-000006
Figure PCTCN2019112614-appb-000007
则判定所述飞行位置和所述终端位置准确。
在一些实施方式中,可以将距离误差考虑在差值阈值中,从而可以不根据距离误差调整通信距离。
示例性的,防破解方法还包括:根据距离误差调整所述差值阈值,所述距离误差时根据所述用户终端和所述无人飞行器之间信号传输的采样频率确定的。
例如,可以根据所述用户终端和所述无人飞行器之间信号传输的采样频率确定所述距离误差。当采样频率fs为30Msps时,用户终端和无人飞行器之间单程距离的最大估计误差,即距离误差α为5÷2=2.5米。则根据距离误差调整所述差值阈值,得到调整后的差值阈值为e+α。
例如,若有
Figure PCTCN2019112614-appb-000008
则判定所述飞行位置和所述终端位置中的至少一个不准确;若有
Figure PCTCN2019112614-appb-000009
则判定所述飞行位置和所述终端位置准确。
S160、若判定所述飞行位置和所述终端位置中的至少一个不准确,控制所述无人飞行器执行预设动作。
若判定所述飞行位置和所述终端位置中的至少一个不准确,则可以确定无人飞行器和用户终端中的至少一个的定位不准确,可能被破解或干扰,从而可以控制无人飞行器执行预设动作,例如用户终端控制所述无人飞行器执行下降、返航或者禁止起飞中的一种。
在一些实施场景中,无人飞行器在某一时刻从起飞点飞离用户,无人飞行器和用户终端之间的距离越来越远,根据信号传输的延迟信息确定的通信距离也更加精确,例如距离从0增加至2.5米时,由于距离误差的存在还无法准确确定通信距离,随着距离的进一步增大,距离误差的影响越来越小,通信距离也更加精确。若在某一时刻根据定位距离和通信距离确定飞行位置和终端位置 中至少有一个不准确,则控制所述无人飞行器强制下降或返航。以防止通过破解用户终端或者无人飞行器的定位装置控制无人飞行器在飞行限制区域飞行。
示例性的,若在某一时刻判定用户终端的终端位置不准确,则控制所述无人飞行器强制下降。无人飞行器在下降过程中可以通过双目摄像头或者下视摄像头确定相对地面的高度,根据该高度可以确定下降的高度,防止触地。
示例性的,若在某一时刻判定无人飞行器的飞行位置不准确,或者判定飞行位置和终端位置均不准确,则控制所述无人飞行器返航,或者控制所述无人飞行器禁止起飞。示例性的,在判定无人飞行器的飞行位置和终端位置中至少有一个不准确,且控制所述无人飞行器禁止起飞之后,可以在经过预设时长之后,解除禁止起飞的状态,则用户终端可以正常控制无人飞行器。
示例性的,在判定无人飞行器的飞行位置和终端位置中至少有一个不准确,且在控制所述无人飞行器返航或者下降的过程中,若在某个时刻根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置均准确,则用户终端可以正常控制无人飞行器。
在一些实施方式中,防破解方法还包括:若判定所述飞行位置和所述终端位置中的至少一个不准确,发出提示信息,所述提示信息用于提示用户所述无人飞行器和所述用户终端中的至少一个定位不准确。例如提示用户无法正常控制无人飞行器飞行。
本说明书实施例提供的无人飞行器的防破解方法,通过用户终端的终端位置和无人飞行器的飞行位置确定定位距离,并根据用户终端和所述无人飞行器之间信号传输的延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;然后根据准确度较高的通信距离判断飞行位置和终端位置是否均准确,若飞行位置和终端位置中的至少一个不准确,则控制无人飞行器执行预设动作,以防止通过破解用户终端或者无人飞行器的定位装置控制无人飞行器在飞行限制区域飞行。
请参阅图3,图3是本申请另一实施例提供的一种无人飞行器的防破解方法的流程示意图。所述防破解方法可以应用在无人飞行器,用于判断飞行位置和终端位置是否准确,并在飞行位置和终端位置不准确时控制无人飞行器执行预设动作等过程。
其中,用户终端可以包括移动终端、遥控终端、可穿戴设备中的至少一种。 移动终端例如手机、平板电脑、笔记本电脑等,遥控终端例如为无人飞行器的遥控器等,可穿戴设备例如为FPV(First Person View,第一人称主视角)眼镜、VR(Virtual Reality,虚拟现实)眼镜等。
无人飞行器例如可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。
如图3所示,本实施例无人飞行器的防破解方法包括步骤S210至步骤S260。
S210、获取用户终端的终端位置。
示例性的,用户终端搭载有定位装置,例如可以通过导航系统确定用户终端的位置。
示例性的,无人飞行器可以从用户终端获取所述用户终端的经纬度,所述用户终端的经纬度是所述用户终端搭载的定位装置确定的。
示例性的,无人飞行器周期性的向用户终端请求获取用户终端的终端位置。用户终端根据无人飞行器的请求将终端位置发送给无人飞行器。或者,用户终端周期性的获取终端位置,并将获取的终端位置发送给无人飞行器。
S220、获取所述无人飞行器的飞行位置。
示例性的,无人飞行器也搭载有定位装置,例如可以通过导航系统确定无人飞行器的位置。
示例性的,无人飞行器获取所述无人飞行器搭载的定位装置确定的所述无人飞行器的经纬度。
示例性的,无人飞行器周期性的获取飞行位置。
示例性的,在某一时刻,用户终端的终端位置为(x1,y1),且无人飞行器的飞行位置为(x2,y2)。
S230、根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离。
在一些实施方式中,所述根据所述终端位置和所述飞行位置确定定位距离,包括:无人飞行器根据所述用户终端的经纬度和所述无人飞行器的经纬度确定所述定位距离。
示例性的,所述定位距离表示用户终端的终端位置、无人飞行器的飞行位置在同一水平面上投影之间的距离。
示例性的,用户终端的终端位置为(x1,y1)且无人飞行器的飞行位置为 (x2,y2)时,定位距离d可以表示为:
Figure PCTCN2019112614-appb-000010
S240、获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离。
具体的,由于用户在使用无人飞行器时,无人飞行器距离用户终端存在一定的距离,以及通信信号在无人飞行器和用户终端之间传递时需要一定的时间才能传到,因此用户终端和无人飞行器之间的信号传输具有延迟。
示例性的,无人飞行器获取和所述用户终端之间信号传输的往返时延。
在一些实施方式中,无人飞行器周期性的向用户终端发送飞行端信号,用户终端响应于无人飞行器发送的飞行端信号向所述无人飞行器发送反馈信号。无人飞行器根据发送飞行端信号和接收反馈信号的时间差确定和所述用户终端之间信号传输的延迟信息。
在一些实施方式中,无人飞行器周期性的向用户终端请求获取用户终端的终端位置,用户终端根据无人飞行器的请求将终端位置发送给无人飞行器。无人飞行器根据发送请求和接收终端位置的时间差确定和所述用户终端之间信号传输的延迟信息。
在一些实施方式中,无人飞行器可以从用户终端获取信号传输的延迟信息。
示例性的,用户终端周期性的向无人飞行器发送终端信号,无人飞行器响应于用户终端发送的终端信号向所述无人飞行器发送反馈信号。用户终端根据发送终端信号和接收反馈信号的时间差确定和所述无人飞行器之间信号传输的延迟信息,然后用户终端可以将该延迟信息发送给所述无人飞行器。
示例性的,用户终端和无人飞行器之间信号传输的延迟包括信号从用户终端向无人飞行器传输的时间和信号从无人飞行器向用户终端传输的时间,因此用户终端和无人飞行器之间信号传输的延迟信息包括信号传输的往返时延(Round-Trip Time,RTT)。
示例性,无人飞行器根据所述往返时延确定所述用户终端和所述无人飞行器之间的通信距离。
具体的,根据电磁信号传输的速度,以及所述往返时延确定所述用户终端和所述无人飞行器之间的通信距离。
示例性的,当往返时延为T时,所述用户终端和所述无人飞行器之间的通信距离D可以表示为:D=c×T÷2,其中c表示电磁信号传输的速度。
例如,如果用户终端和无人飞行器的时间同步,则通过往返时延确定的用户终端和无人飞行器之间的往返距离最大误差为0.5个采样点对应的距离。例如采样频率fs为30Msps时,往返距离的估计误差最大为:0.5×c÷fs=5米,其中c表示信号传输的速度,则用户终端和无人飞行器之间单程距离的最大估计误差为5÷2=2.5米。
示例性的,还可以通过增大采样频率,进一步降低用户终端和所述无人飞行器之间的通信距离的最大误差,从而得到更准确的通信距离。
在一些实施方式中,所述获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,包括:根据所述用户终端和所述无人飞行器之间信号携带的时间戳和接收所述信号的时刻确定所述延迟信息。
示例性的,用户终端向无人飞行器发送的终端位置带有发送时的时间戳,无人飞行器接收该终端位置可以得到用户终端发送该终端位置的时刻,且无人飞行器可以确定接收该终端位置的时刻,从而可以得到信号从用户终端向无人飞行器传输的时间,并根据该传输时间确定户终端和所述无人飞行器之间的通信距离。
具体的,通过时延确定的用户终端和无人飞行器之间的通信距离中包括采样点对应的距离误差。
在一些实施方式中,防破解方法还包括:根据距离误差调整所述通信距离。
例如,可以根据所述用户终端和所述无人飞行器之间信号传输的采样频率确定所述距离误差。当采样频率fs为30Msps时,用户终端和无人飞行器之间单程距离的最大估计误差,即距离误差α为5÷2=2.5米。则可以根据该距离误差调整所述通信距离,得到调整后的通信距离为D+α或者D-α。
S250、根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确。
由于通信距离是通过检测发送包和接收包之间的时间间隔,精确计算出的用户终端和无人飞行器之间的相对距离,从而可以根据更为准确的通信距离去验证用户终端的终端位置和无人飞行器的飞行位置是否准确。
示例性的,以无人飞行器的飞行位置为圆心,无人飞行器和用户终端之间的通信距离为半径,可以确定用户终端的位置范围。若用户终端的终端位置超出了该范围,可以判定所述飞行位置和所述终端位置中的至少一个不准确。
示例性的,以用户终端的终端位置为圆心,无人飞行器和用户终端之间的通信距离为半径,可以确定无人飞行器的位置范围。若无人飞行器的飞行位置超出了该范围,可以判定所述飞行位置和所述终端位置中的至少一个不准确。
示例性的,所述判定所述飞行位置和所述终端位置中的至少一个不准确,包括:判定所述飞行位置不准确;或者判定所述终端位置不准确;或者判定所述飞行位置和所述终端位置均不准确。
例如,若可以判断用户终端的终端位置可靠,则判定所述飞行位置不准确;若可以判断无人飞行器的飞行位置可靠,则判定所述终端位置不准确。
示例性的,若所述通信距离和所述定位距离的距离差值不大于预设的偏差阈值,则判定所述飞行位置和所述终端位置准确;若所述通信距离和所述定位距离的距离差值大于所述偏差阈值,则判定所述飞行位置和所述终端位置中的至少一个不准确。
示例性的,可以根据无人飞行器的飞行高度、无人飞行器的飞行速度等确定偏差阈值。
在一些实施方式中,所述根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确,包括:根据所述通信距离确定所述用户终端和所述无人飞行器之间的水平距离;根据所述水平距离和所述定位距离的距离差值判断所述飞行位置和所述终端位置是否准确。
在一些实施方式中,无人飞行器飞行的高度较高,例如为数十米或数百米,需要根据通信距离对应的水平距离判断终端位置是否准确。例如可以通过通信距离确定所述通信距离对应的用户终端和所述无人飞行器之间的水平距离。
示例性的,所述用户终端从所述无人飞行器获取所述无人飞行器相对于所述用户终端的飞行高度,根据所述飞行高度和所述通信距离确定所述用户终端和所述无人飞行器之间的水平距离。
在一些实施方式中,所述无人飞行器的返航控制方法还包括:获取所述无人飞行器相对于所述用户终端的飞行高度。
示例性的,所述无人飞行器周期性获取所述无人飞行器在飞行中相对于地面或者相对于起飞点的高度,根据该高度确定所述无人飞行器相对于所述用户终端的飞行高度。如根据所述无人飞行器在从起飞点起飞后的高度变化确定所述无人飞行器相对于所述起飞点的飞行高度。
示例性的,无人飞行器在飞行过程中高度可能会变化,例如用户通过用户终端控制无人飞行器调整飞行高度。无人飞行器周期性获取飞行高度,可以获取到无人飞行器的实时高度,并根据无人飞行器的飞行高度和所述定位距离、所述通信距离判断所述终端位置是否准确。
例如,通信距离为D,无人飞行器的飞行高度为h,则所述用户终端和所述无人飞行器之间的水平距离为:
Figure PCTCN2019112614-appb-000011
或者
Figure PCTCN2019112614-appb-000012
在一些实施方式中,步骤S240中的所述根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离,包括:根据所述延迟信息和所述飞行高度确定所述用户终端和所述无人飞行器之间的水平距离。即将水平距离作为用户终端和所述无人飞行器之间的通信距离。
示例性的,所述根据所述水平距离和所述定位距离的距离差值判断所述飞行位置和所述终端位置是否准确,包括:若所述水平距离和所述定位距离的距离差值不大于预设的差值阈值,则判定所述飞行位置和所述终端位置准确;若所述水平距离和所述定位距离的距离差值大于所述差值阈值,则判定所述飞行位置和所述终端位置中的至少一个不准确。
示例性的,若预设的差值阈值表示为e,例如e为20米;所述水平距离和所述定位距离的距离差值为水平距离和定位距离作差的绝对值。则若所述距离差值不大于e,则判定所述飞行位置和所述终端位置准确;若距离差值大于e,则判定所述飞行位置和所述终端位置中的至少一个不准确。
示例性的,可以根据无人飞行器的飞行速度、预设的误差上限等确定差值阈值。
示例性的,无人飞行器确定飞行位置、将飞行位置发送给用户终端等过程的总时长为t,例如t为50毫秒,用户和无人飞行器之间的相对速度的上限为v,例如v为50米每秒,则可以确定差值阈值为:e+v×t。可以防止将偏差较小的终端位置误判为不准确的位置。
示例性的,若有
Figure PCTCN2019112614-appb-000013
或者
Figure PCTCN2019112614-appb-000014
则判定所述飞行位置和所述终端位置中的至少一个不准确;若有
Figure PCTCN2019112614-appb-000015
Figure PCTCN2019112614-appb-000016
则判定所述飞行位置和所述终端位置准确。
在一些实施方式中,可以将距离误差考虑在差值阈值中,从而可以不根据距离误差调整通信距离。
示例性的,防破解方法还包括:根据距离误差调整所述差值阈值,所述距离误差时根据所述用户终端和所述无人飞行器之间信号传输的采样频率确定的。
例如,可以根据所述用户终端和所述无人飞行器之间信号传输的采样频率确定所述距离误差。当采样频率fs为30Msps时,用户终端和无人飞行器之间单程距离的最大估计误差,即距离误差α为5÷2=2.5米。则根据距离误差调整所述差值阈值,得到调整后的差值阈值为e+α。
例如,若有
Figure PCTCN2019112614-appb-000017
则判定所述飞行位置和所述终端位置中的至少一个不准确;若有
Figure PCTCN2019112614-appb-000018
则判定所述飞行位置和所述终端位置准确。
S260、若判定所述飞行位置和所述终端位置中的至少一个不准确,执行预设动作。
若判定所述飞行位置和所述终端位置中的至少一个不准确,则可以确定无人飞行器和用户终端中的至少一个的定位不准确,可能被破解或干扰,从而所述无人飞行器执行预设动作,例如所述无人飞行器执行下降、返航或者禁止起飞中的一种。
在一些实施场景中,无人飞行器在某一时刻从起飞点飞离用户,无人飞行器和用户终端之间的距离越来越远,根据信号传输的延迟信息确定的通信距离也更加精确,例如距离从0增加至2.5米时,由于距离误差的存在还无法准确确定通信距离,随着距离的进一步增大,距离误差的影响越来越小,通信距离也更加精确。若在某一时刻根据定位距离和通信距离确定飞行位置和终端位置中至少有一个不准确,则所述无人飞行器强制下降或返航。以防止通过破解用户终端或者无人飞行器的定位装置控制无人飞行器在飞行限制区域飞行。
示例性的,若在某一时刻判定用户终端的终端位置不准确,则所述无人飞行器强制下降。无人飞行器在下降过程中可以通过双目摄像头或者下视摄像头确定相对地面的高度,根据该高度可以确定下降的高度,防止触地。
示例性的,若在某一时刻判定无人飞行器的飞行位置不准确,或者判定飞行位置和终端位置均不准确,则所述无人飞行器返航,或者所述无人飞行器禁止起飞。示例性的,在判定无人飞行器的飞行位置和终端位置中至少有一个不 准确,且所述无人飞行器禁止起飞之后,可以在经过预设时长之后,解除禁止起飞的状态,则用户终端可以正常控制无人飞行器。
示例性的,在判定无人飞行器的飞行位置和终端位置中至少有一个不准确,且在控制所述无人飞行器返航或者下降的过程中,若在某个时刻根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置均准确,则用户终端可以正常控制无人飞行器。
在一些实施方式中,防破解方法还包括:若判定所述飞行位置和所述终端位置中的至少一个不准确,所述无人飞行器向所述用户终端发送错误通知,以使所述用户终端根据所述错误通知提示用户所述无人飞行器和所述用户终端中的至少一个定位不准确。例如提示用户无法正常控制无人飞行器飞行。
本说明书实施例提供的无人飞行器的防破解方法,通过用户终端的终端位置和无人飞行器的飞行位置确定定位距离,并根据用户终端和所述无人飞行器之间信号传输的延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;然后根据准确度较高的通信距离判断飞行位置和终端位置是否均准确,若飞行位置和终端位置中的至少一个不准确,则无人飞行器执行预设动作,以防止通过破解用户终端或者无人飞行器的定位装置控制无人飞行器在飞行限制区域飞行。
请结合上述实施例参阅图4,图4是本说明书一实施例提供的用户终端600的示意性框图。该用户终端600包括处理器601和存储器602。
示例性的,处理器601和存储器602通过总线603连接,该总线603比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器601可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器602可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器601用于运行存储在存储器602中的计算机程序,并在执行所述计算机程序时实现前述的用于用户终端的无人飞行器的防破解方法。
示例性的,所述处理器601用于运行存储在存储器602中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取所述用户终端的终端位置;
获取无人飞行器的飞行位置;
根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离;
获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;
根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确;
若判定所述飞行位置和所述终端位置中的至少一个不准确,控制所述无人飞行器执行预设动作。
本说明书实施例提供的用户终端的具体原理和实现方式均与前述实施例的用于用户终端的无人飞行器的防破解方法类似,此处不再赘述。
本说明书的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的用于用户终端的无人飞行器的防破解方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的用户终端的内部存储单元,例如所述用户终端的硬盘或内存。所述计算机可读存储介质也可以是所述用户终端的外部存储设备,例如所述用户终端上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
请结合上述实施例参阅图5,图5是本说明书一实施例提供的无人飞行器700的示意性框图。该无人飞行器700包括处理器701和存储器702。
示例性的,处理器701和存储器702通过总线703连接,该总线703比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器701可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器702可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器701用于运行存储在存储器702中的计算机程序,并在执行所述计算机程序时实现前述的用于无人飞行器的防破解方法。
示例性的,所述处理器701用于运行存储在存储器702中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取用户终端的终端位置;
获取所述无人飞行器的飞行位置;
根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离;
获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;
根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确;
若判定所述飞行位置和所述终端位置中的至少一个不准确,执行预设动作。
本说明书实施例提供的无人飞行器的具体原理和实现方式均与前述实施例的用于无人飞行器的防破解方法类似,此处不再赘述。
本说明书的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的用于无人飞行器的防破解方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的无人飞行器的内部存储单元,例如所述无人飞行器的硬盘或内存。所述计算机可读存储介质也可以是所述无人飞行器的外部存储设备,例如所述无人飞行器上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本说明书上述实施例提供的用户终端、无人飞行器和计算机可读存储介质,通过用户终端的终端位置和无人飞行器的飞行位置确定定位距离,并根据用户终端和所述无人飞行器之间信号传输的延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;然后根据准确度较高的通信距离判断飞行位置和终端位置是否均准确,若飞行位置和终端位置中的至少一个不准确,则无人飞行器执行预设动作,以防止通过破解用户终端或者无人飞行器的定位装置控制无人飞行器在飞行限制区域飞行。
应当理解,在此本说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本说明书。
还应当理解,在本说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本说明书的具体实施方式,但本说明书的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本说明书揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本说明书的保护范围之内。因此,本说明书的保护范围应以权利要求的保护范围为准。

Claims (33)

  1. 一种无人飞行器的防破解方法,用于用户终端,其特征在于,所述方法包括:
    获取所述用户终端的终端位置;
    获取所述无人飞行器的飞行位置;
    根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离;
    获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;
    根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确;
    若判定所述飞行位置和所述终端位置中的至少一个不准确,控制所述无人飞行器执行预设动作。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述用户终端的终端位置,包括:
    获取所述用户终端搭载的定位装置确定的所述用户终端的经纬度。
  3. 根据权利要求2所述的方法,其特征在于,所述获取无人飞行器的飞行位置,包括:
    从所述无人飞行器获取所述无人飞行器的经纬度,所述无人飞行器的经纬度是所述无人飞行器搭载的定位装置确定的。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述终端位置和所述飞行位置确定定位距离,包括:
    根据所述用户终端的经纬度和所述无人飞行器的经纬度确定所述定位距离。
  5. 根据权利要求1所述的方法,其特征在于,所述获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离,包括:
    获取所述用户终端和所述无人飞行器之间信号传输的往返时延,根据所述往返时延确定所述用户终端和所述无人飞行器之间的通信距离。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确,包括:
    根据所述通信距离确定所述用户终端和所述无人飞行器之间的水平距离;
    根据所述水平距离和所述定位距离的距离差值判断所述飞行位置和所述终端位置是否准确。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述通信距离确定所述用户终端和所述无人飞行器之间的水平距离,包括:
    获取所述无人飞行器相对于所述用户终端的飞行高度,根据所述飞行高度和所述通信距离确定所述用户终端和所述无人飞行器之间的水平距离。
  8. 根据权利要求6所述的方法,其特征在于,所述根据所述水平距离和所述定位距离的距离差值判断所述飞行位置和所述终端位置是否准确,包括:
    若所述水平距离和所述定位距离的距离差值不大于预设的差值阈值,则判定所述飞行位置和所述终端位置准确;
    若所述水平距离和所述定位距离的距离差值大于所述差值阈值,则判定所述飞行位置和所述终端位置中的至少一个不准确。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    根据距离误差调整所述差值阈值。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    根据所述用户终端和所述无人飞行器之间信号传输的采样频率确定所述距离误差。
  11. 根据权利要求1所述的方法,其特征在于,还包括:
    获取所述无人飞行器相对于所述用户终端的飞行高度;
    所述根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离,包括:
    根据所述延迟信息和所述飞行高度确定所述用户终端和所述无人飞行器之间的水平距离。
  12. 根据权利要求1所述的方法,其特征在于,还包括:
    若判定所述飞行位置和所述终端位置中的至少一个不准确,发出提示信息,所述提示信息用于提示用户所述无人飞行器和所述用户终端中的至少一个定位不准确。
  13. 根据权利要求1所述的方法,其特征在于,所述用户终端包括移动终端、遥控终端、可穿戴设备中的至少一种。
  14. 根据权利要求1所述的方法,其特征在于,所述控制所述无人飞行器执行预设动作,包括:
    控制所述无人飞行器执行下降、返航或者禁止起飞中的一种。
  15. 根据权利要求1所述的方法,其特征在于,所述判定所述飞行位置和所述终端位置中的至少一个不准确,包括:
    判定所述飞行位置不准确;或者
    判定所述终端位置不准确;或者
    判定所述飞行位置和所述终端位置均不准确。
  16. 一种无人飞行器的防破解方法,用于无人飞行器,其特征在于,所述方法包括:
    获取用户终端的终端位置;
    获取所述无人飞行器的飞行位置;
    根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离;
    获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;
    根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确;
    若判定所述飞行位置和所述终端位置中的至少一个不准确,执行预设动作。
  17. 根据权利要求16所述的方法,其特征在于,所述获取所述用户终端的终端位置,包括:
    从所述用户终端获取所述用户终端的经纬度,所述用户终端的经纬度是所述用户终端搭载的定位装置确定的。
  18. 根据权利要求17所述的方法,其特征在于,所述获取无人飞行器的飞行位置,包括:
    获取所述无人飞行器搭载的定位装置确定的所述无人飞行器的经纬度。
  19. 根据权利要求18所述的方法,其特征在于,所述根据所述终端位置和所述飞行位置确定定位距离,包括:
    根据所述用户终端的经纬度和所述无人飞行器的经纬度确定所述定位距离。
  20. 根据权利要求16所述的方法,其特征在于,所述获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离,包括:
    获取所述用户终端和所述无人飞行器之间信号传输的往返时延,根据所述往返时延确定所述用户终端和所述无人飞行器之间的通信距离。
  21. 根据权利要求16所述的方法,其特征在于,所述根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确,包括:
    根据所述通信距离确定所述用户终端和所述无人飞行器之间的水平距离;
    根据所述水平距离和所述定位距离的距离差值判断所述飞行位置和所述终端位置是否准确。
  22. 根据权利要求21所述的方法,其特征在于,所述根据所述通信距离确定所述用户终端和所述无人飞行器之间的水平距离,包括:
    获取所述无人飞行器相对于所述用户终端的飞行高度,根据所述飞行高度和所述通信距离确定所述用户终端和所述无人飞行器之间的水平距离。
  23. 根据权利要求21所述的方法,其特征在于,所述根据所述水平距离和所述定位距离的距离差值判断所述飞行位置和所述终端位置是否准确,包括:
    若所述水平距离和所述定位距离的距离差值不大于预设的差值阈值,则判定所述飞行位置和所述终端位置准确;
    若所述水平距离和所述定位距离的距离差值大于所述差值阈值,则判定所述飞行位置和所述终端位置中的至少一个不准确。
  24. 根据权利要求23所述的方法,其特征在于,还包括:
    根据距离误差调整所述差值阈值。
  25. 根据权利要求24所述的方法,其特征在于,还包括:
    根据所述用户终端和所述无人飞行器之间信号传输的采样频率确定所述距离误差。
  26. 根据权利要求16所述的方法,其特征在于,还包括:
    获取所述无人飞行器相对于所述用户终端的飞行高度;
    所述根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离,包括:
    根据所述延迟信息和所述飞行高度确定所述用户终端和所述无人飞行器之间的水平距离。
  27. 根据权利要求16所述的方法,其特征在于,还包括:
    若判定所述飞行位置和所述终端位置中的至少一个不准确,向所述用户终端发送错误通知,以使所述用户终端根据所述错误通知提示用户所述无人飞行器和所述用户终端中的至少一个定位不准确。
  28. 根据权利要求16所述的方法,其特征在于,所述用户终端包括移动终端、遥控终端、可穿戴设备中的至少一种。
  29. 根据权利要求16所述的方法,其特征在于,所述执行预设动作,包括:
    执行下降、返航或者禁止起飞中的一种。
  30. 根据权利要求16所述的方法,其特征在于,所述判定所述飞行位置和所述终端位置中的至少一个不准确,包括:
    判定所述飞行位置不准确;或者
    判定所述终端位置不准确;或者
    判定所述飞行位置和所述终端位置均不准确。
  31. 一种用户终端,其特征在于,包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现:
    获取所述用户终端的终端位置;
    获取无人飞行器的飞行位置;
    根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离;
    获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;
    根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确;
    若判定所述飞行位置和所述终端位置中的至少一个不准确,控制所述无人飞行器执行预设动作。
  32. 一种无人飞行器,其特征在于,包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现:
    获取用户终端的终端位置;
    获取所述无人飞行器的飞行位置;
    根据所述终端位置和所述飞行位置确定所述用户终端和所述无人飞行器之间的定位距离;
    获取所述用户终端和所述无人飞行器之间信号传输的延迟信息,根据所述延迟信息确定所述用户终端和所述无人飞行器之间的通信距离;
    根据所述定位距离和所述通信距离判断所述飞行位置和所述终端位置是否准确;
    若判定所述飞行位置和所述终端位置中的至少一个不准确,执行预设动作。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现:
    如权利要求1-30中任一项所述的方法。
PCT/CN2019/112614 2019-10-22 2019-10-22 无人飞行器的防破解方法、用户终端以及无人飞行器 WO2021077307A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980032901.XA CN112189175A (zh) 2019-10-22 2019-10-22 无人飞行器的防破解方法、用户终端以及无人飞行器
PCT/CN2019/112614 WO2021077307A1 (zh) 2019-10-22 2019-10-22 无人飞行器的防破解方法、用户终端以及无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/112614 WO2021077307A1 (zh) 2019-10-22 2019-10-22 无人飞行器的防破解方法、用户终端以及无人飞行器

Publications (1)

Publication Number Publication Date
WO2021077307A1 true WO2021077307A1 (zh) 2021-04-29

Family

ID=73919030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112614 WO2021077307A1 (zh) 2019-10-22 2019-10-22 无人飞行器的防破解方法、用户终端以及无人飞行器

Country Status (2)

Country Link
CN (1) CN112189175A (zh)
WO (1) WO2021077307A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425208A (zh) * 2015-12-21 2016-03-23 深圳思科尼亚科技有限公司 一种用于无人机精确导航的定位系统及定位方法
US20170025021A1 (en) * 2015-07-22 2017-01-26 Samsung Sds Co., Ltd. Drone control apparatus and method
CN107405529A (zh) * 2015-07-17 2017-11-28 松下电器(美国)知识产权公司 无人飞行器、飞行控制方法、飞行基本程序和强制移动程序
CN108700668A (zh) * 2017-06-29 2018-10-23 深圳市大疆创新科技有限公司 检测无人机的定位设备的方法、无人机
CN109246665A (zh) * 2017-07-11 2019-01-18 薛晓东 一种导航方法及其系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365298B (zh) * 2013-07-05 2017-06-20 深圳市大疆创新科技有限公司 无人飞行器的飞行辅助系统和方法
CN105739536B (zh) * 2016-05-09 2017-12-19 广州极飞科技有限公司 一种无人机监控方法和系统
CN108541357A (zh) * 2017-06-28 2018-09-14 深圳市大疆创新科技有限公司 一种信息处理方法、无人机及计算机可读存储介质
WO2019127019A1 (zh) * 2017-12-26 2019-07-04 深圳市道通智能航空技术有限公司 无人飞行器路径规划方法、装置和飞行管理方法、装置
CN108267753A (zh) * 2017-12-28 2018-07-10 福建中量智汇科技有限公司 一种无人机着陆点自动配置的方法、系统及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107405529A (zh) * 2015-07-17 2017-11-28 松下电器(美国)知识产权公司 无人飞行器、飞行控制方法、飞行基本程序和强制移动程序
US20170025021A1 (en) * 2015-07-22 2017-01-26 Samsung Sds Co., Ltd. Drone control apparatus and method
CN105425208A (zh) * 2015-12-21 2016-03-23 深圳思科尼亚科技有限公司 一种用于无人机精确导航的定位系统及定位方法
CN108700668A (zh) * 2017-06-29 2018-10-23 深圳市大疆创新科技有限公司 检测无人机的定位设备的方法、无人机
CN109246665A (zh) * 2017-07-11 2019-01-18 薛晓东 一种导航方法及其系统

Also Published As

Publication number Publication date
CN112189175A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
US20200302803A1 (en) Unmanned aerial vehicle return method and device, storage medium and unmanned aerial vehicle
US20180208195A1 (en) Collaborative risk controller for vehicles using v2v
EP4011056B1 (en) Systems and methods for unmanned aerial system communication
CN106155070B (zh) 无人机起飞控制方法及装置、遥控终端
US11106222B2 (en) Method for detecting positioning apparatus of unmanned aerial vehicle, and unmanned aerial vehicle
WO2019000269A1 (zh) 一种信息处理方法、无人机及计算机可读存储介质
US20220053079A1 (en) System and method for supporting movable object application development
US11221635B2 (en) Aerial vehicle heading control method and apparatus and electronic device
WO2019113904A1 (zh) 飞行器安全起飞方法、降落方法及飞行器
US20210136578A1 (en) Data distribution from a movable object
US12107663B2 (en) Unmanned aerial system communication
US20200178072A1 (en) Secure communication for machine to machine connections
WO2020192473A1 (zh) 无人机控制方法及相关装置
WO2021077306A1 (zh) 无人飞行器的返航控制方法、用户终端以及无人飞行器
KR20180066872A (ko) 통신망을 통해서 제어되는 드론 및 드론의 제어 방법
WO2019000323A1 (zh) 无人机及其控制方法、控制终端及其控制方法
US11134526B2 (en) Automatic update of connection to a movable object
WO2021077307A1 (zh) 无人飞行器的防破解方法、用户终端以及无人飞行器
WO2021075138A1 (ja) 情報処理装置、情報処理システム、情報処理方法及びプログラム
CN110622086B (zh) 可移动物体应用框架
EP4129000A1 (en) Method and apparatus for uav and uav controller group membership update
CN117098196A (zh) 无人机通信方法、装置、设备及可读存储介质
US20190228170A1 (en) Supporting protocol independent movable object application development
CN110568859B (zh) 无人机控制方法、移动终端及计算机可读存储介质
US11402460B2 (en) Method and system for processing a signal transmitted to a motor vehicle by a remote communicating entity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949931

Country of ref document: EP

Kind code of ref document: A1