WO2019000323A1 - 无人机及其控制方法、控制终端及其控制方法 - Google Patents

无人机及其控制方法、控制终端及其控制方法 Download PDF

Info

Publication number
WO2019000323A1
WO2019000323A1 PCT/CN2017/090815 CN2017090815W WO2019000323A1 WO 2019000323 A1 WO2019000323 A1 WO 2019000323A1 CN 2017090815 W CN2017090815 W CN 2017090815W WO 2019000323 A1 WO2019000323 A1 WO 2019000323A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
height
target
target object
surrounding
Prior art date
Application number
PCT/CN2017/090815
Other languages
English (en)
French (fr)
Inventor
陈超彬
闫光
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/090815 priority Critical patent/WO2019000323A1/zh
Priority to CN201780005206.5A priority patent/CN108475071A/zh
Publication of WO2019000323A1 publication Critical patent/WO2019000323A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the invention relates to the field of UAV control, in particular to a UAV, a control method thereof, a control terminal and a control method thereof.
  • drones have been widely used in many fields of military, agriculture, surveying, photography and transportation in recent years.
  • drones can achieve a surround flight to a target object and maintain a relative height relative to an object below the drone during flight.
  • the drone needs to perform both the surrounding flight of the target object and the relative height of the object below the drone during flight.
  • the drone in the agricultural field, if it is necessary to spray pesticides on fruit trees, it is necessary for the drone to fly around the fruit trees, and to ensure that the relative height between the canopy of the fruit trees under the drone remains unchanged during the flight to ensure The uniformity of the spray.
  • both flight modes are applied separately. This will not meet the user's actual application needs.
  • the embodiment of the invention provides a drone, a control method thereof, a control terminal and a control method thereof, which are used to realize that the relative height of the drone remains unchanged during the surrounding flight.
  • a first aspect of the embodiments of the present invention provides a method for controlling a drone, including:
  • the flying height of the drone is controlled such that the relative height between the drone and the object below the drone is the target height.
  • a second aspect of the embodiments of the present invention provides a control method for controlling a terminal, including:
  • a third invention of the embodiment of the present invention provides a drone, comprising:
  • a communication interface configured to receive target object indication information sent by the control terminal
  • a processor for controlling a target object flight indicated by the drone around the target object indication information, in flight The flying height of the drone is controlled such that the relative height between the drone and the object below the drone is the target height.
  • a fourth aspect of the embodiments of the present invention provides a control terminal, including:
  • An interaction device configured to receive the first operation
  • a processor configured to determine target object indication information according to the first operation, send the target object indication information to the drone, so that the drone flies around the target object indicated by the target object, and in the surrounding flight, the drone pair
  • the flying height is controlled such that the relative height between the drone and the object below the drone is the target height.
  • the drone in the present invention can receive the target object indication information sent by the control terminal, fly around the target object indicated by the target object indication information, and control the flying height of the drone to be the target height during flight. Therefore, the drone maintains the relative height between the object and the object under the drone in the surrounding flight based on the target object, enriching the control strategy of the drone, so that the drone can be applied to more work scenarios. In order to meet the user's needs.
  • FIG. 1 is a schematic diagram of an embodiment of a method for controlling a drone according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a relative height of a drone in a surrounding flight according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another embodiment of a method for controlling a drone according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of a method for controlling a drone according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a sudden change in relative height of a drone in a surrounding flight according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an embodiment of a method for controlling a control terminal according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of a method for controlling a control terminal according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of a method for controlling a terminal according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of a drone according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a drone according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an embodiment of a control terminal according to an embodiment of the present invention.
  • a drone, a control method thereof, a control terminal and a control method thereof are provided, and the drone is controlled to perform a surround flight on the target object, and in the process of the surrounding flight, the drone and the unmanned aircraft The relative height of the objects below the human machine remains unchanged.
  • the drone in the present invention may be a rotorcraft, a fixed-wing aircraft or the like.
  • the rotorcraft may include, but is not limited to, a single rotor, a double rotor, a quadrotor, a six-rotor, an eight-rotor aircraft, etc., which are not limited herein.
  • the payload can be configured on the drone, and the payload can be a shooting device, an agricultural operation device, etc., and the UAV can realize functions such as shooting, monitoring, mapping, agricultural operations (spraying pesticides, etc.) through effective load, and effectively
  • the load can be connected to the body of the UAV through the carrier, and the posture of the payload can be arbitrarily adjusted by the carrier.
  • the carrier can be a two-axis or three-axis pan/tilt, which is not limited herein.
  • control terminal may include one or more of a remote controller, a smart phone, a tablet, a smart wearable device (watch, a wristband), a ground control station, a PC, a laptop, and the like.
  • an embodiment of the control method of the UAV in the embodiment of the present invention includes:
  • the drone may receive the target object indication information sent by the control terminal through the uplink data link, and the drone may determine the target object that is surrounded by the flight according to the target object indication information.
  • the target object indication information may be any information capable of indicating the target object.
  • the target object indication information may be location coordinates (longitude, latitude, altitude) of the target object.
  • the control terminal may configure the interaction device, wherein the user may input the location coordinates of the target object by controlling the interaction device of the terminal, and the control terminal transmits the location coordinates to the drone, and the map that the user can display on the interaction device
  • the target object is determined by a click operation, and the control terminal transmits the position coordinates of the target object determined by the click operation to the drone. After receiving the position coordinates, the drone can determine the target object.
  • the indication information may also be a location in an image displayed by the target object on the control terminal.
  • the interaction device of the control terminal may display an image captured by the photographing device on the drone, and the user may select the target object by clicking or boxing on the image, and the control terminal may position the target object in the image. Sended to the drone, the drone can determine the target object based on the location information.
  • the drone determines the target object according to the target object indication information, and then performs a surround flight on the target object. Further, in the process of encircling the flight, the drone can adjust the posture of the gimbal so that the target object is within the photographing screen of the photographing device set on the pan/tilt.
  • the flying height of the drone is controlled such that the relative height of the object under the drone and the drone is the target height.
  • step 103 is as shown in FIG. 2, and the drone A receives the target object indication information sent by the control terminal, and performs a surround flight on the target object P.
  • the drone A continuously adjusts the flying height to maintain the flying height between the object below the drone as the target height H, so that the relative height between the drone and the object below the drone is maintained.
  • the object underneath the drone may be the ground or canopy, and the unmanned person flies in the shape of the ground or canopy and maintains a fixed target height H.
  • the drone in the present invention can receive the target object indication information sent by the control terminal, fly around the target object indicated by the target object indication information, and control the flying height of the drone to be the target altitude during flight, thereby realizing the drone In the surrounding flight based on the target object, the relative height between the object and the object below the drone is kept unchanged, enriching the control strategy of the drone, so that the drone can be applied to more work scenarios to meet the user's use. demand.
  • FIG. 3 another embodiment of a method for controlling a drone in an embodiment of the present invention includes:
  • step 301 and step 101 are the same, and are not described here.
  • the user Before the drone performs the surround flight of the target object, the user can determine the surround parameter through the control terminal, and then the control terminal can transmit the user-determined surround parameter to the drone, and the drone can receive the surround parameter through the uplink data link.
  • the surround parameter is any parameter that can describe the surrounding flight of the target object.
  • the surround parameters include: surround radius, surround speed, surround direction, circumferential head orientation, number of surrounds, surround start position, surround radius at the start of the surround, surround radius at the end of the surround, and change in the radius of the surround. Rate, one or more of the surrounding flight times.
  • the wraparound direction can include a clockwise wrap and a counterclockwise wrap.
  • the head of the drone in the surrounding flight may include the nose facing the target object and the nose facing away from the target object.
  • the starting position of the surrounding may be the west or the north of the target object, or the position closest to or farthest from the target object, or other positions specified by the user through the control terminal, and are not specifically limited herein.
  • the user can set the surrounding radius of the surrounding flight through the control terminal, that is, the drone performs the surrounding flight of the target object according to the fixed surrounding radius.
  • the surrounding radius of the drone is variable, and the user can set the range of the surrounding radius and the surrounding radius at the start of the surround by the control terminal, and the drone is surrounded.
  • the surrounding radius from the start of the surround gradually increases or decreases according to the rate of change of the surrounding radius.
  • the user can set the surround radius at the start of the surround, the surround radius at the end of the surround, and the surround flight time, that is, during the preset surround flight time, during the surround flight, the surround radius is surrounded by
  • the starting radius at the beginning gradually becomes the surrounding radius at the end of the surround.
  • the drone After receiving the surround parameters, the drone controls the surrounding flight process of the target object according to the surround parameters.
  • the surround parameters By setting the surround parameters, the user can achieve precise and diversified control of the surrounding flight process and adapt to different surround flight requirements.
  • the flying height of the drone is controlled such that the relative height of the object under the drone and the drone is the target height.
  • step 304 and step 103 are the same, and are not described here.
  • the drone receives the target object indication information and the surround parameter sent by the control terminal, thereby controlling the drone to fly around the target object indicated by the target object indication information according to the surround parameter, and during the flight, the control is not
  • the flying height between the man-machine and the object under the drone is the target height, which enriches the control strategy of the drone, so that the drone can be applied to more working scenarios to meet the user's use requirements.
  • FIG. 4 another embodiment of the control method of the UAV of the present invention includes:
  • steps 401 to 403 and steps 301 to 303 are the same, and are not described herein again.
  • the user Before the drone performs a surround flight on the target object, the user can determine the target height by control, that is, the user determines the desired relative height between the drone during the orbiting process and the object under the drone through the control terminal. After the user determines the relative altitude, the control terminal transmits the relative height to the drone, and the drone receives the relative height through the uplink data link.
  • the relative height sensor is disposed on the drone, and the relative height sensor can measure the relative height between the object between the drone and the drone.
  • the controlling the flying height specifically includes: according to the relative height and The target height controls the flying height of the drone.
  • the relative height may be an average value of a plurality of relative height values measured by the relative height sensor in a time period, or may be an average value of a plurality of relative height values measured within a preset flight distance, where No specific restrictions are made.
  • the flying height of the drone can be controlled according to the relative height and the target height.
  • controlling the flying height of the drone according to the relative height and the target height may include: determining a difference between the relative height and the target height, and determining a target of the drone according to the difference Speed, controlling the flying height of the drone according to the target speed. Specifically, after the relative height sensor determines the relative height, determining a difference between the relative height and the target height, determining a target speed of the drone according to the difference, and the drone controls the unmanned according to the target speed The flight height of the aircraft.
  • the flying speed of the drone is controlled in real time by the difference between the target height and the relative height measured in real time, thereby adjusting the flying height of the drone so that The relative height between the drone and the object under the drone approaches the target height.
  • the relative height sensor is any sensor that can measure the relative height.
  • the relative height sensor may be one or more of a laser radar, a radar, an ultrasonic sensor, a vision sensor (monocular vision sensor, a binocular vision sensor), and a TOF sensor, here for the type of the relative height sensor No specific restrictions are imposed.
  • the relative height is first filtered, and the flying height of the drone is controlled according to the relative height and the target height after the filtering process.
  • the relative height sensor measures the relative height between the drone and the object under the drone at a preset frequency, and in some cases, the relative height sensor measures due to measurement error of the relative sensor or environmental interference.
  • the relative height value may cause a sudden change; in addition, in some cases, the drone is flying around the target object, as shown in Figure 5, between the drone and the object below the drone.
  • a sudden change in relative height causes a sudden change in the relative height value of the relative height sensor output. If these relatively large relative height values are used to control the flying height of the drone, the flying height control process of the drone may be unsmooth and a flight accident may occur.
  • the relative height determined by the relative height sensor can be filtered, and the relative height after the filtering process can be relatively smooth, and the flying height of the drone is controlled according to the relative height after the filtering process and the target height.
  • the flight height control process of the drone is smoothed to prevent flight accidents.
  • the target speed is filtered, and the flying height of the drone is controlled based on the filtered target speed.
  • the target speed calculated by the difference between the relative height and the target height may also be abrupt.
  • Using the target speed of these mutations to control the flying height of the drone may cause the flying height of the drone.
  • the control process is not smooth and may cause a flight accident. Therefore, the calculated target speed can be filtered, and the target speed after the filtering process can be relatively smooth, and the flying height of the drone is controlled according to the target speed after the filtering, so that the flying height control of the drone is controlled.
  • the process is smooth and prevents flight accidents.
  • the algorithm used in the filtering process includes a limiting filtering method, a median filtering method, an arithmetic average filtering method, a recursive average filtering method, a medium position average filtering method, a limiting average filtering method, and a first order lag filtering method.
  • a limiting filtering method a median filtering method, an arithmetic average filtering method, a recursive average filtering method, a medium position average filtering method, a limiting average filtering method, and a first order lag filtering method.
  • One or more of the weighted recursive average filtering method, the debounce filtering method, and the limit debounce filtering method are not specifically limited herein.
  • the flying height of the drone is determined according to the preset height threshold.
  • the difference between the relative height measured by the relative height sensor and the target height may exceed a preset height threshold, if the relative height sensor is The difference between the measured relative height and the target height may result in the calculated target speed being too large, which is prone to flight accidents.
  • the preset height threshold may be used according to the preset height threshold.
  • the flying height of the drone is controlled.
  • the target speed may be determined according to the preset height threshold, and the flying height of the drone is controlled according to the target speed.
  • the preset height threshold may be set by the user through the control terminal, or may be solidified in a program instruction executed by the processor.
  • the target speed when the target speed is greater than or equal to a preset maximum ascent speed or a maximum descending speed, controlling the flying height of the drone according to the maximum ascending speed or the maximum descent .
  • the target speed determined by the difference between the relative height measured by the relative height sensor and the target height may exceed a preset maximum rising speed or a maximum falling speed, at which time, if the target speed is based on the drone Flight altitude The control is prone to flight accidents. At this time, the flying height of the drone can be controlled according to the preset maximum ascent speed or maximum descending speed.
  • the preset maximum rising speed or the maximum falling speed may be set by the user through the control terminal, or may be solidified in a program instruction executed by the processor.
  • an embodiment of a method for controlling a control terminal in an embodiment of the present invention includes:
  • the user can set the flight process of the drone through the control terminal.
  • the user may receive the first operation of the user by performing a first operation on the interaction device of the control terminal.
  • the interaction device may include one or more of a touch display screen, a keyboard, a button, a rocker, and a pulsator.
  • the first operation may be a user's operation of clicking, frame selection, dragging, sliding, etc. on the interaction device.
  • the control terminal After receiving the first operation of the user, the control terminal determines the indication information of the target object corresponding to the first operation. For example, in some cases, the user may directly input the location information of the target object on the interaction device, and the control terminal determines the location information of the target object input by the user; or click on the map displayed by the interaction device, and click the corresponding location. The point is the target object, and the control terminal determines the location information of the user's click. In some cases, the interaction device of the control terminal may display an image captured by the photographing device on the drone, and the user may select the target object by clicking or boxing on the image, and the control terminal may determine that the target object is in the image. Location information.
  • the control terminal After determining the target object indication information corresponding to the first operation, the control terminal sends the indication information to the drone, and after receiving the information, the drone controls the flight according to the information, so that the The man-machine performs a surround flight on the target object indicated by the target object information, and at the same time, the relative height between the drone and the object under the drone during the surrounding flight is the target height.
  • the control terminal determines the target object indication information by the first operation by receiving the first operation on the interaction device, and sends the target indication information to the drone, so that the drone surrounds the target indicated by the target object indication information.
  • the object flies and controls the drone to maintain a high flying height between the object below the drone during the flight. It enriches the control strategy of the drone so that the drone can be applied to more work scenarios to meet the user's needs.
  • FIG. 7 another embodiment of the control method of the control terminal in the embodiment of the present invention includes:
  • steps 701 to 702 and steps 601 to 602 are the same, and are not described herein again.
  • the user can further set parameters for the surround flight.
  • the user can perform a second operation on the interaction device of the control terminal, set the surround parameter through the second operation, and the interaction device receives and detects the second operation of the user.
  • the control terminal may determine that the second operation corresponds to the surrounding flight parameter. For example, determining a surround parameter that the user inputs through the interactive device.
  • the relative height is the target height.
  • the control terminal may send the target object indication information and the surround parameter to the drone sequentially or simultaneously, and the drone receives the target object indication information and the surround parameter, according to the
  • the target object indication information determines a target object, and during the surround flight of the target object, the process of surrounding flight is controlled according to the surround parameters. At the same time, during the surround flight, the relative height between the drone and the object under the drone is controlled to the target height.
  • FIG. 8 another embodiment of a method for controlling a control terminal in an embodiment of the present invention includes:
  • steps 801 to 802 and steps 601 to 602 are the same, and are not described herein again.
  • the user can set the relative height between the desired drone and the underside of the drone by the control terminal, that is, set the target height, and the user performs a third operation on the interaction device, for example, performing an input operation on the interaction device.
  • the target height is set.
  • control terminal may perform analysis in a third operation to determine a target height corresponding to the third operation.
  • the relative height is the target height.
  • the control terminal After receiving the target object indication information and the target height set by the user through the interaction device, the control terminal sends the target object indication information and the target height to the drone, so that the drone circumscribes the target object indicated by the target object indication information.
  • the relative height of the object under the drone and the drone is the target height.
  • the control terminal may further receive a fourth operation on the interaction device, determine a maximum rising speed or a maximum falling speed according to the fourth operation, and send the maximum rising speed or the maximum falling speed to the unmanned
  • the aircraft is controlled to control the flying height according to the maximum ascent speed or the maximum descending speed when the target speed determined by the drone during the flight altitude control is greater than or equal to the maximum ascent speed or the maximum descending speed.
  • the user can set the maximum rising speed or the maximum falling speed through the control terminal, and the control terminal transmits the maximum rising speed or the maximum falling speed to none.
  • Man-machine when the target speed determined by the drone according to the foregoing method is greater than or equal to the maximum ascent speed or the maximum descending speed, the flying height is controlled according to the maximum rising speed or the maximum falling speed.
  • One embodiment of the drone 900 in an embodiment of the invention includes:
  • the communication interface 901 is configured to receive target object indication information sent by the control terminal.
  • the processor 902 is configured to: control the drone to surround the flight of the target object indicated by the target object indication information, and control the flying height of the drone during the surrounding flight to make the drone and the drone The relative height of the object below is the target height.
  • the communication interface 901 is further configured to receive a surround parameter sent by the control terminal.
  • the processor 902 is specifically configured to control, according to the surround parameter, a target object indicated by the drone to the target object indication information. Surround the flight.
  • the surround parameters include a surrounding radius, a surrounding speed, a surrounding direction, a circumferential head orientation, a number of surrounding turns, a surrounding starting position, a surrounding radius at the start of the surround, a surrounding radius at the end of the surround, a rate of change of the surrounding radius, Surround one or more of the flight times.
  • the communication interface 901 is further configured to receive a target height sent by the control terminal.
  • the drone further includes a relative height sensor 903.
  • the relative height sensor 903 is configured to determine a relative height between the drone and an object below the drone;
  • the processor 902 is specifically configured to control the flying height of the drone according to the relative height and the target height.
  • processor 902 is specifically configured to:
  • the target speed of the drone is determined according to the difference, and the flying height of the drone is controlled according to the target speed.
  • the processor 902 is further configured to perform filtering processing on the relative height
  • the processor 902 is specifically configured to control the flying height of the drone according to the relative height and the target height after the filtering process.
  • the processor 902 is further configured to filter the target speed
  • the processor 902 is specifically configured to control the flying height of the drone according to the target speed after the filtering process.
  • the processor 902 is further configured to: when the difference between the relative height and the target height is greater than or equal to a preset height threshold, determine a target speed of the drone according to the preset height threshold, according to the target speed The flying height of the drone is controlled.
  • the processor 902 is further configured to control the flying height of the drone according to the maximum rising speed or the maximum falling speed when the target speed is greater than or equal to the maximum rising speed or the maximum falling speed.
  • the drone in the present invention can receive the target object indication information sent by the control terminal, fly around the target object indicated by the target object indication information, and control the flying height of the drone to be the target height during flight. Therefore, the drone maintains the relative height between the object and the object under the drone in the surrounding flight based on the target object, enriching the control strategy of the drone, so that the drone can be applied to more work scenarios. In order to meet the user's needs.
  • an embodiment of the control terminal 1000 in the embodiment of the present invention includes:
  • An interaction device 1001 configured to receive a first operation
  • the processor 1002 is configured to:
  • Transmitting the target object indication information to the drone so that the drone is flying around the target object indicated by the target object indication information, and during the surrounding flight, the drone is The relative height of the object below the drone is the target height.
  • the interaction device 1001 is further configured to receive a second operation
  • the processor 1002 is further configured to determine a surround parameter according to the second operation
  • the processor 1002 is specifically configured to send the target object indication information and the surround parameter to the drone, so that the drone surrounds the target object indicated by the target object indication information according to the surround parameter. .
  • the interaction device 1001 is further configured to receive a third operation
  • the processor 1002 is further configured to determine a target height according to the third operation.
  • the surround parameters include a surrounding radius, a surrounding speed, a surrounding direction, a circumferential head orientation, a surrounding circle number, a surrounding starting position, a surrounding radius at the start of the surround, a surrounding radius at the end of the surround, and a change in the surrounding radius. Rate, one or more of the surrounding flight times.
  • the control terminal receives the first operation, the second operation, and the third operation on the interaction device through the interaction device 1001, and determines, by the processor 1002, the target object according to the first operation, the second operation, and the third operation, respectively.
  • the indication information, the surround parameter and the target height and send the target object indication information, the surround parameter, and the target height parameter to the drone through the transmitter 1003, so that the drone indicates the target object indicated by the target object according to the surround parameter.
  • Surrounding the flight, and during the surrounding flight controlling the drone to maintain the flying height between the object and the object below the drone as the target height, so that the drone can remain between the object under the drone in the surrounding flight based on the target object.
  • the relative height of the drone is enriched, which enriches the control strategy of the drone, so that the drone can be applied to more work scenarios to meet the user's needs.
  • the invention may also relate to a flight system, including a drone, and a control terminal in communication with the drone.
  • the control terminal is configured to send a control command to the drone, and the drone can control the flight according to the received control command.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interface, device or unit.
  • the coupling or communication connection can be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

无人机及其控制方法、控制终端及其控制方法,用于实现无人机(A)在对目标对象(P)进行环绕飞行过程中,保持与无人机(A)下方的物体之间的相对高度保持不变。飞行控制方法为:接收控制终端(1000)发送的目标对象指示信息(101);控制无人机(A)环绕目标对象指示信息指示的目标对象(P)飞行(102);在环绕飞行的过程中,对飞行高度进行控制,使得无人机(A)与无人机(A)下方的物体间的相对高度为目标高度(H)(103)。

Description

无人机及其控制方法、控制终端及其控制方法 技术领域
本发明涉及无人机控制领域,尤其涉及一种无人机及其控制方法、控制终端及其控制方法。
背景技术
随着无人机技术的发展,使得无人机近年来在军事、农业、测绘、摄影及交通的多个领域中得到了广泛的应用。
目前,无人机可以实现对目标对象的环绕飞行和在飞行过程中保持与无人机下方的物体的相对高度不变。在某些实际应用中,无人机既需要执行对目标对象环绕飞行,又需要在飞行过程中保持与无人机下方的物体的相对高度不变。例如,在农业领域,如需要对果树喷洒农药时,既需要无人机对果树环绕飞行,又需要在飞行过程中保证与无人机下方的果树的树冠之间的相对高度保持不变以保证喷洒的均匀程度。然而,现有的无人机控制策略中,这两种飞行模式都是单独应用的。这样则不能满足用户的实际应用需求。
发明内容
本发明实施例提供了一种无人机及其控制方法、控制终端及其控制方法,用于实现无人机在环绕飞行中,相对高度保持不变。
本发明实施例的第一方面提供了一种无人机的控制方法,包括:
收控制终端发送的目标对象指示信息;
控制无人机环绕目标对象指示信息指示的目标对象飞行;
在环绕飞行的过程中,对无人机的飞行高度进行控制,使得无人机与无人机下方的物体间的相对高度为目标高度。
本发明实施例的第二方面提供了一种控制终端的控制方法,包括:
在交互装置接收第一操作;
根据第一操作,确定目标对象指示信息;
将目标对象指示信息发送给无人机,使得无人机对目标对象指示信息所指示的目标对象环绕飞行,在环绕飞行过程中,使无人机与无人机下方的物体的相对高度为目标高度。
本发明实施例的第三发明提供了一种无人机,包括:
通信接口,用于接收控制终端发送的目标对象指示信息;
处理器,用于控制无人机环绕目标对象指示信息指示的目标对象飞行,在飞行中,对 无人机的飞行高度进行控制,使得无人机与无人机下方的物体间的相对高度为目标高度。
本发明实施例的第四方面提供了一种控制终端,包括:
交互装置,用于接收第一操作;
处理器,用于根据第一操作,确定目标对象指示信息,将目标对象指示信息发送给无人机,使得无人机环绕目标对象指示的目标对象飞行,在环绕飞行中,使无人机对飞行高度进行控制以使得无人机与无人机下方的物体间的相对高度为目标高度。
从以上技术方案可以看成,本发明具有以下的优点:
相对于现有技术,本发明中的无人机可以接收控制终端发送的目标对象指示信息,环绕目标对象指示信息指示的目标对象飞行,并在飞行中,控制无人机的飞行高度为目标高度,从而实现无人机在基于目标对象的环绕飞行中,保持与无人机下方物体间的相对高度不变,丰富了无人机的控制策略,以使无人机能够应用于更多作业场景中,满足用户的使用需求。
附图说明
图1为本发明实施例中无人机的控制方法的一个实施例的示意图;
图2为本发明实施例中无人机在环绕飞行中保持相对高度的示意图;
图3为本发明实施例中无人机的控制方法的另一个实施例的示意图;
图4为本发明实施例中无人机的控制方法的另一个实施例的示意图;
图5为本发明实施例中无人机在环绕飞行中相对高度突变的示意图;
图6为本发明实施例中控制终端的控制方法的一个实施例示意图;
图7为本发明实施例中控制终端的控制方法的另一个实施例示意图;
图8为本发明实施例中控制终端控的制方法的另一个实施例示意图;
图9为本发明实施例中无人机的一个实施例的示意图;
图10为本发明实施例中无人机的另一个实施例的示意图;
图11为本发明实施例中控制终端的一个实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例中,提出了一种无人机及其控制方法、控制终端及其控制方法,控制无人机对目标对象进行环绕飞行,在所述环绕飞行的过程中,无人机与无人机下方物体的相对高度保持不变。
可以理解的是,本发明中的无人机,可以为旋翼飞行器、固定翼飞行器等。其中,旋翼飞行器可以包括但不限于单旋翼、双旋翼、四旋翼、六旋翼、八旋翼飞行器等,此处不做限定。在实际应用中,无人机上可以配置有效负载,有效负载可以为拍摄设备、农业作业设备等,无人机可以通过有效负载实现拍摄、监控、测绘、农业作业(喷洒农药等)等功能,有效负载可以通过承载件与无人飞行器的机身连接,通过承载件可以随意调节有效负载的姿态,其中承载件可以为两轴、三轴云台,具体此处不做限定。
进一步的,本发明实施例中,控制终端可以包括遥控器、智能手机、平板、智能穿戴设备(手表、手环)、地面控制站、PC、膝上型电脑等中的一种或多种。
为便于理解,下面对无人机的控制方法的流程进行解释说明,请参阅图1,本发明实施例中无人机的控制方法的一个实施例包括:
101、接收控制终端发送的目标对象指示信息;
具体地,在环绕飞行前,无人机可以通过上行数据链路接收控制终端发送的目标对象指示信息,无人机可以根据所述目标对象指示信息确定被环绕飞行的目标对象。其中,所述目标对象指示信息可以是任何能够指示目标对象的信息。
在某些实施例中,所述目标对象指示信息可以是目标对象的位置坐标(经度、纬度、高度)。具体地,控制终端可以配置交互装置,其中用户可以通过控制终端的交互装置输入目标对象的位置坐标,控制终端将所述位置坐标发送给无人机,另外,用户可以在交互装置上显示的地图上通过点击操作确定目标对象,控制终端将通过点击操作确定的目标对象的位置坐标发送给无人机。无人机在接收到所述位置坐标后,即可以确定目标对象。
在某些实施例中,所述指示信息也可以是目标对象在控制终端上显示的图像中的位置。 具体地,控制终端的交互装置可以显示无人机上的拍摄设备拍摄的图像,用户可以在所述图像上通过点击或者框选的方式选中目标对象,控制终端可以将目标对象在图像中的位置信息发送给无人机,无人机可以根据所述位置信息确定目标对象。
102、控制无人机对目标对象指示信息所指示的目标对象环绕飞行;
具体地,无人机接收到目标对象指示信息后,根据所述目标对象指示信息确定目标对象,然后对目标对象进行环绕飞行。进一步的,在环绕飞行的过程中,无人机可以调节云台的姿态,以使目标对象在设置在云台上的拍摄设备的拍摄画面内。
103、在环绕飞行的过程中,对无人机的飞行高度进行控制,以使无人机与无人机下方的物体的相对高度为目标高度。
本实施例中,步骤103如图2所示,无人机A接收控制终端发送的目标对象指示信息,对目标对象P进行环绕飞行。在环绕飞行的过程中,无人机A不断调节飞行高度,保持与无人机下方物体间的飞行高度为目标高度H,这样将无人机与无人机下方的物体之间的相对高度保持在一个固定不变的高度。例如,无人机下方的物体可能是地面或者树冠,无人机会按照地面或树冠的形状飞行并保持固定的目标高度H。
本发明中的无人机可以接收控制终端发送的目标对象指示信息,环绕目标对象指示信息指示的目标对象飞行,并在飞行中,控制无人机的飞行高度为目标高度,从而实现无人机在基于目标对象的环绕飞行中,保持与无人机下方物体间的相对高度不变,丰富了无人机的控制策略,以使无人机能够应用于更多作业场景中,满足用户的使用需求。
基于图1所述的实施例,请参阅图3,本发明实施例中的无人机的控制方法的另一个实施例包括:
301、接收控制终端发送的目标对象指示信息;
步骤301和步骤101的具体方法和原理一致,此处不再赘述。
302、接收控制终端发送的环绕参数;
在无人机对目标对象进行环绕飞行之前,用户可以通过控制终端确定环绕参数,然后控制终端可以将用户确定的环绕参数发送给无人机,无人机可以通过上行数据链路接收环绕参数。其中,环绕参数是任何可以对目标对象的环绕飞行进行描述的参数。在实际应用中,环绕参数包括:环绕半径、环绕速度、环绕方向、环绕的机头朝向、环绕圈数、环绕开始位置、环绕开始时的环绕半径、环绕结束时的环绕半径、环绕半径的变化率、环绕飞行时间中的一种或多种。
环绕方向可以包括顺时针环绕、逆时针环绕。
无人机在环绕飞行中的机头朝向,可以包括机头朝向目标对象、机头背向目标对象。
环绕的开始位置可以是相对于目标对象的正西、正北、或距离目标对象最近或最远的位置、也可以是用户通过控制终端指定的其他位置,此处不作具体限制。
可以理解的是,用户可以通过控制终端设置环绕飞行的环绕半径,即无人机按照这个固定不变的环绕半径对目标对象进行环绕飞行。在某些情况,在对目标对象进行环绕飞行时,无人机的环绕半径是可变的,用户可以通过控制终端设置环绕开始时的环绕半径和环绕半径的变化率,则无人机在环绕飞行的过程中从环绕开始时的环绕半径按照环绕半径的变化率来逐渐增大或者缩小。在某些情况下用户可以通过控制终端设置环绕开始时的环绕半径、环绕结束时的环绕半径和环绕飞行时间,即在预设的环绕飞行时间内,在环绕飞行的过程中,环绕半径从环绕开始时的环绕半径逐渐变为环绕结束时的环绕半径。
303、根据环绕参数控制无人机对目标对象指示信息指示的目标对象环绕飞行;
在接收到环绕参数后,无人机根据环绕参数对目标对象的环绕飞行过程进行控制。用户通过设置环绕参数,可以实现对环绕飞行的过程精准化、多样化的控制,适应不同的环绕飞行需求。
304、在环绕飞行的过程中,对无人机的飞行高度进行控制,以使无人机与无人机下方的物体的相对高度为目标高度。
步骤304和步骤103的具体方法和原理一致,此处不再赘述。
本实施例中,无人机接收控制终端发送的目标对象指示信息及环绕参数后,从而控制无人机根据环绕参数,环绕目标对象指示信息指示的目标对象飞行,并在飞行过程中,控制无人机保持与无人机下方物体间的飞行高度为目标高度,丰富了无人机的控制策略,以使无人机能够应用于更多作业场景中,满足用户的使用需求。
基于图1和3所述的实施例,下面详细描述无人机环绕飞行中的高度控制过程,请参阅图4,本发明中无人机的控制方法的另一个实施例,包括:
401、接收控制终端发送的目标对象指示信息;
402、接收控制终端发送的环绕参数;
403、根据环绕参数控制无人机对目标对象指示信息指示的目标对象环绕飞行;
步骤401至403和步骤301至303的具体方法和原理一致,此处不再赘述。
404、接收控制终端发送的目标高度;
在无人机对目标对象进行环绕飞行之前,用户可以通过控制确定目标高度,即用户通过控制终端确定在环绕飞行的过程无人机与无人机下方物体之间的期望相对高度。在用户确定相对高度之后,控制终端将所述相对高度发送给无人机,无人机通过上行数据链路接收所述相对高度。
405、在环绕飞行过程中,确定无人机与无人机下方的物体之间的相对高度,根据相对高度和目标高度对无人机的飞行高度进行控制,以使无人机与无人机下方的物体的相对高度为目标高度。
具体地,无人机上配置相对高度传感器,相对高度传感器可以测量无人机与无人机下方之间的物体之间的相对高度,所述对飞行高度进行控制具体包括:根据所述相对高度和所述目标高度对无人机的飞行高度进行控制。其中,所述相对高度可以是相对高度传感器在一个时间段内测量的多个相对高度值的平均值,也可以是在一个预设飞行距离内测量的多个相对高度值的平均值,在这里不作具体的限定。在确定所述相对高度之后,即可以根据所述相对高度和所述目标高度对无人机的飞行高度进行控制。
进一步地,根据所述相对高度和所述目标高度对无人机的飞行高度进行控制可以包括:确定所述相对高度与目标高度之间的差值,根据所述差值确定无人机的目标速度,根据所述目标速度对无人机的飞行高度进行控制。具体地,在相对高度传感器确定出相对高度后,确定相对高度与目标高度之间的差值,根据所述差值确定无人机的目标速度,无人机根据所述目标速度对控制无人机的飞行高度。通过将相对高度传感器实时测量的相对高度与目标高度进行比较,通过目标高度和实时测量的相对高度之间的差异来实时控制无人机的飞行速度,从而调整无人机的飞行高度,以使无人机与无人机下方的物体之间的相对高度趋近于目标高度。
可以理解的是,相对高度传感器是任何可以测量相对高度的传感器。在实际应用中,相对高度传感器可以为激光雷达、雷达、超声波传感器、视觉传感器(单目视觉传感器、双目视觉传感器)、TOF传感器中的一种或多种,此处对于相对高度传感器的种类不做具体限制。
在某些实施例中,先对所述相对高度进行滤波处理,根据滤波处理后的相对高度和目标高度对无人机的飞行高度进行控制。具体地,相对高度传感器以预设的频率测量无人机与无人机下方的物体之间的相对高度,某些情况下,由于相对传感器的测量误差或者环境的干扰,相对高度传感器测量出的相对高度值可能会产生突变;另外,在某些情况中,无人机对目标对象进行环绕飞行的过程中,如图5所述,无人机与无人机下方的物体之间的 相对高度发生突变,相对高度传感器输出的相对高度值会产生突变。如果使用这些抖动较大的相对高度值来控制无人机的飞行高度,可能会使无人机的飞行高度控制过程不平滑,同时可能会产生飞行事故。因此,可以将通过相对高度传感器确定的相对高度进行滤波处理,滤波处理后的相对高度能够比较平滑,根据所述滤波处理后的相对高度和所述目标高度对无人机的飞行高度进行控制,使得无人机的飞行高度控制过程平滑,防止产生飞行事故。
在某些实施例中,对所述目标速度进行滤波,根据所述滤波后的目标速度对所述无人机的飞行高度进行控制。具体地,通过相对高度与目标高度之间的差值计算出的目标速度也可能产生突变,使用这些突变的目标速度去对无人机的飞行高度进行控制,可能会使无人机的飞行高度控制过程不平滑,同时可能会产生飞行事故。因此,可以对计算出的目标速度进行滤波处理,滤波处理后的目标速度能够比较平滑,根据所述滤波处理后的目标速度对无人机的飞行高度进行控制,使得无人机的飞行高度控制过程平滑,防止产生飞行事故。
其中,所述滤波处理中使用的算法包括限幅滤波法、中位值滤波法、算术平均滤波法、递推平均滤波法、中位置平均滤波法、限幅平均滤波法、一阶滞后滤波法、加权递推平均滤波法、消抖滤波法、限幅消抖滤波法中的一种或多种,此处不做具体限制。而对于上述滤波算法,在现有技术中已有详细描述,此处不在赘述。
在某些实施例中,当所述相对高度与所述目标高度的之间的差值大于或等于预设的高度阈值时,根据所述预设的高度阈值对所述无人机的飞行高度进行控制。具体地,在无人机对目标对象进行环绕飞行的过程中,相对高度传感器测量到的相对高度与目标高度之间的差值可能超过预设的高度阈值,此时如果根据所述相对高度传感器测量到的相对高度与目标高度之间的差值会导致计算出的目标速度过大,容易发生飞行事故,为了对无人机的下降或上升速度进行限制,可以根据所述预设的高度阈值对所述无人机的飞行高度进行控制,进一步地,可以根据所述预设的高度阈值确定目标速度,根据所述目标速度对无人机的飞行高度进行控制。其中,所述预设的高度阈值可以是用户通过控制终端设置的,也可以为固化在处理器执行的程序指令中。
在某些实施例中,当所述目标速度大于或等于预设的最大上升速度或最大下降速度,根据所述最大上升速度或所述最大下降所述对所述无人机的飞行高度进行控制。具体地,通过相对高度传感器测量到的相对高度与目标高度之间的差值确定的目标速度可能超过预设的最大上升速度或最大下降速度,此时如果根据所述目标速度对无人机的飞行高度进行 控制,容易发生飞行事故,此时,可以根据所述预设的最大上升速度或最大下降速度对所述无人机的飞行高度进行控制。其中,所述预设的最大上升速度或最大下降速度可以是用户通过控制终端设置的,也可以为固化在处理器执行的程序指令中。
上面从无人机一侧对飞行控制方法进行了描述,下面接着从控制终端一侧对控制终端的控制方法进行描述,控制终端的具体定义请参见前述部分,在此不再赘述。请参阅图6,本发明实施例中控制终端的控制方法的一个实施例包括:
601、在交互装置接收第一操作;
当用户需要无人机对目标对象进行环绕飞行时,用户可以通过控制终端对无人机的飞行过程进行设置。具体地,用户通过对控制终端的交互装置进行第一操作,交互装置可以接收用户的第一操作。其中,所述交互装置可以包括触摸显示屏、键盘、按键、摇杆、波轮中的一种或多种。进一步地,第一操作可以为用户对交互装置的点击、框选、拖动、滑动等操作。
602、根据第一操作,确定目标对象的指示信息;
在接收到用户的第一操作后,控制终端会确定与第一操作相对应的目标对象的指示信息。例如,在某些情况中,用户可以直接在交互装置上输入目标对象的位置信息,控制终端确定用户所输入的目标对象的位置信息;或者在交互装置显示的地图上点击,将点击对应的位置点作为目标对象,控制终端确定用户点击处的位置信息。在某些情况中,控制终端的交互装置可以显示无人机上的拍摄设备拍摄的图像,用户可以在所述图像上通过点击或者框选的方式选中目标对象,控制终端可以确定目标对象在图像中的位置信息。
603、将目标对象指示信息发送给无人机,使得无人机对目标对象指示信息所指示的目标对象环绕飞行,在环绕飞行过程中,使无人机与无人机下方的物体的相对高度为目标高度。
控制终端在确定了与第一操作对应的目标对象指示信息后,将所述指示信息发送给无人机,无人机在接收到所述信息后,根据所述信息来控制飞行,以使无人机对目标对象信息指示的目标对象进行环绕飞行,同时,使无人机在环绕飞行的过程中与无人机下方的物体之间相对高度为目标高度。
本实施例中,控制终端通过接收交互装置上的第一操作,通过第一操作确定目标对象指示信息,并将目标指示信息发送给无人机,使得无人机环绕目标对象指示信息指示的目标对象飞行,并在飞行过程中,控制无人机保持与无人机下方物体间的飞行高度为目标高 度,丰富了无人机的控制策略,以使无人机能够应用于更多作业场景中,满足用户的使用需求。
下面将详细描述控制终端接收并发送环绕参数的过程,请参阅图7,本发明实施例中控制终端的控制方法的另一个实施例包括:
701、在交互装置接收第一操作;
702、根据第一操作,确定目标对象的指示信息;
步骤701至702和步骤601至602的具体方法和原理一致,此处不再赘述。
703、在交互装置上接收第二操作;
为了实现对环绕过程的精细化、多样化的控制,除了选定目标对象以外,用户可以对环绕飞行的参数进行进一步地设置。用户可以在控制终端的交互装置上进行第二操作,通过第二操作设置环绕参数,交互装置对用户的第二操作进行接收和检测。
704、根据第二操作,确定环绕参数;
在接收到用户的第二操作后,控制终端可以确定第二操作对应环绕飞行参数。例如确定用户通过交互装置输入的环绕参数。
705、将目标对象指示信息和环绕参数发送给无人机,使得无人机对目标对象指示信息所指示的目标对象环绕飞行,在环绕飞行过程中,使无人机与无人机下方的物体的相对高度为目标高度。
在确定了目标对象指示信息和环绕参数后,控制终端可以先后地或者同时地将目标对象指示信息和环绕参数发送给无人机,无人机在收到目标对象指示信息和环绕参数后,根据所述目标对象指示信息确定目标对象,在对目标对象进行环绕飞行的过程中,根据环绕参数来控制环绕飞行的过程。同时,在环绕飞行的过程中,控制无人机与无人机下方的物体之间的相对高度为目标高度。
请参阅图8,本发明实施例中控制终端的控制方法的另一个实施例包括:
801、在交互装置上接收第一操作;
802、根据第一操作,确定目标对象的指示信息;
步骤801至802和步骤601至602的具体方法和原理一致,此处不再赘述。
803、在交互装置上接收第三操作;
用户可以通过控制终端对期望的无人机与无人机下方之间的相对高度进行设置,即对目标高度进行设置,用户对交互装置进行第三操作,例如在交互装置上进行输入操作来对 目标高度进行设置。
804、根据所述第三操作确定目标高度;
在接收到所第三操作后,控制终端可以第三操作进行分析,确定与第三操作相对应的目标高度。
805、将目标对象指示信息和目标高度送给无人机,使得无人机对目标对象指示信息所指示的目标对象环绕飞行,在环绕飞行过程中,使无人机与无人机下方的物体的相对高度为目标高度。
控制终端接收到用户通过交互装置设置的目标对象指示信息和目标高度后,将目标对象指示信息和目标高度发送给无人机,使得无人机对目标对象指示信息所指示的目标对象环绕飞行,在环绕飞行过程中,使无人机与无人机下方的物体的相对高度为目标高度。
在某些实施例中,控制终端在交互装置上还可以进一步接收第四操作,根据所述第四操作确定最大上升速度或最大下降速度,将所述最大上升速度或最大下降速度发送给无人机,使无人机在进行飞行高度控制时确定的目标速度大于或等于最大上升速度或最大下降速度时,根据最大上升速度或最大下降速度对飞行高度进行控制。具体地,为了飞行安全,防止无人机在进行飞行高度控制时的飞行速度过大,用户可以通过控制终端设置最大上升速度或最大下降速度,控制终端将最大上升速度或最大下降速度发送给无人机,当无人机根据前述的方法确定的目标速度大于或等于最大上升速度或最大下降速度时,根据最大上升速度或最大下降速度对飞行高度进行控制。
上面对本发明中的无人机的飞行控制方法及控制终端的控制方法进行了详细描述,下面接着从硬件的角度来描述本发明实施例中的无人机及控制终端,请参阅图9,本发明实施例中无人机900的一个实施例包括:
通信接口901及处理器902,(其中处理器902可以为一个或多个,本实施例中以一个处理902为例)。
其中,通信接口901,用于接收控制终端发送的目标对象指示信息;
处理器902,用于:控制无人机对目标对象指示信息所指示的目标对象环绕飞行,在环绕飞行的过程中,对无人机的飞行高度进行控制,以使无人机与无人机下方的物体的相对高度为目标高度。
可选的,通信接口901,还用于接收控制终端发送的环绕参数;
处理器902,具体用于根据环绕参数控制无人机对目标对象指示信息指示的目标对象 环绕飞行。
可选的,环绕参数包括环绕半径、环绕速度、环绕方向、环绕的机头朝向、环绕圈数、环绕开始位置、环绕开始时的环绕半径、环绕结束时的环绕半径、环绕半径的变化率、环绕飞行时间中的一种或多种。
可选的,通信接口901,还用于接收控制终端发送的目标高度。
可选的,如图10所示,所述无人机还包括相对高度传感器903,
所述相对高度传感器903,用于确定无人机与无人机下方的物体之间的相对高度;
处理器902,具体用于根据相对高度和目标高度对无人机的飞行高度进行控制。
可选的,处理器902,具体用于:
确定相对高度与目标高度之间的差值;
根据差值确定无人机的目标速度,根据目标速度对无人机的飞行高度进行控制。
可选的,处理器902,还用于对相对高度进行滤波处理;
处理器902,具体用于根据滤波处理后的相对高度和目标高度对无人机的飞行高度进行控制。
可选的,处理器902,还用于对目标速度进行滤波处理;
处理器902,具体用于根据滤波处理后的目标速度对无人机的飞行高度进行控制。
可选的,处理器902,还用于当相对高度与目标高度之间的差值大于或等于预设的高度阈值时,根据预设的高度阈值确定无人机的目标速度,根据目标速度对无人机的飞行高度进行控制。
可选的,处理器902,还用于当目标速度大于或等于最大上升速度或最大下降速度时,根据最大上升速度或最大下降速度对无人机的飞行高度进行控制。
相对于现有技术,本发明中的无人机可以接收控制终端发送的目标对象指示信息,环绕目标对象指示信息指示的目标对象飞行,并在飞行中,控制无人机的飞行高度为目标高度,从而实现无人机在基于目标对象的环绕飞行中,保持与无人机下方物体间的相对高度不变,丰富了无人机的控制策略,以使无人机能够应用于更多作业场景中,满足用户的使用需求。
请参阅图11,本发明实施例中控制终端1000的一个实施例包括:
交互装置1001,用于接收第一操作;
所述处理器1002,用于:
根据所述第一操作确定目标对象指示信息;
将所述目标对象指示信息发送给无人机,使得所述无人机对所述目标对象指示信息所指示的目标对象环绕飞行,在所述环绕飞行过程中,使所述无人机与所述无人机下方的物体的相对高度为目标高度。
可选地,所述交互装置1001,还用于接收第二操作;
所述处理器1002,还用于根据所述第二操作确定环绕参数;
所述处理器1002,具体用于将所述目标对象指示信息和环绕参数发送给无人机,使得所述无人机根据所述环绕参数对所述目标对象指示信息所指示的目标对象环绕飞行。
可选地,所述交互装置1001,还用于接收第三操作;
所述处理器1002,还用于根据所述第三操作确定目标高度。
可选地,所述环绕参数包括环绕半径、环绕速度、环绕方向、环绕的机头朝向、环绕圈数、环绕开始位置、环绕开始时的环绕半径、环绕结束时的环绕半径、环绕半径的变化率、环绕飞行时间中的一种或多种。
本实施例中,控制终端通过交互装置1001接收在交互装置上的第一操作、第二操作及第三操作,通过处理器1002,分别根据第一操作、第二操作、第三操作确定目标对象的指示信息、环绕参数及目标高度,并通过发送器1003将目标对象指示信息、环绕参数、目标高度参数发送给无人机,使得无人机根据环绕参数,对目标对象指示信息指示的目标对象环绕飞行,并在环绕飞行过程中,控制无人机保持与无人机下方物体间的飞行高度为目标高度,实现无人机在基于目标对象的环绕飞行中,保持与无人机下方物体间的相对高度不变,丰富了无人机的控制策略,以使无人机能够应用于更多作业场景中,满足用户的使用需求。
可以理解的是,本发明还可以涉及一种飞行系统,包括无人机,及与无人机通信的控制终端。其中,控制终端用于发送控制指令至无人机,无人机可以根据接收到的控制指令控制飞行,
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间 接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (28)

  1. 一种无人机的控制方法,其特征在于,包括:
    接收控制终端发送的目标对象指示信息;
    控制无人机对所述目标对象指示信息所指示的目标对象环绕飞行;
    在所述环绕飞行的过程中,对所述无人机的飞行高度进行控制,以使所述无人机与所述无人机下方的物体的相对高度为目标高度。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述控制终端发送的环绕参数;
    所述控制无人机对所述目标对象指示信息所指示的目标对象环绕飞行包括:
    根据所述环绕参数控制无人机对所述目标对象指示信息指示的目标对象环绕飞行。
  3. 根据权利要求2所述的方法,其特征在于,
    所述环绕参数包括环绕半径、环绕速度、环绕方向、环绕的机头朝向、环绕圈数、环绕开始位置、环绕开始时的环绕半径、环绕结束时的环绕半径、环绕半径的变化率、环绕飞行时间中的一种或多种。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    接收所述控制终端发送的目标高度。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    确定所述无人机与所述无人机下方的物体之间的相对高度;
    所述对所述无人机的飞行高度进行控制包括:
    根据所述相对高度和所述目标高度对所述无人机的飞行高度进行控制。
  6. 根据权利要求5所述的方法,其特征在于,
    所述根据所述相对高度和所述目标高度对所述无人机的飞行高度进行控制包括:
    确定所述相对高度与所述目标高度之间的差值;
    根据所述差值确定无人机的目标速度,根据所述目标速度对所述无人机的飞行高度进行控制。
  7. 根据权利要求5或6所述的方法,所述方法还包括:
    对所述相对高度进行滤波处理;
    所述根据所述相对高度和所述目标高度对所述无人机的飞行高度进行控制包括:
    根据所述滤波处理后的相对高度和所述目标高度对所述无人机的飞行高度进行控制。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    对所述目标速度进行滤波处理;
    所述根据所述目标速度对所述无人机的飞行高度进行控制包括:
    根据滤波处理后的目标速度对所述无人机的飞行高度进行控制。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述方法还包括:
    当所述相对高度与所述目标高度之间的差值大于或等于预设的高度阈值时,
    根据所述预设的高度阈值确定无人机的目标速度,根据所述目标速度对无人机的飞行高度进行控制。
  10. 根据权利要求6-9任一项所述的方法,其特征在于,所述方法还包括:
    当所述目标速度大于或等于最大上升速度或最大下降速度时,根据最大上升速度或最大下降速度对无人机的飞行高度进行控制。
  11. 一种控制终端的控制方法,其特征在于,包括:
    在交互装置上接收第一操作;
    根据所述第一操作确定目标对象指示信息;
    将所述目标对象指示信息发送给无人机,使得所述无人机对所述目标对象指示信息所指示的目标对象环绕飞行,在所述环绕飞行过程中,使无人机与无人机下方的物体的相对高度为目标高度。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    在交互装置上接收第二操作;
    根据所述第二操作确定环绕参数;
    所述将所述目标对象指示信息发送给无人机,使得无人机对所述目标对象指示信息所指示的目标对象环绕飞行包括:
    将所述目标对象指示信息和所述环绕参数发送给无人机,使得所述无人机根据所述环绕参数对所述目标对象指示信息所指示的目标对象环绕飞行。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    在交互装置上接收第三操作;
    根据所述第三操作确定所述目标高度。
  14. 根据权利要求12所述的方法,其特征在于,
    所述环绕参数包括环绕半径、环绕速度、环绕方向、环绕的机头朝向、环绕圈数、环 绕开始位置、环绕开始时的环绕半径、环绕结束时的环绕半径、环绕半径的变化率、环绕飞行时间中的一种或多种。
  15. 无人机,其特征在于,包括:
    通信接口,用于接收控制终端发送的目标对象指示信息;
    处理器,用于:
    控制无人机对所述目标对象指示信息所指示的目标对象环绕飞行;
    在所述环绕飞行的过程中,对所述无人机的飞行高度进行控制,以使所述无人机与所述无人机下方的物体的相对高度为目标高度。
  16. 根据权利要求15所述的无人机,其特征在于,
    所述通信接口,还用于接收所述控制终端发送的环绕参数;
    所述处理器,具体用于根据所述环绕参数控制无人机对所述目标对象指示信息指示的目标对象环绕飞行。
  17. 根据权利要求16所述的无人机,其特征在于,
    所述环绕参数包括环绕半径、环绕速度、环绕方向、环绕的机头朝向、环绕圈数、环绕开始位置、环绕开始时的环绕半径、环绕结束时的环绕半径、环绕半径的变化率、环绕飞行时间中的一种或多种。
  18. 根据权利要求15-17任一项所述的无人机,其特征在于,
    所述通信接口,还用于接收所述控制终端发送的目标高度。
  19. 根据权利要求15-18任一项所述的无人机,其特征在于,所述无人机还包括:相对高度传感器,
    所述相对高度传感器,用于确定所述无人机与所述无人机下方的物体之间的相对高度;
    所述处理器,具体用于根据所述相对高度和所述目标高度对所述无人机的飞行高度进行控制。
  20. 根据权利要求19所述的无人机,其特征在于,
    所述处理器,具体用于:
    确定所述相对高度与所述目标高度之间的差值;
    根据所述差值确定无人机的目标速度,根据所述目标速度对所述无人机的飞行高度进行控制。
  21. 根据权利要求19或20所述的无人机,其特征在于,
    所述处理器,还用于对所述相对高度进行滤波处理;
    所述处理器,具体用于根据所述滤波处理后的相对高度和所述目标高度对所述无人机的飞行高度进行控制。
  22. 根据权利要求20所述的无人机,其特征在于,
    所述处理器,还用于对所述目标速度进行滤波处理;
    所述处理器,具体用于根据滤波处理后的目标速度对所述无人机的飞行高度进行控制。
  23. 根据权利要求20-22任一项所述的无人机,其特征在于,
    所述处理器,还用于当所述相对高度与所述目标高度之间的差值大于或等于预设的高度阈值时,根据所述预设的高度阈值确定无人机的目标速度,根据所述目标速度对无人机的飞行高度进行控制。
  24. 根据权利要求20-23任一项所述的无人机,其特征在于,所述方法还包括:
    所述处理器,还用于当所述目标速度大于或等于最大上升速度或最大下降速度时,根据所述最大上升速度或所述最大下降速度对所述无人机的飞行高度进行控制。
  25. 一种控制终端,其特征在于,包括:
    交互装置,用于接收第一操作;
    所述处理器,用于:
    根据所述第一操作确定目标对象指示信息;
    将所述目标对象指示信息发送给无人机,使得所述无人机对所述目标对象指示信息所指示的目标对象环绕飞行,在所述环绕飞行过程中,使所述无人机与所述无人机下方的物体的相对高度为目标高度。
  26. 根据权利要求25所述的控制终端,其特征在于,
    所述交互装置,还用于接收第二操作;
    所述处理器,还用于根据所述第二操作确定环绕参数;
    所述处理器,具体用于将所述目标对象指示信息和环绕参数发送给无人机,使得所述无人机根据所述环绕参数对所述目标对象指示信息所指示的目标对象环绕飞行。
  27. 根据权利要求25或26所述的控制终端,其特征在于,
    所述交互装置,还用于接收第三操作;
    所述处理器,还用于根据所述第三操作确定目标高度。
  28. 根据权利要求26所述的控制终端,其特征在于,
    所述环绕参数包括环绕半径、环绕速度、环绕方向、环绕的机头朝向、环绕圈数、环绕开始位置、环绕开始时的环绕半径、环绕结束时的环绕半径、环绕半径的变化率、环绕飞行时间中的一种或多种。
PCT/CN2017/090815 2017-06-29 2017-06-29 无人机及其控制方法、控制终端及其控制方法 WO2019000323A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/090815 WO2019000323A1 (zh) 2017-06-29 2017-06-29 无人机及其控制方法、控制终端及其控制方法
CN201780005206.5A CN108475071A (zh) 2017-06-29 2017-06-29 无人机及其控制方法、控制终端及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/090815 WO2019000323A1 (zh) 2017-06-29 2017-06-29 无人机及其控制方法、控制终端及其控制方法

Publications (1)

Publication Number Publication Date
WO2019000323A1 true WO2019000323A1 (zh) 2019-01-03

Family

ID=63266040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090815 WO2019000323A1 (zh) 2017-06-29 2017-06-29 无人机及其控制方法、控制终端及其控制方法

Country Status (2)

Country Link
CN (1) CN108475071A (zh)
WO (1) WO2019000323A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407681B (zh) * 2018-12-13 2021-10-08 广州极飞科技股份有限公司 无人机飞行控制方法、飞行控制装置、无人机和存储介质
CN111247788A (zh) * 2018-12-29 2020-06-05 深圳市大疆创新科技有限公司 一种拍摄方法及装置
CN110139038B (zh) 2019-05-22 2021-10-22 深圳市道通智能航空技术股份有限公司 一种自主环绕拍摄方法、装置以及无人机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101095090A (zh) * 2005-11-15 2007-12-26 贝尔直升机泰克斯特龙公司 用于自动绕圈飞行的控制系统
CN104714557A (zh) * 2015-03-26 2015-06-17 清华大学 无人机定点环绕飞行的控制方法
CN105116911A (zh) * 2015-07-20 2015-12-02 广州极飞电子科技有限公司 无人机喷药方法
CN106054926A (zh) * 2016-07-18 2016-10-26 南京奇蛙智能科技有限公司 一种无人机跟随系统及跟随飞行的控制方法
CN106370184A (zh) * 2016-08-29 2017-02-01 北京奇虎科技有限公司 无人机自动跟踪拍摄的方法、无人机和移动终端设备
US9639960B1 (en) * 2016-11-04 2017-05-02 Loveland Innovations, LLC Systems and methods for UAV property assessment, data capture and reporting
CN106873631A (zh) * 2017-04-21 2017-06-20 广州极飞科技有限公司 无人机控制方法、植保作业方法、无人机及地面站

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412568B (zh) * 2013-08-27 2016-01-20 重庆市勘测院 同架次变航高无人机遥感影像获取方法
CN103543751A (zh) * 2013-09-12 2014-01-29 深圳市大疆创新科技有限公司 无人飞行器的控制装置及无人飞行器
US9536216B1 (en) * 2014-12-18 2017-01-03 Amazon Technologies, Inc. Delivery of packages by unmanned aerial vehicles
CN105388905B (zh) * 2015-10-30 2019-04-26 深圳一电航空技术有限公司 无人机飞行控制方法及装置
CN105843241A (zh) * 2016-04-11 2016-08-10 零度智控(北京)智能科技有限公司 无人机、无人机起飞控制方法及装置
CN106742015A (zh) * 2017-01-03 2017-05-31 南京奇蛙智能科技有限公司 一种汽车控制无人机的飞行系统及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101095090A (zh) * 2005-11-15 2007-12-26 贝尔直升机泰克斯特龙公司 用于自动绕圈飞行的控制系统
CN104714557A (zh) * 2015-03-26 2015-06-17 清华大学 无人机定点环绕飞行的控制方法
CN105116911A (zh) * 2015-07-20 2015-12-02 广州极飞电子科技有限公司 无人机喷药方法
CN106054926A (zh) * 2016-07-18 2016-10-26 南京奇蛙智能科技有限公司 一种无人机跟随系统及跟随飞行的控制方法
CN106370184A (zh) * 2016-08-29 2017-02-01 北京奇虎科技有限公司 无人机自动跟踪拍摄的方法、无人机和移动终端设备
US9639960B1 (en) * 2016-11-04 2017-05-02 Loveland Innovations, LLC Systems and methods for UAV property assessment, data capture and reporting
CN106873631A (zh) * 2017-04-21 2017-06-20 广州极飞科技有限公司 无人机控制方法、植保作业方法、无人机及地面站

Also Published As

Publication number Publication date
CN108475071A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
US11797009B2 (en) Unmanned aerial image capture platform
US11385645B2 (en) Remote control method and terminal
US10551834B2 (en) Method and electronic device for controlling unmanned aerial vehicle
US10749952B2 (en) Network based operation of an unmanned aerial vehicle based on user commands and virtual flight assistance constraints
EP3345832B1 (en) Unmanned aerial vehicle and method for controlling the same
EP3449328B1 (en) Method, storage medium, and electronic device for controlling unmanned aerial vehicle
CN108513649B (zh) 飞行控制方法、设备、机器可读存储介质以及系统
WO2017152865A1 (zh) 一种无人飞行器的追随方法、装置以及可穿戴设备
US20200346750A1 (en) Method for generating flight path, control device, and unmanned aerial vehicle
WO2016138690A1 (zh) 基于智能终端的体感飞行操控系统及终端设备
US20200389593A1 (en) Gimbal servo control method and control device
US20200169666A1 (en) Target observation method, related device and system
US20190080620A1 (en) Application and method for controlling flight of uninhabited airborne vehicle
WO2019000323A1 (zh) 无人机及其控制方法、控制终端及其控制方法
US20230384803A1 (en) Autonomous orbiting method and device and uav
WO2020107454A1 (zh) 障碍物的精准确定方法、设备及计算机可读存储介质
US20220350330A1 (en) Remote control method and terminal
WO2020073245A1 (zh) 手势识别方法、vr视角控制方法以及vr系统
US10557718B2 (en) Auxiliary control method and system for unmanned aerial vehicle
WO2022047709A1 (zh) 更新限制区域数据的方法、装置、可移动平台和计算机存储介质
CN110268710A (zh) 图像数据处理方法、设备、平台及存储介质
CN116804883B (zh) 无人机避障方法及装置
KR102681582B1 (ko) 전자 장치 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915523

Country of ref document: EP

Kind code of ref document: A1