WO2021074977A1 - Electrolytic cell for water conditioning and water conditioner for home use, in which said electrolytic cell for water conditioning is incorporated - Google Patents

Electrolytic cell for water conditioning and water conditioner for home use, in which said electrolytic cell for water conditioning is incorporated Download PDF

Info

Publication number
WO2021074977A1
WO2021074977A1 PCT/JP2019/040529 JP2019040529W WO2021074977A1 WO 2021074977 A1 WO2021074977 A1 WO 2021074977A1 JP 2019040529 W JP2019040529 W JP 2019040529W WO 2021074977 A1 WO2021074977 A1 WO 2021074977A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
diaphragm
electrolytic cell
spacer
electrode plate
Prior art date
Application number
PCT/JP2019/040529
Other languages
French (fr)
Japanese (ja)
Inventor
岡崎 龍夫
Original Assignee
ヴィータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴィータ株式会社 filed Critical ヴィータ株式会社
Priority to PCT/JP2019/040529 priority Critical patent/WO2021074977A1/en
Priority to TW109130844A priority patent/TW202124291A/en
Publication of WO2021074977A1 publication Critical patent/WO2021074977A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis

Definitions

  • the present invention relates to an electrolytic cell for water conditioning capable of individually taking out acidic water and alkaline water generated by electrolyzing water, and a household water conditioner incorporating the electrolytic cell.
  • the water conditioning electrolytic cell has a diaphragm between the positive electrode plate and the negative electrode plate, and the anode chamber for producing acidic water and the cathode chamber for generating alkaline water are separated by this diaphragm.
  • Alkaline water containing a high concentration of dissolved hydrogen has been reported to improve bone density, for example, when it is drunk.
  • Alkaline water is commercially available with the catchphrase that it is good for your health.
  • household water conditioners are on sale.
  • FIG. 14 shows a diaphragm unit 100 included in the flat plate type water conditioner.
  • the flat diaphragm unit 100 is an injection-molded product in which the diaphragm 101 and the frame 102 are integrally molded.
  • Reference numeral W indicates the flow direction of water.
  • water is supplied from the upstream end of the diaphragm unit 100, and electrolyzed water is taken out from the downstream end.
  • FIG. 15 shows an electrode assembly 110 included in a cylindrical water conditioner.
  • the electrode assembly 110 includes a diaphragm 111, an inner electrode plate 112 located on the inner peripheral side thereof, and a grid spacer 113 located between them.
  • the lattice spacer 113 is an injection molded product.
  • the upstream end and the downstream end of the diaphragm 111 are fixed by the support member. Then, water is supplied from the upstream end of the electrode assembly 110, and this water is divided into two streams, one stream passes through the gap between the inner electrode plate 112 and the diaphragm 111, and the other flow diaphragm 111. Electrolysis is performed through the gap between the outer electrode plate (not shown) and the outer electrode plate (not shown). Then, the alkaline water and the acidic water are individually taken out from the downstream end of the electrode assembly 110.
  • Patent Document 1 discloses a cylindrical water conditioner. The upstream end and the downstream end of the diaphragm included in this water conditioner are fixed by a support member.
  • alkaline water containing hydrogen which has become a large mass, is difficult for the human body to absorb. That is, it is known that alkaline water containing a large mass of hydrogen has poor absorption efficiency into the human body.
  • the most effective measure to increase this absorption efficiency is to reduce the dissolved hydrogen in alkaline water generated by the water conditioning electrolytic cell to the molecular level.
  • the inventor of the present application examined the structure of the conventional diaphragm unit or the support structure of the diaphragm.
  • both the flat diaphragm unit 100 of FIG. 14 and the spacer 113 of the electrode assembly 110 of FIG. 15 are lattice-shaped resin molded products. As long as it is a molded product, it is common to adopt a grid-like structure in order to maintain molding quality (prevention of distortion of the molded product).
  • the frame 102 of the diaphragm unit 100 has a lattice shape formed by a vertical member 103 along the water flow direction and a transverse member 104 extending in a direction orthogonal to the water flow direction.
  • the cylindrical spacer 113 has a lattice shape formed by a vertical member 115 along the water flow direction and a transverse member 116 extending in a direction orthogonal to the water flow direction.
  • the vertical members 103 and 115 and the transverse members 104 and 116 constituting the grid-like unit 100 and the spacer 113 need to have a wall thickness of a predetermined value or more. This wall thickness is an obstacle to bringing the distance between the electrodes as close as possible.
  • the cylindrical water conditioner disclosed in Patent Document 1 employs a configuration in which a water passage hole is provided in a support member that supports the upstream end portion and the downstream end portion of the diaphragm. This water passage hole extends in the direction of water flow. Then, water is supplied to the first gap between the cylindrical inner electrode plate and the diaphragm and the second gap between the diaphragm and the outer electrode plate through the water passage hole, and the first , Take out the electrolyzed water from the second gap. In order for this water passage hole to exist, the thickness of the support member in the radial direction is required. Therefore, the support member disclosed in Patent Document 1 becomes an obstacle in reducing the distance between the electrode plates.
  • An object of the present invention is to provide an electrolytic cell for water conditioning that can narrow the distance between electrode plates to the utmost limit. As a result, electrolysis can be performed with a low applied voltage.
  • the above technical problems are basically the same in the present invention.
  • For water conditioning which has a diaphragm that separates the anode chamber and the cathode chamber, and can separately take out acidic water generated in the anode chamber and alkaline water generated in the cathode chamber by electrolyzing water.
  • the electrolytic cell It has a spacer disposed between the positive electrode plate arranged in the anode chamber and the diaphragm, and at least one of the negative electrode plate arranged in the cathode chamber and the diaphragm.
  • the spacer is separate from the diaphragm, and the spacer is held by fixing portions located at the upstream end and the downstream end of the spacer.
  • the inlet for supplying water to the anode chamber or the cathode chamber and the outlet for taking out electrolyzed water from the anode chamber or the cathode chamber are located inside the fixed portion.
  • the separation distance between the electrodes can be minimized.
  • the voltage applied between the electrodes can be reduced.
  • FIG. 1 is a diagram for explaining the arrangement relationship between the two anode chambers and the two cathode chambers formed by the internal structure of the flat plate type electrolytic cell of the first embodiment.
  • FIG. 2 is a developed view of the internal structure of the first embodiment regarding the flat plate electrolytic cell, and is a diagram for explaining the arrangement of the electrode unit and the diaphragm.
  • FIG. 3 is a diagram related to FIG. 2, and shows the arrangement of the electrode unit and the diaphragm as viewed from a direction different from that of FIG.
  • FIG. 4 is an exploded perspective view for explaining the structure of the cathode unit.
  • FIG. 5 is a diagram related to FIG. 4, and is a diagram for explaining the structure of the cathode unit after incorporating the negative electrode plate.
  • FIG. 1 is a diagram for explaining the arrangement relationship between the two anode chambers and the two cathode chambers formed by the internal structure of the flat plate type electrolytic cell of the first embodiment.
  • FIG. 2 is a
  • FIG. 6 is a partially enlarged view for explaining the arrangement of the string-shaped spacers and the string which is a component thereof being inverted by the protrusions, taking the cathode unit as an example.
  • FIG. 7 is a perspective view in which a part of the cylindrical electrolytic cell of the second embodiment is cut out.
  • FIG. 8 is a schematic cross-sectional view for explaining the internal structure of the second embodiment.
  • FIG. 9 shows a diagram for explaining an example in which the string-shaped spacers included in the second embodiment are arranged in a spiral shape.
  • FIG. 10 is a cross-sectional view for explaining an example of a structure for fixing both ends of the string-shaped spacer included in the second embodiment.
  • FIG. 11 is a diagram for explaining an example in which the spacer is made of a resin sheet instead of the string-shaped spacer included in the second embodiment.
  • FIG. 12 is a diagram for explaining that the tubular shape is formed when the sheet-shaped spacer shown in FIG. 11 is incorporated.
  • FIG. 13 is a plan view of the sheet-shaped spacer.
  • FIG. 14 is a perspective view of a diaphragm unit included in a conventional flat plate electrolytic cell.
  • FIG. 15 A perspective view of an assembly including a diaphragm with respect to a conventional cylindrical electrolytic cell.
  • the first embodiment relates to a flat plate type water conditioning electrolytic cell.
  • This electrolytic cell has two anode chambers and two cathode chambers, but this is only an example.
  • An electrolytic cell is configured with a pair of anode chambers and cathode chambers as the smallest units. Further, the electrolytic cell is composed of the first and second anode units and one cathode unit located between them. On the contrary, two cathode units and one sandwiched between them. Needless to say, the electrolytic cell may be composed of an anode unit.
  • FIG. 1 is a basic configuration diagram of the internal structure of the flat plate type water conditioning electrolytic cell of the first embodiment.
  • the first and second cathode chambers 3 and 4 are arranged between the first anode chamber 1 located on the left side and the second anode chamber 2 located on the right side.
  • a first positive electrode plate 5 is arranged in the first anode chamber 1.
  • a second positive electrode plate 6 is arranged in the second anode chamber 2.
  • the first anode chamber 1 and the first cathode chamber 3 adjacent to the first anode chamber 1 are partitioned by a first diaphragm 7.
  • the second anode chamber 2 and the second anode chamber 4 adjacent thereto are partitioned by a second diaphragm 8.
  • the negative electrode plate of the first cathode chamber 3 and the negative electrode plate of the second cathode chamber 4 are shared by one common negative electrode plate 9.
  • FIG. 2 shows the elements constituting the internal structure of the flat plate type water conditioning electrolytic cell of the first embodiment, that is, the first and second anode units, the cathode unit arranged between them, and the first and first ones. It is an exploded perspective view with 2 diaphragms.
  • FIG. 3 is a view seen from the opposite direction to that of FIG.
  • Reference numerals 10 and 11 indicate first and second rectangular anode units.
  • the first anode unit 10 incorporates a first positive electrode plate 5 on a surface facing the first diaphragm 7.
  • the second anode unit 11 incorporates a second positive electrode plate 6 on a surface facing the second diaphragm 8.
  • string-shaped spacers 15 are arranged in relation to the first and second positive electrode plates 5 and 6, respectively.
  • the string-shaped spacer 15 is locked and folded back to a plurality of protrusions 16 arranged at the upstream end and the downstream end of the first and second anode units 10 and 11, respectively. It is arranged so as to reciprocate along the longitudinal direction, that is, the direction of water flow.
  • the plurality of protrusions 16 form a fixing portion of the string-shaped spacer 15. With this configuration, the plurality of string-shaped spacers 15 separated in the width direction of the first and second anode units 10 and 11 extend in the water flow direction.
  • the string constituting the string-shaped spacer 15 is only a typical example.
  • the string may be an elongated rod-shaped body. These can be collectively called "straiatum”.
  • the cathode unit 12 is arranged between the first and second anode units 10 and 11.
  • the structure of the cathode unit 12 will be described with reference to FIGS. 4 and 5.
  • the cathode unit 12 has a large opening 12a in the center thereof (FIG. 4), and a negative electrode plate 9 is installed in the intermediate portion in the longitudinal direction of the opening 12a (FIG. 5).
  • the cathode unit 12 is formed with first and second water passage ports 12 (us) and 12 (ds) above and below the negative electrode plate 9.
  • the lower first water passage 12 (us) is the upstream water passage, and is the water inlet for the first and second cathode chambers 3 and 4.
  • the upper second water passage 12 (ds) is a downstream water passage, and is an outlet for alkaline water for the first and second cathode chambers 3 and 4.
  • the cathode unit 12 is provided with string-shaped spacers 15 on both sides thereof. That is, the cathode unit 12 is provided with a string-shaped spacer 15 on the first surface facing the first diaphragm 7 and on the second surface facing the second diaphragm 8, respectively.
  • the internal structure is assembled by sandwiching the first and second diaphragms 7 and 8 with the first anode unit 10, the negative electrode unit 12, and the second anode unit 11.
  • Reference numeral Th is a bolt insertion hole.
  • the bolt insertion holes Th are provided at the edges of the units 10 to 12 and the first and second diaphragms 7 and 8 over the entire circumference, and the internal structure is formed by a plurality of bolts penetrating these elements. Assembled.
  • FIG. 6 is a diagram in which the upper part of the cathode unit 12 is extracted.
  • the plurality of protrusions 16 of the string spacer 15 are arranged adjacent to and above the downstream water passage 12 (ds) on the upper side, side by side and at intervals. This configuration is the same for the plurality of protrusions 16 located adjacent to the lower upstream water passage 12 (us), and the lower protrusion 16 is adjacent to the lower upstream water passage 12 (us). And below that, they are arranged side by side and at intervals (FIGS. 2 and 3). This arrangement of the plurality of protrusions 16 is the same for the first and second anode units 10 and 11.
  • the first anode unit 10 recesses on the downstream side and the upstream side, that is, pockets 20 (us) and 20 (ds) are formed above and below the positive electrode plate 5 adjacent to the positive electrode plate 5. .. Further, the second anode unit 11 is formed with recesses on the flow side and the downstream side, that is, pockets 22 (ds) and 22 (ds) above and below the positive electrode plate 6 adjacent to the positive electrode plate 6. These four recesses, that is, pockets 20 (us), 20 (ds), 22 (ds), and 22 (ds) form a part of the water flow path.
  • the plurality of protrusions 16 of the string spacer 15 provided on the first and second anode units 10 and 11 are arranged at the upper and lower ends in the same manner as the cathode unit 12.
  • a protrusion 16 is provided above the upper downstream pockets 20 (ds) and 22 (ds) adjacent to the upper downstream pockets 20 (ds) and 22 (ds), and the protrusion 16 is provided adjacent to the lower upstream pockets 20 (us) and 22 (us).
  • a protrusion 16 is provided below (FIGS. 2 and 3).
  • the two lower holes Hin1 and Hin2 (FIG. 2) of the first anode unit 10 are of the internal structure through an external water pipe. It constitutes the first and second inlets for introducing water into it.
  • the first inlet hole Hin1 has a function of supplying water into the first and second anode chambers 1 and 2 (FIG. 1).
  • the second inlet hole Hin2 has a function of supplying water into the first and second cathode chambers 3 and 4.
  • the two holes Hout1 and Hout2 (FIG. 2) at the top of the first anode unit 10 form the first and second outlets for discharging the electrolyzed water to the outside.
  • the first outlet hole Hout1 is connected to the first and second anode chambers 1 and 2, and has a function of taking out the acidic water generated in the first and second anode chambers 1 and 2 to the outside.
  • the second outlet hole Hout2 is connected to the first and second cathode chambers 3 and 4, and has a function of taking out the alkaline water generated in the first and second cathode chambers 3 and 4 to the outside. There is.
  • the water that has entered the first inlet hole Hin1 of the first anode unit 1 enters the lower recess, that is, the upstream pocket 20 (us) of the anode unit 1 as the first flow path. Then, it becomes acidic water in the process of moving upward in the first anode chamber 1. Then, the acidic water enters the upper recess, that is, the downstream pocket 20 (ds), and is taken out from the first outlet hole Hout1 opened in the pocket 20 (ds). That is, the upstream pocket 20 (us) substantially constitutes the inlet of the first anode chamber 1, and the downstream pocket 20 (ds) substantially constitutes the outlet of the acidic water generated in the first anode chamber 1. ing.
  • the water that has entered the first inlet hole Hin1 of the first anode unit 1 passes through the lower water passage hole 24 of the first diaphragm 7 as the second flow path, and the lower water passage hole 26 and the second diaphragm of the cathode unit 12. It passes through the lower water passage hole 28 of No. 8 and enters the lower recess, that is, the upstream pocket 22 (us) of the second anode unit 11.
  • the water that has entered the lower pocket 22 (us) of the second anode unit 11 becomes acidic water in the process of moving upward in the second anode chamber 2. Then, this acidic water enters the upper recess, that is, the downstream pocket 22 (ds) (FIG. 2).
  • An upper water passage hole 30 of the second diaphragm 8 is opened in the downstream pocket 22 (ds).
  • the upper water passage hole 30 leads to the upper water passage hole 32 of the cathode unit 12 and the first upper water passage hole 34 of the first diaphragm 7, and the upper water passage hole 34 of the first diaphragm 7 is connected to the upper water passage hole 34. It leads to the first outlet hole Hout1 of the first anode unit 1.
  • the first outlet hole Hout1 is the outlet of the acidic water generated in the first anode chamber 1, the acidic water in the first anode chamber 1 and the acidic water in the second acidic chamber 2 are separated from each other. It merges at the first outlet hole Hout1 and is taken out from the first outlet hole Hout1.
  • the second inlet hole Hin2 of the first anode unit 10 leads to the lower water passage hole 40 of the first diaphragm 7 and the upstream water passage port 12 (us) below the cathode unit 12. Therefore, the water that has entered the second inlet hole Hin2 of the first anode unit 10 is supplied to the water passage port 12 (us) on the upstream side of the cathode unit 12. The water that has entered the upstream water passage 12 (us) of the cathode unit 12 becomes alkaline water in the process of moving upward in the first and second cathode chambers 3 and 4.
  • the downstream water passage 12 (ds) communicates with the second outlet hole Hout 2 of the first anode unit 10 through the second upper water passage 42 of the first diaphragm 7. As a result, the alkaline water generated in the first and second cathode chambers 3 and 4 is taken out from the second outlet hole Hout2 of the first anode unit 10.
  • the two inlet holes Hin1 and Hin2 at the lower part of the first anode unit 10 are located above the plurality of protrusions 16 of the lower string spacer 15, that is, the fixed portion of the linear body.
  • the two outlet holes Hout1 and Hout2 at the upper part of the first anode unit 10 are located below (inside) the plurality of protrusions 16 of the upper string spacer 15.
  • all the elements constituting the water path such as the lower recess of the first anode unit 1, that is, the pocket 20 (ds), and the first and second water passage holes 40 and 12 located below the first diaphragm 7.
  • the string-shaped spacer 15 interposed between the first positive electrode plate 5 and the first diaphragm 7 prevents the contact between the first positive electrode plate 5 and the first diaphragm 7, and the first positive electrode
  • the distance between the plate 5 and the first diaphragm 7 is defined by the string spacer 15. The same is true for the distance between the first diaphragm 7 and the negative electrode plate 9, the distance between the negative electrode plate 9 and the second diaphragm 8, and the distance between the second diaphragm 8 and the second positive electrode plate 6. The same can be said about.
  • the distance between the electrodes of the internal structure can be made extremely small. If the thickness of the string-shaped spacer 15 is reduced, the distance between each electrode and the diaphragm is shortened, and the separation distance between the electrodes is also shortened.
  • the distance between the electrodes can be reduced to the utmost limit, so that electrolysis can be performed even at a low voltage of, for example, 12 V (volt) or 24 V.
  • the distance between the electrodes is 4 mm or more, and the applied voltage is 70 V.
  • the electrolysis reaction at a low voltage of 12V or 24V is mild.
  • the possibility of hydrogen generated by electrolysis coalescing is reduced.
  • the amount of hydrogen that escapes from the water due to gasification by coalescence is reduced, and the dissolved hydrogen can be maintained at the molecular level.
  • FIG. 7 to 13 are diagrams for explaining the second embodiment.
  • the second embodiment relates to a cylindrical electrolytic cell.
  • FIG. 7 is a perspective view in which a part of the cylindrical electrolytic cell is cut out.
  • Reference numeral 50 indicates a cylindrical inner electrode plate
  • 52 indicates a cylindrical outer electrode plate
  • 54 indicates a diaphragm
  • 56 indicates a housing.
  • the water that has entered from the inlet 58 of the housing 56 is divided into a first flow that enters the central hole 60 inside the housing 56 and a second flow that enters the upstream gap 62 on the outside thereof.
  • the first water A entering the central hole 60 enters the inner peripheral side of the cylindrical diaphragm 54 from a plurality of upstream holes 66 provided in the central core 64 (FIG.
  • the housing first outlet 70 extends in the axial direction of the housing 56.
  • the diaphragm 54 is fixed to the core 64 in the vicinity of both ends in the longitudinal direction of the core 64.
  • the second water B (FIG. 8) that has entered the upstream gap 62 passes through the outer peripheral side of the cylindrical diaphragm 54, flows between the diaphragm 54 and the cylindrical outer electrode plate 52, and flows through the downstream gap 72. It is discharged from the second outlet 74 (FIG. 7) of the housing through the housing.
  • the housing second outlet 74 extends in a direction orthogonal to the axis of the housing 56.
  • the water B passing through the outside of the diaphragm 54 becomes alkaline water.
  • the water A passing through the inside of the diaphragm 54 becomes acidic water.
  • the water B passing outside the diaphragm 54 becomes acidic water.
  • the second embodiment also includes the string-shaped spacer 15.
  • the string-shaped spacer 15 is arranged parallel to the center line of the cylinder in the example disclosed in FIG. 7, it may be arranged so as to spirally wind around the curved inner electrode plate 50 (FIG. 9). ).
  • FIG. 8 typically represents the technical idea of the present invention.
  • the string spacer 15 is fixed and held by protrusions 16 at the upstream and downstream ends. Then, water is taken in inside the protrusions 16 on the upstream side and the downstream side, that is, the fixed portions (FIGS. 6 and 7) of the linear body, and alkaline water is taken out. That is, the entrances 66 and 68 of the cathode chamber are located inside the cathode chamber with respect to the protrusions 16. Further, the protrusions 16 on the upstream side and the downstream side are located inward in the radial direction with respect to the string-shaped spacer 15.
  • the distance between the diaphragm 54 and the inner electrode plate 50 can be defined by the string 17, and the string 17 can prevent a contact accident between the diaphragm 54 and the inner electrode plate 50.
  • the distance between the diaphragm 54 and the inner electrode plate 50 can be reduced to the thickness of the string-shaped spacer 15.
  • FIG. 9 is a diagram showing an example in which the string-shaped spacer 15 is arranged in a spiral shape. Further, FIGS. 9 and 10 show an example in which both ends of the string 17 are fixed by the downstream side fixing groove 76 and the upstream side fixing groove 78 instead of the spacer protrusion 16. Since the downstream fixing groove 76 and the upstream fixing groove 78 have a shape recessed inward in the radial direction, the fixing portion of the string 17 by the downstream fixing groove 76 and the upstream fixing groove 78 is a string. It does not protrude outward in the radial direction from 17.
  • a sheet-shaped spacer 80 having a single elongated hole made of resin may be adopted.
  • 11 to 14 are views on the sheet spacer 80.
  • the sheet spacer 80 is made of a thin sheet made of PP (polypropylene) resin.
  • the sheet-shaped spacer 80 having a rectangular shape in a plan view has a plurality of elongated openings 80a extending in the water flow direction in the entire area thereof, and the elongated openings 80a are formed by punching.
  • the elongated opening 80a extends continuously from the upstream end to the downstream end of the sheet spacer 80 and does not include an element such as the transverse member 116 (FIG.
  • the portion 80b between the two adjacent openings 80a substantially functions as a spacer.
  • the plurality of remaining spacer portions 80b extend in the water flow direction, and the two adjacent spacer portions 80b are parallel to each other. That is, the spacer portion 80b between the two adjacent openings 80a functions as a spacer in the same manner as the thread-like body typified by the string 17 described in the first embodiment or the like.
  • the sheet-shaped spacer 80 shown in FIG. 13 becomes cylindrical when rolled (FIG. 12). Also, The cylindrical shape of the sheet spacer 80 is maintained even when incorporated in a cylindrical electrolytic cell. In other words, the sheet-shaped spacer 80 has shape retention. Therefore, unlike the string 17 adopted in the first embodiment or the like, the sheet-shaped spacer 80 can be positioned and fixed by clamping the upstream end and the downstream end of the sheet-shaped spacer 80 with some member. .. Therefore, if the inlet 66 and the outlet 68 described with reference to FIG. 8 are arranged inward from the upstream and downstream ends of the sheet spacer 80, they are arranged around the inner electrode plate 50. The diameter of the formed cylindrical sheet spacer 80 (FIG. 12) can be made substantially equal to the outer diameter of the inner electrode plate 50.
  • the sheet-shaped spacer 80 described above can also be applied to the flat plate type electrolytic cell of the first embodiment.
  • the separation distance between the electrode plates can be minimized, so that alkaline water can be produced to a desired pH even at a low voltage of, for example, 12 V (volt) or 24 V. Then, the hydrogen generated in the cathode chamber can be maintained at the molecular level. Drinking alkaline water containing hydrogen at the molecular level can increase the efficiency of absorption into the body.
  • the conventional electrolyzed water generator for beverages a configuration in which water flows through the upstream end and the downstream end of the diaphragm is adopted in order to stabilize the ion concentration.
  • the water inlet / outlet is located inside the portion for fixing the spacer arranged between the electrode and the diaphragm, that is, on the central side of the electrolytic cell, the shape of the spacer fixing portion is not affected. You can design an electrolytic cell. Therefore, the thickness of the spacer can be reduced to the utmost limit without being restricted by the spacer fixing portion.
  • the present invention also proposes a specific measure capable of providing each household with a water conditioner that produces alkaline water for drinking at a voltage of 24 V or less that does not require electrical inspection in each country.

Abstract

According to the present invention, a string-like spacer 15 is held by being affixed at an upstream side end and a downstream side end by means of projections 16. An inner electrode plate 50 serves as a negative electrode. Inlet and outlet (66, 68) of a negative electrode chamber are arranged on the more inner side of the negative electrode chamber than the projections 16. In addition, the upstream side and downstream side projections 16 are positioned on the more inner side in the radial direction than a string 17. Consequently, the distance between a diaphragm 54 and the inner electrode plate 50 is defined by the string-like spacer 15. [Selection drawing] FIG. 8

Description

整水用電解槽及びこれを組み込んだ家庭用整水器Electrolytic cell for water conditioning and household water conditioner incorporating this
 本発明は水を電気分解して生成した酸性水、アルカリ性水を個別的に取り出すことができる整水用電解槽及びこれを組み込んだ家庭用整水器に関する。
 
The present invention relates to an electrolytic cell for water conditioning capable of individually taking out acidic water and alkaline water generated by electrolyzing water, and a household water conditioner incorporating the electrolytic cell.
 整水用電解槽は、陽電極プレートと陰電極プレートとの間に隔膜を有し、この隔膜によって、酸性水を生成する陽極室と、アルカリ性水を生成する陰極室とが仕切られている。溶存水素を高濃度で含むアルカリ性水は、これを飲用すると例えば骨密度の向上が見られるという報告がある。健康に良いというキャッチフレーズでアルカリ性水が市販されている。また、家庭用整水器が販売されている。 The water conditioning electrolytic cell has a diaphragm between the positive electrode plate and the negative electrode plate, and the anode chamber for producing acidic water and the cathode chamber for generating alkaline water are separated by this diaphragm. Alkaline water containing a high concentration of dissolved hydrogen has been reported to improve bone density, for example, when it is drunk. Alkaline water is commercially available with the catchphrase that it is good for your health. In addition, household water conditioners are on sale.
 以下の説明において、整水用電解槽の中の水の流れを基準として「上流」、「下流」という言葉を使う。整水装置は2つのタイプが知られており、一つが平板形であり、他の一つが円筒形である。図14は、平板形整水装置に含まれる隔膜ユニット100を示す。平板形隔膜ユニット100は隔膜101とフレーム102とが一体成形された射出成形成形品である。参照符号Wは水の流れ方向を示す。平板形整水装置の中では、隔膜ユニット100の上流側端から水が供給され、下流側端から電解水が取り出される。 In the following explanation, the terms "upstream" and "downstream" are used with reference to the flow of water in the water conditioning electrolytic cell. Two types of water conditioners are known, one is a flat plate type and the other is a cylindrical type. FIG. 14 shows a diaphragm unit 100 included in the flat plate type water conditioner. The flat diaphragm unit 100 is an injection-molded product in which the diaphragm 101 and the frame 102 are integrally molded. Reference numeral W indicates the flow direction of water. In the flat plate type water conditioner, water is supplied from the upstream end of the diaphragm unit 100, and electrolyzed water is taken out from the downstream end.
 図15は、円筒形整水装置に含まれる電極組立体110を示す。電極組立体110は、隔膜111と、その内周側に位置する内側電極プレート112と、これらの間に位置する格子状スペーサ113とを含む。格子状スペーサ113は射出成形品である。電解槽の中では、隔膜111の上流端部及び下流端部が支持部材によって固定される。そして、電極組立体110の上流側端から水が供給され、この水は2つの流れに分かれて、一つの流れが内側電極プレート112と隔膜111との間の隙間を通り、他の流れ隔膜111と外側電極プレート(図示せず)との間の隙間を通って電解処理される。そして、アルカリ性水と酸性水とが個別的に電極組立体110の下流側端から取り出される。 FIG. 15 shows an electrode assembly 110 included in a cylindrical water conditioner. The electrode assembly 110 includes a diaphragm 111, an inner electrode plate 112 located on the inner peripheral side thereof, and a grid spacer 113 located between them. The lattice spacer 113 is an injection molded product. In the electrolytic cell, the upstream end and the downstream end of the diaphragm 111 are fixed by the support member. Then, water is supplied from the upstream end of the electrode assembly 110, and this water is divided into two streams, one stream passes through the gap between the inner electrode plate 112 and the diaphragm 111, and the other flow diaphragm 111. Electrolysis is performed through the gap between the outer electrode plate (not shown) and the outer electrode plate (not shown). Then, the alkaline water and the acidic water are individually taken out from the downstream end of the electrode assembly 110.
 特許文献1は円筒形整水装置を開示している。この整水装置に含まれる隔膜は、その上流端部及び下流端部が支持部材によって固定されている。
 
Patent Document 1 discloses a cylindrical water conditioner. The upstream end and the downstream end of the diaphragm included in this water conditioner are fixed by a support member.
JP特開平6(1994)―206072号公報JP JP No. 6 (1994) -206072
 高濃度の溶存水素を含むアルカリ性水を生成するには、陽極と陰極との間に印加する電圧を高くするのが良い。これにより水素生成量を高めることができる。しかし、大量に生成される水素は直ぐに集合して大きな塊となって電解水内に溶存したり、気泡となって水中から抜け出してしまう。 In order to generate alkaline water containing a high concentration of dissolved hydrogen, it is better to increase the voltage applied between the anode and the cathode. This makes it possible to increase the amount of hydrogen produced. However, a large amount of hydrogen is immediately aggregated and becomes a large mass that dissolves in the electrolyzed water or becomes bubbles and escapes from the water.
 大きな塊となった水素を含むアルカリ性水は、人体が吸収し難いことが知られている。すなわち、大きな塊の水素を含むアルカリ性水は人体への吸収効率が悪いことが知られている。この吸収効率を高めるのに最も有効な方策は、整水用電解槽が生成するアルカリ性水中の溶存水素を分子レベルまで小さくすることである。 It is known that alkaline water containing hydrogen, which has become a large mass, is difficult for the human body to absorb. That is, it is known that alkaline water containing a large mass of hydrogen has poor absorption efficiency into the human body. The most effective measure to increase this absorption efficiency is to reduce the dissolved hydrogen in alkaline water generated by the water conditioning electrolytic cell to the molecular level.
 この技術的課題に対して、印加する電圧をできる限り低くして、分子レベルの状態を維持したまま水素をアルカリ性水中に溶存させるのが効果的であると考えられる。しかし、印加電圧を低下させると電解効率が下がってしまう。この新たな技術的課題を解決するのに、電極間の離間距離を極限まで小さくするのが効果的である。本願発明者は、電極間の間隔を極限まで小さくするという新たな技術的課題を自らに課した。 For this technical problem, it is considered effective to make the applied voltage as low as possible and dissolve hydrogen in alkaline water while maintaining the state at the molecular level. However, if the applied voltage is lowered, the electrolysis efficiency is lowered. In order to solve this new technical problem, it is effective to make the separation distance between the electrodes as small as possible. The inventor of the present application has imposed a new technical task on himself to minimize the distance between the electrodes.
 本願発明者は、この新たな技術的課題の下で、従来の隔膜ユニットの構造又は隔膜の支持構造に対して検討を加えた。 Under this new technical issue, the inventor of the present application examined the structure of the conventional diaphragm unit or the support structure of the diaphragm.
 図14の平板形隔膜ユニット100と、図15の電極組立体110のスペーサ113とは共に格子状の樹脂成型品である。成型品である以上、成形品質(成形品の歪み防止)を維持するには格子状の構造を採用するのが一般的である。図14を参照して、隔膜ユニット100のフレーム102は、水の流れ方向に沿った縦メンバ103と、水の流れ方向と直交する方向に延びる横断メンバ104とで格子形状が作られている。図15を参照して、円筒形スペーサ113は、水の流れ方向に沿った縦メンバ115と、水の流れ方向と直交する方向に延びる横断メンバ116とで格子形状が作られている。 Both the flat diaphragm unit 100 of FIG. 14 and the spacer 113 of the electrode assembly 110 of FIG. 15 are lattice-shaped resin molded products. As long as it is a molded product, it is common to adopt a grid-like structure in order to maintain molding quality (prevention of distortion of the molded product). With reference to FIG. 14, the frame 102 of the diaphragm unit 100 has a lattice shape formed by a vertical member 103 along the water flow direction and a transverse member 104 extending in a direction orthogonal to the water flow direction. With reference to FIG. 15, the cylindrical spacer 113 has a lattice shape formed by a vertical member 115 along the water flow direction and a transverse member 116 extending in a direction orthogonal to the water flow direction.
 格子状のユニット100及びスペーサ113を構成する縦メンバ103、115及び横断メンバ104、116は所定以上の肉厚が必要である。この肉厚は電極間の間隔を極限まで接近させることに対して障害となる。 The vertical members 103 and 115 and the transverse members 104 and 116 constituting the grid-like unit 100 and the spacer 113 need to have a wall thickness of a predetermined value or more. This wall thickness is an obstacle to bringing the distance between the electrodes as close as possible.
 特許文献1に開示の円筒形整水器は、隔膜の上流端部、下流端部を支持する支持部材に通水孔を設ける構成を採用している。この通水孔は、水の流れ方向に延びている。そして、この通水孔を通じて、円筒状の内側電極プレートと隔膜との間との第1の隙間と、当該隔膜と外側電極プレートとの第2の隙間とに水を供給し、また、第1、第2の隙間から電解水を取り出す。この通水孔を存在させるには支持部材の径方向の厚みが必要となる。したがって、特許文献1に開示の支持部材は電極プレート間の間隔を小さくする上で障害となる。 The cylindrical water conditioner disclosed in Patent Document 1 employs a configuration in which a water passage hole is provided in a support member that supports the upstream end portion and the downstream end portion of the diaphragm. This water passage hole extends in the direction of water flow. Then, water is supplied to the first gap between the cylindrical inner electrode plate and the diaphragm and the second gap between the diaphragm and the outer electrode plate through the water passage hole, and the first , Take out the electrolyzed water from the second gap. In order for this water passage hole to exist, the thickness of the support member in the radial direction is required. Therefore, the support member disclosed in Patent Document 1 becomes an obstacle in reducing the distance between the electrode plates.
 仮に、何らかの方策によって上記の障害を克服できたとしても、電極プレートと隔膜とを接近させ過ぎると、電極プレートと隔膜とが接触する事故が発生する可能性がある。言うまでもなく、電極プレートと隔膜が接触すると隔膜を損傷させてしまう。電極プレートと隔膜との接触事故を防止するという観点だけで見たときには、図14に開示の隔膜ユニット100及び図15のスペーサ113の格子状の形状は効果的である。しかし、格子構造の一部を構成する横断メンバ部分104、116は水の流れを阻害する要因となるため、連続的にアルカリ性水、酸性水を生成する効率を低下させてしまう。
 
Even if the above obstacles can be overcome by some measures, if the electrode plate and the diaphragm are brought too close to each other, an accident may occur in which the electrode plate and the diaphragm come into contact with each other. Needless to say, contact between the electrode plate and the diaphragm damages the diaphragm. From the viewpoint of preventing contact accidents between the electrode plate and the diaphragm, the grid-like shape of the diaphragm unit 100 disclosed in FIG. 14 and the spacer 113 in FIG. 15 is effective. However, since the transverse member portions 104 and 116 forming a part of the lattice structure become a factor that obstructs the flow of water, the efficiency of continuously generating alkaline water and acidic water is lowered.
 分子レベルの水素を電解水中に溶存させるためには、電極間に印加する電圧をできる限り低くして水を電気分解することが効果的である。この認識の下で、本願発明者は隔膜に関連した要素に注目して検討を加えた結果、本発明を案出するに至ったものである。 In order to dissolve molecular level hydrogen in electrolytic water, it is effective to electrolyze water by reducing the voltage applied between the electrodes as much as possible. Based on this recognition, the inventor of the present application has come up with the present invention as a result of focusing on and examining the elements related to the diaphragm.
 本発明の目的は、電極プレート間距離を極限まで狭めることのできる整水用電解槽を提供することある。これにより、低い印加電圧で電気分解を行うことができる。 An object of the present invention is to provide an electrolytic cell for water conditioning that can narrow the distance between electrode plates to the utmost limit. As a result, electrolysis can be performed with a low applied voltage.
 上記の技術的課題は、本発明にあっては、基本的には、
 陽極室と陰極室とを仕切る隔膜を有し、水を電気分解することにより前記陽極室で生成される酸性水と前記陰極室で生成されるアルカリ性水とを個別に取り出すことができる整水用電解槽において、
 前記陽極室に配置される陽電極プレートと前記隔膜との間、前記陰極室に配置される陰電極プレートと前記隔膜との間の少なくとも一方に配設されたスペーサを有し、
 該スペーサが前記隔膜とは別体であり、該スペーサの上流端部及び下流端部に位置する固定部により該スペーサが保持され、
 前記陽極室又は前記陰極室に水を供給する入口及び前記陽極室又は前記陰極室から電解水を取り出す出口が前記固定部よりも内側に位置し、
 前記スペーサが、水の流れ方向に沿って延びる線状体又は水の流れ方向に延びる複数の開口間のスペーサ部分を備えた樹脂シートで構成されていることを特徴とする整水用電解槽を提供することにより達成される。
The above technical problems are basically the same in the present invention.
For water conditioning, which has a diaphragm that separates the anode chamber and the cathode chamber, and can separately take out acidic water generated in the anode chamber and alkaline water generated in the cathode chamber by electrolyzing water. In the electrolytic cell
It has a spacer disposed between the positive electrode plate arranged in the anode chamber and the diaphragm, and at least one of the negative electrode plate arranged in the cathode chamber and the diaphragm.
The spacer is separate from the diaphragm, and the spacer is held by fixing portions located at the upstream end and the downstream end of the spacer.
The inlet for supplying water to the anode chamber or the cathode chamber and the outlet for taking out electrolyzed water from the anode chamber or the cathode chamber are located inside the fixed portion.
An electrolytic cell for water conditioning, wherein the spacer is composed of a linear body extending along the water flow direction or a resin sheet provided with spacer portions between a plurality of openings extending in the water flow direction. Achieved by providing.
 本発明によれば、電極間の離間距離を極限まで小さくすることができる。そして、これにより電極間に印加する電圧を低くすることできる。これにより、アルカリ性水中の溶存水素を大きな塊ではなく、分子レベルの水素のままでアルカリ性水を生成し、これを取り出すことができる。このアルカリ性水を飲用すれば、水素の体内吸収効率を高めることができるため、健康の増進に貢献できる。 According to the present invention, the separation distance between the electrodes can be minimized. As a result, the voltage applied between the electrodes can be reduced. As a result, it is possible to generate alkaline water with the dissolved hydrogen in the alkaline water as hydrogen at the molecular level instead of a large lump, and take it out. Drinking this alkaline water can increase the efficiency of hydrogen absorption in the body, which can contribute to the promotion of health.
 本発明の他の目的及び作用効果は、本発明の実施例の詳しい説明から明らかになろう。
 
Other objectives and effects of the present invention will become apparent from the detailed description of the examples of the present invention.
図1は、第1実施例の平板形電解槽の内部構造体によって形成される2つの陽極室と2つの陰極室の配置関係を説明するための図である。FIG. 1 is a diagram for explaining the arrangement relationship between the two anode chambers and the two cathode chambers formed by the internal structure of the flat plate type electrolytic cell of the first embodiment. 図2は、平板形電解槽に関する第1実施例の内部構造体の展開図であり、電極ユニットと隔膜との配置を説明するための図である。FIG. 2 is a developed view of the internal structure of the first embodiment regarding the flat plate electrolytic cell, and is a diagram for explaining the arrangement of the electrode unit and the diaphragm. 図3は図2に関連した図であり、図2とは別の方向から見た電極ユニットと隔膜との配置を示す。FIG. 3 is a diagram related to FIG. 2, and shows the arrangement of the electrode unit and the diaphragm as viewed from a direction different from that of FIG. 図4は陰極ユニットの構造を説明するための分解斜視図である。FIG. 4 is an exploded perspective view for explaining the structure of the cathode unit. 図5は、図4に関連した図であり、陰電極プレートを組み込んだ後の陰極ユニットの構造を説明するための図である。FIG. 5 is a diagram related to FIG. 4, and is a diagram for explaining the structure of the cathode unit after incorporating the negative electrode plate. 図6は陰極ユニットを例に紐状スペーサの配置及びその構成要素である紐が突起で反転して配置されることを説明するための部分拡大図である。FIG. 6 is a partially enlarged view for explaining the arrangement of the string-shaped spacers and the string which is a component thereof being inverted by the protrusions, taking the cathode unit as an example. 図7は第2実施例の円筒形電解槽の一部を切り欠いた斜視図である。FIG. 7 is a perspective view in which a part of the cylindrical electrolytic cell of the second embodiment is cut out. 図8は第2実施例の内部構造を説明するための概略断面図である。FIG. 8 is a schematic cross-sectional view for explaining the internal structure of the second embodiment. 図9は第2実施例に含まれる紐状スペーサを螺旋状に配置した例を説明するための図を示す。FIG. 9 shows a diagram for explaining an example in which the string-shaped spacers included in the second embodiment are arranged in a spiral shape. 図10は第2実施例に含まれる紐状スペーサの両端を固定する構造の一例を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining an example of a structure for fixing both ends of the string-shaped spacer included in the second embodiment. 図11は第2実施例に含まれる紐状スペーサに代えて樹脂シートでスペーサを構成した例を説明するための図である。FIG. 11 is a diagram for explaining an example in which the spacer is made of a resin sheet instead of the string-shaped spacer included in the second embodiment. 図12は図11に図示のシート状スペーサを組み込んだときに筒状の形態になることを説明するための図である。FIG. 12 is a diagram for explaining that the tubular shape is formed when the sheet-shaped spacer shown in FIG. 11 is incorporated. 図13は、シート状スペーサの平面図である。FIG. 13 is a plan view of the sheet-shaped spacer. 図14:従来の平板形電解槽に含まれる隔膜ユニットの斜視図である。FIG. 14: is a perspective view of a diaphragm unit included in a conventional flat plate electrolytic cell. 図15:従来の円筒形電解槽に関し、隔膜を含む組立体の斜視図である。FIG. 15: A perspective view of an assembly including a diaphragm with respect to a conventional cylindrical electrolytic cell.
 以下に、添付の図面に基づいて本発明の好ましい実施例を説明する。図1~図6は本発明の第1実施例を示す。第1実施例は平板形整水用電解槽に関するものである。この電解槽は2つの陽極室と2つの陰極室を備えているが、これは例示に過ぎない。一対の陽極室、陰極室を最小単位として電解槽が構成される。また、第1、第2の陽極ユニットと、その間に位置する一つの陰極ユニットとで電解槽が構成されているが、これとは逆に、2つの陰極ユニットと、これに挟まれた1つの陽極ユニットで電解槽を構成してもよいのは言うまでもない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. 1 to 6 show a first embodiment of the present invention. The first embodiment relates to a flat plate type water conditioning electrolytic cell. This electrolytic cell has two anode chambers and two cathode chambers, but this is only an example. An electrolytic cell is configured with a pair of anode chambers and cathode chambers as the smallest units. Further, the electrolytic cell is composed of the first and second anode units and one cathode unit located between them. On the contrary, two cathode units and one sandwiched between them. Needless to say, the electrolytic cell may be composed of an anode unit.
 図1は、第1実施例の平板形整水用電解槽において、その内部構造体の基本構成図である。図中、左側に位置する第1陽極室1と、右側に位置する第2陽極室2との間に、第1、第2の陰極室3、4が配置されている。第1陽極室1には第1陽電極プレート5が配置されている。第2陽極室2には第2陽電極プレート6が配置されている。第1陽極室1とその隣の第1陰極室3とは第1隔膜7で区画されている。同様に、第2陽極室2とその隣の第2陽極室4とは第2隔膜8で区画されている。第1陰極室3の陰電極プレートと第2陰極室4の陰電極プレートは一枚の共通陰電極プレート9で共用されている。 FIG. 1 is a basic configuration diagram of the internal structure of the flat plate type water conditioning electrolytic cell of the first embodiment. In the figure, the first and second cathode chambers 3 and 4 are arranged between the first anode chamber 1 located on the left side and the second anode chamber 2 located on the right side. A first positive electrode plate 5 is arranged in the first anode chamber 1. A second positive electrode plate 6 is arranged in the second anode chamber 2. The first anode chamber 1 and the first cathode chamber 3 adjacent to the first anode chamber 1 are partitioned by a first diaphragm 7. Similarly, the second anode chamber 2 and the second anode chamber 4 adjacent thereto are partitioned by a second diaphragm 8. The negative electrode plate of the first cathode chamber 3 and the negative electrode plate of the second cathode chamber 4 are shared by one common negative electrode plate 9.
 図2は、第1実施例の平板形整水用電解槽の内部構造体を構成する要素つまり第1、第2の2つの陽極ユニットと、その間に配置される陰極ユニットと、第1、第2の隔膜との分解斜視図である。図3は図2とは逆方向から見た図である。参照符号10、11は第1、第2の長方形の陽極ユニットを示す。第1陽極ユニット10には、第1隔膜7と対向する面に第1陽電極プレート5が組み込まれている。第2陽極ユニット11には、第2隔膜8と対向する面に第2陽電極プレート6が組み込まれている。 FIG. 2 shows the elements constituting the internal structure of the flat plate type water conditioning electrolytic cell of the first embodiment, that is, the first and second anode units, the cathode unit arranged between them, and the first and first ones. It is an exploded perspective view with 2 diaphragms. FIG. 3 is a view seen from the opposite direction to that of FIG. Reference numerals 10 and 11 indicate first and second rectangular anode units. The first anode unit 10 incorporates a first positive electrode plate 5 on a surface facing the first diaphragm 7. The second anode unit 11 incorporates a second positive electrode plate 6 on a surface facing the second diaphragm 8.
 第1、第2の陽極ユニット10、11には、夫々、第1、第2の陽電極プレート5、6に関連して紐状スペーサ15が配置されている。紐状スペーサ15は、第1、第2の陽極ユニット10、11の上流側端部及び下流側端部に配置された複数の突起16に係止され且つ折り返されて各陽極ユニット10、11の長手方向つまり水の流れ方向に沿って往復するように配置されている。そして、複数の突起16は紐状スペーサ15の固定部を構成している。この構成により、第1、第2の陽極ユニット10、11の幅方向に離間した複数の紐状スペーサ15は水の流れ方向に延びている。 In the first and second anode units 10 and 11, string-shaped spacers 15 are arranged in relation to the first and second positive electrode plates 5 and 6, respectively. The string-shaped spacer 15 is locked and folded back to a plurality of protrusions 16 arranged at the upstream end and the downstream end of the first and second anode units 10 and 11, respectively. It is arranged so as to reciprocate along the longitudinal direction, that is, the direction of water flow. The plurality of protrusions 16 form a fixing portion of the string-shaped spacer 15. With this configuration, the plurality of string-shaped spacers 15 separated in the width direction of the first and second anode units 10 and 11 extend in the water flow direction.
 ここに、紐状スペーサ15を構成する紐は典型例に過ぎない。紐に代えて細長い棒状体であってもよい。これ等を総称して「線状体」と呼ぶことができる。 Here, the string constituting the string-shaped spacer 15 is only a typical example. Instead of the string, it may be an elongated rod-shaped body. These can be collectively called "straiatum".
 第1、第2の陽極ユニット10、11の間に陰極ユニット12が配置される。陰極ユニット12の構造を図4、図5を参照して説明する。陰極ユニット12は、その中央に大きな開口12aを有し(図4)、この開口12aの長手方向中間部分に陰電極プレート9が設置される(図5)。この構成により、陰極ユニット12には、陰電極プレート9の上下に第1、第2の通水口12(us)、12(ds)が形成される。この実施例では、下方の第1の通水口12(us)が上流側の通水口であり、第1、第2の陰極室3、4に関する水の入口である。上方の第2の通水口12(ds)は下流側の通水口であり、第1、第2の陰極室3、4に関するアルカリ性水の出口である。なお、陰極ユニット12は、図2、図3を参照すると分かるように、その両面に紐状スペーサ15が設けられている。すなわち、陰極ユニット12は、第1隔膜7と対向する第1の面と、第2隔膜8と対向する第2の面に夫々紐状スペーサ15が設けられている。 The cathode unit 12 is arranged between the first and second anode units 10 and 11. The structure of the cathode unit 12 will be described with reference to FIGS. 4 and 5. The cathode unit 12 has a large opening 12a in the center thereof (FIG. 4), and a negative electrode plate 9 is installed in the intermediate portion in the longitudinal direction of the opening 12a (FIG. 5). With this configuration, the cathode unit 12 is formed with first and second water passage ports 12 (us) and 12 (ds) above and below the negative electrode plate 9. In this embodiment, the lower first water passage 12 (us) is the upstream water passage, and is the water inlet for the first and second cathode chambers 3 and 4. The upper second water passage 12 (ds) is a downstream water passage, and is an outlet for alkaline water for the first and second cathode chambers 3 and 4. As can be seen from FIGS. 2 and 3, the cathode unit 12 is provided with string-shaped spacers 15 on both sides thereof. That is, the cathode unit 12 is provided with a string-shaped spacer 15 on the first surface facing the first diaphragm 7 and on the second surface facing the second diaphragm 8, respectively.
 内部構造体は、図2、図3から分かるように、第1陽極ユニット10、陰電極ユニット12、第2陽極ユニット11で第1、第2の隔膜7、8をサンドイッチした形態で組み立てられる。参照符号Thはボルト挿通孔である。ボルト挿通孔Thは、各ユニット10~12、第1、第2の隔膜7、8の全周に亘って、その縁部に設けられ、これらの要素を貫通する複数のボルトによって内部構造体が組み立てられる。 As can be seen from FIGS. 2 and 3, the internal structure is assembled by sandwiching the first and second diaphragms 7 and 8 with the first anode unit 10, the negative electrode unit 12, and the second anode unit 11. Reference numeral Th is a bolt insertion hole. The bolt insertion holes Th are provided at the edges of the units 10 to 12 and the first and second diaphragms 7 and 8 over the entire circumference, and the internal structure is formed by a plurality of bolts penetrating these elements. Assembled.
 図6は、陰極ユニット12の上部を抽出した図である。紐スペーサ15の複数の突起16は、上方の下流側通水口12(ds)に隣接して且つその上方において横並びに且つ間隔を置いて配置されている。この構成は、下方の上流側通水口12(us)に隣接して位置する複数の突起16も同じであり、下方に位置する突起16は下方の上流側通水口12(us)に隣接して且つその下方において横並びに且つ間隔を置いて配置されている(図2、図3)。複数の突起16のこの配置は第1、第2の陽極ユニット10、11も同じである。 FIG. 6 is a diagram in which the upper part of the cathode unit 12 is extracted. The plurality of protrusions 16 of the string spacer 15 are arranged adjacent to and above the downstream water passage 12 (ds) on the upper side, side by side and at intervals. This configuration is the same for the plurality of protrusions 16 located adjacent to the lower upstream water passage 12 (us), and the lower protrusion 16 is adjacent to the lower upstream water passage 12 (us). And below that, they are arranged side by side and at intervals (FIGS. 2 and 3). This arrangement of the plurality of protrusions 16 is the same for the first and second anode units 10 and 11.
 図3を参照して、第1陽極ユニット10には、陽電極プレート5に隣接してその上下に下流側、上流側の凹所つまりポケット20(us)、20(ds)が形成されている。また、第2陽極ユニット11には、陽電極プレート6に隣接してその上下に流側、下流側の凹所つまりポケット22(ds)、22(ds)が形成されている。この4つの凹所つまりポケット20(us)、20(ds)、22(ds)、22(ds)は水の流路の一部を構成する。第1、第2の陽極ユニット10、11に設けられた紐スペーサ15の複数の突起16は、陰極ユニット12と同様に上下の端部に配置される。そして上方の下流側ポケット20(ds)、22(ds)に隣接してその上方に突起16が設けられ、また、下方の上流側ポケット20(us)、22(us)、に隣接してその下方に突起16が設けられている(図2、図3)。 With reference to FIG. 3, in the first anode unit 10, recesses on the downstream side and the upstream side, that is, pockets 20 (us) and 20 (ds) are formed above and below the positive electrode plate 5 adjacent to the positive electrode plate 5. .. Further, the second anode unit 11 is formed with recesses on the flow side and the downstream side, that is, pockets 22 (ds) and 22 (ds) above and below the positive electrode plate 6 adjacent to the positive electrode plate 6. These four recesses, that is, pockets 20 (us), 20 (ds), 22 (ds), and 22 (ds) form a part of the water flow path. The plurality of protrusions 16 of the string spacer 15 provided on the first and second anode units 10 and 11 are arranged at the upper and lower ends in the same manner as the cathode unit 12. A protrusion 16 is provided above the upper downstream pockets 20 (ds) and 22 (ds) adjacent to the upper downstream pockets 20 (ds) and 22 (ds), and the protrusion 16 is provided adjacent to the lower upstream pockets 20 (us) and 22 (us). A protrusion 16 is provided below (FIGS. 2 and 3).
 次に、第1実施例の平板形整水用電解槽においてその内部構造体中の水の流れを説明する。図2、図3に図示の第1陽極ユニット10及び図1を参照して、第1陽極ユニット10の下部の2つの孔Hin1、Hin2(図2)は、外部の導水管を通じて内部構造体の中に水を導入する第1、第2の入口を構成している。第1の入口孔Hin1は、第1、第2の陽極室1、2(図1)の中に水を供給する機能を有している。第2の入口孔Hin2は、第1、第2の陰極室3、4の中に水を供給する機能を有している。 Next, the flow of water in the internal structure of the flat plate type water conditioning electrolytic cell of the first embodiment will be described. With reference to the first anode unit 10 and FIG. 1 illustrated in FIGS. 2 and 3, the two lower holes Hin1 and Hin2 (FIG. 2) of the first anode unit 10 are of the internal structure through an external water pipe. It constitutes the first and second inlets for introducing water into it. The first inlet hole Hin1 has a function of supplying water into the first and second anode chambers 1 and 2 (FIG. 1). The second inlet hole Hin2 has a function of supplying water into the first and second cathode chambers 3 and 4.
 第1陽極ユニット10の上部の2つの孔Hout1、Hout2(図2)は、電解水を外部に排出する第1、第2の出口を構成している。第1の出口孔Hout1は、第1、第2の陽極室1、2に通じており、第1、第2の陽極室1,2で生成された酸性水を外部に取り出す機能を有している。第2の出口孔Hout2は、第1、第2の陰極室3、4に通じており、第1、第2の陰極室3、4で生成されたアルカリ性水を外部に取り出す機能を有している。 The two holes Hout1 and Hout2 (FIG. 2) at the top of the first anode unit 10 form the first and second outlets for discharging the electrolyzed water to the outside. The first outlet hole Hout1 is connected to the first and second anode chambers 1 and 2, and has a function of taking out the acidic water generated in the first and second anode chambers 1 and 2 to the outside. There is. The second outlet hole Hout2 is connected to the first and second cathode chambers 3 and 4, and has a function of taking out the alkaline water generated in the first and second cathode chambers 3 and 4 to the outside. There is.
 第1陽極ユニット1の第1の入口孔Hin1に入った水は、第1の流路として、陽極ユニット1の下方凹所つまり上流側ポケット20(us)に入る。そして、第1陽極室1の中を上方に移動する過程で酸性水になる。そして、この酸性水は上方凹所つまり下流側ポケット20(ds)に入り、このポケット20(ds)に開口している第1の出口孔Hout1から外部に取り出される。つまり、上流側ポケット20(us)が第1陽極室1の入口を実質的に構成し、下流側ポケット20(ds)が第1陽極室1で生成した酸性水の出口を実質的に構成している。 The water that has entered the first inlet hole Hin1 of the first anode unit 1 enters the lower recess, that is, the upstream pocket 20 (us) of the anode unit 1 as the first flow path. Then, it becomes acidic water in the process of moving upward in the first anode chamber 1. Then, the acidic water enters the upper recess, that is, the downstream pocket 20 (ds), and is taken out from the first outlet hole Hout1 opened in the pocket 20 (ds). That is, the upstream pocket 20 (us) substantially constitutes the inlet of the first anode chamber 1, and the downstream pocket 20 (ds) substantially constitutes the outlet of the acidic water generated in the first anode chamber 1. ing.
 第1陽極ユニット1の第1の入口孔Hin1に入った水は、第2の流路として、第1隔膜7の下方通水孔24を通り陰極ユニット12の下方通水孔26、第2隔膜8の下方通水孔28を通り抜けて第2陽極ユニット11の下方凹所つまり上流側ポケット22(us)に入る。第2陽極ユニット11の下方ポケット22(us)に入った水は第2陽極室2の中を上方に移動する過程で酸性水になる。そして、この酸性水は上方凹所つまり下流側ポケット22(ds)(図2)に入る。下流側ポケット22(ds)には、第2隔膜8の上方通水孔30が開口している。そして、この上方通水孔30は、陰極ユニット12の上方通水孔32、第1隔膜7の第1上方通水孔34に通じており、この第1隔膜7の上方通水孔34は、第1陽極ユニット1の第1の出口孔Hout1に通じている。前述したように、第1の出口孔Hout1は第1陽極室1で生成した酸性水の出口であることから、この第1陽極室1の酸性水と、第2酸性室2の酸性水とが第1出口孔Hout1で合流して、この第1の出口孔Hout1から外部に取り出される。 The water that has entered the first inlet hole Hin1 of the first anode unit 1 passes through the lower water passage hole 24 of the first diaphragm 7 as the second flow path, and the lower water passage hole 26 and the second diaphragm of the cathode unit 12. It passes through the lower water passage hole 28 of No. 8 and enters the lower recess, that is, the upstream pocket 22 (us) of the second anode unit 11. The water that has entered the lower pocket 22 (us) of the second anode unit 11 becomes acidic water in the process of moving upward in the second anode chamber 2. Then, this acidic water enters the upper recess, that is, the downstream pocket 22 (ds) (FIG. 2). An upper water passage hole 30 of the second diaphragm 8 is opened in the downstream pocket 22 (ds). The upper water passage hole 30 leads to the upper water passage hole 32 of the cathode unit 12 and the first upper water passage hole 34 of the first diaphragm 7, and the upper water passage hole 34 of the first diaphragm 7 is connected to the upper water passage hole 34. It leads to the first outlet hole Hout1 of the first anode unit 1. As described above, since the first outlet hole Hout1 is the outlet of the acidic water generated in the first anode chamber 1, the acidic water in the first anode chamber 1 and the acidic water in the second acidic chamber 2 are separated from each other. It merges at the first outlet hole Hout1 and is taken out from the first outlet hole Hout1.
 第1陽極ユニット10の第2の入口孔Hin2は、第1隔膜7の下方通水孔40、陰極ユニット12の下方の上流側通水口12(us)に通じている。このことから第1陽極ユニット10の第2入口孔Hin2に入った水は陰極ユニット12の上流側通水口12(us)に供給される。陰極ユニット12の上流側通水口12(us)に入った水は、第1、第2の陰極室3、4の中を上方に移動する過程でアルカリ性水になる。第1陰極室3で生成されたアルカリ性水と第2陰極室4で生成されたアルカリ性水は陰極ユニット12の下流側通水口12(ds)で合流する。つまり、上流側通水口12(us)が、第1、第2の陰極室3、4の入口を実質的に構成し、下流側通水口12(ds)が第1、第2の陰極室3、4で生成したアルカリ性水の出口を実質的に構成している。下流側通水口12(ds)は、第1隔膜7の第2上方通水孔42を通じて第1陽極ユニット10の第2の出口孔Hout2に連通している。これにより、第1、第2の陰極室3、4で生成されたアルカリ性水は第1陽極ユニット10の第2の出口孔Hout2から外部に取り出される。 The second inlet hole Hin2 of the first anode unit 10 leads to the lower water passage hole 40 of the first diaphragm 7 and the upstream water passage port 12 (us) below the cathode unit 12. Therefore, the water that has entered the second inlet hole Hin2 of the first anode unit 10 is supplied to the water passage port 12 (us) on the upstream side of the cathode unit 12. The water that has entered the upstream water passage 12 (us) of the cathode unit 12 becomes alkaline water in the process of moving upward in the first and second cathode chambers 3 and 4. The alkaline water generated in the first cathode chamber 3 and the alkaline water generated in the second cathode chamber 4 merge at the downstream water passage 12 (ds) of the cathode unit 12. That is, the upstream water passage 12 (us) substantially constitutes the inlets of the first and second cathode chambers 3 and 4, and the downstream water passage 12 (ds) substantially constitutes the inlets of the first and second cathode chambers 3 and 4. It substantially constitutes the outlet of the alkaline water generated in 4. The downstream water passage 12 (ds) communicates with the second outlet hole Hout 2 of the first anode unit 10 through the second upper water passage 42 of the first diaphragm 7. As a result, the alkaline water generated in the first and second cathode chambers 3 and 4 is taken out from the second outlet hole Hout2 of the first anode unit 10.
 注目すべきは、第1陽極ユニット10の下部の2つの入口孔Hin1、Hin2が下方の紐スペーサ15の複数の突起16つまり線状体の固定部よりも上方に位置している点である。同様に、第1陽極ユニット10の上部の2つの出口孔Hout1、Hout2が上方の紐スペーサ15の複数の突起16よりも下方(内側)に位置している点である。また、第1陽極ユニット1の下方凹所つまりポケット20(ds)、第1隔膜7の下方に位置する第1、第2の通水孔40、12などの水の経路を構成する要素の全てが下方の紐スペーサ15の複数の突起16つまり線状体の固定部より上方つまり内側に位置している点に注目すべきである。同様に、第1陽極ユニット10の上部の2つの出口孔Hout1、Hout2など水の経路を構成する要素の全てが上方の紐スペーサ15の複数の突起16よりも下方つまり内側に位置している点に注目すべきである。 It should be noted that the two inlet holes Hin1 and Hin2 at the lower part of the first anode unit 10 are located above the plurality of protrusions 16 of the lower string spacer 15, that is, the fixed portion of the linear body. Similarly, the two outlet holes Hout1 and Hout2 at the upper part of the first anode unit 10 are located below (inside) the plurality of protrusions 16 of the upper string spacer 15. In addition, all the elements constituting the water path such as the lower recess of the first anode unit 1, that is, the pocket 20 (ds), and the first and second water passage holes 40 and 12 located below the first diaphragm 7. It should be noted that is located above, or inside, the plurality of protrusions 16 of the lower string spacer 15, that is, the fixed portion of the linear body. Similarly, all of the elements constituting the water path, such as the two outlet holes Hout1 and Hout2 on the upper part of the first anode unit 10, are located below, that is, inside the plurality of protrusions 16 of the upper string spacer 15. Should be noted.
 このことから、第1陽電極プレート5と第1隔膜7との間に介在する紐状スペーサ15によって第1陽電極プレート5と第1隔膜7との接触が防止され、また、第1陽電極プレート5と第1隔膜7との間の間隔が紐状スペーサ15によって規定される。同じことが、第1隔膜7と陰電極プレート9との間の間隔、陰電極プレート9と第2隔膜8との間の間隔、第2隔膜8と第2陽電極プレート6との間の間隔についても言える。 From this, the string-shaped spacer 15 interposed between the first positive electrode plate 5 and the first diaphragm 7 prevents the contact between the first positive electrode plate 5 and the first diaphragm 7, and the first positive electrode The distance between the plate 5 and the first diaphragm 7 is defined by the string spacer 15. The same is true for the distance between the first diaphragm 7 and the negative electrode plate 9, the distance between the negative electrode plate 9 and the second diaphragm 8, and the distance between the second diaphragm 8 and the second positive electrode plate 6. The same can be said about.
 したがって、内部構造体の電極間の間隔を極めて小さくすることができる。紐状スペーサ15の太さを小さくすれば、各電極と隔膜の距離が縮まり、電極間の離間距離も縮まる。 Therefore, the distance between the electrodes of the internal structure can be made extremely small. If the thickness of the string-shaped spacer 15 is reduced, the distance between each electrode and the diaphragm is shortened, and the separation distance between the electrodes is also shortened.
 ここで、印加電圧を大きくすると反応が激しくなり多くの水素が発生するので、溶存水素が増えると考えがちであるが、反応が激しいため発生した分子レベルの水素同士が合体して大きくなってしまう。大きくなった水素の塊はガスとなって水中から抜け出す為、溶存水素にはならない事と、溶存している水素自体が大きな塊となってしまう為、体への吸収効率が悪くなる。第1実施例の平板形電極槽によれば、電極間距離を極限まで小さくすることができるため、例えば12V(ボルト)や24Vの低電圧でも電気分解できる。 Here, when the applied voltage is increased, the reaction becomes violent and a large amount of hydrogen is generated, so it is easy to think that the dissolved hydrogen increases. .. Since the enlarged hydrogen mass becomes a gas and escapes from the water, it does not become dissolved hydrogen, and the dissolved hydrogen itself becomes a large mass, so that the absorption efficiency into the body deteriorates. According to the flat plate type electrode tank of the first embodiment, the distance between the electrodes can be reduced to the utmost limit, so that electrolysis can be performed even at a low voltage of, for example, 12 V (volt) or 24 V.
 ちなみに、現在入手可能な電解アルカリ性水を生成する整水器では電極間距離が4mm以上であり、印加電圧は70Vである。実施例のように12Vや24Vの低電圧での電気分解反応は穏やかである。この結果、電気分解で発生する水素が合体する可能性が小さくなる。これにより、合体によるガス化によって水素が水から抜け出してしまう量が減ると共に、溶存水素を分子レベルのまま維持することが可能となる。 By the way, in the currently available water conditioners that generate electrolytic alkaline water, the distance between the electrodes is 4 mm or more, and the applied voltage is 70 V. As in the examples, the electrolysis reaction at a low voltage of 12V or 24V is mild. As a result, the possibility of hydrogen generated by electrolysis coalescing is reduced. As a result, the amount of hydrogen that escapes from the water due to gasification by coalescence is reduced, and the dissolved hydrogen can be maintained at the molecular level.
 また紐状スペーサ15を構成する紐17で代表される線状体が水の流れ方向に延びているため、各室1~4内で水は円滑に流れることができる。 Further, since the linear body represented by the string 17 constituting the string-shaped spacer 15 extends in the direction of water flow, water can flow smoothly in each of the chambers 1 to 4.
 図7~図13は第2実施例を説明するための図である。第2実施例は円筒形電解槽に関する。図7は円筒形電解槽の一部を切り欠いた斜視図である。参照符号50は円筒状の内側電極プレート、52は円筒状の外側電極プレート、54は隔膜、56は筐体を示す。筐体56の入口58から入った水は、筐体56の内部の中心孔60に入る第1の流れと、その外側の上流側隙間62に入る第2の流れに分かれる。図8を参照して、中心孔60に入った第1の水Aは、中心のコア64に複数設けられた上流孔66から円筒状の隔膜54の内周側に入り(図7)、隔膜54と円筒状の内側電極プレート50の間を流れてコア64の他端の複数の下流孔68からコア64の内側に入り筐体第1出口70から排出される(図7)。筐体第1出口70は筐体56の軸線方向に延びている。ここに、隔膜54はコア64の長手方向両端近傍においてコア64に固定されている。 7 to 13 are diagrams for explaining the second embodiment. The second embodiment relates to a cylindrical electrolytic cell. FIG. 7 is a perspective view in which a part of the cylindrical electrolytic cell is cut out. Reference numeral 50 indicates a cylindrical inner electrode plate, 52 indicates a cylindrical outer electrode plate, 54 indicates a diaphragm, and 56 indicates a housing. The water that has entered from the inlet 58 of the housing 56 is divided into a first flow that enters the central hole 60 inside the housing 56 and a second flow that enters the upstream gap 62 on the outside thereof. With reference to FIG. 8, the first water A entering the central hole 60 enters the inner peripheral side of the cylindrical diaphragm 54 from a plurality of upstream holes 66 provided in the central core 64 (FIG. 7), and enters the diaphragm. It flows between the 54 and the cylindrical inner electrode plate 50, enters the inside of the core 64 through a plurality of downstream holes 68 at the other end of the core 64, and is discharged from the housing first outlet 70 (FIG. 7). The housing first outlet 70 extends in the axial direction of the housing 56. Here, the diaphragm 54 is fixed to the core 64 in the vicinity of both ends in the longitudinal direction of the core 64.
 一方、上流側隙間62に入った第2の水B(図8)は、円筒状の隔膜54の外周側を通り、隔膜54と円筒状の外側電極プレート52の間を流れて下流側隙間72を通って筐体第2出口74(図7)から排出される。筐体第2出口74は筐体56の軸線と直交する方向に延びている。 On the other hand, the second water B (FIG. 8) that has entered the upstream gap 62 passes through the outer peripheral side of the cylindrical diaphragm 54, flows between the diaphragm 54 and the cylindrical outer electrode plate 52, and flows through the downstream gap 72. It is discharged from the second outlet 74 (FIG. 7) of the housing through the housing. The housing second outlet 74 extends in a direction orthogonal to the axis of the housing 56.
 仮に、内側電極プレート50を陽極に設定し、外側電極プレート52を陰極に設定した場合、隔膜54の外側を通る水Bがアルカリ性水になる。隔膜54の内側を通る水Aが酸性水になる。逆に、内側電極プレート50を陰極に設定し、外側電極プレート52を陽極に設定した場合、隔膜54の内側を通る水Aがアルカリ性水になる。隔膜54の外側を通る水Bが酸性水になる。 If the inner electrode plate 50 is set as the anode and the outer electrode plate 52 is set as the cathode, the water B passing through the outside of the diaphragm 54 becomes alkaline water. The water A passing through the inside of the diaphragm 54 becomes acidic water. On the contrary, when the inner electrode plate 50 is set as the cathode and the outer electrode plate 52 is set as the anode, the water A passing through the inside of the diaphragm 54 becomes alkaline water. The water B passing outside the diaphragm 54 becomes acidic water.
 第2実施例も紐状スペーサ15を含んでいる。紐状スペーサ15は、図7に開示の例では円筒中心線に対して平行に配置されているが、湾曲した内側電極プレート50に螺旋状に巻き付けるようにして配置されていてもよい(図9)。 The second embodiment also includes the string-shaped spacer 15. Although the string-shaped spacer 15 is arranged parallel to the center line of the cylinder in the example disclosed in FIG. 7, it may be arranged so as to spirally wind around the curved inner electrode plate 50 (FIG. 9). ).
 図8は本発明の技術的思想を典型的に表している。図8から最も良く分かるように、紐状スペーサ15は上流側及び下流側の端部で突起16により固定され、そして保持されている。そして、上流側と下流側の突起16つまり線状体の固定部(図6、図7)よりも内側で水が取り込まれ、そしてアルカリ性水が取り出される。つまり、陰極室の出入口66、68が突起16よりも陰極室の内方に位置している。また、上流側及び下流側の突起16は紐状スペーサ15よりも径方向内方に位置している。このことから、隔膜54と内側電極プレート50との間隔を紐17によって規定することができ、また紐17によって隔膜54と内側電極プレート50との接触事故を未然に防止できる。換言すれば、隔膜54と内側電極プレート50との離間間隔を紐状スペーサ15の太さまで小さくすることができる。 FIG. 8 typically represents the technical idea of the present invention. As can be best seen from FIG. 8, the string spacer 15 is fixed and held by protrusions 16 at the upstream and downstream ends. Then, water is taken in inside the protrusions 16 on the upstream side and the downstream side, that is, the fixed portions (FIGS. 6 and 7) of the linear body, and alkaline water is taken out. That is, the entrances 66 and 68 of the cathode chamber are located inside the cathode chamber with respect to the protrusions 16. Further, the protrusions 16 on the upstream side and the downstream side are located inward in the radial direction with respect to the string-shaped spacer 15. From this, the distance between the diaphragm 54 and the inner electrode plate 50 can be defined by the string 17, and the string 17 can prevent a contact accident between the diaphragm 54 and the inner electrode plate 50. In other words, the distance between the diaphragm 54 and the inner electrode plate 50 can be reduced to the thickness of the string-shaped spacer 15.
 図9は紐状スペーサ15を螺旋状に配置した例を示す図である。また、図9及び図10はスペーサ突起16に代えて下流側固定溝76と上流側固定溝78で紐17の両端部を固定した例を示している。これら下流側固定溝76、上流側固定溝78は径方向内方に向けて凹んだ形状を有していることから、下流側固定溝76、上流側固定溝78による紐17に関する固定部が紐17よりも径方向外方に突出することはない。 FIG. 9 is a diagram showing an example in which the string-shaped spacer 15 is arranged in a spiral shape. Further, FIGS. 9 and 10 show an example in which both ends of the string 17 are fixed by the downstream side fixing groove 76 and the upstream side fixing groove 78 instead of the spacer protrusion 16. Since the downstream fixing groove 76 and the upstream fixing groove 78 have a shape recessed inward in the radial direction, the fixing portion of the string 17 by the downstream fixing groove 76 and the upstream fixing groove 78 is a string. It does not protrude outward in the radial direction from 17.
 紐状スペーサ15の代わりに、樹脂性の薄い一枚の長孔を備えたシート状スペーサ80を採用してもよい。図11~図14は、シート状スペーサ80に関する図である。図13を参照して、シート状スペーサ80はPP(ポリプロピレン)樹脂からなる薄いシートで構成されている。平面視矩形のシート状スペーサ80は、その全域において、水の流れ方向に延びる複数の細長い開口80aを有し、この細長い開口80aは抜き加工によって形成されている。この細長い開口80aは、シート状スペーサ80の上流端部から下流端部まで連続して延びており、実施例の格子状スペーサ113の横断メンバ116(図15)のような要素を含んでいない。そして、隣接する2つの開口80aの間の部分80bが実質的にスペーサとして機能する。複数の残存するスペーサ部分80bは水の流れ方向に延びており、且つ、隣接する2つのスペーサ部分80bは互いに平行である。つまり、隣接する2つの開口80aの間のスペーサ部分80bは第1実施例などで説明した紐17を典型例とする糸状体と同様にスペーサとして機能する。 Instead of the string-shaped spacer 15, a sheet-shaped spacer 80 having a single elongated hole made of resin may be adopted. 11 to 14 are views on the sheet spacer 80. With reference to FIG. 13, the sheet spacer 80 is made of a thin sheet made of PP (polypropylene) resin. The sheet-shaped spacer 80 having a rectangular shape in a plan view has a plurality of elongated openings 80a extending in the water flow direction in the entire area thereof, and the elongated openings 80a are formed by punching. The elongated opening 80a extends continuously from the upstream end to the downstream end of the sheet spacer 80 and does not include an element such as the transverse member 116 (FIG. 15) of the grid spacer 113 of the embodiment. Then, the portion 80b between the two adjacent openings 80a substantially functions as a spacer. The plurality of remaining spacer portions 80b extend in the water flow direction, and the two adjacent spacer portions 80b are parallel to each other. That is, the spacer portion 80b between the two adjacent openings 80a functions as a spacer in the same manner as the thread-like body typified by the string 17 described in the first embodiment or the like.
 図13に示すシート状スペーサ80は、これを丸めると円筒状になる(図12)。また、
シート状スペーサ80の円筒状は円筒形電解槽の中に組み込んでも維持される。換言すれば、シート状スペーサ80は保形性を有している。このことから、第1実施例などで採用した紐17と違って、シート状スペーサ80の上流端、下流端を何らかの部材でクランプすることでシート状スペーサ80の位置決め及び固定することが可能である。したがって、図8を参照して説明した入口66、出口68をシート状スペーサ80の上流側及び下流側の端部から内方側に配置する構成を採用すれば、内側電極プレート50の周りに配置された円筒状のシート状スペーサ80(図12)の直径を内側電極プレート50の外径と実質的に等しくすることができる。
The sheet-shaped spacer 80 shown in FIG. 13 becomes cylindrical when rolled (FIG. 12). Also,
The cylindrical shape of the sheet spacer 80 is maintained even when incorporated in a cylindrical electrolytic cell. In other words, the sheet-shaped spacer 80 has shape retention. Therefore, unlike the string 17 adopted in the first embodiment or the like, the sheet-shaped spacer 80 can be positioned and fixed by clamping the upstream end and the downstream end of the sheet-shaped spacer 80 with some member. .. Therefore, if the inlet 66 and the outlet 68 described with reference to FIG. 8 are arranged inward from the upstream and downstream ends of the sheet spacer 80, they are arranged around the inner electrode plate 50. The diameter of the formed cylindrical sheet spacer 80 (FIG. 12) can be made substantially equal to the outer diameter of the inner electrode plate 50.
 上述したシート状スペーサ80は、第1実施例の平板形電解槽にも適用可能であるのは言うまでもない。 Needless to say, the sheet-shaped spacer 80 described above can also be applied to the flat plate type electrolytic cell of the first embodiment.
 第1、第2実施例において、電極プレート間の離間距離を極限まで小さく出来るため、例えば12V(ボルト)或いは24Vという低い電圧でも所望のpHまでアルカリ性水を作り出す事が出来る。そして、陰極室で発生する水素を分子レベルのままで維持できる。この分子レベルの水素を含むアルカリ性水を飲用することで体内への吸収効率を高めることができる。 In the first and second embodiments, the separation distance between the electrode plates can be minimized, so that alkaline water can be produced to a desired pH even at a low voltage of, for example, 12 V (volt) or 24 V. Then, the hydrogen generated in the cathode chamber can be maintained at the molecular level. Drinking alkaline water containing hydrogen at the molecular level can increase the efficiency of absorption into the body.
 従来の飲料用電解水生成装置においては、イオン濃度を安定させるために隔膜の上流端及び下流端を通じて水が流れる構成が採用されている。本発明においては、電極と隔膜との間に配置されるスペーサを固定する部位よりも内側つまり電解室の中央側に水の出入り口が位置しているためスペーサ固定部の形状に影響を受けないで電解槽を設計できる。このためスペーサ固定部による制約を受けることなく、スペーサの厚みを極限まで小さくすることができる。本発明は、一般家庭向けの整水器に適用することで、家庭用整水器を従来よりも小型の整水器を各家庭に提供できる。また、本発明は、各国の電気検査の必要がない24V以下の電圧で飲料用のアルカリ性水を生成する整水器を各家庭に提供できる具体的な方策を提案している。 In the conventional electrolyzed water generator for beverages, a configuration in which water flows through the upstream end and the downstream end of the diaphragm is adopted in order to stabilize the ion concentration. In the present invention, since the water inlet / outlet is located inside the portion for fixing the spacer arranged between the electrode and the diaphragm, that is, on the central side of the electrolytic cell, the shape of the spacer fixing portion is not affected. You can design an electrolytic cell. Therefore, the thickness of the spacer can be reduced to the utmost limit without being restricted by the spacer fixing portion. By applying the present invention to a water conditioner for general households, it is possible to provide a water conditioner for household use, which is smaller than the conventional one, to each household. The present invention also proposes a specific measure capable of providing each household with a water conditioner that produces alkaline water for drinking at a voltage of 24 V or less that does not require electrical inspection in each country.
 1 第1陽極室
 2 第2陽極室
 3 第1陰極室
 4 第2陰極室
 5 第1陽極室1の第1陽電極プレート
 6 第2陽極室2の第2陽電極プレート
 7 第1隔膜
 8 第2隔膜
 9 共通陰電極プレート
15 紐状スペーサ
16 スペーサの突起
Hin1 第1陽極ユニットの第1入口孔(陽極室用の水を供給)
Hin2 第1陽極ユニットの第2入口孔(陰極室用の水を供給)
Hout1 第1陽極ユニットの第1出口孔(酸性水の取出し)
Hout2 第1陽極ユニットの第2出口孔(アルカリ性水の取出し)
50 内側電極プレート
52 外側電極プレート
54 隔膜
56 筐体
58 筐体の入口
70 筐体第1出口
74 筐体第2出口
76 スペーサに関する下流側固定溝
78 スペーサに関する上流側固定溝
80 シート状スペーサ
80a シート状スペーサ細長い開口
80b 実質的にスペーサとして機能するスペーサ部分
1 1st anode chamber 2 2nd anode chamber 3 1st cathode chamber 4 2nd cathode chamber 5 1st positive electrode plate of 1st anode chamber 6 2nd positive electrode plate of 2nd anode chamber 2 7 1st diaphragm 8th 2 Diaphragm 9 Common negative electrode plate 15 String-shaped spacer 16 Spacer protrusion Hin1 First inlet hole of the first anode unit (supplying water for the anode chamber)
Hin2 2nd inlet hole of 1st anode unit (supplying water for cathode chamber)
Hout1 1st outlet hole of 1st anode unit (takeout of acidic water)
Hout2 2nd outlet hole of 1st anode unit (take out of alkaline water)
50 Inner electrode plate 52 Outer electrode plate 54 Septum 56 Housing 58 Housing inlet 70 Housing first outlet 74 Housing second outlet 76 Downstream fixing groove for spacer 78 Upstream fixing groove for spacer 80 Sheet-shaped spacer 80a Sheet Shaped spacer Elongated opening 80b Spacer part that substantially functions as a spacer

Claims (7)

  1.  陽極室と陰極室とを仕切る隔膜を有し、水を電気分解することにより前記陽極室で生成される酸性水と前記陰極室で生成されるアルカリ性水とを個別に取り出すことができる整水用電解槽において、
     前記陽極室に配置される陽電極プレートと前記隔膜との間、前記陰極室に配置される陰電極プレートと前記隔膜との間の少なくとも一方に配設されたスペーサを有し、
     該スペーサが前記隔膜とは別体であり、該スペーサの上流端部及び下流端部に位置する固定部により該スペーサが保持され、
     前記陽極室又は前記陰極室に水を供給する入口及び前記陽極室又は前記陰極室から電解水を取り出す出口が前記固定部よりも内側に位置し、
     前記スペーサが、水の流れ方向に沿って延びる線状体又は水の流れ方向に延びる複数の開口間のスペーサ部分を備えた樹脂シートで構成されていることを特徴とする整水用電解槽。
    For water conditioning, which has a diaphragm that separates the anode chamber and the cathode chamber, and can separately take out acidic water generated in the anode chamber and alkaline water generated in the cathode chamber by electrolyzing water. In the electrolytic cell
    It has a spacer disposed between the positive electrode plate arranged in the anode chamber and the diaphragm, and at least one of the negative electrode plate arranged in the cathode chamber and the diaphragm.
    The spacer is separate from the diaphragm, and the spacer is held by fixing portions located at the upstream end and the downstream end of the spacer.
    The inlet for supplying water to the anode chamber or the cathode chamber and the outlet for taking out electrolyzed water from the anode chamber or the cathode chamber are located inside the fixed portion.
    An electrolytic cell for water conditioning, wherein the spacer is composed of a linear body extending along the flow direction of water or a resin sheet provided with a spacer portion between a plurality of openings extending in the flow direction of water.
  2.  前記スペーサが前記樹脂シートで構成され、
     前記樹脂シートの前記開口が抜き加工によって作られている、請求項1に記載の整水用電解槽。
    The spacer is composed of the resin sheet.
    The electrolytic cell for water conditioning according to claim 1, wherein the opening of the resin sheet is formed by punching.
  3.  前記抜き加工によって作られた前記開口が前記樹脂シートの上流端部と下流端部との間に亘って連続して延びている、請求項2に記載の整水用電解槽。 The electrolytic cell for water conditioning according to claim 2, wherein the opening created by the punching process continuously extends between the upstream end and the downstream end of the resin sheet.
  4.  前記整水用電解槽が平板形電解槽であり、
     前記スペーサが前記陽電極プレートと前記隔膜との間及び前記陰電極プレートと前記隔膜との間に配置されている、請求項1~3のいずれか一項に記載の整水用電解槽。
    The water conditioning electrolytic cell is a flat plate type electrolytic cell.
    The water conditioning electrolytic cell according to any one of claims 1 to 3, wherein the spacer is arranged between the positive electrode plate and the diaphragm and between the negative electrode plate and the diaphragm.
  5.  前記整水用電解槽が、円筒状の外側電極プレートと円筒状の内側電極プレートとの間に前記隔膜を配置した円筒形電解槽であり、
     前記内側電極プレートと前記隔膜との間に前記スペーサが配置されている、請求項1~3のいずれか一項に記載の整水用電解槽。
    The water-regulating electrolytic cell is a cylindrical electrolytic cell in which the diaphragm is arranged between a cylindrical outer electrode plate and a cylindrical inner electrode plate.
    The electrolytic cell for water conditioning according to any one of claims 1 to 3, wherein the spacer is arranged between the inner electrode plate and the diaphragm.
  6.  請求項4又は5に記載の整水用電解槽を組み込んだ家庭用整水器。 A household water conditioner incorporating the water conditioner electrolytic cell according to claim 4 or 5.
  7.  前記電極間に印加される電圧が24V以下である、請求項6に記載の家庭用整水器。 The household water conditioner according to claim 6, wherein the voltage applied between the electrodes is 24 V or less.
PCT/JP2019/040529 2019-10-15 2019-10-15 Electrolytic cell for water conditioning and water conditioner for home use, in which said electrolytic cell for water conditioning is incorporated WO2021074977A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/040529 WO2021074977A1 (en) 2019-10-15 2019-10-15 Electrolytic cell for water conditioning and water conditioner for home use, in which said electrolytic cell for water conditioning is incorporated
TW109130844A TW202124291A (en) 2019-10-15 2020-09-09 Electrolytic cell for water conditioning and water conditioner for home use, in which said electrolytic cell for water conditioning is incorporated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040529 WO2021074977A1 (en) 2019-10-15 2019-10-15 Electrolytic cell for water conditioning and water conditioner for home use, in which said electrolytic cell for water conditioning is incorporated

Publications (1)

Publication Number Publication Date
WO2021074977A1 true WO2021074977A1 (en) 2021-04-22

Family

ID=75538718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040529 WO2021074977A1 (en) 2019-10-15 2019-10-15 Electrolytic cell for water conditioning and water conditioner for home use, in which said electrolytic cell for water conditioning is incorporated

Country Status (2)

Country Link
TW (1) TW202124291A (en)
WO (1) WO2021074977A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231993U (en) * 1985-08-07 1987-02-25
JPH08126887A (en) * 1994-10-31 1996-05-21 Funai Electric Co Ltd Electrolytic cell of ionized water generator
JP2000061469A (en) * 1998-08-24 2000-02-29 Hoshizaki Electric Co Ltd Electrolytic water generator
JP2002282857A (en) * 2001-03-29 2002-10-02 Hoshizaki Electric Co Ltd Electrolytic tank with diaphragm
JP2018090905A (en) * 2016-11-04 2018-06-14 株式会社日本トリム Solid polymer membrane electrode
JP2018154908A (en) * 2017-03-21 2018-10-04 株式会社東芝 Electrode for electrolysis, electrolytic unit and electrolyzed water generating apparatus using the electrode for electrolysis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231993U (en) * 1985-08-07 1987-02-25
JPH08126887A (en) * 1994-10-31 1996-05-21 Funai Electric Co Ltd Electrolytic cell of ionized water generator
JP2000061469A (en) * 1998-08-24 2000-02-29 Hoshizaki Electric Co Ltd Electrolytic water generator
JP2002282857A (en) * 2001-03-29 2002-10-02 Hoshizaki Electric Co Ltd Electrolytic tank with diaphragm
JP2018090905A (en) * 2016-11-04 2018-06-14 株式会社日本トリム Solid polymer membrane electrode
JP2018154908A (en) * 2017-03-21 2018-10-04 株式会社東芝 Electrode for electrolysis, electrolytic unit and electrolyzed water generating apparatus using the electrode for electrolysis

Also Published As

Publication number Publication date
TW202124291A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US5474662A (en) Apparatus for producing electrolyzed water
US8444833B2 (en) Device for electrochemical water preparation
US5571390A (en) Bipolar ion exchange membrane electrolytic cell
KR102566257B1 (en) Electrolyzed water-generating device
JP6100438B2 (en) Electrolyzer and electrode
WO2021074977A1 (en) Electrolytic cell for water conditioning and water conditioner for home use, in which said electrolytic cell for water conditioning is incorporated
WO2016143540A1 (en) Electrolytic water generating apparatus
US5637204A (en) End casing for an electrodialyzer electrodialyzer equipped with such a casing and use of the said electrodialyzer
JP3885027B2 (en) Electrolytic cell
CN1054403C (en) Electrolyzer
KR101226029B1 (en) Ion separation housing
JPH08332486A (en) Method for producing electrolytically acidic water
KR101974147B1 (en) Electrolyzer and control method of electrolyzer
CN110217866B (en) Electrodialysis device and method for treating stainless steel pickling wastewater by using electrodialysis device
CN107673446B (en) Sterilized water generating device
US4705614A (en) Cell with improved electrolyte flow distributor
KR102567676B1 (en) Electrolyzer and electrolyzed water generator
CN109012201A (en) A kind of electric dialyzator
JP4631173B2 (en) Electrodeionization equipment
CN216378414U (en) Tubular ozone generator
JPH10158875A (en) Bipolar filter press type electrolytic cell
JP2990993B2 (en) Non-diaphragm type continuous ion-rich water generator
KR101341036B1 (en) Electrode plate for electrolytic cell of water ionzer and structure thereof
JP3770551B2 (en) Ion exchange membrane electrolytic cell
JP2019188394A (en) Water generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP