JP3770551B2 - Ion exchange membrane electrolytic cell - Google Patents

Ion exchange membrane electrolytic cell Download PDF

Info

Publication number
JP3770551B2
JP3770551B2 JP2002252673A JP2002252673A JP3770551B2 JP 3770551 B2 JP3770551 B2 JP 3770551B2 JP 2002252673 A JP2002252673 A JP 2002252673A JP 2002252673 A JP2002252673 A JP 2002252673A JP 3770551 B2 JP3770551 B2 JP 3770551B2
Authority
JP
Japan
Prior art keywords
gas
electrolytic cell
partition plate
ion exchange
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002252673A
Other languages
Japanese (ja)
Other versions
JP2004091834A (en
Inventor
眞二 片山
雅和 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2002252673A priority Critical patent/JP3770551B2/en
Publication of JP2004091834A publication Critical patent/JP2004091834A/en
Application granted granted Critical
Publication of JP3770551B2 publication Critical patent/JP3770551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はイオン交換膜電解槽に関するものであり、とくに複極式フィルタープレス型イオン交換膜電解槽に関するものである。
【0002】
【従来の技術】
食塩水の電気分解に使用される電解槽に代表される複極式のフィルタープレス型イオン交換膜電解槽は、イオン交換膜で区画した電極室において高電流密度の電流を通電して電気分解を行なっており、陰極室内および陽極室内では大量の気体が発生する。
電極室内で発生した気体を気泡として含んだ電解液から気泡が分離する際に、電極室内の圧力が大きく変動し、電解槽の運転に悪影響を及ぼしたり、イオン交換膜を劣化させたりすることがあった。
このために、電極室内で発生した気泡を含有した電解液から気体を速やかに分離することが可能な電解槽が求められていた。
こうした課題を解決するために、フィルタープレス型電解槽の上部に気液分離手段を設け電極室内の気体を円滑に分離する電解槽が提案されている。
【0003】
例えば、電極室上部に気液分離室を設け、電極室上部と気液分離室の間を断面積が小さな開口部で結合したり、あるいは上部に樋状のものを設け、溢流によって電解液から気液分離と電解槽の側面からの排出を行なうものが特開平8−100286号公報等が知られている。
【0004】
ところがこれらのものでは、電解槽の圧力変動への対策が未だ充分なものではなかったり、電極室の上部に位置するイオン交換膜面に、電解槽の運転中あるいは停止中に気体の滞留部が形成され、気体の滞留部に面するイオン交換膜が早期に劣化するという問題点があった。
【0005】
【発明が解決しようとする課題】
本発明は、電極室内で発生した気泡を含有した電解液から円滑な気体の分離が可能で、電極室内での圧力の変動も小さく、イオン交換膜に悪影響を及ぼすことがなく、効率的な電気分解が可能なイオン交換膜電解槽を提供することを課題とするものである。
【0006】
【課題を解決するための手段】
本発明の課題は、隔壁板から間隔を設けて配置した電極をイオン交換膜によって区画して電極室を形成したイオン交換膜電解槽において、隔壁板に電極室内の電解液の循環部材を取り付けて隔壁板との間の空間に電解液の下降流路を形成し、電極室の上部の隣接する電解槽ユニットを積層する際のフランジ面の裏面に気液分離手段を設け、気液分離手段の隔壁板側、およびフランジ面の裏面側の異なる高さの位置から対向面に向かって伸びた、流体が通過することができない部材から形成された衝突板を、対向面との開口を設けて設置し、気液分離手段の上部に形成される気体領域と電極室内を連通する連通路を隔壁板側に設けた電解槽ユニットから構成されたイオン交換膜電解槽によって解決することができる。
【0007】
また、隔壁板側から中央部に向けて延びた衝突板は、連通路を形成する連通路形成部材を介して隔壁板に接合されているとともに、連通路形成部材の衝突板の壁面に接する部分には、連通路形成部材の下端部から衝突板の壁面の上端部まで延びた開口部を有するとともに、衝突板の上端部よりも上方部は、隔壁板との間に間隔を形成した前記のイオン交換膜電解槽である。
【0008】
また、衝突板の隔壁板側の面は、隔壁板との間に配置され上下方向に延びる間隔を設けて配置した帯状の接合部によって隔壁板に接合されて、隣接する接合部の間には隔壁板との間に空間によって連通路を形成した連通路形成部材の連通路の裏面に接合された前記のイオン交換膜電解槽である。
衝突板は、フランジ部の裏面および隔壁板に垂直に、間隔を設けて配置された保持部材と結合した前記のイオン交換膜電解槽である。
【0009】
【発明の実施の形態】
本発明のイオン交換膜電解槽は、電極室上部に、隔壁板と反対側の面をフランジ部に位置する気液分離手段を設けたので、電極室の上部に位置するイオン交換膜面には気体領域が形成されることはなく、また上昇した気液混合流体は、流体が通過することができない衝突板への衝突の後に反射して流路を変えられて、電極室内に設けた電解液下降流路側へ導入され、気泡は隔壁板との間に形成された連通路を通じて気液分離手段の上部の気体領域へと速やかに流入するので、安定した電気分解を効率的に行うことが可能となる。
また、衝突板をフランジ部の裏面に配置したので、衝突板あるいは衝突板に設けた保持部材は、単位電解槽を組み立てた際に電解槽の積層面へ加わる押圧力によって電解槽の変形等が生じることはなく安定した運転が可能となる。
【0010】
以下に図面を参照して本発明を説明する。
図1は、本発明の電解槽の一実施例を説明する図であり、図1(A)は、複数個の電解槽ユニットを積層したイオン交換膜電解槽の断面を説明する図であり、図1(B)は、電解槽ユニットの陽極側から見た平面図であり、図1(C)は、気液分離手段を説明する断面図である。
図1(A)に示すように、イオン交換膜電解槽1は複数の複極式の電解槽ユニット2をイオン交換膜3を介して積層して組み立てられている。
電解槽ユニット2には、陽極室隔壁板4から間隔を設けて陽極5が配置され、陽極室6が形成されている。
また、陰極室隔壁板7から間隔を設けて陰極8が配置されており、陰極室側隔壁板7とイオン交換膜3の間に陰極室9が形成されている。
また、陽極室6、陰極室9の上部には、それぞれ陽極室側気液分離手段20、陰極室側気液分離手段40が設けられている。
【0011】
陽極室6、および陰極室9には、それぞれ電解液の内部循環を行なわせるために下降流路を形成する陽極液循環部材10、陰極液循環部材11が設けられており、陽極液循環部材10、陰極液循環部材11によって。それぞれ陽極室隔壁板4、陰極室隔壁板7との間に陽極液下降流路12、および陰極液下降流路13が形成されている。
また、電解槽ユニット2の陽極室6には、陽極供給管14が取り付けられ、陽極室側気液分離手段20には、濃度が低下した陽極液と気体を排出する陽極側排出管15が取り付けられている。
【0012】
また、図1(C)に示すように、陽極室側気液分離手段20は、陽極室6の上部に配置され、一方の壁面は陽極室隔壁板4の延長部に結合され、他方の面は電解槽ユニットの複数個を積層して電解槽を組み立てた際に隣接する電解槽ユニットとガスケットを介して積層するフランジ面21を形成しており、図1(A)に示すようにフランジ面に配置されたガスケット16を介在させて積層されている。 陽極室側気液分離手段20の陽極隔壁板4と対向するフランジ面21の裏面には、流体が透過しないL字状の板材から形成された第一の衝突板22が帯状の接合部で結合されており、他端が気液分離手段内部に伸びている。
【0013】
また、第一の衝突板22よりも上部には、流体が透過しないL字状の板材から形成された第二の衝突板23が陽極室隔壁板4側から伸びている。また、陽極室隔壁板4側に配置された陽極側連通路形成用部材24によって、陽極室側気液分離手段の気体領域25と陽極室6内部を連通する連通路26が形成されている。
【0014】
陽極室6内において発生した気泡は、陽極液循環部材10と陽極5の間の領域を気体の浮力によって上昇し、陽極室の上部の陽極室側気液分離手段20の内部に設けた第一の衝突板22に衝突して流路を変更されて、陽極液下降流路12へと流入するとともに、陽極室隔壁板4との間の領域に開口した連通路26から気液分離手段の気体領域25へと流入して気液分離が行われる。また、一部は、第二の衝突板23と対向する面との開口を通じて上部へと流入した陽極液は、連通路26を通じて上昇した陽極液と液面27を形成している。
陰極室側には、陰極室側気液分離手段40を有しており、陰極側気液分離手段40の陽極隔壁板7と対向する陰極側フランジ面41の裏面には、流体が透過しないL字状の板材から形成された陰極側の第一の衝突板42が帯状の接合部によって結合されており、他端が気液分離手段内部に伸びている。
【0015】
また、陰極側の第一の衝突板42よりも上部には、流体が透過しないL字状の板材から形成された第二の衝突板43が陰極室隔壁板7側から延びている。また、陰極室隔壁板7側に配置された陰極室連通路形成用部材44によって、陰極側気液分離手段の気体領域45と陰極室9内部を連通する連通路46が形成されている。
陰極室9内において発生した気泡は、陰極液循環部材11と陰極8の間の領域を気体の浮力によって上昇し、陽極室の上部の陰極室側気液分離手段40の内部に設けた、陰極側の第一の衝突板42に衝突して下方へ流路を変更されて、陰極液下降流路13へと流入するとともに、陰極隔壁板7との間の領域に開口した連通路46から気液分離手段の気体領域45へと流入する。また、一部は、第二の衝突板43の開口を通じて、上部へと流入し液面47を形成している。
【0016】
以上の説明では、陽極室、陰極室のいずれにも、気液分離手段を設けた電解槽について説明をしたが、食塩水のイオン交換膜電解槽においては、発生した塩素による影響が大きな陽極室のみに気液分離手段を設けたものであっても良い。
【0017】
図2は、気液分離手段の動作を説明する図であり、一部を切り欠いた斜視図である。
陽極室側気液分離手段20は、陽極室6の上部に配置され、一方の壁面は陽極室隔壁板4の延長部に結合され、他方の面は電解槽ユニットの複数個を積層して電解槽を組み立てた際に隣接する電解槽ユニットとガスケットを介して積層するフランジ面21を形成している。
陽極室側気液分離手段20の陽極隔壁板4と対向するフランジ面21の裏面には、流体が透過しないL字状の板材であって、電解槽ユニットの幅方向に延びる第一の衝突板22が帯状の接合部によって結合されて、接合部は気密に形成されており、他端が気液分離手段内部に伸びている。
【0018】
また、第一の衝突板22よりも上部には、流体が透過しないL字状の板材からなり、電解槽ユニットの幅方向に延びた第二の衝突板23が陽極室隔壁板4側に取り付けられている。また、陽極室隔壁板4側に配置された陽極側連通路形成用部材24によって、陽極室気液分離手段の気体領域25と陽極室6内部を連通する連通路26が形成されている。
【0019】
陽極室6内において発生した気泡は、陽極液循環部材10と陽極5の間の領域を気体の浮力によって上昇流17を形成して上昇し、第一の衝突板22に衝突して下方へ流路18を変更されて、陽極液下降流路12へと流入し、気液混相流体の気泡に富んだ滞留部19を形成する。そして、陽極室隔壁板4との間の領域に開口した連通路26から気液分離手段の気体領域25へと気液混相流体が流入して気液分離が行われるとともに、陽極液下降流路12を下降して循環が形成される。また、一部は、第一の衝突板22と第二の衝突板23の開口部を通じて上部へと流入する。
【0020】
第一の衝突板22と第二の衝突板23の間には、保持部材30が間隔を設けて接合されており、電解槽ユニットを積層した際に電解槽の積層面に加わる押圧力による電解槽の変形を防止し、剛性が大きな電解槽が形成される。
【0021】
図3は、気液分離手段の他の実施例を説明する図である。
図3(A)は、陽極室側気液分離手段の断面を説明する図であり、図3(B)は、は、陽極室側気液分離手段を隔壁板側から見た図である。
陽極室側気液分離手段20は、電解槽ユニットの複数個を積層して電解槽を組み立てた際に隣接する電解槽ユニットとガスケットを介して積層するフランジ面21の裏面には、流体が透過しないL字状の板材であって、電解槽ユニットの幅方向に延びる第一の衝突板22が帯状の接合部によって結合されて、接合部は気密に形成されており、他端が気液分離手段内部に伸びている。
【0022】
また、第一の衝突板22よりも上部には、流体が透過しないL字状の板材からなり、電解槽ユニットの幅方向に延びた第二の衝突板23が陽極室隔壁板4側に取り付けられている。
第一の衝突板22および第二の衝突板23は、保持部材30と接合されている。そして、第二の衝突板23と陽極側の隔壁板4の間には、陽極側連通路形成用部材24が配置されており一体に接合されている。
【0023】
陽極側連通路形成用部材24の下端部は、第二の衝突板23と下端部がほぼ一致して配置されており、第二の衝突板23の高さh1に相当する長さの、開口部31が形成されており、開口部31の下端部は、開放部32を有している。また、開口部31の上端部は第二の衝突板23の上端部にほぼ一致している。
そして、開口部の上端部よりも上部に位置する偏向部33は、隔壁板との間に連通路を形成するように隔壁板とは反対側へ第二の衝突板23の上面に沿って折れ曲がり、更に、上方へ直角に折れ曲がっている。
【0024】
これによって、第二の衝突板23と陽極側連通路形成用部材24を陽極室隔壁板4と一体に接合した場合には、開放部32、開口部31を通じた連通路26が間隔を設けて形成されるとともに、平板部34において第二の衝突板23と陽極室隔壁板とが一体化することができるので、複数の電解槽ユニットを積層して電解槽を組み立てる際には、フランジ面から押圧されても連通路26をはじめ、電解槽ユニットの各部が変形を生じることはない。
【0025】
以上の説明では、陽極側連通路形成用部材24の下端部が開放部を有し、下端部が第二の衝突板の下端部と一致する例を挙げたが、陽極側連通路形成用部材の下端部が開放したものである場合には、下端部は第二の衝突板の下端部よりも上部に位置したものであっても良く、また、開口部の一部が第二の衝突板の下端部よりも下部に存在する場合には下端部は開放部を有したものでなくても良い。
【0026】
図4は、気液分離手段の参考例を説明する図であり、一部を切り欠いた斜視図である。
陽極室側気液分離手段20は、陽極室6の上部に配置され、一方の壁面は陽極室隔壁板4の延長部に結合され、他方の面は電解槽ユニットの複数個を積層して電解槽を組み立てた際に隣接する電解槽ユニットとガスケットを介して積層するフランジ面21を形成している。
陽極室側気液分離手段20の陽極隔壁板4と対向するフランジ面21の裏面には、流体が透過しないJ字状の板材であって、フランジ面21の裏面に帯状の接触部によって接合されて衝突板22Aが取り付けられている。
【0027】
衝突板22Aは、電極室の断面を水平に覆い、陽極室隔壁板4との間には、連通路形成部材24Aを介して陽極室隔壁板4に接合されている。連通路形成部材24Aは、電解槽ユニットの上下方向に延びた帯状の複数の接合部35によって陽極室隔壁板4に接合されているとともに、隣接する接合部の間には隔壁板との間に間隙を設けて連通路26を形成している。
【0028】
また、接合部35には、保持部材30が設けられており、電解槽ユニットを積層した際にフランジ面に加わる圧力による変形を防止している。保持部材30と接合部35とを同等の幅とすることによって、接合部35から電解液が気液分離手段の気体領域へ流入することを防止することができる。
衝突板は、J字形に限らず、U字形等の部材を用いることができるが、気液分離室内の変形等を防止するために装着する保持部材との固定特性等を考慮すれば、U字形よりもJ字形の方が好ましい。J字形であれば、保持部材の係合および固定性がより良好なものとなる。
【0029】
また、連通路形成用部材としては、衝突板、保持部材との接合、固定性が良好で、隔壁板との間に所定の間隔を保持することができる部材であれば、凹部と凸部を設けた部材、厚みが一定の板材を切除した櫛状部材を挙げることができる。また、以上のように1個、あるいは少数のの部材で気液分離手段の幅方向全体に連通路を形成するものではなく、所定の厚みと幅を有する板状体を間隔を設けて配置することも可能ではあるが、大型の電解槽ユニットを精度良く製造するうえでは現実的ではない。
【0030】
また、本発明においては、陽極室側気液分離手段は、陽極室隔壁と同様のチタンやチタン合金を用いることができる、陰極側気液分離手段は、ニッケルおよびその合金、ステンレス等の金属材料によって作製することができる。
液体、気体の漏洩を防止する必要がある個所においては、各部材は線状に溶接を行うことが必要であるが、厳密に流体の浸入を防止する必要がない個所には、間隔を設けて点状に溶接を行っても良い。
【0031】
【発明の効果】
本発明のイオン交換膜電解槽では、極室内を上昇してきた気液混相流は、気液分離手段に設けた衝突板に衝突して、電極室内の下降通路の開口部へと強制的に方向を変化させられ、下降流路から電極室内を循環するとともに、気液分離手段と隔壁板との間の連通路から気体領域へと速やかに移動する。このため、電極室内でのイオン交換膜面には、発生した気体の滞留部が生じず、イオン交換膜へ悪影響を及ぼすことがない。また気液混相流が狭い通路を通ることにより、小さい気泡が分散された気泡流となり気液の分離が円滑に行なわれ、電極室内からの排出速度も大きくなり電極室内での圧力変動が生じず、高電流密度で安定した運転ができる。
更に、気液分離手段に設けた、衝突板、および保持部材によって、剛性の大きな電解槽を得ることができる。
【図面の簡単な説明】
【図1】 図1は、本発明の電解槽の一実施例を説明する図である。
【図2】 図2は、気液分離手段の動作を説明する図である。
【図3】 図3は、気液分離手段の他の実施例を説明する図である。
【図4】 図4は、気液分離手段の参考例を説明する図である。
【符号の説明】
1…イオン交換膜電解槽、2…電解槽ユニット、3…イオン交換膜、4…陽極室隔壁板、5…陽極、6…陽極室、7…陰極室隔壁板、8…陰極、9…陰極室、10…陽極液循環部材、11…陰極液循環部材、12…陽極液下降流路、13…陰極液下降流路、14…陽極供給管、15…陽極側排出管、16…ガスケット、17…上昇流、18…流路、19…滞留部、20…陽極室側気液分離手段、21…フランジ面、22…第一の衝突板、22A…衝突板、23…第二の衝突板、24…陽極側連通路形成用部材、24A…連通路形成部材、25…気体領域、26…連通路、27…液面、30…保持部材、h1…第二の衝突板の高さ、31…開口部、32…開放部、33…偏向部、34…平板部、35…接合部、h1…第二の衝突板の高さ、40…陰極室側気液分離手段、41…陰極側フランジ面、42…第一の衝突板、43…第二の衝突板、44…陰極室連通路形成用部材、45…気体領域、46…連通路、47…液面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ion exchange membrane electrolytic cell, and more particularly to a bipolar filter press type ion exchange membrane electrolytic cell.
[0002]
[Prior art]
Bipolar filter press type ion exchange membrane electrolytic cell, represented by the electrolytic cell used for the electrolysis of saline solution, conducts electrolysis by passing a high current density current in the electrode chamber partitioned by the ion exchange membrane. A large amount of gas is generated in the cathode chamber and the anode chamber.
When the bubbles are separated from the electrolyte containing the gas generated in the electrode chamber as bubbles, the pressure in the electrode chamber fluctuates greatly, which may adversely affect the operation of the electrolytic cell or deteriorate the ion exchange membrane. there were.
For this reason, there has been a demand for an electrolytic cell capable of quickly separating a gas from an electrolytic solution containing bubbles generated in the electrode chamber.
In order to solve such a problem, an electrolytic cell has been proposed in which gas-liquid separation means is provided above the filter press type electrolytic cell to smoothly separate the gas in the electrode chamber.
[0003]
For example, a gas-liquid separation chamber is provided in the upper part of the electrode chamber, and the upper part of the electrode chamber and the gas-liquid separation chamber are coupled with an opening having a small cross-sectional area, or a bowl-like one is provided in the upper part, Japanese Patent Laid-Open No. 8-100286 and the like are known which perform gas-liquid separation and discharge from the side surface of the electrolytic cell.
[0004]
However, in these cases, measures against pressure fluctuations in the electrolytic cell are not yet sufficient, or there is a gas retention part on the surface of the ion exchange membrane located in the upper part of the electrode chamber during operation or stop of the electrolytic cell. There was a problem that the ion exchange membrane formed and facing the gas retention portion deteriorated early.
[0005]
[Problems to be solved by the invention]
The present invention enables smooth separation of gas from the electrolyte containing bubbles generated in the electrode chamber, and the pressure fluctuation in the electrode chamber is small so that the ion exchange membrane is not adversely affected and efficient electric An object of the present invention is to provide an ion exchange membrane electrolytic cell capable of being decomposed.
[0006]
[Means for Solving the Problems]
An object of the present invention is to provide an electrode exchange chamber electrolytic cell in which an electrode chamber is formed by partitioning an electrode arranged at a distance from a partition plate by an ion exchange membrane, and an electrolyte solution circulation member in the electrode chamber is attached to the partition plate. An electrolytic solution descending flow path is formed in the space between the partition plates, and a gas-liquid separating means is provided on the back surface of the flange surface when the adjacent electrolytic cell units above the electrode chamber are stacked. A collision plate formed of a member that cannot be passed through by fluid and that extends from the position of different heights on the partition plate side and the back surface side of the flange surface toward the opposing surface is provided with an opening to the opposing surface. However, the problem can be solved by an ion exchange membrane electrolytic cell constituted by an electrolytic cell unit in which a gas passage formed in the upper part of the gas-liquid separating means and a communication path communicating with the electrode chamber is provided on the partition plate side.
[0007]
Further, the collision plate extending from the partition plate side toward the central portion is joined to the partition plate via a communication path forming member that forms a communication path, and a portion that contacts the wall surface of the collision plate of the communication path forming member In the above, the opening extending from the lower end portion of the communication path forming member to the upper end portion of the wall surface of the collision plate, and the upper portion above the upper end portion of the collision plate is spaced from the partition plate. It is an ion exchange membrane electrolytic cell.
[0008]
In addition, the surface of the collision plate on the partition plate side is joined to the partition plate by a strip-shaped joint portion arranged between the partition plate and extending in the vertical direction, and between the adjacent joint portions. It is the said ion exchange membrane electrolytic cell joined to the back surface of the communicating path of the communicating path formation member which formed the communicating path by space between the partition plates.
The collision plate is the ion exchange membrane electrolytic cell combined with a holding member disposed at a distance from the back surface of the flange portion and the partition plate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The ion exchange membrane electrolytic cell of the present invention is provided with gas-liquid separation means located on the flange portion on the surface opposite to the partition plate in the upper portion of the electrode chamber. The gas region is not formed, and the raised gas-liquid mixed fluid is reflected after the collision with the collision plate where the fluid cannot pass and the flow path is changed, so that the electrolyte solution provided in the electrode chamber Introduced to the downflow channel side, the air bubbles quickly flow into the gas region above the gas-liquid separation means through the communication path formed between the partition plates, so that stable electrolysis can be performed efficiently. It becomes.
In addition, since the collision plate is disposed on the back surface of the flange portion, the collision plate or the holding member provided on the collision plate is deformed by the pressing force applied to the laminated surface of the electrolytic cell when the unit electrolytic cell is assembled. It does not occur and stable operation is possible.
[0010]
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram for explaining an embodiment of the electrolytic cell of the present invention, and FIG. 1 (A) is a diagram for explaining a cross section of an ion exchange membrane electrolytic cell in which a plurality of electrolytic cell units are laminated, FIG. 1 (B) is a plan view seen from the anode side of the electrolytic cell unit, and FIG. 1 (C) is a cross-sectional view for explaining gas-liquid separation means.
As shown in FIG. 1A, an ion exchange membrane electrolytic cell 1 is assembled by laminating a plurality of bipolar electrode cell units 2 with an ion exchange membrane 3 interposed therebetween.
In the electrolytic cell unit 2, an anode 5 is disposed at a distance from the anode chamber partition plate 4, and an anode chamber 6 is formed.
A cathode 8 is disposed at a distance from the cathode chamber partition plate 7, and a cathode chamber 9 is formed between the cathode chamber side partition plate 7 and the ion exchange membrane 3.
Further, an anode chamber side gas / liquid separation means 20 and a cathode chamber side gas / liquid separation means 40 are provided above the anode chamber 6 and the cathode chamber 9, respectively.
[0011]
The anode chamber 6 and the cathode chamber 9 are respectively provided with an anolyte circulation member 10 and a catholyte circulation member 11 that form a descending flow path in order to cause internal circulation of the electrolytic solution. By the catholyte circulation member 11. An anolyte descending channel 12 and a catholyte descending channel 13 are formed between the anode chamber partition plate 4 and the cathode chamber partition plate 7, respectively.
Further, an anode supply pipe 14 is attached to the anode chamber 6 of the electrolytic cell unit 2, and an anode side discharge pipe 15 for discharging the anolyte and gas having a reduced concentration is attached to the anode chamber side gas-liquid separation means 20. It has been.
[0012]
Further, as shown in FIG. 1C, the anode chamber side gas-liquid separation means 20 is disposed on the upper portion of the anode chamber 6, one wall surface is coupled to the extension of the anode chamber partition plate 4, and the other surface. 1 forms a flange surface 21 that is laminated with gaskets through adjacent electrolytic cell units when the electrolytic cell is assembled by laminating a plurality of electrolytic cell units. As shown in FIG. Are laminated with a gasket 16 disposed therebetween. A first impingement plate 22 formed of an L-shaped plate material that does not allow fluid to pass through is joined to the back surface of the flange surface 21 facing the anode partition plate 4 of the anode chamber side gas-liquid separation means 20 by a band-shaped joint. The other end extends into the gas-liquid separation means.
[0013]
Further, above the first collision plate 22, a second collision plate 23 formed from an L-shaped plate material that does not transmit fluid extends from the anode chamber partition plate 4 side. Further, the anode side communication path forming member 24 disposed on the anode chamber partition plate 4 side forms a communication path 26 that communicates the gas region 25 of the anode chamber side gas-liquid separation means and the inside of the anode chamber 6.
[0014]
Bubbles generated in the anode chamber 6 rise in the region between the anolyte circulating member 10 and the anode 5 due to the buoyancy of the gas, and are provided inside the anode chamber side gas-liquid separation means 20 above the anode chamber. The flow path is changed by colliding with the collision plate 22 and flows into the anolyte descending flow path 12, and gas from the gas-liquid separation means is opened from the communication passage 26 opened in the area between the anode chamber partition plate 4. Gas-liquid separation is performed by flowing into the region 25. A part of the anolyte that has flowed upward through the opening with the surface facing the second collision plate 23 forms a liquid surface 27 with the anolyte that has risen through the communication path 26.
The cathode chamber side gas-liquid separation means 40 is provided on the cathode chamber side, and fluid does not pass through the back surface of the cathode-side flange surface 41 facing the anode partition plate 7 of the cathode-side gas-liquid separation means 40. A cathode-side first collision plate 42 formed of a letter-shaped plate material is joined by a band-shaped joint, and the other end extends into the gas-liquid separation means.
[0015]
A second collision plate 43 formed of an L-shaped plate material that does not allow fluid to pass extends from the cathode chamber partition plate 7 side above the first collision plate 42 on the cathode side. The cathode chamber communication path forming member 44 arranged on the cathode chamber partition plate 7 side forms a communication path 46 that communicates the gas region 45 of the cathode side gas-liquid separation means with the inside of the cathode chamber 9.
The bubbles generated in the cathode chamber 9 rise in the region between the catholyte circulation member 11 and the cathode 8 by gas buoyancy, and are provided in the cathode chamber side gas-liquid separation means 40 above the anode chamber. Colliding with the first impact plate 42 on the side, the flow path is changed downward, flows into the catholyte descending flow path 13, and air flows from the communication path 46 opened to the area between the cathode partition plate 7. It flows into the gas region 45 of the liquid separation means. A part of the liquid flows upward through the opening of the second collision plate 43 to form a liquid surface 47.
[0016]
In the above description, the electrolytic cell provided with gas-liquid separation means in both the anode chamber and the cathode chamber has been described. However, in the ion exchange membrane electrolytic cell of the saline solution, the anode chamber is greatly influenced by the generated chlorine. Only gas-liquid separation means may be provided.
[0017]
FIG. 2 is a diagram for explaining the operation of the gas-liquid separating means, and is a perspective view with a part cut away.
The anode chamber side gas-liquid separation means 20 is disposed in the upper part of the anode chamber 6, one wall surface is coupled to the extension of the anode chamber partition plate 4, and the other surface is formed by laminating a plurality of electrolytic cell units. When the tank is assembled, a flange surface 21 is formed which is laminated with an adjacent electrolytic cell unit via a gasket.
The rear surface of the flange surface 21 facing the anode partition plate 4 of the anode chamber side gas-liquid separation means 20 is an L-shaped plate material that does not transmit fluid and extends in the width direction of the electrolytic cell unit. 22 are joined by a belt-like joint, the joint is formed airtight, and the other end extends into the gas-liquid separation means.
[0018]
Further, an upper part of the first collision plate 22 is made of an L-shaped plate that does not allow fluid to pass through, and a second collision plate 23 extending in the width direction of the electrolytic cell unit is attached to the anode chamber partition plate 4 side. It has been. Further, the anode side communication path forming member 24 arranged on the anode chamber partition plate 4 side forms a communication path 26 that communicates the gas region 25 of the anode chamber gas-liquid separation means with the inside of the anode chamber 6.
[0019]
Bubbles generated in the anode chamber 6 rise in the region between the anolyte circulation member 10 and the anode 5 by forming a rising flow 17 by gas buoyancy, collide with the first collision plate 22 and flow downward. The path 18 is changed to flow into the anolyte descending flow path 12 to form a residence part 19 rich in gas-liquid mixed phase fluid bubbles. Gas-liquid mixed phase fluid flows into the gas region 25 of the gas-liquid separation means from the communication passage 26 opened in the region between the anode chamber partition plate 4 and gas-liquid separation is performed. 12 is lowered to form a circulation. A part flows into the upper part through the openings of the first collision plate 22 and the second collision plate 23.
[0020]
A holding member 30 is joined between the first collision plate 22 and the second collision plate 23 with a space therebetween, and electrolysis is performed by a pressing force applied to the stacked surface of the electrolytic cell when the electrolytic cell units are stacked. The tank is prevented from being deformed, and an electrolytic cell having high rigidity is formed.
[0021]
FIG. 3 is a diagram for explaining another embodiment of the gas-liquid separation means.
FIG. 3A is a view for explaining a cross section of the anode chamber side gas-liquid separation means, and FIG. 3B is a view of the anode chamber side gas-liquid separation means seen from the partition plate side.
The anode chamber-side gas-liquid separation means 20 allows fluid to permeate the back surface of the flange surface 21 that is stacked via a gasket with an adjacent electrolytic cell unit when a plurality of electrolytic cell units are stacked and the electrolytic cell is assembled. The first collision plate 22 extending in the width direction of the electrolytic cell unit is joined by a belt-like joining portion, the joining portion is formed in an airtight manner, and the other end is gas-liquid separated. Extends inside the means.
[0022]
Further, an upper part of the first collision plate 22 is made of an L-shaped plate that does not allow fluid to pass through, and a second collision plate 23 extending in the width direction of the electrolytic cell unit is attached to the anode chamber partition plate 4 side. It has been.
The first collision plate 22 and the second collision plate 23 are joined to the holding member 30. An anode side communication path forming member 24 is disposed between the second collision plate 23 and the anode side partition plate 4 and is integrally joined.
[0023]
The lower end portion of the anode-side communication path forming member 24 is disposed so that the lower end portion thereof substantially coincides with the second collision plate 23, and an opening having a length corresponding to the height h1 of the second collision plate 23. A portion 31 is formed, and the lower end portion of the opening 31 has an open portion 32. The upper end portion of the opening 31 substantially coincides with the upper end portion of the second collision plate 23.
And the deflection | deviation part 33 located above the upper end part of an opening part bends along the upper surface of the 2nd collision board 23 on the opposite side to a partition plate so that a communicating path may be formed between partition plates. Furthermore, it is bent upward at a right angle.
[0024]
As a result, when the second collision plate 23 and the anode side communication path forming member 24 are joined together with the anode chamber partition plate 4, the communication path 26 through the opening 32 and the opening 31 is spaced. In addition, since the second collision plate 23 and the anode chamber partition plate can be integrated with each other in the flat plate portion 34, when assembling the electrolytic cell by stacking a plurality of electrolytic cell units, from the flange surface Even if pressed, each part of the electrolytic cell unit including the communication passage 26 is not deformed.
[0025]
In the above description, an example in which the lower end portion of the anode side communication path forming member 24 has an open portion and the lower end portion coincides with the lower end portion of the second collision plate has been described. When the lower end portion of the second collision plate is open, the lower end portion may be located above the lower end portion of the second collision plate, and a part of the opening portion may be the second collision plate. In the case where the lower end portion exists below the lower end portion, the lower end portion may not have an open portion.
[0026]
FIG. 4 is a view for explaining a reference example of the gas-liquid separation means, and is a perspective view with a part cut away.
The anode chamber side gas-liquid separation means 20 is disposed in the upper part of the anode chamber 6, one wall surface is coupled to the extension of the anode chamber partition plate 4, and the other surface is formed by laminating a plurality of electrolytic cell units. When the tank is assembled, a flange surface 21 is formed which is laminated with an adjacent electrolytic cell unit via a gasket.
The back surface of the flange surface 21 facing the anode partition plate 4 of the anode chamber side gas-liquid separation means 20 is a J-shaped plate material that does not allow fluid to pass through, and is joined to the back surface of the flange surface 21 by a strip-shaped contact portion. A collision plate 22A is attached.
[0027]
The collision plate 22A covers the cross section of the electrode chamber horizontally, and is joined to the anode chamber partition plate 4 via the communication path forming member 24A. The communication path forming member 24A is joined to the anode chamber partition plate 4 by a plurality of strip-shaped joint portions 35 extending in the vertical direction of the electrolytic cell unit, and between the adjacent joint portions, between the partition plates. A communication path 26 is formed by providing a gap.
[0028]
Moreover, the holding part 30 is provided in the junction part 35, and when the electrolytic cell unit is laminated | stacked, the deformation | transformation by the pressure added to a flange surface is prevented. By making the holding member 30 and the joint portion 35 have the same width, it is possible to prevent the electrolyte from flowing from the joint portion 35 into the gas region of the gas-liquid separation means.
The collision plate is not limited to the J-shape, and a U-shaped member can be used. However, if the fixing characteristics with the holding member to be mounted in order to prevent deformation in the gas-liquid separation chamber, etc., the U-shaped The J-shape is preferable to the shape. If it is J-shaped, the engagement and fixing properties of the holding member will be better.
[0029]
In addition, as the communication path forming member, a concave portion and a convex portion may be provided as long as the member has good joining and fixing properties with the collision plate and the holding member and can maintain a predetermined interval between the barrier plate and the partition plate. The provided member and the comb-shaped member which cut out the board | plate material with constant thickness can be mentioned. In addition, as described above, the communication path is not formed in the entire width direction of the gas-liquid separation means with one or a small number of members, but plate-like bodies having a predetermined thickness and width are arranged at intervals. Although it is possible, it is not realistic to manufacture a large electrolytic cell unit with high accuracy.
[0030]
Further, in the present invention, the anode chamber side gas-liquid separation means can use the same titanium or titanium alloy as the anode chamber partition, and the cathode side gas-liquid separation means can be a metal material such as nickel and its alloys, stainless steel, etc. Can be produced.
In locations where it is necessary to prevent leakage of liquids and gases, each member must be welded in a linear fashion, but there must be a gap in locations where it is not necessary to strictly prevent fluid entry. You may weld in dot shape.
[0031]
【The invention's effect】
In the ion exchange membrane electrolytic cell of the present invention, the gas-liquid mixed phase flow rising in the polar chamber collides with a collision plate provided in the gas-liquid separation means and is forced to flow toward the opening of the descending passage in the electrode chamber. Is circulated in the electrode chamber from the descending flow path, and quickly moves from the communication path between the gas-liquid separating means and the partition plate to the gas region. For this reason, the stay part of the generated gas does not occur on the surface of the ion exchange membrane in the electrode chamber, and the ion exchange membrane is not adversely affected. In addition, the gas-liquid mixed phase flow passes through a narrow passage, resulting in a bubble flow in which small bubbles are dispersed. The gas-liquid separation is performed smoothly, the discharge speed from the electrode chamber is increased, and pressure fluctuations in the electrode chamber do not occur. Stable operation at high current density.
Furthermore, a highly rigid electrolytic cell can be obtained by the collision plate and holding member provided in the gas-liquid separation means.
[Brief description of the drawings]
FIG. 1 is a view for explaining an embodiment of an electrolytic cell of the present invention.
FIG. 2 is a diagram for explaining the operation of a gas-liquid separation unit.
FIG. 3 is a diagram for explaining another embodiment of the gas-liquid separation means.
FIG. 4 is a diagram for explaining a reference example of gas-liquid separation means.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ion exchange membrane electrolytic cell, 2 ... Electrolytic cell unit, 3 ... Ion exchange membrane, 4 ... Anode chamber partition plate, 5 ... Anode, 6 ... Anode chamber, 7 ... Cathode chamber partition plate, 8 ... Cathode, 9 ... Cathode Chamber 10, anolyte circulating member 11, catholyte circulating member 12, anolyte descending channel 13, catholyte descending channel 14, anode supply tube 15, anode side discharge tube 16, gasket 17 DESCRIPTION OF SYMBOLS ... Upward flow, 18 ... Flow path, 19 ... Retention part, 20 ... Anode chamber side gas-liquid separation means, 21 ... Flange surface, 22 ... First collision plate, 22A ... Collision plate, 23 ... Second collision plate, 24 ... anode side communication path forming member, 24A ... communication path forming member, 25 ... gas region, 26 ... communication path, 27 ... liquid level, 30 ... holding member, h1 ... height of second collision plate, 31 ... Opening part, 32 ... Opening part, 33 ... Deflection part, 34 ... Flat plate part, 35 ... Joint part, h1 ... Height of the second collision plate, 40 Cathode chamber side gas-liquid separation means, 41 ... cathode side flange surface, 42 ... first collision plate, 43 ... second collision plate, 44 ... cathode chamber communication channel forming member, 45 ... gas region, 46 ... communication channel 47 ... Liquid level

Claims (2)

隔壁板から間隔を設けて配置した電極をイオン交換膜によって区画して電極室を形成したイオン交換膜電解槽において、隔壁板に電極室内の電解液の循環部材を取り付けて隔壁板との間の空間に電解液の下降流路を形成し、電極室の上部の隣接する電解槽ユニットを積層する際のフランジ面の裏面に気液分離手段を設け、気液分離手段の隔壁板側、およびフランジ面の裏面側の異なる高さの位置から対向面に向かって伸びた、流体が通過することができない部材から形成された衝突板を、対向面との開口を設けて設置し、気液分離手段の上部に形成される気体領域と電極室内を連通する連通路を隔壁板側に設けた電解槽ユニットから構成されたことを特徴とするイオン交換膜電解槽。  In an ion exchange membrane electrolytic cell in which an electrode chamber is formed by partitioning an electrode arranged at a distance from a partition plate with an ion exchange membrane, a circulating member for electrolyte solution in the electrode chamber is attached to the partition plate and An electrolytic solution descending flow path is formed in the space, and gas-liquid separation means is provided on the back surface of the flange surface when the adjacent electrolytic cell units at the upper part of the electrode chamber are stacked. A collision plate formed from a member that cannot be passed by a fluid, extending from a position at a different height on the back side of the surface to the facing surface, is provided with an opening to the facing surface, and a gas-liquid separating means An ion exchange membrane electrolytic cell comprising an electrolytic cell unit in which a gas passage formed in an upper part of the gas chamber and a communication passage communicating with the electrode chamber are provided on the partition plate side. 隔壁板側から中央部に向けて延びた衝突板は、連通路を形成する連通路形成部材を介して隔壁板に接合されているとともに、連通路形成部材の衝突板の壁面に接する部分には、連通路形成部材の下端部から衝突板の壁面の上端部まで延びた開口部を有するとともに、衝突板の上端部よりも上方部は、隔壁板との間に間隔を形成したことを特徴とする請求項1記載のイオン交換膜電解槽。  The collision plate extending from the partition plate side toward the central portion is joined to the partition plate via a communication path forming member that forms a communication path, and at the portion of the communication path forming member that contacts the wall surface of the collision plate. And having an opening extending from the lower end portion of the communication path forming member to the upper end portion of the wall surface of the collision plate, and the upper portion of the collision plate is spaced from the partition plate. The ion exchange membrane electrolytic cell according to claim 1.
JP2002252673A 2002-08-30 2002-08-30 Ion exchange membrane electrolytic cell Expired - Lifetime JP3770551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252673A JP3770551B2 (en) 2002-08-30 2002-08-30 Ion exchange membrane electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252673A JP3770551B2 (en) 2002-08-30 2002-08-30 Ion exchange membrane electrolytic cell

Publications (2)

Publication Number Publication Date
JP2004091834A JP2004091834A (en) 2004-03-25
JP3770551B2 true JP3770551B2 (en) 2006-04-26

Family

ID=32058886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252673A Expired - Lifetime JP3770551B2 (en) 2002-08-30 2002-08-30 Ion exchange membrane electrolytic cell

Country Status (1)

Country Link
JP (1) JP3770551B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125954A1 (en) * 2012-02-23 2013-08-29 Paques I.P. B.V. Membrane spacer for liquids containing suspended solids
RU174582U1 (en) * 2017-03-29 2017-10-23 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" HIGH PRESSURE ELECTROLYZER
CN114395774A (en) * 2022-03-02 2022-04-26 盐城工学院 Reinforcing plate for enhancing transverse mixing of electrolyte and application of reinforcing plate in electrolytic cell

Also Published As

Publication number Publication date
JP2004091834A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
EP0778631A1 (en) Direct methanol type fuel cell
US6282774B1 (en) Electrolysis apparatus and process for manufacturing same
CN107750283B (en) Electrode assembly, electrolyzer and process for electrolysis
US10381660B2 (en) Separator for fuel cell
EP0704556B1 (en) Bipolar type ion exchange membrane electrolytic cell
EP0991794B1 (en) Ion exchange membrane bipolar electrolyzer
US20190097246A1 (en) Flow-guiding plate for a fuel cell
JP7155364B2 (en) Gas-liquid separator for fuel cells
KR100558405B1 (en) Ion exchange membrane electrolytic cell
JP3053199B2 (en) Frame unit for filter press type electrolytic cell and filter press type monopolar electrolytic cell
JP3770551B2 (en) Ion exchange membrane electrolytic cell
KR101474868B1 (en) Electrolyzer improving electrolvte diffusion efficiency and gas-exhaust efficiency
US11145881B2 (en) Gas flow passage formation plate for fuel cell and fuel cell stack
US5484514A (en) Electrolyzer
EP0327794B1 (en) An antisurge outlet apparatus for use in electrolytic cells
US5314591A (en) Electrolyzer and method of production
KR101246123B1 (en) Electrolytic cell with segmented and monolithic electrode design
JPH11106977A (en) Bipolar type ion exchange membrane electrolytic cell
EP3240079B1 (en) Gas channel forming plate for fuel cell and fuel cell stack
JP7364828B1 (en) electrolyzer unit
WO2023233799A1 (en) Electrolytic cell unit
JP3807676B2 (en) Ion exchange membrane electrolytic cell
JPH11323584A (en) Electrolytic cell with ion exchange membrane
JP3846201B2 (en) Electrolytic cell
JP2022081361A (en) Manufacturing method of modularization flat surface connection plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3770551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term