JP2004091834A - Ion exchange membrane electrolytic cell - Google Patents

Ion exchange membrane electrolytic cell Download PDF

Info

Publication number
JP2004091834A
JP2004091834A JP2002252673A JP2002252673A JP2004091834A JP 2004091834 A JP2004091834 A JP 2004091834A JP 2002252673 A JP2002252673 A JP 2002252673A JP 2002252673 A JP2002252673 A JP 2002252673A JP 2004091834 A JP2004091834 A JP 2004091834A
Authority
JP
Japan
Prior art keywords
gas
partition plate
electrolytic cell
exchange membrane
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002252673A
Other languages
Japanese (ja)
Other versions
JP3770551B2 (en
Inventor
Shinji Katayama
片山 眞二
Masakazu Kameda
亀田 雅和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2002252673A priority Critical patent/JP3770551B2/en
Publication of JP2004091834A publication Critical patent/JP2004091834A/en
Application granted granted Critical
Publication of JP3770551B2 publication Critical patent/JP3770551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion exchange membrane electrolytic cell in which gas-liquid separation efficiency is excellent, and stable operation is possible. <P>SOLUTION: The ion exchange membrane electrolytic cell is composed in such a manner that electrodes arranged at intervals from partition plates are divided by an ion exchange membrane to form electrode chambers. A circulation member for an electrolytic solution inside the electrode chamber is attached to the partition plate, and a descending flow passage for an electrolytic solution is arranged in space between the circulation member and the partition plate. Then, a gas-liquid separation means is positioned on the back face of a flange face for stacking adjacent electrolytic cell units in the upper part of each electrode chamber. The gas-liquid separation means is provided with a collision plate through which a fluid raised inside the electrode chamber can not pass. In each electrolytic cell unit, an opening part for the descending flow passage into which a gas-liquid mixed phase fluid whose flow passage is changed by the collision plate flows, is positioned downward from the collision plate. Further, on the partition plate side, a communication conduit communicating with the gas region for the gas-liquid separation means is arranged. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はイオン交換膜電解槽に関するものであり、とくに複極式フィルタープレス型イオン交換膜電解槽に関するものである。
【0002】
【従来の技術】
食塩水の電気分解に使用される電解槽に代表される複極式のフィルタープレス型イオン交換膜電解槽は、イオン交換膜で区画した電極室において高電流密度の電流を通電して電気分解を行なっており、陰極室内および陽極室内では大量の気体が発生する。
電極室内で発生した気体を気泡として含んだ電解液から気泡が分離する際に、電極室内の圧力が大きく変動し、電解槽の運転に悪影響を及ぼしたり、イオン交換膜を劣化させたりすることがあった。
このために、電極室内で発生した気泡を含有した電解液から気体を速やかに分離することが可能な電解槽が求められていた。
こうした課題を解決するために、フィルタープレス型電解槽の上部に気液分離手段を設け電極室内の気体を円滑に分離する電解槽が提案されている。
【0003】
例えば、電極室上部に気液分離室を設け、電極室上部と気液分離室の間を断面積が小さな開口部で結合したり、あるいは上部に樋状のものを設け、溢流によって電解液から気液分離と電解槽の側面からの排出を行なうものが特開平8−100286号公報等が知られている。
【0004】
ところがこれらのものでは、電解槽の圧力変動への対策が未だ充分なものではなかったり、電極室の上部に位置するイオン交換膜面に、電解槽の運転中あるいは停止中に気体の滞留部が形成され、気体の滞留部に面するイオン交換膜が早期に劣化するという問題点があった。
【0005】
【発明が解決しようとする課題】
本発明は、電極室内で発生した気泡を含有した電解液から円滑な気体の分離が可能で、電極室内での圧力の変動も小さく、イオン交換膜に悪影響を及ぼすことがなく、効率的な電気分解が可能なイオン交換膜電解槽を提供することを課題とするものである。
【0006】
【課題を解決するための手段】
本発明の課題は、隔壁板から間隔を設けて配置した電極をイオン交換膜によって区画して電極室を形成したイオン交換膜電解槽において、隔壁板に電極室内の電解液の循環部材を取り付けて隔壁板との間の空間に電解液の下降流路を設けるとともに、電極室の上部の隣接する電解槽ユニットを積層する際のフランジ面の裏面に気液分離手段を設け、気液分離手段には電極室内を上昇した流体が通過することができない部材から形成された衝突板を設けるとともに、衝突板よりも下方に、衝突板によって流路が変更された気液混相流体が流入する下降流路への開口部を位置させるとともに、気液分離手段の気体領域とを連通する連通路を隔壁板側に設けた電解槽ユニットから構成されたイオン交換膜電解槽によって解決することができる。
【0007】
また、衝突板が、気液分離手段の隔壁板側、およびフランジ面の裏面側の異なる高さの位置から対向面に向かって伸びた複数の部材から構成された前記のイオン交換膜電解槽である。
また、隔壁板側から中央部に向けて延びた衝突板は、連通路を形成する連通路形成部材を介して隔壁板に接合されているとともに、連通路形成部材の衝突板の壁面に接する部分には、連通路形成部材の下端部から衝突板の壁面の上端部まで延びた開口部を有するとともに、衝突板の上端部よりも上方部は、隔壁板との間に間隔を形成した前記のイオン交換膜電解槽である。
また、衝突板は、フランジ面の裏面および隔壁板のそれぞれに垂直であって間隔を設けて配置された保持部材と結合した前記のイオン交換膜電解槽である。
また、衝突板は気液分離手段の隔壁板とフランジ面の裏面側の両者に結合した一つの部材である前記のイオン交換膜電解槽である。
【0008】
また、衝突板の隔壁板側の面は、隔壁板との間に配置され上下方向に延びる間隔を設けて配置した帯状の接合部によって隔壁板に接合されて、隣接する接合部の間には隔壁板との間に空間によって連通路を形成した連通路形成部材の連通路の裏面に接合された前記のイオン交換膜電解槽である。
衝突板は、フランジ部の裏面および隔壁板に垂直に、間隔を設けて配置された保持部材と結合した前記のイオン交換膜電解槽である。
【0009】
【発明の実施の形態】
本発明のイオン交換膜電解槽は、電極室上部に、隔壁板と反対側の面をフランジ部に位置する気液分離手段を設けたので、電極室の上部に位置するイオン交換膜面には気体領域が形成されることはなく、また上昇した気液混合流体は、流体が通過することができない衝突板への衝突の後に反射して流路を変えられて、電極室内に設けた電解液下降流路側へ導入され、気泡は隔壁板との間に形成された連通路を通じて気液分離手段の上部の気体領域へと速やかに流入するので、安定した電気分解を効率的に行うことが可能となる。
また、衝突板をフランジ部の裏面に配置したので、衝突板あるいは衝突板に設けた保持部材は、単位電解槽を組み立てた際に電解槽の積層面へ加わる押圧力によって電解槽の変形等が生じることはなく安定した運転が可能となる。
【0010】
以下に図面を参照して本発明を説明する。
図1は、本発明の電解槽の一実施例を説明する図であり、図1(A)は、複数個の電解槽ユニットを積層したイオン交換膜電解槽の断面を説明する図であり、図1(B)は、電解槽ユニットの陽極側から見た平面図であり、図1(C)は、気液分離手段を説明する断面図である。
図1(A)に示すように、イオン交換膜電解槽1は複数の複極式の電解槽ユニット2をイオン交換膜3を介して積層して組み立てられている。
電解槽ユニット2には、陽極室隔壁板4から間隔を設けて陽極5が配置され、陽極室6が形成されている。
また、陰極室隔壁板7から間隔を設けて陰極8が配置されており、陰極室側隔壁板7とイオン交換膜3の間に陰極室9が形成されている。
また、陽極室6、陰極室9の上部には、それぞれ陽極室側気液分離手段20、陰極室側気液分離手段40が設けられている。
【0011】
陽極室6、および陰極室9には、それぞれ電解液の内部循環を行なわせるために下降流路を形成する陽極液循環部材10、陰極液循環部材11が設けられており、陽極液循環部材10、陰極液循環部材1によって。それぞれ陽極室隔壁板4、陰極室隔壁板7との間に陽極液下降流路12、および陰極液下降流路13が形成されている。
また、電解槽ユニット2の陽極室6には、陽極供給管14が取り付けられ、陽極室側気液分離手段20には、濃度が低下した陽極液と気体を排出する陽極側排出管15が取り付けられている。
【0012】
また、図1(C)に示すように、陽極室側気液分離手段20は、陽極室6の上部に配置され、一方の壁面は陽極室隔壁板4の延長部に結合され、他方の面は電解槽ユニットの複数個を積層して電解槽を組み立てた際に隣接する電解槽ユニットとガスケットを介して積層するフランジ面21を形成しており、図1(A)に示すようにフランジ面に配置されたガスケット16を介在させて積層されている。 陽極室側気液分離手段20の陽極隔壁板4と対向するフランジ面21の裏面には、流体が透過しないL字状の板材から形成された第一の衝突板22が帯状の接合部で結合されており、他端が気液分離手段内部に伸びている。
【0013】
また、第一の衝突板22よりも上部には、流体が透過しないL字状の板材から形成された第二の衝突板23が陽極室隔壁板4側から伸びている。また、陽極室隔壁板4側に配置された陽極側連通路形成用部材24によって、陽極室側気液分離手段の気体領域25と陽極室6内部を連通する連通路26が形成されている。
【0014】
陽極室6内において発生した気泡は、陽極液循環部材10と陽極5の間の領域を気体の浮力によって上昇し、陽極室の上部の陽極室側気液分離手段20の内部に設けた第一の衝突板22に衝突して流路を変更されて、陽極液下降流路12へと流入するとともに、陽極室隔壁板4との間の領域に開口した連通路26から気液分離手段の気体領域25へと流入して気液分離が行われる。また、一部は、第二の衝突板23と対向する面との開口を通じて上部へと流入した陽極液は、連通路26を通じて上昇した陽極液と液面27を形成している。
陰極室側には、陰極室側気液分離手段40を有しており、陰極側気液分離手段40の陽極隔壁板7と対向する陰極側フランジ面41の裏面には、流体が透過しないL字状の板材から形成された陰極側の第一の衝突板42が帯状の接合部によって結合されており、他端が気液分離手段内部に伸びている。
【0015】
また、陰極側の第一の衝突板42よりも上部には、流体が透過しないL字状の板材から形成された第二の衝突板43が陰極室隔壁板7側から延びている。また、陰極室隔壁板7側に配置された陰極室連通路形成用部材44によって、陰極側気液分離手段の気体領域45と陰極室9内部を連通する連通路46が形成されている。
陰極室9内において発生した気泡は、陰極液循環部材11と陰極8の間の領域を気体の浮力によって上昇し、陽極室の上部の陰極室側気液分離手段40の内部に設けた、陰極側の第一の衝突板42に衝突して下方へ流路を変更されて、陰極液下降流路13へと流入するとともに、陰極隔壁板7との間の領域に開口した連通路46から気液分離手段の気体領域45へと流入する。また、一部は、第二の衝突板43の開口を通じて、上部へと流入し液面47を形成している。
【0016】
以上の説明では、陽極室、陰極室のいずれにも、気液分離手段を設けた電解槽について説明をしたが、食塩水のイオン交換膜電解槽においては、発生した塩素による影響が大きな陽極室のみに気液分離手段を設けたものであっても良い。
【0017】
図2は、気液分離手段の動作を説明する図であり、一部を切り欠いた斜視図である。
陽極室側気液分離手段20は、陽極室6の上部に配置され、一方の壁面は陽極室隔壁板4の延長部に結合され、他方の面は電解槽ユニットの複数個を積層して電解槽を組み立てた際に隣接する電解槽ユニットとガスケットを介して積層するフランジ面21を形成している。
陽極室側気液分離手段20の陽極隔壁板4と対向するフランジ面21の裏面には、流体が透過しないL字状の板材であって、電解槽ユニットの幅方向に延びる第一の衝突板22が帯状の接合部によって結合されて、接合部は気密に形成されており、他端が気液分離手段内部に伸びている。
【0018】
また、第一の衝突板22よりも上部には、流体が透過しないL字状の板材からなり、電解槽ユニットの幅方向に延びた第二の衝突板23が陽極室隔壁板4側に取り付けられている。また、陽極室隔壁板4側に配置された陽極側連通路形成用部材24によって、陽極室気液分離手段の気体領域25と陽極室6内部を連通する連通路26が形成されている。
【0019】
陽極室6内において発生した気泡は、陽極液循環部材10と陽極5の間の領域を気体の浮力によって上昇流17を形成して上昇し、第一の衝突板22に衝突して下方へ流路18を変更されて、陽極液下降流路12へと流入し、気液混相流体の気泡に富んだ滞留部19を形成する。そして、陽極室隔壁板4との間の領域に開口した連通路26から気液分離手段の気体領域25へと気液混相流体が流入して気液分離が行われるとともに、陽極液下降流路12を下降して循環が形成される。また、一部は、第一の衝突板22と第二の衝突板23の開口部を通じて上部へと流入する。
【0020】
第一の衝突板22と第二の衝突板23の間には、保持部材30が間隔を設けて接合されており、電解槽ユニットを積層した際に電解槽の積層面に加わる押圧力による電解槽の変形を防止し、剛性が大きな電解槽が形成される。
【0021】
図3は、気液分離手段の他の実施例を説明する図である。
図3(A)は、陽極室側気液分離手段の断面を説明する図であり、図3(B)は、は、陽極室側気液分離手段を隔壁板側から見た図である。
陽極室側気液分離手段20は、電解槽ユニットの複数個を積層して電解槽を組み立てた際に隣接する電解槽ユニットとガスケットを介して積層するフランジ面21の裏面には、流体が透過しないL字状の板材であって、電解槽ユニットの幅方向に延びる第一の衝突板22が帯状の接合部によって結合されて、接合部は気密に形成されており、他端が気液分離手段内部に伸びている。
【0022】
また、第一の衝突板22よりも上部には、流体が透過しないL字状の板材からなり、電解槽ユニットの幅方向に延びた第二の衝突板23が陽極室隔壁板4側に取り付けられている。
第一の衝突板22および第二の衝突板23は、保持部材30と接合されている。そして、第二の衝突板23と陽極側の隔壁板4の間には、陽極側連通路形成用部材24が配置されており一体に接合されている。
【0023】
陽極側連通路形成用部材24の下端部は、第二の衝突板23と下端部がほぼ一致して配置されており、第二の衝突板23の高さh1に相当する長さの、開口部31が形成されており、開口部31の下端部は、開放部32を有している。また、開口部31の上端部は第二の衝突板23の上端部にほぼ一致している。
そして、開口部の上端部よりも上部に位置する偏向部33は、隔壁板との間に連通路を形成するように隔壁板とは反対側へ第二の衝突板23の上面に沿って折れ曲がり、更に、上方へ直角に折れ曲がっている。
【0024】
これによって、第二の衝突板23と陽極側連通路形成用部材24を陽極室隔壁板7と一体に接合した場合には、開放部32、開口部31を通じた連通路26が間隔を設けて形成されるとともに、平板部35において第二の衝突板23と陽極室隔壁板とが一体化することができるので、複数の電解槽ユニットを積層して電解槽を組み立てる際には、フランジ面から押圧されても連通路26をはじめ、電解槽ユニットの各部が変形を生じることはない。
【0025】
以上の説明では、陽極側連通路形成用部材24の下端部が開放部を有し、下端部が第二の衝突板の下端部と一致する例を挙げたが、陽極側連通路形成用部材の下端部が開放したものである場合には、下端部は第二の衝突板の下端部よりも上部に位置したものであっても良く、また、開口部の一部が第二の衝突板の下端部よりも下部に存在する場合には下端部は開放部を有したものでなくても良い。
【0026】
図4は、気液分離手段の他の実施例を説明する図であり、一部を切り欠いた斜視図である。
陽極室側気液分離手段20は、陽極室6の上部に配置され、一方の壁面は陽極室隔壁板4の延長部に結合され、他方の面は電解槽ユニットの複数個を積層して電解槽を組み立てた際に隣接する電解槽ユニットとガスケットを介して積層するフランジ面21を形成している。
陽極室側気液分離手段20の陽極隔壁板4と対向するフランジ面21の裏面には、流体が透過しないJ字状の板材であって、フランジ面21の裏面に帯状の接触部によって接合されて衝突板22Aが取り付けられている。
【0027】
衝突板22Aは、電極室の断面を水平に覆い、陽極室隔壁板4との間には、連通路形成部材24Aを介して陽極室隔壁板4に接合されている。連通路形成部材24Aは、電解槽ユニットの上下方向に延びた帯状の複数の接合部35によって陽極室隔壁板4に接合されているとともに、隣接する接合部の間には隔壁板との間に間隙を設けて連通路26を形成している。
【0028】
また、接合部35には、保持部材30が設けられており、電解槽ユニットを積層した際にフランジ面に加わる圧力による変形を防止している。保持部材30と接合部35とを同等の幅とすることによって、接合部35から電解液が気液分離手段の気体領域へ流入することを防止することができる。
衝突板は、J字形に限らず、U字形等の部材を用いることができるが、気液分離室内の変形等を防止するために装着する保持部材との固定特性等を考慮すれば、U字形よりもJ字形の方が好ましい。J字形であれば、保持部材の係合および固定性がより良好なものとなる。
【0029】
また、連通路形成用部材としては、衝突板、保持部材との接合、固定性が良好で、隔壁板との間に所定の間隔を保持することができる部材であれば、凹部と凸部を設けた部材、厚みが一定の板材を切除した櫛状部材を挙げることができる。また、以上のように1個、あるいは少数のの部材で気液分離手段の幅方向全体に連通路を形成するものではなく、所定の厚みと幅を有する板状体を間隔を設けて配置することも可能ではあるが、大型の電解槽ユニットを精度良く製造するうえでは現実的ではない。
【0030】
また、本発明においては、陽極室側気液分離手段は、陽極室隔壁と同様のチタンやチタン合金を用いることができる、陰極側気液分離手段は、ニッケルおよびその合金、ステンレス等の金属材料によって作製することができる。
液体、気体の漏洩を防止する必要がある個所においては、各部材は線状に溶接を行うことが必要であるが、厳密に流体の浸入を防止する必要がない個所には、間隔を設けて点状に溶接を行っても良い。
【0031】
【発明の効果】
本発明のイオン交換膜電解槽では、極室内を上昇してきた気液混相流は、気液分離手段に設けた衝突板に衝突して、電極室内の下降通路の開口部へと強制的に方向を変化させられ、下降流路から電極室内を循環するとともに、気液分離手段と隔壁板との間の連通路から気体領域へと速やかに移動する。このため、電極室内でのイオン交換膜面には、発生した気体の滞留部が生じず、イオン交換膜へ悪影響を及ぼすことがない。また気液混相流が狭い通路を通ることにより、小さい気泡が分散された気泡流となり気液の分離が円滑に行なわれ、電極室内からの排出速度も大きくなり電極室内での圧力変動が生じず、高電流密度で安定した運転ができる。
更に、気液分離手段に設けた、衝突板、および保持部材によって、剛性の大きな電解槽を得ることができる。
【図面の簡単な説明】
【図1】図1は、本発明の電解槽の一実施例を説明する図である。
【図2】図2は、気液分離手段の動作を説明する図である。
【図3】図3は、気液分離手段の他の実施例を説明する図である。
【図4】図4は、気液分離手段の他の実施例を説明する図である。
【符号の説明】
1…イオン交換膜電解槽、2…電解槽ユニット、3…イオン交換膜、4…陽極室隔壁板、5…陽極、6…陽極室、7…陰極室隔壁板、8…陰極、9…陰極室、10…陽極液循環部材、11…陰極液循環部材、12…陽極液下降流路、13…陰極液下降流路、14…陽極供給管、15…陽極側排出管、16…ガスケット、17…上昇流、18…流路、19…滞留部、20…陽極室側気液分離手段、21…フランジ面、22…第一の衝突板、22A…衝突板、23…第二の衝突板、24…陽極側連通路形成用部材、24A…連通路形成部材、25…気体領域、26…連通路、27…液面、30…保持部材、h1…第二の衝突板の高さ、31…開口部、32…開放部、33…偏向部、34…平板部、35…接合部、h1…第二の衝突板の高さ、40…陰極室側気液分離手段、41…陰極側フランジ面、42…第一の衝突板、43…第二の衝突板、44…陰極室連通路形成用部材、45…気体領域、46…連通路、47…液面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ion exchange membrane electrolytic cell, and more particularly to a bipolar filter press type ion exchange membrane electrolytic cell.
[0002]
[Prior art]
A bipolar electrode type filter press type ion exchange membrane electrolytic cell represented by an electrolytic cell used for the electrolysis of saline is used to carry out electrolysis by passing a high current density current through an electrode chamber partitioned by an ion exchange membrane. And a large amount of gas is generated in the cathode chamber and the anode chamber.
When bubbles are separated from the electrolyte containing gas generated in the electrode chamber as bubbles, the pressure inside the electrode chamber fluctuates greatly, which may adversely affect the operation of the electrolytic cell or deteriorate the ion exchange membrane. there were.
For this reason, there has been a demand for an electrolytic cell capable of quickly separating gas from an electrolytic solution containing bubbles generated in an electrode chamber.
In order to solve such problems, there has been proposed an electrolytic cell provided with gas-liquid separating means above a filter press type electrolytic cell to smoothly separate gas in an electrode chamber.
[0003]
For example, a gas-liquid separation chamber is provided at the upper part of the electrode chamber, and the upper part of the electrode chamber and the gas-liquid separation chamber are connected by an opening having a small cross-sectional area, or a gutter-shaped one is provided at the upper part, and the overflow of the electrolyte Japanese Patent Application Laid-Open No. Hei 8-100286 discloses an apparatus which performs gas-liquid separation and discharge from the side of an electrolytic cell.
[0004]
However, in these devices, measures against pressure fluctuations in the electrolytic cell are not yet sufficient, and a gas stagnation portion is formed on the surface of the ion exchange membrane located above the electrode chamber during operation or stop of the electrolytic cell. There is a problem that the ion exchange membrane formed and facing the gas retaining portion deteriorates early.
[0005]
[Problems to be solved by the invention]
INDUSTRIAL APPLICABILITY The present invention enables a smooth separation of gas from an electrolytic solution containing bubbles generated in an electrode chamber, small fluctuations in pressure in the electrode chamber, no adverse effect on an ion exchange membrane, and efficient electric power. It is an object of the present invention to provide a decomposable ion exchange membrane electrolytic cell.
[0006]
[Means for Solving the Problems]
An object of the present invention is to provide an ion exchange membrane electrolytic cell in which electrodes arranged at intervals from a partition plate are partitioned by an ion exchange membrane to form an electrode chamber, wherein a circulating member for the electrolyte in the electrode chamber is attached to the partition plate. Along with providing a descending flow path for the electrolytic solution in the space between the partition plate and providing a gas-liquid separating means on the back surface of the flange surface when laminating the adjacent electrolytic cell units on the upper part of the electrode chamber, the gas-liquid separating means Is provided with a collision plate formed of a member through which the fluid that has risen in the electrode chamber cannot pass, and a descending flow passage into which a gas-liquid multiphase fluid whose flow passage has been changed by the collision plate flows below the collision plate. An ion exchange membrane electrolytic cell comprising an electrolytic cell unit provided on the partition plate side with a communication passage communicating with the gas region of the gas-liquid separation means while locating an opening to the gas-liquid separation means can be solved.
[0007]
Further, in the above-mentioned ion-exchange membrane electrolytic cell, the collision plate is composed of a plurality of members extending toward the opposing surface from positions at different heights on the partition plate side of the gas-liquid separation means and the back surface side of the flange surface. is there.
The collision plate extending from the partition plate side toward the center is joined to the partition plate via a communication passage forming member that forms a communication passage, and a portion of the communication passage forming member that contacts the wall surface of the collision plate. Has an opening extending from the lower end of the communication passage forming member to the upper end of the wall surface of the collision plate, and the upper portion of the collision plate above the upper end thereof has a gap formed with the partition plate. It is an ion exchange membrane electrolytic cell.
In addition, the collision plate is the above-mentioned ion exchange membrane electrolytic cell combined with a holding member which is perpendicular to the back surface of the flange surface and the partition plate and is arranged at intervals.
The collision plate is the above-mentioned ion exchange membrane electrolytic cell, which is one member connected to both the partition plate of the gas-liquid separation means and the back surface of the flange surface.
[0008]
In addition, the surface of the collision plate on the partition plate side is joined to the partition plate by a band-like joint disposed between the partition plate and the space extending in the up-down direction and arranged between the adjacent joints. The ion exchange membrane electrolytic cell is joined to a back surface of the communication path of the communication path forming member in which a communication path is formed by a space between the partition wall plate and the communication path forming member.
The collision plate is the above-mentioned ion-exchange membrane electrolytic cell combined with a holding member arranged at an interval perpendicular to the back surface of the flange portion and the partition plate.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Since the ion exchange membrane electrolytic cell of the present invention is provided with gas-liquid separation means located on the upper part of the electrode chamber, the surface opposite to the partition plate on the flange portion, the ion exchange membrane surface located on the upper part of the electrode chamber has The gas region is not formed, and the gas-liquid mixed fluid that has risen is reflected after the collision with the collision plate through which the fluid cannot pass, the flow path is changed, and the electrolyte provided in the electrode chamber is changed. The bubbles are introduced into the descending flow path side, and the bubbles quickly flow into the gas region above the gas-liquid separation means through the communication path formed between the partition wall plate, so that stable electrolysis can be efficiently performed. It becomes.
In addition, since the collision plate is arranged on the back surface of the flange portion, the collision plate or the holding member provided on the collision plate may be deformed by the pressing force applied to the lamination surface of the electrolytic bath when the unit electrolytic bath is assembled. Stable operation is possible without any occurrence.
[0010]
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating an embodiment of the electrolytic cell of the present invention, and FIG. 1 (A) is a diagram illustrating a cross section of an ion exchange membrane electrolytic cell in which a plurality of electrolytic cell units are stacked. FIG. 1B is a plan view of the electrolytic cell unit viewed from the anode side, and FIG. 1C is a cross-sectional view illustrating a gas-liquid separation unit.
As shown in FIG. 1 (A), the ion exchange membrane electrolytic cell 1 is assembled by stacking a plurality of bipolar electrolytic cell units 2 via an ion exchange membrane 3.
In the electrolytic cell unit 2, an anode 5 is arranged at a distance from the anode chamber partition plate 4, and an anode chamber 6 is formed.
A cathode 8 is arranged at a distance from the cathode chamber partition plate 7, and a cathode chamber 9 is formed between the cathode chamber-side partition plate 7 and the ion exchange membrane 3.
Above the anode chamber 6 and the cathode chamber 9, an anode chamber-side gas-liquid separator 20 and a cathode chamber-side gas-liquid separator 40 are provided, respectively.
[0011]
The anode chamber 6 and the cathode chamber 9 are provided with an anolyte circulating member 10 and a catholyte circulating member 11, respectively, which form a descending flow path for causing internal circulation of the electrolyte. By the catholyte circulation member 1. An anolyte descending channel 12 and a catholyte descending channel 13 are formed between the anode compartment partition plate 4 and the cathode compartment partition plate 7, respectively.
An anode supply pipe 14 is attached to the anode chamber 6 of the electrolytic cell unit 2, and an anode discharge pipe 15 for discharging the anolyte and gas with reduced concentration is attached to the anode chamber side gas-liquid separation means 20. Have been.
[0012]
Further, as shown in FIG. 1 (C), the anode chamber side gas-liquid separation means 20 is disposed above the anode chamber 6, one wall surface is connected to an extension of the anode chamber partition plate 4, and the other surface. Forms a flange surface 21 which is laminated via an gasket to an adjacent electrolytic cell unit when a plurality of electrolytic cell units are laminated to assemble the electrolytic cell. As shown in FIG. Are laminated with a gasket 16 disposed therebetween. A first collision plate 22 made of an L-shaped plate material through which fluid does not permeate is joined to the back surface of the flange surface 21 of the anode chamber side gas-liquid separation means 20 facing the anode partition plate 4 at a band-like joint. The other end extends into the gas-liquid separation means.
[0013]
Above the first impingement plate 22, a second impingement plate 23 formed of an L-shaped plate material through which fluid does not permeate extends from the anode chamber partition plate 4 side. In addition, the anode-side communication passage forming member 24 disposed on the side of the anode chamber partition plate 4 forms a communication passage 26 that communicates the gas region 25 of the anode chamber-side gas-liquid separation unit with the inside of the anode chamber 6.
[0014]
Bubbles generated in the anode chamber 6 rise in the region between the anolyte circulating member 10 and the anode 5 by buoyancy of the gas, and are provided inside the anode chamber-side gas-liquid separation means 20 above the anode chamber. The gas flows into the anolyte descending flow path 12 by colliding with the colliding plate 22 of the gas flow, and flows into the anolyte descending flow path 12. The gas flows into the region 25 and gas-liquid separation is performed. In addition, the anolyte that has flowed upward through an opening in the surface facing the second collision plate 23 forms a liquid surface 27 with the anolyte that has risen through the communication passage 26.
On the cathode chamber side, there is provided a cathode chamber side gas-liquid separation means 40, and on the back surface of the cathode side flange surface 41 of the cathode side gas / liquid separation means 40 which faces the anode partition plate 7, L does not transmit fluid. A first collision plate 42 on the cathode side formed of a U-shaped plate is joined by a band-shaped joint, and the other end extends into the gas-liquid separation means.
[0015]
Above the first collision plate 42 on the cathode side, a second collision plate 43 formed of an L-shaped plate material through which fluid does not pass extends from the cathode chamber partition plate 7 side. Further, a communication passage 46 for communicating the gas region 45 of the cathode-side gas-liquid separation means with the inside of the cathode chamber 9 is formed by the cathode chamber communication passage forming member 44 arranged on the cathode chamber partition plate 7 side.
Bubbles generated in the cathode chamber 9 rise in the region between the catholyte circulation member 11 and the cathode 8 by buoyancy of the gas, and are provided inside the cathode chamber side gas-liquid separation means 40 above the anode chamber. The flow path is changed downward by colliding with the first collision plate 42 on the side, flows into the catholyte descending flow path 13, and flows through the communication passage 46 opened in the region between the cathode partition plate 7. It flows into the gas area 45 of the liquid separating means. In addition, a part of the liquid flows into the upper part through the opening of the second collision plate 43 to form a liquid surface 47.
[0016]
In the above description, an electrolytic cell provided with gas-liquid separation means in both the anode chamber and the cathode chamber has been described. Only the gas-liquid separation means may be provided.
[0017]
FIG. 2 is a view for explaining the operation of the gas-liquid separation means, and is a partially cutaway perspective view.
The anode chamber side gas-liquid separation means 20 is disposed above the anode chamber 6, one wall surface is connected to an extension of the anode chamber partition plate 4, and the other surface is formed by laminating a plurality of electrolytic cell units. When the tank is assembled, a flange surface 21 is formed to be laminated with an adjacent electrolytic cell unit via a gasket.
On the back surface of the flange surface 21 of the anode chamber-side gas-liquid separation means 20 facing the anode partition plate 4, a first collision plate, which is an L-shaped plate material through which fluid does not permeate and extends in the width direction of the electrolytic cell unit. 22 are joined by a band-shaped joint, the joint is formed airtight, and the other end extends inside the gas-liquid separation means.
[0018]
Above the first collision plate 22, a second collision plate 23 made of an L-shaped plate material through which fluid does not permeate and extending in the width direction of the electrolytic cell unit is attached to the anode chamber partition plate 4 side. Have been. In addition, the anode side communication path forming member 24 arranged on the anode chamber partition plate 4 side forms a communication path 26 for communicating the gas region 25 of the anode chamber gas-liquid separation means with the inside of the anode chamber 6.
[0019]
The bubbles generated in the anode chamber 6 rise in the area between the anolyte circulating member 10 and the anode 5 by forming a rising flow 17 due to the buoyancy of the gas, collide with the first collision plate 22 and flow downward. The passage 18 is changed so as to flow into the anolyte descending flow passage 12 to form a stagnant portion 19 rich in bubbles of the gas-liquid multiphase fluid. Then, the gas-liquid multiphase fluid flows into the gas region 25 of the gas-liquid separation means from the communication passage 26 opened to the region between the anode chamber partition plate 4 and gas-liquid separation is performed. 12 and a circulation is formed. Further, a part flows into the upper part through the openings of the first collision plate 22 and the second collision plate 23.
[0020]
The holding member 30 is joined between the first collision plate 22 and the second collision plate 23 with a space therebetween, and the electrolytic member is pressed by a pressing force applied to the lamination surface of the electrolytic cell when the electrolytic cell units are laminated. An electrolytic cell having high rigidity is formed while preventing deformation of the cell.
[0021]
FIG. 3 is a view for explaining another embodiment of the gas-liquid separation means.
FIG. 3A is a diagram illustrating a cross section of the anode chamber side gas-liquid separation means, and FIG. 3B is a view of the anode chamber side gas-liquid separation means viewed from the partition plate side.
The anode chamber-side gas-liquid separation means 20 is configured such that when a plurality of electrolytic cell units are laminated to assemble the electrolytic cell, a fluid permeates the back surface of the flange surface 21 which is laminated via a gasket with an adjacent electrolytic cell unit. The first collision plate 22 extending in the width direction of the electrolytic cell unit is an L-shaped plate material that is not joined, and the first collision plate 22 is joined by a band-like joint, and the joint is formed airtight, and the other end is gas-liquid separated. It extends inside the means.
[0022]
Above the first collision plate 22, a second collision plate 23 made of an L-shaped plate material through which fluid does not permeate and extending in the width direction of the electrolytic cell unit is attached to the anode chamber partition plate 4 side. Have been.
The first collision plate 22 and the second collision plate 23 are joined to the holding member 30. An anode side communication path forming member 24 is disposed between the second collision plate 23 and the partition plate 4 on the anode side, and is integrally joined.
[0023]
The lower end of the anode-side communication passage forming member 24 is disposed such that the lower end thereof is substantially aligned with the second collision plate 23 and has an opening having a length corresponding to the height h1 of the second collision plate 23. A part 31 is formed, and a lower end part of the opening part 31 has an opening part 32. The upper end of the opening 31 substantially coincides with the upper end of the second collision plate 23.
The deflecting portion 33 located above the upper end of the opening bends along the upper surface of the second collision plate 23 to the opposite side to the partition plate so as to form a communication passage with the partition plate. , And bent upward at a right angle.
[0024]
Thereby, when the second collision plate 23 and the anode-side communication passage forming member 24 are integrally joined to the anode chamber partition plate 7, the communication passage 26 through the opening 32 and the opening 31 is provided with an interval. Since the second collision plate 23 and the anode chamber partition plate can be integrated with each other in the flat plate portion 35, when a plurality of electrolytic cell units are stacked to assemble the electrolytic cell, the flange surface is used. Even when pressed, each part of the electrolytic cell unit including the communication path 26 does not deform.
[0025]
In the above description, an example was given in which the lower end of the anode-side communication passage forming member 24 had an open portion and the lower end coincided with the lower end of the second collision plate. If the lower end of the second collision plate is open, the lower end may be located above the lower end of the second collision plate, and a part of the opening may be the second collision plate. If it exists below the lower end, the lower end does not have to have an open part.
[0026]
FIG. 4 is a view for explaining another embodiment of the gas-liquid separation means, and is a partially cutaway perspective view.
The anode chamber side gas-liquid separation means 20 is disposed above the anode chamber 6, one wall surface is connected to an extension of the anode chamber partition plate 4, and the other surface is formed by laminating a plurality of electrolytic cell units. When the tank is assembled, a flange surface 21 is formed to be laminated with an adjacent electrolytic cell unit via a gasket.
The back surface of the flange surface 21 of the anode chamber side gas-liquid separation means 20 facing the anode partition plate 4 is a J-shaped plate material through which fluid does not permeate, and is joined to the back surface of the flange surface 21 by a band-shaped contact portion. A collision plate 22A is attached.
[0027]
The collision plate 22A horizontally covers the cross section of the electrode chamber, and is joined to the anode chamber partition plate 4 with the anode chamber partition plate 4 via a communication passage forming member 24A. The communication path forming member 24A is joined to the anode chamber partition plate 4 by a plurality of strip-shaped joining portions 35 extending in the vertical direction of the electrolytic cell unit, and between the adjacent joining portions and the partition plate. A communication path 26 is formed by providing a gap.
[0028]
Further, a holding member 30 is provided at the joint 35 to prevent deformation due to pressure applied to the flange surface when the electrolytic cell units are stacked. By making the holding member 30 and the joint 35 have the same width, it is possible to prevent the electrolytic solution from flowing from the joint 35 into the gas region of the gas-liquid separation unit.
The collision plate is not limited to the J-shape, and may be a U-shape or the like. However, in consideration of a fixing property with a holding member to be attached to prevent deformation or the like in the gas-liquid separation chamber, a U-shape is used. A J-shape is more preferable than a J-shape. If it is a J-shape, the engagement and fixability of the holding member will be better.
[0029]
In addition, as the member for forming the communication path, the recess and the protrusion may be used as long as the member has good bonding and fixability with the collision plate and the holding member, and can maintain a predetermined distance between the collision plate and the partition plate. The provided member and a comb-like member obtained by cutting a plate material having a constant thickness can be given. Further, as described above, one or a small number of members do not form a communication path in the entire width direction of the gas-liquid separation means, but plate-like bodies having a predetermined thickness and width are arranged at intervals. Although it is possible, it is not realistic in manufacturing a large electrolytic cell unit with high accuracy.
[0030]
Further, in the present invention, the anode chamber side gas-liquid separation means can use the same titanium or titanium alloy as the anode chamber partition wall. The cathode side gas-liquid separation means is nickel and its alloys, metal materials such as stainless steel. Can be produced by
In places where it is necessary to prevent leakage of liquids and gases, it is necessary to weld each member in a linear manner, but in places where it is not necessary to strictly prevent infiltration of fluids, provide an interval. The welding may be performed in a point shape.
[0031]
【The invention's effect】
In the ion-exchange membrane electrolytic cell of the present invention, the gas-liquid multiphase flow that has risen in the electrode chamber collides with the collision plate provided in the gas-liquid separation means, and is forcibly directed to the opening of the descending passage in the electrode chamber. Is circulated in the electrode chamber from the descending flow path, and quickly moves from the communication path between the gas-liquid separation means and the partition plate to the gas area. For this reason, the generated gas does not remain on the surface of the ion exchange membrane in the electrode chamber, and does not adversely affect the ion exchange membrane. In addition, since the gas-liquid multiphase flow passes through the narrow passage, small bubbles are dispersed in a bubble flow, and gas-liquid separation is performed smoothly, the discharge speed from the electrode chamber is increased, and pressure fluctuation in the electrode chamber does not occur. Stable operation at high current density.
Further, an electrolytic cell having high rigidity can be obtained by the collision plate and the holding member provided in the gas-liquid separation means.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an embodiment of the electrolytic cell of the present invention.
FIG. 2 is a diagram illustrating an operation of a gas-liquid separation unit.
FIG. 3 is a diagram for explaining another embodiment of the gas-liquid separation means.
FIG. 4 is a diagram for explaining another embodiment of the gas-liquid separation means.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ion exchange membrane electrolytic cell, 2 ... Electrolyzer unit, 3 ... Ion exchange membrane, 4 ... Anode compartment partition plate, 5 ... Anode, 6 ... Anode compartment, 7 ... Cathode compartment partition plate, 8 ... Cathode, 9 ... Cathode Chamber, 10: anolyte circulating member, 11: catholyte circulating member, 12: anolyte descending flow path, 13: catholyte descending flow path, 14: anode supply pipe, 15: anode side discharge pipe, 16: gasket, 17 ... ascending flow, 18 ... flow path, 19 ... retention part, 20 ... anode chamber side gas-liquid separation means, 21 ... flange surface, 22 ... first collision plate, 22A ... collision plate, 23 ... second collision plate, 24: Anode-side communication passage forming member, 24A: Communication passage forming member, 25: Gas region, 26: Communication passage, 27: Liquid level, 30: Holding member, h1: Height of second collision plate, 31 ... Opening portion, 32: Opening portion, 33: Deflection portion, 34: Flat plate portion, 35: Joint portion, h1: Height of the second collision plate, 40 Cathode chamber side gas-liquid separation means, 41: cathode side flange surface, 42: first collision plate, 43: second collision plate, 44: cathode chamber communication passage forming member, 45: gas region, 46: communication passage , 47 ... liquid level

Claims (6)

隔壁板から間隔を設けて配置した電極をイオン交換膜によって区画して電極室を形成したイオン交換膜電解槽において、隔壁板に電極室内の電解液の循環部材を取り付けて隔壁板との間の空間に電解液の下降流路を設けるとともに、電極室の上部の隣接する電解槽ユニットを積層する際のフランジ面の裏面に気液分離手段を設け、気液分離手段には電極室内を上昇した流体が通過することができない部材から形成された衝突板を設けるとともに、衝突板よりも下方に、衝突板によって流路が変更された気液混相流体が流入する下降流路への開口部を位置させるとともに、気液分離手段の気体領域とを連通する連通路を隔壁板側に設けた電解槽ユニットから構成されたことを特徴とするイオン交換膜電解槽。In an ion-exchange membrane electrolytic cell in which electrodes arranged at intervals from the partition plate are partitioned by an ion-exchange membrane to form an electrode chamber, a circulating member for the electrolyte in the electrode chamber is attached to the partition plate and the partition plate is interposed. In addition to providing a descending flow path for the electrolytic solution in the space, a gas-liquid separating means is provided on the back surface of the flange surface when the adjacent electrolytic cell units are stacked on the upper part of the electrode chamber, and the gas-liquid separating means is raised in the electrode chamber. A collision plate formed of a member through which the fluid cannot pass is provided, and an opening to a descending flow passage through which the gas-liquid multiphase fluid whose flow path has been changed by the collision plate flows is positioned below the collision plate. An ion exchange membrane electrolytic cell comprising: an electrolytic cell unit provided on the partition plate side with a communication passage communicating with the gas region of the gas-liquid separation means. 衝突板が、気液分離手段の隔壁板側、およびフランジ面の裏面側の異なる高さの位置から対向面に向かって伸びた複数の部材から構成されたことを特徴とする請求項1記載のイオン交換膜電解槽。2. The collision plate according to claim 1, wherein the collision plate is constituted by a plurality of members extending from different height positions on the partition plate side of the gas-liquid separation means and the rear surface side of the flange surface toward the opposing surface. Ion exchange membrane electrolyzer. 隔壁板側から中央部に向けて延びた衝突板は、連通路を形成する連通路形成部材を介して隔壁板に接合されているとともに、連通路形成部材の衝突板の壁面に接する部分には、連通路形成部材の下端部から衝突板の壁面の上端部まで延びた開口部を有するとともに、衝突板の上端部よりも上方部は、隔壁板との間に間隔を形成したことを特徴とする請求項2記載のイオン交換膜電解槽。The collision plate extending from the partition plate side toward the center is joined to the partition plate via a communication passage forming member that forms a communication passage, and a portion of the communication passage forming member that contacts the wall surface of the collision plate is Having an opening extending from the lower end of the communication passage forming member to the upper end of the wall surface of the collision plate, and a portion above the upper end of the collision plate being formed with a space between the partition plate and the partition plate. The ion-exchange membrane electrolytic cell according to claim 2. 衝突板は、フランジ面の裏面および隔壁板のそれぞれに垂直であって間隔を設けて配置された保持部材と結合したことを特徴とする請求項1ないし3のいずれか1項に記載のイオン交換膜電解槽。4. The ion exchange according to claim 1, wherein the collision plate is coupled to a holding member that is perpendicular to and spaced from the rear surface of the flange surface and the partition plate, respectively. 5. Membrane electrolyzer. 衝突板は気液分離手段の隔壁板とフランジ面の裏面側の両者に結合した一つの部材であることを特徴とする請求項1記載のイオン交換膜電解槽。2. The ion exchange membrane electrolytic cell according to claim 1, wherein the collision plate is one member connected to both the partition plate of the gas-liquid separation means and the rear surface side of the flange surface. 衝突板の隔壁板側の面は、隔壁板との間に配置され上下方向に延びる間隔を設けて配置した帯状の接合部によって隔壁板に接合されて、隣接する接合部の間には隔壁板との間に空間によって連通路を形成した連通路形成部材の連通路の裏面に接合されたことを特徴とする請求項5記載のイオン交換膜電解槽。The surface of the collision plate on the side of the partition plate is joined to the partition plate by a band-like joint disposed between the partition plate and the space extending in the vertical direction, and the partition plate is provided between adjacent joints. The ion-exchange membrane electrolytic cell according to claim 5, wherein the ion-exchange membrane electrolytic cell is joined to a back surface of the communication path of the communication path forming member having a communication path formed by a space between the ion exchange membrane and the communication path.
JP2002252673A 2002-08-30 2002-08-30 Ion exchange membrane electrolytic cell Expired - Lifetime JP3770551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252673A JP3770551B2 (en) 2002-08-30 2002-08-30 Ion exchange membrane electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252673A JP3770551B2 (en) 2002-08-30 2002-08-30 Ion exchange membrane electrolytic cell

Publications (2)

Publication Number Publication Date
JP2004091834A true JP2004091834A (en) 2004-03-25
JP3770551B2 JP3770551B2 (en) 2006-04-26

Family

ID=32058886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252673A Expired - Lifetime JP3770551B2 (en) 2002-08-30 2002-08-30 Ion exchange membrane electrolytic cell

Country Status (1)

Country Link
JP (1) JP3770551B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125954A1 (en) * 2012-02-23 2013-08-29 Paques I.P. B.V. Membrane spacer for liquids containing suspended solids
RU174582U1 (en) * 2017-03-29 2017-10-23 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" HIGH PRESSURE ELECTROLYZER
CN114395774A (en) * 2022-03-02 2022-04-26 盐城工学院 Reinforcing plate for enhancing transverse mixing of electrolyte and application of reinforcing plate in electrolytic cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125954A1 (en) * 2012-02-23 2013-08-29 Paques I.P. B.V. Membrane spacer for liquids containing suspended solids
RU174582U1 (en) * 2017-03-29 2017-10-23 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" HIGH PRESSURE ELECTROLYZER
CN114395774A (en) * 2022-03-02 2022-04-26 盐城工学院 Reinforcing plate for enhancing transverse mixing of electrolyte and application of reinforcing plate in electrolytic cell

Also Published As

Publication number Publication date
JP3770551B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
EP0778631A1 (en) Direct methanol type fuel cell
JP2020502735A (en) Separator plate for electrochemical system
US10680255B2 (en) Flow-guiding plate for a fuel cell
AU5544898A (en) Electrochemical cells and electrochemical systems
US10381660B2 (en) Separator for fuel cell
CN107750283B (en) Electrode assembly, electrolyzer and process for electrolysis
JP2012256479A (en) Separator for fuel cell and fuel cell
EP0101240A2 (en) Electrode for electrolyte circulation-type cell stack secondary battery
JPH0657874B2 (en) Membrane type electrolytic cell
KR101474868B1 (en) Electrolyzer improving electrolvte diffusion efficiency and gas-exhaust efficiency
WO2000060140A1 (en) Electrolytic cell using gas diffusion electrode and power distribution method for the electrolytic cell
CN1054403C (en) Electrolyzer
JP5884845B2 (en) Fuel cell and separator
JP2004091834A (en) Ion exchange membrane electrolytic cell
US6187155B1 (en) Electrolytic cell separator assembly
EP0960960A1 (en) Ion exchange membrane electrolyzer
JP2004002993A (en) Ion exchange membrane electrolytic cell
US10218025B2 (en) Flow-guiding plate for a fuel cell
JP7364828B1 (en) electrolyzer unit
WO2023233799A1 (en) Electrolytic cell unit
JP6144647B2 (en) Fuel cell stack
KR102081305B1 (en) Electrolytic device including multi-channel structure
JP2003313690A (en) Ion exchange membrane electrolytic cell
JP3846201B2 (en) Electrolytic cell
JPH10158875A (en) Bipolar filter press type electrolytic cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3770551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term