WO2021073458A1 - 铺设方法及铺设机器人 - Google Patents

铺设方法及铺设机器人 Download PDF

Info

Publication number
WO2021073458A1
WO2021073458A1 PCT/CN2020/120223 CN2020120223W WO2021073458A1 WO 2021073458 A1 WO2021073458 A1 WO 2021073458A1 CN 2020120223 W CN2020120223 W CN 2020120223W WO 2021073458 A1 WO2021073458 A1 WO 2021073458A1
Authority
WO
WIPO (PCT)
Prior art keywords
laid
laying
reference line
distance
alignment
Prior art date
Application number
PCT/CN2020/120223
Other languages
English (en)
French (fr)
Inventor
白羽鹏
汪亚伦
袁新辉
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Publication of WO2021073458A1 publication Critical patent/WO2021073458A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/18Implements for finishing work on buildings for setting wall or ceiling slabs or plates
    • E04F21/1838Implements for finishing work on buildings for setting wall or ceiling slabs or plates for setting a plurality of similar elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/20Implements for finishing work on buildings for laying flooring
    • E04F21/22Implements for finishing work on buildings for laying flooring of single elements, e.g. flooring cramps ; flexible webs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0014Image feed-back for automatic industrial control, e.g. robot with camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30132Masonry; Concrete

Definitions

  • This application relates to the field of robots, and specifically to a laying method and a laying robot.
  • the purpose of the embodiments of the present application is to provide a laying method and a laying robot to solve the problem of low positioning accuracy of laying in the prior art and a large distance between adjacent laying pieces after the laying pieces are finished.
  • a laying method applied to a controller of a laying robot, the method comprising: sending a first photographing instruction to obtain a first image containing the alignment edge of a piece to be laid and a laying reference line of the position to be laid that are parallel to each other; And based on the first image, calculate the distance offset between the alignment edge and the laying reference line caused by the photographing visual deviation, and generate a comparison between the alignment edge and the alignment edge according to the distance offset.
  • An alignment correction instruction for correcting the distance between the laying reference lines, so that the laying robot completes the alignment between the alignment edge and the laying reference line.
  • a laying robot includes a controller for executing the above laying method.
  • Fig. 1 is a schematic structural diagram of a paving robot provided by an embodiment of the application.
  • Fig. 2 is a schematic diagram of the structure of laying pieces arranged in an array after laying is completed in an embodiment of the application.
  • Fig. 3 is a schematic diagram of the alignment of the alignment edge and the alignment reference line during the laying of the paving piece whose laying position is the intersection of the first row and the first column in an embodiment of the application.
  • Fig. 4 is a schematic diagram of the alignment between the alignment edge and the alignment reference line when the paving piece with the laying position in the first row but not the first column position in an embodiment of the application is laid.
  • FIG. 5 is a schematic diagram of the alignment between the alignment edge and the alignment reference line when the paving piece with the paving position in the first row of non-first row positions in an embodiment of the application is laid.
  • Fig. 6 is a schematic diagram of the alignment between the alignment edge and the alignment reference line when the paving piece whose laying position is the non-first row and non-first column position in an embodiment of the application is laid.
  • Fig. 7 is a flowchart of a laying method provided by an embodiment of the application.
  • FIG. 8 is a comparison diagram of the actual horizontal distance and the visual horizontal distance of the image collected by the camera in an embodiment of the application.
  • the inventor of the present application has discovered through research that at present, most of the laying work of parts such as wall tiles and floor tiles waiting to be laid is realized manually. However, the laying efficiency of workers is limited, and workers need to be paid for labor, resulting in relatively high laying costs. .
  • the industry has already emerged technology based on vision algorithms to guide robots to lay the parts to be laid.
  • the traditional technology based on the vision algorithm to guide the robot to lay the parts to be laid because the camera is not considered to collect images based on the principle of small hole imaging, the height difference between the parts to be laid and the surface of the position to be laid is ignored. When the collected images guide the laying, the distance between adjacent laying pieces is relatively large, and the laying accuracy is not high.
  • the present application provides a paving method and a paving robot that can reduce the distance between adjacent paving pieces after the paving is completed, and thereby improve the paving accuracy.
  • an embodiment of the present application provides a paving robot 10 including a controller 11, a manipulator 12, a camera 13 and a distance sensor 14 signally connected to the controller 11.
  • the controller 11 may be a central processing unit (CPU), a microprocessor, or a single-chip microcomputer.
  • the controller 11 is used to control the normal operation of the manipulator 12, the camera 13 and the distance sensor 14, and perform arithmetic processing based on the data fed back from the camera 13 and the distance sensor 14 to adjust the control of the manipulator 12. It can be understood that the controller 11 performs arithmetic processing based on the data fed back by the camera 13 and the distance sensor 14 to adjust the control of the manipulator, which can run through the entire process of laying by the laying robot 10.
  • the manipulator 12 can pick up, move, adjust the alignment and lay the pieces to be laid under the control of the controller 10.
  • the parts to be laid may be wall tiles, floor tiles, and the like.
  • the number of pieces to be laid can be multiple, and the manipulator 12 can pick up, move, adjust the alignment and lay a piece of pieces to be laid in a single time under the control of the controller 10.
  • the multiple laying pieces that have been laid are arranged in an array, and each laying piece corresponds to a laying position.
  • each piece to be laid corresponds to a position to be laid during laying.
  • Each position to be laid includes a corresponding laying reference line.
  • the surface where the position to be laid is located is the surface to be laid.
  • the laying datum line is set parallel to the surface to be laid.
  • the piece to be laid includes an alignment edge used to align with the laying reference line of the position to be laid during laying.
  • the aligning side can be any two intersecting sides of the exposed surface of the piece to be laid after laying, for example, the long and short sides of the decorative surface of a square brick body, and any two intersecting sides of the decorative surface of a triangular brick body. Edge, or any two intersecting sides of the decorative surface of a regular hexagonal brick body.
  • the piece to be laid is a square brick body, and the aligning side includes a first side and a second side that are orthogonal.
  • the laying reference lines of the positions to be laid corresponding to the opposite edges of the corresponding pieces to be laid are also different.
  • description is made with a square wall brick as the piece to be laid.
  • the laying datum line of the position to be laid corresponding to the piece to be laid includes a first datum line and a second datum line that are orthogonal.
  • the first side of the part to be laid is parallel to the first reference line of the position to be laid, and the second side of the part to be laid is parallel to the second reference line of the position to be laid.
  • Figure 2 is a schematic diagram of the array arrangement after the laying of the paving pieces. Multiple laying pieces can be laid according to the array arrangement in Fig. 2.
  • the laying reference line of the corresponding position to be laid can be two Intersecting laser lines (laying marking lines), as shown in Figure 3.
  • the two intersecting laser lines can be used for laying by a laying robot, and a laser can be specially set to emit.
  • the two laser lines may be a transverse laser line and a longitudinal laser line arranged orthogonally.
  • the wall surface may be provided with a supporting beam, and the transverse laser line is close to the supporting beam and is arranged parallel to the supporting beam at this time.
  • the laying of the corresponding position to be laid The reference line can be the longitudinal free edge and the horizontal laser line of the paving piece in the first row and the previous column.
  • the reference line can be the horizontal free edge and the vertical laser line of the paving piece in the first row.
  • the laying reference line can be the horizontal free edge of the paving piece in the previous row in the same row and the longitudinal free edge of the paving piece in the previous row in the same row.
  • the corresponding laying reference line when paving parts in the first row and first column are laid, the corresponding laying reference line may be a horizontal laser line, and when paving parts in the first row and not in the first column are laid, the corresponding laying reference line may be the first.
  • the longitudinal free edge of the laying piece in the previous row that is, the free edge of the laying piece close to the position to be laid.
  • the corresponding laying datum line can be the laying reference line of the previous row of the first row.
  • the horizontal free edge of the laying piece (that is, the free edge of the laying piece close to the position to be laid), and for laying pieces that are not in the first row or the first row, the corresponding laying datum line can be the laying piece of the previous row in the same line. Longitudinal free edge and/or horizontal free edge of the pavement in the previous row in the same row.
  • the camera 13 is installed on the manipulator 12 and can move together with the manipulator 12, and can be controlled by the controller 11 after the manipulator 12 moves the part to be laid to a preset position to collect the information including the opposite side of the part to be laid and the position to be laid
  • the image of the reference line is laid, and the image is fed back to the controller 11.
  • This application does not limit the model, imaging pixels, and focal length of the camera 13.
  • the imaging pixels of the camera 13 are 5 million pixels, and the focal length is 8 mm.
  • the preset position is that the vertical distance from the plane where the position to be laid is located is constant (for example, the distance is 10 cm, or 20 cm, etc.), and the camera 13 is able to collect data including the waiting position after the manipulator 12 stops moving.
  • the position of the image of the alignment edge of the laying piece and the laying reference line of the position to be laid Since the predetermined positions are different for different pieces to be laid, this application only limits the commonality of the predetermined positions, and does not limit the specific content of the predetermined positions, as long as it can enable the camera 13 to be collected after the robot stops moving.
  • the image position of the laying reference line including the alignment edge of the piece to be laid and the laying reference line of the position to be laid, and the vertical distance between the position and the plane where the position to be laid is located is fixed.
  • the distance sensor 14 includes a first distance sensor 141 provided at the manipulator 12 and a second distance sensor 142 provided at the camera 13.
  • the first distance sensor 141 is provided at the end of the manipulator 12 for picking up the part to be laid, and is used to control the measurement of the part to be laid and the position to be laid after the manipulator 12 moves the part to be laid to a predetermined position.
  • the first vertical distance on the surface and the distance data are fed back to the controller 11.
  • the second distance sensor 142 is used to measure the second vertical distance from the shooting position of the camera 13 to the surface where the position to be laid is located when the controller 11 controls the camera 13 to collect the first image including the mutually parallel alignment edges and the laying reference line.
  • the distance sensor 14 may be a laser distance measuring sensor.
  • an embodiment of the present application also provides a laying method applied to the controller of the aforementioned laying robot 100, which can improve laying accuracy when the laying robot is used for laying.
  • the method includes the following steps.
  • Step S101 Send a picking instruction so that the laying robot picks up the piece to be laid and moves the piece to be laid to a predetermined position.
  • the controller 11 sends a picking instruction to control the manipulator 12 of the laying robot to pick up the piece to be laid and move the piece to be laid to a predetermined position.
  • the piece to be laid may be, for example, a floor tile.
  • the piece to be laid includes an alignment edge used to align with the laying reference line of the position to be laid.
  • the preset position is a position where the vertical distance from the plane of the position to be laid is constant, and the camera 13 can collect images containing the alignment edge of the piece to be laid and the laying reference line of the position to be laid after the manipulator 12 stops moving.
  • the predetermined position of the piece to be laid at the intersection position of the first row and the first column after the laying is completed can be obtained by teaching by the robot 12.
  • the movement is controlled by the controller 11 until the image collected by the camera 13 under the control of the controller 11 contains the manipulator 12 for Pick up the end of the piece to be laid and the laying reference line of the position to be laid, and the controller 11 sets the position of the manipulator 12 at this time as a predetermined position for the piece to be laid at the intersection of the first row and the first column.
  • the controller 11 places the manipulator 12 at the same height but laterally spaced a predetermined distance from the predetermined position of the laid piece in the first row and first column ( For example, the position of an integer multiple of the width of the square piece to be laid is used as the predetermined position that the manipulator of the piece to be laid that is located in the first row and not in the first column after the laying is completed, for example, for the position in the first row and the second column after the laying is completed.
  • the preset position that the manipulator 12 needs to reach when picking up the piece to be laid is the predetermined position of the piece to be laid at the intersection of the first row and the first column after the laying is completed.
  • the width of the piece to be laid is laterally separated from the width of the piece to be laid after the laying is completed.
  • the predetermined positions of the pieces to be laid in the first row and the first column are at the same height.
  • the controller 11 places the manipulator 12 at the same height but is longitudinally separated from the predetermined position of the first row and the first row by a predetermined distance (for example, a square part to be laid
  • a predetermined distance for example, a square part to be laid
  • the position that is an integer multiple of the length of is used as the predetermined position that the manipulator that picks up the piece to be laid at the position of the non-first row in the first row after the laying is completed, for example, for the piece to be laid in the second row of the first row after the laying is completed,
  • the preset position that the manipulator 12 needs to reach for picking up the piece to be laid is the predetermined position of the piece to be laid that is located at the intersection of the first row and the first column after the laying
  • Step S102 Send a photographing instruction to obtain a first image including the alignment edges of the pieces to be laid parallel to each other and the laying reference line of the position to be laid.
  • the controller 11 controls the manipulator 12 to pick up and move the piece to be laid to a predetermined position, it sends a shooting instruction to control the camera 13 to collect images containing the alignment edge of the piece to be laid and the laying reference line of the position to be laid.
  • the controller 11 controls the manipulator 12 to pick up and move the part to be laid to a predetermined position
  • the alignment edge of the part to be laid is exactly parallel to the laying reference line of the position to be laid.
  • the controller 11 sends a shooting instruction
  • the image collected by the control camera 13 including the alignment edge of the piece to be laid and the laying reference line of the position to be laid is the first image containing the alignment edge of the piece to be laid and the laying reference line of the position to be laid that are parallel to each other.
  • the controller 11 controls the manipulator 12 to pick up and move the part to be laid to a predetermined position
  • the angle between the alignment edge of the part to be laid and the laying reference line of the position to be laid is greater than 0° and less than 180° .
  • the controller 11 sends a shooting instruction to control the camera 13 to collect images containing the alignment edges of the pieces to be laid and the laying reference lines of the positions to be laid, which do not include the alignment edges and positions of the pieces to be laid that are parallel to each other. Lay the first image of the baseline.
  • the controller 11 controls the manipulator 12 to pick up and move the part to be laid to the predetermined position, it does not know whether the alignment edge of the part to be laid is parallel to the laying reference line of the position to be laid.
  • the controller 11 is controlling After the manipulator 12 picks up and moves the part to be laid to a predetermined position, it sends a first shooting instruction to obtain a second image containing the alignment edge of the part to be laid and the laying reference line of the position to be laid.
  • the camera 13 collects a second image including the alignment edge and the laying reference line based on the first shooting instruction sent by the controller 11, and feeds the second image back to the controller 11.
  • the controller 11 calculates the included angle between the alignment edge and the laying reference line based on the second image; when it is determined that the included angle is equal to 0° or 180°, the controller 11 executes step S103, and when it is determined that the included angle is greater than 0° and less than At 180°, generate a position adjustment instruction based on the included angle and send the position adjustment instruction, so that the manipulator 12 adjusts the position of the piece to be paved based on the position adjustment instruction, so that the alignment edge is parallel to the laying reference line; and when determining the manipulator 12
  • a second shooting instruction is sent to control the camera 13 to collect images including the alignment edges of the pieces to be laid and the laying reference lines of the positions to be laid that are parallel to each other.
  • the manipulator 12 after the adjustment is completed, it can feed back the adjustment completion signal to the controller 11.
  • the controller 11 controls the camera 13 to obtain the alignment edges and the parts to be laid that are parallel to each other. Before laying the datum line at the position to be laid, reduce the brightness of the laser light source and reduce the exposure time of the camera 13 so that a clear datum line can be collected.
  • Step S103 Based on the first image, calculate the distance offset between the alignment edge and the laying reference line caused by the photographing visual deviation, and generate the distance between the alignment edge and the laying reference line according to the distance offset. A revised alignment correction command to enable the laying robot to complete the alignment between the alignment edge and the laying reference line.
  • the controller 11 calculates the distance offset between the alignment edge and the laying reference line caused by the visual deviation of the shooting, including: obtaining the first position between the part to be laid and the plane where the position to be laid is located.
  • the vertical distance and the shooting position of the first image that is, the controller 11 transmits a shooting instruction to control the camera 13 to collect images containing parallel alignment edges and laying reference lines, the position where the camera 13 is located) to the position to be laid
  • the second vertical distance of the plane according to the first image, calculate the shooting visual vertical distance between the opposite side and the projection position of the first image on the plane where the position to be laid is located; and based on the principle of similar triangles, calculate the opposite side and the The distance offset between the laying of the baseline due to the visual deviation of the shooting.
  • the controller 11 transmits a shooting instruction to control the camera 13 to collect parallel alignment edges and laying reference lines
  • the second vertical distance between the position of the camera 13 and the plane of the position to be laid can be sent to control the first distance sensor 141 to measure the first vertical distance from the position to be laid to the plane of the position to be laid. Measure and receive the measurement data fed back by the first distance sensor 141, and control the second distance sensor 142 to measure the second vertical distance from the shooting position of the first image to the plane where the laying position is located, and receive feedback from the second distance sensor 142 Measurement data.
  • the controller 11 controls the camera 13 to collect the first image including the alignment edges parallel to each other and the laying reference line
  • the optical axis of the camera 13 is perpendicular to the plane of the position to be laid. Therefore, the first image is taken
  • the projection of the position on the plane of the position to be laid is usually in the middle of the first image.
  • calculating the shooting visual vertical distance between the alignment edge and the projection position of the first image on the plane where the position to be laid is located includes: based on the first image, passing through the alignment edge of the piece to be laid (for example, When the piece to be laid is a square brick body, the intersection of the orthogonal first side and the second side (that is, a corner point of the piece to be laid) locates the opposite side, and obtains the intersection of the opposite side through an image processing algorithm
  • the coordinate information and the coordinate information of the projection point of the shooting position of the first image on the plane where the position to be laid is located, and then the coordinates of the projection point of the shooting position of the first image on the plane where the position to be laid is located according to the coordinate information of the intersection point of the counterpoint
  • the information calculates the shooting visual vertical distance between the opposite side and the projection point of the shooting position of the first image on the plane where the position to be laid is located (including the projection point of the first side and the shooting position of the first image on the plane where the position is to be
  • the shooting visual vertical distance to the alignment edge includes the distance offset between the alignment edge and the laying reference line caused by the height difference (that is, the distance between the first side edge and the first reference line caused by the height difference)
  • the distance offset ⁇ x, and the distance offset ⁇ y between the second side edge and the second reference line caused by the height difference are the distance offsets between the alignment edge and the laying reference line caused by the height difference.
  • the controller 11 controls the camera 13 to collect the first image including the mutually parallel alignment edges and the laying reference line
  • the projection of the position of the camera 13 on the plane of the position to be laid is located on the laying reference line.
  • the controller 11 controls the camera 13 to collect the first image including the alignment edges parallel to each other and the laying reference line
  • the projection of the position of the camera 13 on the plane of the position to be laid is located between the first reference line and the second reference line.
  • the position of the intersection of the lines Based on the principle of similar triangles, the specific content of calculating the distance offset between the alignment side and the laying reference line caused by the visual deviation of shooting is as follows. Please refer to Figure 8.
  • the vertical distance of the shooting vision between the opposite side and the shooting position of the first image on the plane where the position to be laid is located, the distance offset, and the shooting position of the camera to the position to be laid The distance between the plane of the position and the distance between the part to be laid and the plane of the position to be laid (that is, the distance from the predetermined position to the plane of the position to be laid, which is constant and can be measured by the distance sensor 14) has the following relationship:
  • D represents the distance from the piece to be laid to the plane of the location to be laid (the first vertical distance)
  • H represents the distance from the camera to the plane of the location to be laid (the second vertical distance)
  • ⁇ L represents the distance offset
  • L represents the distance based on The distance determined by the first image including the distance offset (that is, the shooting visual vertical distance between the projection of the shooting position of the first image on the plane where the position to be laid is located and the opposite side).
  • S represents the actual distance between the alignment edge and the laying reference line.
  • the visual distance between the alignment edge and the laying reference line can be corrected based on the above equation (3) to obtain the actual distance between the alignment edge and the laying reference line.
  • the visual distance between the first side edge and the first reference line and the visual distance between the second side edge and the second reference line can be corrected by the above equation (3).
  • the controller 11 will first determine whether the distance offset between the alignment edge and the laying reference line exceeds a threshold, and when determining the distance deviation When the displacement is greater than the threshold, the visual distance between the alignment edge and the laying reference line is corrected. In the case where the distance offset is less than the threshold, the controller 11 may not correct the visual distance between the alignment edge and the laying reference line.
  • the laying method further includes step S104: generating a laying instruction based on the corrected distance, so that the piece to be laid is laid to the position to be laid.
  • the controller 11 After the controller 11 corrects the visual distance between the alignment edge and the laying reference line, it can generate a laying instruction based on the corrected distance (ie, the actual distance) to control the manipulator 12 to lay the piece to be laid to the position to be laid. .
  • controller 11 may control the manipulator 12 to directly lay the piece to be laid to the position to be laid when determining that the distance offset is less than the threshold value.
  • step S101 may be omitted, and the laying method may start at step S102.
  • the laying method provided by the embodiments of the present application and the laying robot applying the laying method acquire a first image containing the alignment edges of the pieces to be laid parallel to each other and the laying reference line of the position to be laid; and based on the first image Image, calculating the distance offset between the alignment edge and the laying reference line, and correcting the distance between the alignment edge and the laying reference line according to the distance offset; and Based on the corrected distance, laying the part to be laid to the position to be laid can avoid that the part to be laid needs to be positioned at the position to be laid when the robot moves the part to be laid due to the bonding material on the bottom of the part to be laid.
  • the plane has a certain height difference, which results in a large distance between adjacent paving pieces after the paving is completed, and the paving accuracy is not high.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation.
  • multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some communication interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional modules in the various embodiments of the present application may be integrated together to form an independent part, or each module may exist alone, or two or more modules may be integrated to form an independent part.

Abstract

本申请提供一种铺设方法及铺设机器人。该方法应用于铺设机器人的控制器,包括:发送第一拍摄指令,以获取包含相互平行的待铺设件的对位边及待铺设位置的铺设基准线的第一图像;基于第一图像计算对位边与铺设基准线之间因拍摄视觉偏差产生的距离偏移量,并根据距离偏移量生成并发送对对位边与铺设基准线之间的距离进行修正的对位指令,以使铺设机器人实现对位边与铺设基准线之间的对位。本申请通过对因待铺设件与待铺设位置所在表面的高度差导致铺设机器人在采集对位边与铺设基准线的图像时,两者之间因拍摄视觉偏差产生的距离偏移进行修正,能够提升对位精度,避免铺设完成后相邻铺设件之间的间距较大,致使铺设精度不高的问题。

Description

铺设方法及铺设机器人
相关申请的交叉引用
本申请要求于2019年10月15日提交的申请号为201910981798.5的中国申请的优先权,其在此出于所有目的通过引用将其全部内容并入本文。
技术领域
本申请涉及机器人领域,具体而言,涉及一种铺设方法及铺设机器人。
背景技术
目前,对于诸如墙砖,地砖等待铺设件的铺设工作大多依靠人工实现,然而,工人的铺设效率有限,且需支付工人的劳动报酬,致使铺设成本相对较高。为提升铺设效率同时降低铺设成本,业界已经出现通过视觉引导机器人实现对待铺设件进行铺设的技术。
发明内容
本申请实施例的目的在于提供一种铺设方法及铺设机器人,用以解决现有技术中铺设对位精度不高,待铺设件完成铺设后,相邻铺设件之间的间距较大的问题。
一种铺设方法,应用于铺设机器人的控制器,所述方法包括:发送第一拍摄指令,以获取包含相互平行的待铺设件的对位边以及待铺设位置的铺设基准线的第一图像;及基于所述第一图像,计算所述对位边与所述铺设基准线之间因拍摄视觉偏差所导致的距离偏移量,并根据所述距离偏移量生成对所述对位边与所述铺设基准线之间的距离进行修正的对位修正指令,以使所述铺设机器人完成所述对位边与所述铺设基准线之间的对位。
一种铺设机器人,包括控制器,所述控制器用于执行上述铺设方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一实施例提供的铺设机器人的结构示意图。
图2为本申请一实施例中铺设完成后呈阵列设置的铺设件的结构示意图。
图3为本申请一实施例中铺设位置为首行和首列的交汇位置的铺设件在铺设时,对位边与对位基准线的对位示意图。
图4为本申请一实施例中铺设位置为首行非首列位置的铺设件在铺设时,对位边与对位基准线之间的对位示意图。
图5为本申请一实施例中铺设位置为首列非首行位置的铺设件在铺设时,对位边与对位基准线之间的对位示意图。
图6为本申请一实施例中铺设位置为非首行非首列位置的铺设件在铺设时,对位边与对位基准线之间的对位示意图。
图7为本申请一实施例提供的铺设方法的流程图。
图8为本申请一实施例中实际水平间距与摄像头所采集图像的视觉水平间距的对比图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体 实施例仅仅用以解释本申请,并不用于限定本申请。
本申请的发明人经过研究发现,目前,对于诸如墙砖,地砖等待铺设件的铺设工作大多依靠人工实现,然而,工人的铺设效率有限,且需支付工人的劳动报酬,致使铺设成本相对较高。为提升铺设效率同时降低铺设成本,业界已经出现基于视觉算法引导机器人对待铺设件进行铺设的技术。传统的基于视觉算法引导机器人实现对待铺设件进行铺设的技术,由于未考虑摄像头基于小孔成像原理采集图像时,忽略了待铺设件与待铺设位置所在表面之间存在高度差的问题,致使基于所采集到的图像对铺设进行引导时,相邻铺设件之间的间距较大,铺设精度不高。
有鉴于此,本申请提供一种能够减小铺设完成后相邻铺设件之间的间距,进而提升铺设精度的铺设方法及铺设机器人。
请参阅图1,本申请一实施例提供一种铺设机器人10,包括控制器11,及与控制器11信号连接的机械手12,摄像头13及距离传感器14。
控制器11可为中央处理单元(CPU)、微处理器或单片机等。控制器11用于控制机械手12,摄像头13及距离传感器14的正常运作,以及基于摄像头13及距离传感器14反馈的数据进行运算处理,以调整对机械手12的控制。可以理解,控制器11基于摄像头13及距离传感器14反馈的数据进行运算处理以调整对机械手的控制的操作可以贯穿整个利用铺设机器人10进行铺设的过程。
机械手12能够在控制器10的控制下拾取、移动、调整对位及铺设待铺设件。本实施例中,待铺设件可为墙砖,地砖等。待铺设件的数量可为多个,机械手12能够在控制器10的控制下单次拾取、移动、调整对位及铺设一片待铺设件。多个待铺设件均完成铺设后,完成铺设的多个铺设件呈阵列排布,且每个铺设件分别对应一个铺设位置。相应地,每个待铺设件在铺设时对应一个待铺设位置。每个待铺设位置包括对应的铺设基准线。待铺设位置所在的表面为待铺设表面。铺设基准线与待铺设表面平行设置。 待铺设件包括在铺设时用于与待铺设位置的铺设基准线进行对位的对位边。该对位边可为待铺设件铺设后外露面的任意两条相交的侧边,例如,方形砖体的装饰面的长边和短边,三角形砖体的装饰面的任意两条相交的侧边,或者正六边形砖体的装饰面的任意两条相交的侧边。本实施例中,待铺设件为方形砖体,对位边包括正交的第一侧边及第二侧边。根据铺设完成后铺设件所在位置的不同,相应的待铺设件在铺设时其对位边对应的待铺设位置的铺设基准线也各不相同。本实施例中,以待铺设件为正方形的墙砖进行说明。待铺设件对应的待铺设位置的铺设基准线包括正交的第一基准线及第二基准线。本实施例中,待铺设件的第一侧边与待铺设位置的第一基准线平行,待铺设件的第二侧边与待铺设位置的第二基准线平行。
请分别参阅图2至图6,如图2,为铺设件铺设完成后的阵列设置示意图,多个铺设件可以按照图2中的阵列设置进行铺设。当待铺设件在完成铺设后位于阵列排布的多个铺设件的首行和首列交汇的铺设位置时,该待铺设件在铺设时,其对应的待铺设位置的铺设基准线可为两条相交的激光线(铺设标记线),如图3所示。该两条相交的激光线可自为实现利用铺设机器人进行铺设而特意设置激光器射出。本实施例中,该两条激光线可为呈正交设置的横向激光线及纵向激光线。可以理解,当待铺设件为墙砖时,墙体表面可设置有支撑梁,此时横向激光线贴近支撑梁且平行于支撑梁设置。如图4所示,当待铺设件在完成铺设后位于阵列排布的多个铺设件的首行非首列的铺设位置时,该待铺设件在铺设时,其对应的待铺设位置的铺设基准线可为首行前一列铺设件的纵向自由边与横向激光线。如图5所示,当待铺设件在完成铺设后位于阵列排布的多个铺设件的首列非首行的铺设位置时,该待铺设件在铺设时,其对应的待铺设位置的铺设基准线可为首列前一行铺设件的横向自由边与纵向激光线。如图6所示,当待铺设件在完成铺设后位于阵列排布的多个铺设件的非首行非首列的铺设位置时,该待铺设件在铺设时,其对应的待铺设位置的铺设基准线可为同列前 一行的铺设件的横向自由边与同行前一列的铺设件的纵向自由边。
其他实施例中,针对首行首列的铺设件在铺设时,其对应的铺设基准线可为横向激光线,针对首行非首列的铺设件在铺设时,其对应的铺设基准线可为首行前一列的铺设件的纵向自由边(即,已铺设件靠近待铺设位置的自由边),针对首列非首行的铺设件在铺设时,其对应的铺设基准线可为首列前一行的铺设件的横向自由边(即,已铺设件靠近待铺设位置的自由边),而针对非首行非首列的铺设件在铺设时,其对应的铺设基准线可为同行前一列铺设件的纵向自由边和/或同列前一行铺设件的横向自由边。
可以理解,以上仅为铺设基准线的举例说明,本申请铺设基准线的具体设置并不限于此。
摄像头13安装在机械手12上,能够随机械手12一并移动,并且能够在机械手12将待铺设件移动至预设位置后由控制器11控制采集包含待铺设件的对位边及待铺设位置的铺设基准线的图像,以及将图像反馈给控制器11。本申请对摄像头13的型号,成像像素及焦距均不作限定。一实施例中,摄像头13的成像像素为500万像素,焦距为8毫米。本实施例中,预设位置为距待铺设位置所在平面的垂直距离为常数(例如,该距离为10厘米,或20厘米等),且使得摄像头13随机械手12停止移动后能够采集到包含待铺设件的对位边与待铺设位置的铺设基准线的图像的位置。由于对于不同的待铺设件,预定位置不同,因此,本申请仅对预定位置的共性进行限定,而对预定位置的具体内容不作限定,只要其是能够使得摄像头13随机械手停止移动后能够采集到包含待铺设件的对位边与待铺设位置的铺设基准线的图像位置,且该位置距离待铺设位置所在平面的垂直距离固定即可。
距离传感器14包括设置在机械手12处的第一距离传感器141及设置在摄像头13处的第二距离传感器142。具体地,第一距离传感器141设置在机械手12用于拾取待铺设件的端部,用于在机械手12将待铺设件移动至 预定位置后,由控制器11控制测量待铺设件与待铺设位置所在表面的第一垂直距离并将距离数据反馈给控制器11。第二距离传感器142用于在控制器11控制摄像头13采集包含相互平行的对位边及铺设基准线的第一图像时,测量摄像头13的拍摄位置到待铺设位置所在表面的第二垂直距离。一实施例中,距离传感器14可为激光测距传感器。
请参阅图7,本申请一实施例还提供一种应用于前述铺设机器人100的控制器的铺设方法,该方法能够提升利用铺设机器人进行铺设时的铺设精度。该方法包括以下步骤。
步骤S101:发送拾取指令,以使所述铺设机器人拾取待铺设件,并将待铺设件移动至预定位置。
本实施例中,通过控制器11发送拾取指令,以控制铺设机器人的机械手12拾取待铺设件,并将待铺设件移动至预定位置。待铺设件可以例如为地砖。待铺设件包括用于与待铺设位置的铺设基准线进行对位的对位边。预设位置为距待铺设位置所在平面的垂直距离为常数,且使得摄像头13随机械手12停止移动后能够采集到包含待铺设件的对位边与待铺设位置的铺设基准线的图像的位置。本实施例中,对于铺设完成后位于首行首列的交汇位置的待铺设件,其预定位置可通过机械手12示教得到。示例性地,机械手12在拾取用于铺设在首行首列交汇位置处的待铺设件之前,通过控制器11控制移动,直至摄像头13在控制器11的控制下采集的图像包含机械手12用于拾取待铺设件的端部及待铺设位置的铺设基准线,控制器11将此时机械手12所在位置设定为针对铺设在首行首列交汇位置处的待铺设件的预定位置。以方形待铺设件为例,对于铺设完成后位于首行非首列位置的待铺设件,控制器11将机械手12位于相同高度但与首行首列的铺设件的预定位置横向间隔预定距离(例如方形待铺设件的宽度)的整数倍的位置作为拾取铺设完成后位于首行非首列位置的待铺设件的机械手需要到达的预定位置,例如,对于铺设完成后位于首行第二列位置的待铺设件,机 械手12拾取该待铺设件需到达的预设位置为与铺设完成后位于首行首列交汇位置处的待铺设件的预定位置横向间隔待铺设件的宽度且与铺设完成后位于首行首列的待铺设件的预定位置位于相同高度的位置。相应地,对于铺设完成后位于首列非首行位置的待铺设件,控制器11将机械手12位于相同高度但与首行首列的铺设件的预定位置纵向间隔预定距离(例如方形待铺设件的长度)的整数倍的位置作为拾取铺设完成后位于首列非首行位置的待铺设件的机械手需要到达的预定位置,例如,对于铺设完成后位于首列第二行位置的待铺设件,机械手12拾取该待铺设件需到达的预设位置为与铺设完成后位于首行首列交汇位置处的待铺设件的预定位置纵向间隔待铺设件的长度且与铺设完成后位于首行首列的待铺设件的预定位置位于相同高度的位置。铺设完成后位于其他位置的情况,以此类推。
步骤S102:发送拍摄指令,以获取包含相互平行待铺设件的对位边及待铺设位置的铺设基准线的第一图像。
控制器11在控制机械手12拾取并移动待铺设件到达预定位置后,发送拍摄指令,以控制摄像头13采集包含待铺设件的对位边及待铺设位置的铺设基准线的图像。
一实施例中,控制器11在控制机械手12拾取并移动待铺设件到达预定位置后,待铺设件的对位边恰与待铺设位置的铺设基准线平行,此时,控制器11发送拍摄指令控制摄像头13采集到的包含待铺设件的对位边及待铺设位置的铺设基准线的图像即为包含相互平行的待铺设件的对位边及待铺设位置的铺设基准线的第一图像。
一实施例中,控制器11在控制机械手12拾取并移动待铺设件到达预定位置后,待铺设件的对位边与待铺设位置的铺设基准线之间的夹角大于0°且小于180°。此时,控制器11发送拍摄指令控制摄像头13采集到的包含待铺设件的对位边及待铺设位置的铺设基准线的图像并非包含相互平行的待铺设件的对位边及待铺设位置的铺设基准线的第一图像。
由于控制器11在控制机械手12拾取并移动待铺设件到达预定位置后,并不知晓待铺设件的对位边是否与待铺设位置的铺设基准线平行,本实施例中,控制器11在控制机械手12拾取并移动待铺设件到达预定位置后,发送第一拍摄指令,以获取包含待铺设件的对位边与待铺设位置的铺设基准线的第二图像。摄像头13基于控制器11所发送的第一拍摄指令采集包含对位边与铺设基准线的第二图像,并将第二图像反馈给控制器11。控制器11基于第二图像计算对位边与铺设基准线之间的夹角;在确定夹角等于0°或180°时,控制器11执行步骤S103,而在确定夹角大于0°且小于180°时,基于夹角生成位置调整指令并发送该位置调整指令,以使机械手12基于位置调整指令对待铺设件的位置进行调整,进而使得对位边与铺设基准线平行;以及在确定机械手12完成调整后,发送第二拍摄指令,以控制摄像头13采集包含相互平行的待铺设件的对位边及待铺设位置的铺设基准线的图像。本实施例中,机械手12在完成调整后,可反馈调整完成的信号给到控制器11。
上述实施例中,当铺设基准线为激光线时,对于铺设完成后位于首行首列交汇位置的待铺设件,控制器11在控制摄像头13获取包含相互平行的待铺设件的对位边及待铺设位置的铺设基准线之前,降低激光光源的亮度并减小摄像头13的曝光时间,以便能够采集到清晰的铺设基准线。
步骤S103:基于第一图像,计算对位边与铺设基准线之间因拍摄视觉偏差所导致的距离偏移量,并根据距离偏移量生成对对位边与铺设基准线之间的距离进行修正的对位修正指令,以使铺设机器人完成对位边与铺设基准线之间的对位。
本实施例中,控制器11基于第一图像,计算对位边与铺设基准线之间因拍摄视觉偏差所导致的距离偏移量,包括:获取待铺设件到待铺设位置所在平面的第一垂直距离及第一图像的拍摄位置(即,控制器11发射拍摄指令,以控制摄像头13采集包含相互平行的对位边及铺设基准线的图像时, 摄像头13所在的位置)到待铺设位置所在平面的第二垂直距离;根据第一图像,计算对位边与第一图像的拍摄位置在待铺设位置所在平面的投影之间的拍摄视觉垂直距离;以及基于相似三角形原理,计算对位边与铺设基准线之间因拍摄视觉偏差所导致的距离偏移量。
其中,获取待铺设件到待铺设位置所在平面的第一垂直距离及第一图像的拍摄位置(即,控制器11发射拍摄指令,以控制摄像头13采集包含相互平行的对位边及铺设基准线的图像时,摄像头13所在的位置)到待铺设位置所在平面的第二垂直距离,可通过发送测量指令,以控制第一距离传感器141对待铺设件到待铺设位置所在平面的第一垂直距离进行测量,并接收第一距离传感器141反馈的测量数据,以及控制第二距离传感器142对第一图像的拍摄位置到待铺设位置所在平面的第二垂直距离进行测量,并接收第二距离传感器142反馈的测量数据。
本实施例中,控制器11在控制摄像头13采集包含相互平行的对位边及铺设基准线的第一图像时,摄像头13的光轴与待铺设位置所在平面垂直,因此,第一图像的拍摄位置在待铺设位置所在平面的投影通常位于第一图像的正中间。上述根据第一图像,计算对位边与第一图像的拍摄位置在待铺设位置所在平面的投影之间的拍摄视觉垂直距离包括:基于第一图像,通过待铺设件的对位边(例如,待铺设件为方形砖体时正交的第一侧边及第二侧边)的交点(即,待铺设件的一角点)定位对位边,并通过图像处理算法获得对位边的交点的坐标信息以及第一图像的拍摄位置在待铺设位置所在平面的投影点的坐标信息,然后根据对位边的交点的坐标信息及第一图像的拍摄位置在待铺设位置所在平面的投影点的坐标信息计算对位边与第一图像的拍摄位置在待铺设位置所在平面的投影点之间的拍摄视觉垂直距离(包括第一侧边与第一图像的拍摄位置在待铺设位置所在平面的投影点之间的拍摄视觉垂直距离及第二侧边与第一图像的拍摄位置在待铺设位置所在平面的投影点之间的拍摄视觉垂直距离)。需要说明的是,由于摄 像头13在拍摄图像时忽略了待铺设件与待铺设位置所在平面之间存在高度差,因此,基于第一图像计算获得第一图像拍摄位置在待铺设位置所在平面的投影到所述对位边的拍摄视觉垂直距离包含高度差所导致对位边与铺设基准线之间的距离偏移量(即,高度差所导致的第一侧边与第一基准线之间的距离偏移量Δx,以及高度差所导致的第二侧边与第二基准线之间的距离偏移量Δy)。
可选地,控制器11在控制摄像头13采集包含相互平行的对位边及铺设基准线的第一图像时,摄像头13所处位置在待铺设位置所在平面的投影位于铺设基准线上。进一步地,控制器11在控制摄像头13采集包含相互平行的对位边及铺设基准线的第一图像时,摄像头13所处位置在待铺设位置所在平面的投影位于第一基准线与第二基准线的交点位置。基于相似三角形原理,计算对位边与铺设基准线之间因拍摄视觉偏差所导致的距离偏移量的具体内容如下。请参阅图8,根据相似三角形理论可知,对位边与第一图像的拍摄位置在待铺设位置所在平面的投影点之间的拍摄视觉垂直距离,距离偏移量,摄像头的拍摄位置到待铺设位置所在平面的距离,及待铺设件到待铺设位置所在平面的距离(即,预定位置到待铺设位置所在平面的距离,为常数,可通过距离传感器14测得)存在如下关系:
D/H=ΔL/L   (1)
其中,D表示待铺设件到待铺设位置所在平面的距离(第一垂直距离),H表示摄像头到待铺设位置所在平面的距离(第二垂直距离),ΔL表示距离偏移量,L表示基于第一图像所确定的包含距离偏移量的距离(即,第一图像的拍摄位置在待铺设位置所在平面的投影与对位边之间的拍摄视觉垂直距离)。
由式(1)可得:ΔL=L*D/H    (2)
由式(2)可得:S=L-ΔL=L(1-D/H)    (3)
其中,S表示对位边与铺设基准线之间的实际距离。
本实施例中,可以基于上述等式(3)对对位边与铺设基准线之间的视觉距离进行修正,得到对位边与铺设基准线之间的实际距离。对于第一侧边与第一基准线之间的视觉距离,及第二侧边与第二基准线之间的视觉距离均可通过上述等式(3)进行修正。
可选地,在对对位边与铺设基准线之间的视觉距离进行修正之前,控制器11会先判断对位边与铺设基准线之间的距离偏移量是否超出阈值,在确定距离偏移量大于阈值时,才对对位边与铺设基准线之间的视觉距离进行修正。对于距离偏移量小于阈值的情况,控制器11可以不对对位边与铺设基准线之间的视觉距离进行修正。
一实施例中,所述铺设方法还包括步骤S104:基于修正后的所述距离生成铺设指令,以使所述待铺设件被铺设至所述待铺设位置。
控制器11在对对位边与铺设基准线之间的视觉距离进行修正后,可以基于修正后的距离(即,实际距离)生成铺设指令,以控制机械手12将待铺设件铺设至待铺设位置。
或者,控制器11可以在确定距离偏移量小于阈值时,控制机械手12直接将待铺设件铺设至待铺设位置。
可以理解,其他实施例中,步骤S101可省略,铺设方法可开始于步骤S102。
本申请实施例所提供的铺设方法及应用该铺设方法的铺设机器人,通过获取包含相互平行的待铺设件的对位边以及待铺设位置的铺设基准线的第一图像;并基于所述第一图像,计算所述对位边与所述铺设基准线之间的距离偏移量,并根据所述距离偏移量对所述对位边与所述铺设基准线之间的距离进行修正;以及基于修正后的距离,将所述待铺设件铺设至所述待铺设位置,能够避免由于待铺设件底部布设有粘结材料,机器人在移动待铺设件时,待铺设件需与待铺设位置所在平面具有一定高度差,致使在铺设完成后相邻铺设件之间的间距较大,铺设精度不高的问题。
在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种铺设方法,其特征在于,应用于铺设机器人的控制器,所述方法包括:
    发送拍摄指令,以获取包含相互平行的待铺设件的对位边以及待铺设位置的铺设基准线的第一图像;及
    基于所述第一图像,计算所述对位边与所述铺设基准线之间因拍摄视觉偏差所导致的距离偏移量,并根据所述距离偏移量生成对所述对位边与所述铺设基准线之间的距离进行修正的对位修正指令,以使所述铺设机器人完成所述对位边与所述铺设基准线之间的对位。
  2. 根据权利要求1所述的铺设方法,其特征在于,所述基于所述第一图像,计算所述对位边与所述铺设基准线之间因拍摄视觉偏差所导致的距离偏移量,包括:
    获取所述待铺设件到所述待铺设位置所在平面的第一垂直距离及所述第一图像的拍摄位置到所述待铺设位置所在平面的第二垂直距离;
    根据所述第一图像计算所述对位边与所述拍摄位置在所述待铺设位置所在平面的投影之间的拍摄视觉垂直距离;及
    基于相似三角形原理,计算所述对位边与所述铺设基准线之间因拍摄视觉偏差所导致的距离偏移量。
  3. 根据权利要求2所述的铺设方法,其特征在于,所述获取所述待铺设件到所述待铺设位置所在平面的第一垂直距离及所述第一图像的拍摄位置到所述待铺设位置所在平面的第二垂直距离包括:
    发送距离测量指令;
    基于所述距离测量指令,获取所述待铺设件到所述待铺设位置所在平面的第一垂直距离及所述第一图像的拍摄位置到所述待铺设位置所在平面的第二垂直距离。
  4. 根据权利要求2所述的铺设方法,其特征在于,所述根据所述第一图像计算所述对位边与所述拍摄位置在所述待铺设位置所在平面的投影之间的拍摄视觉垂直距离包括:
    基于所述第一图像,通过所述待铺设件的对位边的交点定位对位边;
    通过图像处理算法获得所述对位边的交点的坐标信息以及所述第一图像的拍摄位置在所述待铺设位置所在平面的投影点的坐标信息;
    根据所述对位边的交点的坐标信息以及所述第一图像的拍摄位置在所述待铺设位置所在平面的投影点的坐标信息,计算得到所述对位边与所述拍摄位置在所述待铺设位置所在平面的投影点之间的拍摄视觉垂直距离。
  5. 根据权利要求4所述的铺设方法,其特征在于,所述对位边包括正交的第一侧边以及第二侧边,所述拍摄视觉垂直距离包括所述第一侧边与所述第一图像的拍摄位置在所述待铺设位置所在平面的投影点之间的拍摄垂直距离,以及所述第二侧边与所述第一图像的拍摄位置在所述待铺设位置所在平面的投影点之间的拍摄垂直距离。
  6. 根据权利要求1所述的铺设方法,其特征在于,所述根据所述距离偏移量对所述对位边与所 述铺设基准线之间的距离进行修正包括:
    在确定所述距离偏移量大于阈值时,根据所述距离偏移量对所述对位边与所述铺设基准线之间的距离进行修正。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    在确定所述距离偏移量小于所述阈值时,将所述待铺设件铺设至所述待铺设位置。
  8. 根据权利要求1所述的铺设方法,其特征在于,在所述根据所述距离偏移量对所述对位边与所述铺设基准线之间的距离进行修正之后,所述铺设方法还包括:
    基于修正后的所述距离生成铺设指令,以使所述待铺设件被铺设至所述待铺设位置。
  9. 根据权利要求1所述的铺设方法,其特征在于,所述发送拍摄指令,以获取包含相互平行的待铺设件的对位边以及待铺设位置的铺设基准线的图像,包括:
    发送第一拍摄指令,以获取包含所述对位边与所述铺设基准线的第二图像;
    基于所述第二图像,计算所述对位边与所述铺设基准线之间的夹角;
    在确定所述夹角大于0°且小于180°时,基于所述夹角生成位置调整指令并发送所述位置调整指令,以对所述待铺设件的位置进行调整,使得所述对位边与所述铺设基准线平行;及
    在确定调整完成后,发送第二拍摄指令,以获取包含相互平行的待铺设件的对位边以及待铺设位置的铺设基准线的图像。
  10. 根据权利要求9所述的铺设方法,其特征在于,所述方法还包括:
    在确定所述夹角等于0°或180°时,执行所述基于第一图像,计算对位边与铺设基准线之间因拍摄视觉偏差所导致的距离偏移量,并根据距离偏移量生成对对位边与铺设基准线之间的距离进行修正的对位修正指令,以使铺设机器人完成对位边与铺设基准线之间的对位。
  11. 根据权利要求9所述的铺设方法,其特征在于,在所述发送第一拍摄指令,以获取包含所述对位边以及所述铺设基准线的第二图像之前,所述方法还包括:
    发送拾取指令,以使所述铺设机器人拾取所述待铺设件,并将所述待铺设件移动至预定位置。
  12. 根据权利要求11所述的铺设方法,其特征在于,所述预定位置为距所述待铺设位置所在平面的垂直距离为常数,且能够获取到包含所述待铺设件的对位边与所述待铺设位置的铺设基准线的图像的位置。
  13. 根据权利要求1或2所述的铺设方法,其特征在于,所述对位边包括正交的第一侧边及第二侧边,所述铺设基准线包括正交的第一基准线及第二基准线,在所述第一侧边与所述第一基准线平行,所述第二侧边与所述第二基准线平行时,所述基于所述第一图像,计算所述对位边与所述铺设基准线之间因拍摄视觉偏差所导致的距离偏移量,包括:
    基于所述第一图像,计算所述第一侧边与所述第一基准线之间的距离偏移量Δx以及所述第二侧边与所述第二基准线之间的距离偏移量Δy。
  14. 根据权利要求1-12任一所述的铺设方法,其特征在于,所述铺设基准线为所述待铺设位置所在平面的铺设标记线,或者已铺设件邻近所述待铺设位置的自由边。
  15. 根据权利要求1所述的铺设方法,其特征在于,所述发送拍摄指令,以获取包含相互平行的待铺设件的对位边以及待铺设位置的铺设基准线的第一图像包括:
    在确定待铺设件到达预定位置后,发送拍摄指令,以获取包含相互平行的待铺设件的对位边以及待铺设位置的铺设基准线的第一图像。
  16. 一种铺设机器人,包括控制器,所述控制器用于执行权利要求1-15中任一项所述铺设方法。
  17. 根据权利要求16所述的铺设机器人,其特征在于,所述铺设机器人还包括与所述控制器信号连接的摄像头,所述摄像头用于基于所述控制器发送的拍摄指令进行相应拍摄,并将拍摄图像反馈给所述控制器。
  18. 根据权利要求17所述的铺设机器人,其特征在于,所述铺设机器人还包括与所述控制器信号连接的机械手,所述机械手用于基于所述控制器发送的拾取指令对所述待铺设件进行拾取,基于所述控制器发送的位置调整指令对所述待铺设件的位置进行调整;以及基于所述铺设指令将所述待铺设件铺设至所述待铺设位置。
  19. 根据权利要求18所述的铺设机器人,其特征在于,所述铺设机器人还包括设置在所述机械手处的第一距离传感器及设置在所述摄像头处的第二距离传感器,所述第一距离传感器用于测量所述待铺设件到所述待铺设位置的第一垂直距离,所述第二距离传感器用于测量所述摄像头的拍摄位置到所述待铺设位置的第二垂直距离。
PCT/CN2020/120223 2019-10-15 2020-10-10 铺设方法及铺设机器人 WO2021073458A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910981798.5 2019-10-15
CN201910981798.5A CN110670860B (zh) 2019-10-15 2019-10-15 铺设方法,铺设机器人及存储介质

Publications (1)

Publication Number Publication Date
WO2021073458A1 true WO2021073458A1 (zh) 2021-04-22

Family

ID=69082549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120223 WO2021073458A1 (zh) 2019-10-15 2020-10-10 铺设方法及铺设机器人

Country Status (2)

Country Link
CN (1) CN110670860B (zh)
WO (1) WO2021073458A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110670860B (zh) * 2019-10-15 2021-03-09 广东博智林机器人有限公司 铺设方法,铺设机器人及存储介质
CN111456394A (zh) * 2020-04-16 2020-07-28 广东博智林机器人有限公司 一种找平机器人
CN113482301B (zh) * 2021-07-02 2022-07-01 北京建筑大学 瓷砖铺贴方法和瓷砖自动铺贴控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000118288A (ja) * 1998-10-09 2000-04-25 Hitachi Constr Mach Co Ltd 内装用施工機械
CN103115613A (zh) * 2013-02-04 2013-05-22 安徽大学 一种空间三维定位方法
CN105323455A (zh) * 2014-07-31 2016-02-10 宁波舜宇光电信息有限公司 一种基于机器视觉的定位补偿方法
CN108222450A (zh) * 2018-01-15 2018-06-29 广州炬隆卫浴制品有限公司 一种瓷砖铺贴方法
CN109064705A (zh) * 2018-07-10 2018-12-21 上海小蚁科技有限公司 物品点检的预警方法及装置、存储介质、计算设备
CN110259067A (zh) * 2019-06-11 2019-09-20 清华大学 机器人的瓷砖铺设位置识别方法和系统
CN110670860A (zh) * 2019-10-15 2020-01-10 广东博智林机器人有限公司 铺设方法,铺设机器人及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000118288A (ja) * 1998-10-09 2000-04-25 Hitachi Constr Mach Co Ltd 内装用施工機械
CN103115613A (zh) * 2013-02-04 2013-05-22 安徽大学 一种空间三维定位方法
CN105323455A (zh) * 2014-07-31 2016-02-10 宁波舜宇光电信息有限公司 一种基于机器视觉的定位补偿方法
CN108222450A (zh) * 2018-01-15 2018-06-29 广州炬隆卫浴制品有限公司 一种瓷砖铺贴方法
CN109064705A (zh) * 2018-07-10 2018-12-21 上海小蚁科技有限公司 物品点检的预警方法及装置、存储介质、计算设备
CN110259067A (zh) * 2019-06-11 2019-09-20 清华大学 机器人的瓷砖铺设位置识别方法和系统
CN110670860A (zh) * 2019-10-15 2020-01-10 广东博智林机器人有限公司 铺设方法,铺设机器人及存储介质

Also Published As

Publication number Publication date
CN110670860A (zh) 2020-01-10
CN110670860B (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2021073458A1 (zh) 铺设方法及铺设机器人
JP6415190B2 (ja) ロボット装置、ロボット制御プログラム、記録媒体、およびロボット装置の制御方法
CN110259067B (zh) 机器人的瓷砖铺设位置识别方法和系统
TWI420066B (zh) 物件量測方法與系統
JP7189988B2 (ja) ビジョンシステムの3次元校正のためのシステム及び方法
CN111192301A (zh) 地板安装方法和装置、机器人及存储介质
JP6611888B2 (ja) ロボット装置、ロボット装置の制御方法、プログラムおよび記録媒体
JP2007536652A5 (zh)
US10210607B1 (en) Digital projection system and method for workpiece assembly
CN105080787A (zh) 点胶装置及点胶方法
CN102354086A (zh) 一种精密移动平台的正交性实时标定方法
CN111894247B (zh) 一种装饰面材铺贴方法、装置、系统及存储介质
JP7191309B2 (ja) カメラを用いるレーザープロジェクションマーキングの自動ガイド・位置決め及びリアルタイム補正方法
WO2021012124A1 (zh) 机器人手眼标定方法、装置、计算设备、介质以及产品
US20210192784A1 (en) Vision system for a robotic machine
CN108805940B (zh) 一种变倍相机在变倍过程中跟踪定位的方法
CN110986766B (zh) 一种基于机器视觉的瓷砖铺设位置的检测装置和方法
US20220357153A1 (en) Calibration method for computer vision system and three-dimensional reference object for use in same
KR102246361B1 (ko) 패널 얼라인 장치 및 이를 이용한 패널 얼라인 방법
JPH0820207B2 (ja) 光学式3次元位置計測方法
CN104792314B (zh) 一种测距摄影仪地面立体摄影外方位元素的测算方法
JP4846304B2 (ja) カメラ姿勢把握方法及びこれを用いた写真測量方法、これらのプログラム
JPH04269194A (ja) 平面計測方法
JP2019178988A (ja) 建物の屋根勾配の測定方法
JP6627077B2 (ja) 制御データのキャリブレーション方法及び部品実装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876551

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20876551

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20876551

Country of ref document: EP

Kind code of ref document: A1