WO2021072950A1 - Articles absorbants - Google Patents

Articles absorbants Download PDF

Info

Publication number
WO2021072950A1
WO2021072950A1 PCT/CN2019/124518 CN2019124518W WO2021072950A1 WO 2021072950 A1 WO2021072950 A1 WO 2021072950A1 CN 2019124518 W CN2019124518 W CN 2019124518W WO 2021072950 A1 WO2021072950 A1 WO 2021072950A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent article
absorbent
cuff
component
acquisition
Prior art date
Application number
PCT/CN2019/124518
Other languages
English (en)
Inventor
Yi Yuan
Gueltekin Erdem
Mattias Schmidt
Hui Liu
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to CN201980101216.8A priority Critical patent/CN114555025B/zh
Priority to JP2022521446A priority patent/JP2022551170A/ja
Priority to EP19949391.7A priority patent/EP4044979A1/fr
Priority to US17/068,933 priority patent/US20210106471A1/en
Publication of WO2021072950A1 publication Critical patent/WO2021072950A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/45Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
    • A61F13/49Absorbent articles specially adapted to be worn around the waist, e.g. diapers
    • A61F13/494Absorbent articles specially adapted to be worn around the waist, e.g. diapers characterised by edge leakage prevention means
    • A61F13/49406Absorbent articles specially adapted to be worn around the waist, e.g. diapers characterised by edge leakage prevention means the edge leakage prevention means being at the crotch region
    • A61F13/49413Absorbent articles specially adapted to be worn around the waist, e.g. diapers characterised by edge leakage prevention means the edge leakage prevention means being at the crotch region the edge leakage prevention means being an upstanding barrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/531Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad
    • A61F13/532Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad
    • A61F13/533Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad having discontinuous areas of compression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/537Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer
    • A61F13/53708Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer the layer having a promotional function on liquid propagation in at least one direction
    • A61F13/53713Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer the layer having a promotional function on liquid propagation in at least one direction the layer having a promotional function on liquid propagation in the vertical direction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/537Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer
    • A61F13/53743Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer characterised by the position of the layer relative to the other layers
    • A61F13/53747Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer characterised by the position of the layer relative to the other layers the layer is facing the topsheet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/537Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer
    • A61F13/5376Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer characterised by the performance of the layer, e.g. acquisition rate, distribution time, transfer time

Definitions

  • the invention relates to absorbent articles which are particularly thin, flexible, and comfortable and nevertheless have a high capacity to absorb fluids and are particularly effective in absorbing fluids in a quick manner.
  • Disposable absorbent articles such as diapers and adult incontinence products are well known in the art. Such disposable articles are designed to absorb and contain body exudates, in particular large quantity of urine. These absorbent articles may comprise several layers providing different functions, for example, a topsheet, a backsheet, an absorbent core disposed between the topsheet and the backsheet, and an acquisition-distribution system disposed between the topsheet and the absorbent core among other layers.
  • absorbent cores comprising an absorbent material which is a blend of comminuted wood pulp (i.e., airfelt) with superabsorbent polymers (SAP) in particulate form, also called absorbent gelling materials.
  • SAP superabsorbent polymers
  • ADS acquisition-distribution system
  • the ADS may comprise one or more layers which may form a unitary structure, or may comprise discrete layers.
  • Some currently marketed absorbent articles comprise an ADS comprising a nonwoven layer and/or a cellulose-containing layer.
  • absorbent articles such as incontinence or diaper products are relatively thick in order to absorb high amounts of discharge delivered quickly.
  • absorbent articles comprising an airfelt-free core were developed. These absorbent articles have a relatively low caliper and still remain to have a high absorbency but are invariably stiffer and harder. Some thinner products having improved flexibility are hardly able to provide a desired fluid absorbency and a low rewet. These thinner products having a relatively low acquisition speed tend to have a high cuff force to prevent fluid leakage caused by the low acquisition speed which may cause skin markings and irritation when worn by a wearer.
  • the present invention relates to an absorbent article comprising a liquid pervious topsheet; a liquid impervious backsheet; an absorbent core disposed between the topsheet and the backsheet; an acquisition-distribution system disposed between the topsheet and the absorbent core, the acquisition-distribution system comprising a first component comprising first thermoplastic fibers and cellulose fibers, the cellulose fibers being less than about 90%by weight of the first component; and a leg gasketing system comprising an inner cuff comprising a cuff sealing disposed in a longitudinally extending matter, and an outer cuff extending transversely outward from the cuff sealing.
  • the absorbent article has an absorption time lower than about 7sec/g up to a loading range of 100g, or up to 96g, as measured according to Modified Fluid Modified Fluid Acquisition Test; and the absorbent article has a caliper of lower than about 2.5mm under about 400g pressure at 2cm 2 , as measured according to Caliper Test, or a 3-point bending force lower than about 95g, as measured according to the 3-point Bending Force Test.
  • the article is illustrated in the Figures as a taped diaper.
  • the absorbent article and the acquisition-distribution system will be discussed with reference to the numerals referred to in these Figures.
  • the Figures and detailed description should however not be considered limiting the scope of the claims, unless explicitly indicated otherwise, and the invention disclosed herein is also used in a wide variety of absorbent article forms.
  • FIG. 1 is a schematic plan view of an exemplary absorbent article according to the present invention.
  • FIG. 2 is a lateral cross-section along 2-2 of the absorbent article of FIG. 1.
  • FIG. 3 is a cross-section view of an exemplary acquisition-distribution system for an absorbent article according to the present invention.
  • FIG. 4 is a schematic view of a sample preparation for the Caliper Test.
  • FIGS. 5A and 5B are schematic views of an example of apparatus for the Caliper Test.
  • FIG. 6 is a schematic view of a sample preparation for the 3-Point Bending Force Test.
  • FIGS. 7A-7C are schematic views of an example of apparatus for the 3-Point Bending Force Test.
  • FIG. 8 illustrates an apparatus used in the Modified Fluid Acquisition Test.
  • FIG. 9A is a side view of the curved component used in the Modified Fluid Acquisition Test.
  • FIG. 9B is an end view of the curved component of FIG. 9A.
  • FIG. 9C is a bottom view of the curved component of FIG. 9A.
  • FIG. 9D is a bottom perspective view of the curved component of FIG. 9A.
  • FIG. 9E is a top perspective view of the curved component of FIG. 9A.
  • FIG. 10A illustrates a top plate assembly used in the Modified Fluid Acquisition Test.
  • FIG. 10B illustrates equipment used in the Modified Fluid Acquisition Test.
  • FIG. 11 shows a schematic close up view of an exemplary protrusion having a bulbous shape.
  • FIG. 12 shows a schematic close up view of an exemplary protrusion having a bulbous shape and a secondary opening at its cap.
  • absorbent article refers to disposable products such as taped diapers, diapers having a closed waist opening (pants) , adult incontinent products, hygiene sanitary napkins and the like, which are placed against or in proximity to the body of the wearer to absorb and contain bodily exudates such as urine, feces or menses discharged from the body.
  • Typical absorbent articles comprise a topsheet, a backsheet, an absorbent core, an acquisition layer and other components.
  • the liquid permeable topsheet forms at least a portion of the wearer-facing side of the article, and the liquid impermeable backsheet forms at least a portion, and typically the whole, of the garment-side of the article.
  • the articles may be provided with fastening elements, such as tapes (taped diapers) or may be provided already pre-formed with a waist opening and a pair of leg openings as in an underwear (pant diapers) .
  • the absorbent articles may be for use with babies, infants, women or incontinent adults. Typical features of absorbent articles are further discussed further below, and in relation with the illustrated taped diaper in FIGS. 1 and 2, which is of course for illustration purpose only and not limiting the scope of the inventions, unless specifically indicated otherwise.
  • air-through bonding means passing a material such as fibrous web to be bonded through a stream of heated gas, such as air, in which the temperature of the heated gas is above the softening or melting temperature of at least one polymer component of the material being bonding air-through bonding may involve passing a material through a heated oven.
  • heated gas such as air
  • carded web or “carded nonwoven” means a web or nonwoven comprising staple fibers that are predominantly aligned and oriented in the machine direction using a carding process.
  • composite means a structure comprising two or more layers.
  • the two or more layers of a composite may be joined together such that a substantial portion of their common X-Y plane interface.
  • Comprise, ” “comprising, ” and “comprises” are open ended terms, each specifies the presence of the feature that follows, e.g. a component, but does not preclude the presence of other features, e.g. elements, steps, components known in the art or disclosed herein. These terms based on the verb “comprise” should be read as encompassing the narrower terms “consisting essential of”which excludes any element, step or ingredient not mentioned which materially affect the way the feature performs its function, and the term “consisting of” which excludes any element, step, or ingredient not specified. Any preferred or exemplary embodiments described below are not limiting the scope of the claims, unless specifically indicated to do so. The words “typically” , “normally” , “advantageously” and the likes also qualify features which are not intended to limit the scope of the claims unless specifically indicated to do so.
  • Natural fibers refers to elongated substances produced by plants and animals and includes animal-based fibers and plant-based fibers, as those categories are described herein. Natural fibers, as that term is used herein, include fibers harvested without any post-harvest treatment step as well as those having a post-treatment step, such as, for example, washing, scouring, bleaching.
  • nonwoven refers to a manufactured material, web, sheet or batt of directionally or randomly oriented fibers, bonded by friction, and/or cohesion and/or adhesion, excluding paper and products which are woven, knitted, tufted, stitch-bonded, incorporating binding yarns or filaments, or felted by wet milling, whether or not additionally needled.
  • the fibers may be of natural or man-made origin.
  • the fibers may be staple or continuous filaments or be formed in situ.
  • the porous, fibrous structure of a nonwoven may be configured to be liquid permeable or impermeable, as desired.
  • staple fiber means a fiber having a finite length. In general, staple fibers may have a length from about 2 to 200 mm.
  • FIG. 1 is a plan view of the exemplary diaper 20 in a flattened-out configuration with the taped ends opened and the garment-facing side turned up.
  • An article that is presented to the user closed such as a training pant may also be represented flattened out by cutting it along its side waists.
  • This diaper is shown for illustration purpose only as the present invention is applicable to a wide variety of diapers or other absorbent articles.
  • the absorbent article 20 notionally comprises a front edge 10, a back edge 12 and longitudinally-extending first and second longitudinal side edges 13, 14.
  • the front edge 10 forms the edge of the front waist and the back edge 12 of the back waist, which together when worn by the wearer form the opening for the waist of the wearer.
  • the longitudinal side edges 13, 14 can each form one of the leg openings.
  • the absorbent article 20 notionally comprises a longitudinally centerline 80 dividing the article in a left side and a right side, and a perpendicular transversal centerline 90 disposed at half the length of the article as measured on the longitudinal centerline 80, with both centerlines crossing at the center point C.
  • the taped back ends 42 attached on the front of the diaper to such as a landing zone 44.
  • the absorbent article 20 includes, from top to bottom, a topsheet 24, an acquisition-distribution system 50, an absorbent core 28 and a backsheet 26.
  • a suitable topsheet may be manufactured from a wide range of materials, such as porous foams, reticulated foams, apertured plastic films, woven materials, nonwoven materials, woven or nonwoven materials of natural fibers (e.g., wood or cotton fibers) , synthetic fibers or filaments (e.g., polyester or polypropylene or bicomponent PE/PP fibers or mixtures thereof) , or a combination of natural and synthetic fibers.
  • the absorbent article 20 further comprises a leg gasketing system 30 comprising an inner and outer cuffs 34, 32, which are preferably elasticized with elastic strands 35, 33 respectively.
  • Elasticized back ears 40 having a tape end 42 can be attached to a landing zone 44 at the front of the article.
  • Front ears 46 are typically present in such taped diapers to improve containment and attachment.
  • An outer cover may cover at least a portion of, or all of, the backsheet 26 to form a soft garment-facing surface of the absorbent article.
  • the outer cover may be formed of one or multi-layered nonwoven.
  • the nonwoven can comprise a combination of natural fibers and synthetic fibers that are not natural fibers.
  • the nonwoven can comprise both polypropylene fibers and cotton fibers; see, for example, U.S. Patent Application Publication No. U.S. 2017/0203542.
  • the outer cover may be joined to at least a portion of the backsheet 26 through mechanical bonding, adhesive bonding, or other suitable methods of attachment.
  • the backsheet 26 and/or the outer cover may comprise apertures which can promote a breathability conception.
  • the absorbent article may also comprise other typical components, which are not represented, such as a back-elastic waist feature, a front elastic waist feature, transverse barrier cuff (s) , a lotion application, etc.
  • the term “absorbent core” refers to a component used or intended to be used in an absorbent article and which comprises an absorbent material and optionally a core wrap. As used herein, the term “absorbent core” does not include the topsheet, the backsheet and any acquisition-distribution layer or multilayer system, which is not integral part of the absorbent core.
  • the absorbent core is typically the component of an absorbent article that has the most absorbent capacity of all the components of the absorbent article.
  • the terms “absorbent core” and “core” are herein used interchangeably.
  • the absorbent core 28 can absorb and contain liquid received by the absorbent article and comprise an absorbent material 60, which may be cellulose fibers, a blend of superabsorbent polymers and cellulose fibers, pure superabsorbent polymers, and/or a high internal phase emulsion foam.
  • an absorbent material 60 which may be cellulose fibers, a blend of superabsorbent polymers and cellulose fibers, pure superabsorbent polymers, and/or a high internal phase emulsion foam.
  • the absorbent core 28 may comprise at least one channel 29 free of an absorbent material, or may comprises multiple absorbent material free channels 29 as shown in FIGS. 1 and 2.
  • the top side 56 of the core wrap may be bonded to the bottom side 58 of the core wrap through the channel 29.
  • the core wrap bonds 27 may at least persist as the absorbent core 28 swells upon liquid absorption and creates three-dimensional channels at the wearer-facing surface of the article. Further details regarding channels are disclosed in WO2015/134359A. Of course, this is entirely optional, the absorbent core may also not have bonded channels, or even unbonded channels.
  • the absorbent material defines an absorbent material area, which may be rectangular as show in in FIG. 1, but it is also common to have a shaped area which is tapered in the area around the transversal centerline 90.
  • the patent literature is replete with example of such and other components suitable for use in the diapers of the invention, see for example already referred to WO2017/156200A and WO2019/076288A and these will not be discussed in extension herein.
  • the absorbent material comprises a liquid-absorbent material commonly used in disposable absorbent articles such as comminuted wood pulp, which is generally referred to as airfelt or fluff.
  • suitable liquid-absorbent materials include creped cellulose wadding; melt blown polymers, including co-form; chemically stiffened, modified or cross-linked cellulosic fibers; tissue, including tissue wraps and tissue laminates, absorbent foams, absorbent sponges, superabsorbent polymers (herein abbreviated as “SAP” ) , absorbent gelling materials, or any other known absorbent material or combinations of materials.
  • the absorbent material in the absorbent core can be any type.
  • the SAP content may represent in particular at least 80%, 85%, 90%, 95%and up to 100%, of superabsorbent polymer by weight of the absorbent material.
  • the absorbent material may in particular comprise no or only small amount of cellulose fibers, such as less than 20%, in particular less than 10%, 5%or even 0%of cellulose fibers by weight of the absorbent material.
  • the absorbent core may comprise an absorbent material comprising at least 80%, at least 90%, at least 95%, or at least 99%by weight of the absorbent core.
  • the term “superabsorbent polymer” refers herein to absorbent material, which may be cross-linked polymer, and that can typically absorb at least 10 times their weight of an aqueous 0.9%saline solution as measured using the Centrifuge Retention Capacity (CRC) test (EDANA method WSP 241.2-05E) .
  • the SAP may in particular have a CRC value of more than 20 g/g, or more than 24 g/g, or of from 20 to 50 g/g, or from 20 to 40 g/g, or from 24 to 30 g/g.
  • the SAP may be typically in particulate forms (superabsorbent polymer particles) , but it not excluded that other forms of SAP may be used such as a superabsorbent polymer foam for example.
  • the absorbent article 20 comprises a leg gasketing system 30 which may be formed by a piece of material which is bonded to the article so it may extend upwards from a wearer-facing surface of the absorbent article and provide improved containment of fluids and other body exudates approximately at the junction of the torso and legs of the wearer.
  • a leg gasketing system 30 may extend from the front edge 10 to the back edge 12.
  • the leg gasketing system 30 comprises an inner cuff 34 comprising a cuff sealing 64 disposed in a longitudinally extending matter, and an outer cuff 32 extending transversely outward from the cuff sealing 64.
  • the inner cuff 34 may be joined at the cuff sealing 64 with the chassis of the article by gluing, fusion bonding, or a combination of other suitable bonding processes.
  • the cuff sealing 64 may be located transversely between the absorbent core 28 and a longitudinal side edge 13, 14.
  • the inner cuff 34 may comprise one, two or more elastic elements 35 close to an inner cuff free edge 66 to provide a better seal.
  • the outer cuff 32 may be joined to chassis of the absorbent article, in particular to the topsheet 24 and/or the backsheet 26 and is placed externally relative to the inner cuff 34.
  • the outer cuff 32 may provide a better seal around the thighs of the wearer.
  • the outer cuff 32 may comprise one or more elastic elements 33 in the chassis of the absorbent article between the topsheet 24 and backsheet 26 in the area of the leg openings.
  • the absorbent article 20 of the present disclosure comprises an acquisition-distribution system ( “ADS” ) 50.
  • ADS 50 acquisition-distribution system
  • One function of ADS 50 is to quickly acquire the body fluid such as urine and distribute them to the absorbent core 28 in an efficient manner.
  • the ADS 50 may comprise a single layer. It may have two or more layers, which may form a unitary structure or may remain as discrete layers which may be attached to each other by, for example, thermal bonding, adhesive bonding or a combination thereof.
  • a unitary structure herein intends to mean that although it may be formed by several sub-layers that have distinct properties and/or compositions from one another, they are somehow intermixed at the boundary region so that, instead of a definite boundary between sub-layers, it would be possible to identify a region where the different sub-layers transition one into the other.
  • Such a unitary structure is typically built by forming the various sub-layers one on top of the other in a continuous manner, for example using air laid or wet laid deposition.
  • adhesives and/or binders can be present although typically in a lower amount that in multilayer materials formed by separate layers.
  • the ADS according to the present invention comprises a first component comprising first thermoplastic fibers and cellulose fibers.
  • first thermoplastic fibers enhance structural integrity of the fluid distribution layer while also providing for a more open structure.
  • the cellulose fibers provide liquid storage capability and provide a springy open structure that enables quick recovery of the fluid distribution layer to enable readiness for multiple assaults.
  • the first component comprises the cellulose fibers not higher than about 90%, or from about 50%to about 85%, or from about 60%to about 80%, by weight of the first component.
  • the amount of cellulose fiber is higher than 90%by weight of the first component may render the first component to collapse when the ADS gets wet, therefore an absorbent speed may be deteriorated.
  • ADS may not have enough void volume for temporarily storing the fluid initially which may lead to urine leakage.
  • the ADS may not provide sufficient capillarity to drain fluid from a topsheet.
  • cellulose fibers A wide variety of different cellulose materials may be used for the cellulose fibers.
  • digested cellulose fibers from softwood, hardwood or toon linters can be utilized.
  • Other cellulose fibers include fibers made for regenerated cellulose, polysaccharides or other absorbent fiber-forming compositions.
  • Another example of cellulose fibers is wood pulp e.g., cellulose pulp including treated and untreated pulp such as pulps of hardwood, softwood, straw, chemical pulp, fluff pulp, chemic-mechanical pulp, thermal mechanical pulp and mixtures thereof.
  • Cellulose fibers generally have a fiber length of about from 0.8 to about 10 mm, or about from 2 to10 mm, or about from 2 to 5 mm.
  • thermoplastic fibers A wide variety of polymers may be used for the thermoplastic fibers.
  • suitable fibers include polyolefins such as polypropylene and polyethylene, and copolymers thereof, polyesters such as polyethylene terephthalate (PET) , polytrimethyene terephthalate (PTT) , and polybutylene terephthalate (PBT) , nylons, polystyrenes, copolymer or blends thereof, and other synthetic polymers conventional in the preparation of fibers.
  • PET polyethylene terephthalate
  • PTT polytrimethyene terephthalate
  • PBT polybutylene terephthalate
  • nylons polystyrenes
  • copolymer or blends thereof copolymer or blends thereof
  • other synthetic polymers conventional in the preparation of fibers.
  • the thermoplastic fibers may be staple fibers.
  • thermoplastic fibers include monocomponent or multicomponent fibers, or mixtures thereof.
  • the thermoplastic fiber may comprise a sheath/core bicomponent fiber.
  • the sheath/core bicomponent fiber may comprises a sheath comprising a polymer having a lower melting temperature than that of a polymer forming the core.
  • the lower melting polymer of the sheath may promote bonding while the higher melting polymer of the core may provide strength to the thermoplastic fiber and thus to the first component.
  • the thermoplastic fibers typically have lengths reigning from about 3-15mm, or from about 3-10mm, or from about 3-6mm.
  • the sheath/core bicomponent fibers may comprises PE/PET fibers, PE/PP fibers or a mixture thereof.
  • the thermoplastic fibers may be thermal bonded and may entrapped cellulose fibers.
  • thermoplastic fibers are made by sustainable polymers such as polymers derived from a bio-based material.
  • sustainable polymers may include polylactic acid and bio-based polyethylene.
  • the first component may further comprise a binder such as latex.
  • the binder may function as an auxiliary, for immobilize or entrap the cellulose fibers.
  • the first component may be substantially free of superabsorbent polymer.
  • a material is substantially free of superabsorbent polymer in the disclosure herein, it intends to mean the material contains superabsorbent polymer less than about 5%, or about 2%, or about 1%, or 0%by the total weight of the material containing superabsorbent polymer.
  • the first component may include superabsorbent polymer. When the first component may include superabsorbent polymer, it may be present in an amount from about 10-35%, or 10-20%by the total weight of the first component.
  • the first component may have a basis weight in the range of about 20gsm –140gsm, or about 30-120gsm, or about 40-80gsm.
  • a basis weight of the first component may be determined to balance acquisition-distribution performance and a thickness of the absorbent article.
  • the first component web may comprise a carded web, air-laid web, wet-laid web, and spunbond web, and the like.
  • the first component comprises an air-laid web.
  • ADS 50 according to the present invention may further comprise a second component 54 comprising second thermoplastic fibers which is positioned on one surface of the first component 52 in such a way that the first component 52 has an outer surface 16 and the second component 54 has an outer surface 22, and inner surfaces of the first component 52 and the second component are faced to each other.
  • second thermoplastic fibers include thermoplastic fibers discussed with respect to the first component.
  • the second thermoplastic fiber may or may not be the same as the first thermoplastic fiber.
  • the second component may be free of cellulose fibers.
  • the second component may have a basis weight in the range of about 20–80gsm, or about 30-70gsm, or about 40-60gam.
  • the second component comprises a carded nonwoven.
  • the second component may comprise an air-through bonding nonwoven.
  • the second component may comprise spunbond nonwoven or spunbond-meltblown-spunbond ( ‘SMS” ) nonwoven. SMS can mean a three layer, ‘sms’ nonwoven materials, a five layer ‘ssmms’ nonwoven materials, or any reasonable variation thereof wherein the lower case letters designate individual layers and the upper case letters designate the compilation of similar, adjacent layers.
  • An ADS for the present invention may be substantially free of superabsorbent material.
  • An ADS for the present invention may have a basis weight in the range of about 20-220gsm, or about 40 -160gsm, or about 20-140gsm, or about 40-80gms
  • the ADS according to the present invention comprises cellulose fibers less than about 40gsm.
  • a basis weight of the first component may be determined to balance acquisition-distribution performance and a thickness of the absorbent article.
  • An ADS suitable for absorbent articles according to the present invention may be manufactured via various process known in the industry.
  • An ADS suitable for the present invention when consisting of a first component comprising first thermoplastic fibers and cellulose fibers, can be formed for example by air-laying a mixture of the first thermoplastic fibers and cellulose fibers directly onto a carrier wire to form a web, and subsequently subjecting the web to compression and/or thermal treatment in order to bind at least a portion of the first thermoplastic fibers.
  • a web for the ADS may be manufactured by a process comprising the steps of forming a first component web comprising first thermoplastic fibers and cellulose fibers, forming a second component web comprising second thermoplastic fibers, forming a composite web by overlaying the first component web on the second component web or vice versa, and subjecting the composite web to compression, adhesive, and/or thermal treatment in order to bond at least portion of the first and the second thermoplastic fibers.
  • a composite wet for the ADS may be manufactured in a continuous process.
  • the process may comprise the steps of a) supplying a second component web comprising second thermoplastic fibers, b) overlaying a first component web comprising first thermoplastic fibers and cellulose fibers on one surface of the second web to form a composite web, and c) subjecting the composite web to compression and/or thermal treatment in order to bond at least portion of the first and the second thermoplastic fibers.
  • the second component web may be supplied from a spool on which a previously formed second component web is wounded.
  • the second component web may be supplied by preparing the second component web using a web forming device, for example, a card or spinning beam.
  • the second component web may be supplied using an air-through bonded nonwoven forming device.
  • Step b) may be conducted by air-laid process using at least one forming head.
  • a stream of the first thermoplastic fibers and cellulose fibers are homogeneously mixed to form a stream of mixed fibers, and each forming head deposits the stream of mixed fibers on to one surface of the second component web.
  • the compression may be carried out using one or more pairs of compaction rollers that are disposed following the one or more forming heads.
  • compaction rollers may be heated at a temperature, for example ranging from about 90 to 110°C.
  • thermal treatment can be conducted using any conventionally known thermal treatment method.
  • Examples of preferable treating process include a thermal treatment apparatus such as a hot air through-type thermal treatment apparatus, a hot air blowing thermal treatment apparatus, an infrared thermal treatment apparatus, or the like. These thermal treatment apparatuses are typically provided with a conveying support for supporting and conveying a web. In one embodiment, the thermal treatment may be carried out by transporting the air-laid web to a heating oven which is maintained at a temperature that is sufficient to soften and melt at least portion of the first and/or the second thermoplastic fibers.
  • a thermal treatment apparatus such as a hot air through-type thermal treatment apparatus, a hot air blowing thermal treatment apparatus, an infrared thermal treatment apparatus, or the like.
  • These thermal treatment apparatuses are typically provided with a conveying support for supporting and conveying a web.
  • the thermal treatment may be carried out by transporting the air-laid web to a heating oven which is maintained at a temperature that is sufficient to soften and melt at least portion of the first and/or the second thermoplastic fibers.
  • the composite web may be heated to a temperature above the melting point of the sheath but below the melting point of the core so that the sheath component is sufficiently melt and/or soften, and bond at a point of contact or intersection of the fibers.
  • An ADS suitable for the present invention when comprising the first component and a second component, the first component may have a fiber density higher than the second component.
  • the ADS for the present invention may further comprise one or more additional layers deposited on the outer surface 16 of the first component 52.
  • the absorbent article of the present invention comprises a liquid pervious topsheet, a liquid impervious backsheet, an absorbent core disposed between the topsheet and the backsheet, and an ADS disclosed herein disposed between the topsheet and the absorbent core.
  • Components of the disposable absorbent article described in this specification can at least partially be comprised of bio-sourced content as described in US 2007/0219521A1 Hird et al published on September 20, 2007, US 2011/0139658A1 Hird et al published on June 16, 2011, US 2011/0139657A1 Hird et al published on June 16, 2011, US 2011/0152812A1 Hird et al published on June 23, 2011, US 2011/0139662A1 Hird et al published on June 16, 2011, and US 2011/0139659A1 Hird et al published on June 16, 2011.
  • a disposable absorbent article component comprises a bio-based content value from about 10%to about 100%using ASTM D6866-10, method B, in another embodiment, from about 25%to about 75%, and in yet another embodiment, from about 50%to about 60%using ASTM D6866-10, method B.
  • the disposable absorbent article component In order to apply the methodology of ASTM D6866-10 to determine the bio-based content of any disposable absorbent article component, a representative sample of the disposable absorbent article component must be obtained for testing.
  • the disposable absorbent article component can be ground into particulates less than about 20 mesh using known grinding methods (e.g., mill) , and a representative sample of suitable mass taken from the randomly mixed particles.
  • the absorbent article of the present invention comprises at least one of a topsheet and a backsheet comprising a natural fiber.
  • the absorbent article of the present invention comprises an ADS disclosed herein wherein the first component has a fiber density higher than the second component.
  • the ADS of the present invention comprises the first component and the second component
  • the ADS is disposed in the absorbent article in such a way that the second component is disposed between the topsheet and the first component.
  • the absorbent article of the present invention comprises an absorbent core comprising at least about 80%, about 85%, about 90%or about 95%of superabsorbent polymers by weight of the absorbent core.
  • the absorbent article according to the present invention has a low caliper and preferable flexibility, but still have a desirable fluid handling property.
  • the absorbent article according to the present invention has an absorption time lower than about 7sec/g, or lower than about 6.5sec/g, or lower than 6sec/g, or even lower than 5.5sec/g up to 100g, or up to 96g loading amount as measured according to Modified Fluid Modified Fluid Acquisition Test.
  • It also has a caliper of lower than about 2.5mm, or lower than about 2.3mm, or lower than about 2.0mm under 400g pressure at 2cm 2 as measured according to Caliper Test; and/or has a 3-point bending lower than about 95g, or lower than about 90g, or lower than about 85g, or lower than about 80g, or lower than 75g as measured according to 3-point Bending Force Test.
  • the absorbent article of the present invention may have a rewet less than about 120mg, or less than about 110mg, or less than about 105mg, or even less than about 100mg as measured according to Collagen Rewet Test.
  • the absorbent article of the present invention may have a caliper of lower than about 9mm, or lower than about 8mm, or lower than about 7mm under 3g pressure at 2cm 2 as measured according to Caliper Test.
  • the absorbent article of the present invention is thin and flexible, and is able to sustain fluid handling properties such as absorption speed properties and/or rewet.
  • the absorbent article of the present invention may have a low cuff force providing conform during wearing and avoiding skin markings and irritation when worn by a wearer without a fluid leakage risk.
  • the absorbent article of the present invention comprises an inner cuff and an outer cuff and at least one of the inner cuff and the outer cuff may have a cuff force lower than about 0.3N, or lower than about 0.25N, as measured according to Cuff Force Test.
  • the absorbent article of the present invention comprises an inner cuff having a cuff force lower than about 0.3N, or lower than about 0.25N, as measured according to Cuff Force Test.
  • the absorbent article of the present invention may comprise an inner cuff and an outer cuff both of which have a cuff force lower than about 0.3N, or lower than about 0.25N, as measured according to Cuff Force Test.
  • the absorbent article of the present invention does not have a layer comprising cellulose fibers except the ADS especially between a topsheet the absorbent core.
  • the absorbent article of the present invention comprises at least one of components such as a topsheet, an absorbent core, an ADS and a backsheet of the absorbent article comprises natural fibers.
  • Absorbent articles of the present disclosure may be “devoid of” or “free of” particular undesirable materials, ingredients, or characteristics in some forms. “Devoid of, ” “free of, ” and the like, as those terms are used herein, can mean the absorbent article does not have more than trace amounts of background levels of the material, ingredient, or characteristic following these qualifiers; the amount of the material or ingredient does not cause harm or irritation that consumers typically associate with the material or ingredient; or the material or ingredient was not added to the absorbent article intentionally. In some instances, “devoid of” and “free of” can mean there is no measurable amount of the material or ingredient. For example, the absorbent article in some forms contain no measurable amounts of chlorine-that is, the article is characterized as being totally chlorine free.
  • the ADS according to the present invention may be mechanically deformed.
  • the ADS may comprise a plurality of protrusions extending outwardly from at least one surface of the ADS and the protrusions extending outwardly are oriented towards the absorbent core of the absorbent article. Deformed ADS may improve its mechanical properties such as flexibility and cushiness which are considered trade-offs.
  • the absorbent articles of the invention may be made by any conventional methods known in the art.
  • the articles may be hand-made or industrially produced at high speed.
  • adjacent layers and components will be joined together using conventional bonding method such as adhesive coating via slot coating or spraying on the whole or part of the surface of the layer, or thermo-bonding, or pressure bonding or combinations thereof.
  • Other glues or attachments are not represented for clarity and readability but typical bonding between the layers of the article should be considered to be present unless specifically excluded.
  • Adhesives may be typically used to improve the adhesion of the different layers, for example between the backsheet and the core wrap.
  • the glues used may be any standard hotmelt glue as known in the art.
  • a process for producing an absorbent article of the present invention comprises: a) supplying a topsheet material having a wearer-facing surface and a garment-facing side, b) supplying an absorbent core to the garment-facing side of a topsheet material, the absorbent core having a wearer-facing surface and a garment-facing side, and c) supplying a backsheet material to the garment-facing side of the absorbent core, the backsheet material comprising a wetness indicator, wherein the absorbent core comprises an absorbent material and a core wrap at least partially covering the absorbent material, the core wrap comprising a nonwoven web of the present invention.
  • ADS disclosed herein may be mechanically deformed by a conventional mechanical deformation process in order to improve its mechanical properties.
  • the deformed ADS is made by a method comprising the steps of: a) providing at least one ADS material; b) providing an apparatus comprising a pair of forming members comprising a first forming member (e.g. a "male” forming member) and a second forming member (e.g. a "female” forming member) ; and c) placing the ADS material (s) between the forming members and mechanically deforming the ADS material (s) with the forming members.
  • the forming members have a machine direction (MD) orientation and a cross-machine direction (CD) orientation.
  • the first and second forming members can be plates, rolls, belts, or any other suitable types of forming members.
  • the mechanical deformation typically includes passing the ADS material between two rolls having a specific intermeshing pattern on their surfaces.
  • a plurality of protrusions 62 extending outwardly from a first surface 164, of the ADS 50 are formed by displacing fibers of the ADS material away from the first surface 164.
  • openings 68 corresponding to the protrusions are formed in the second surface 166 of the nonwoven.
  • the plurality of protrusions 62 thus formed are preferably discrete protrusions.
  • the mechanical deformation process is different from a conventional embossing process where fibers are compressed inwardly and do not form outwardly extending protrusions.
  • WO2016/040101A1 discloses a nonwoven deformation process (referred to as nested-SELF process) to make a nonwoven having discrete three-dimensional bulbous protrusions with wide base openings.
  • nested-SELF process a nonwoven deformation process
  • the first and second forming members are in the form of non-deformable, meshing, counter-rotating rolls that form a nip therebetween. The precursor nonwoven is fed into the nip between the rolls.
  • protrusions 62 comprise a base 70 proximate the first surface 164 of the ADS 50, an opposed distal end extending outward in the Z-direction from the base 70, side walls 74 between the base and the distal end of the protrusion 62, and a cap 72 comprising at least a portion of the side walls and the distal end of the protrusions.
  • the side walls 74 have interior surfaces, wherein the interior surfaces of the side walls define a base opening 68 at the base of the protrusion, wherein said cap 72 has a portion with a maximum interior width Wi, and the base opening 68 has a width Wo, wherein the maximum interior width Wi of the cap 72 of the protrusion is greater than the width Wo of the base opening 68.
  • These bulbous protrusions are particularly resilient and can e.g. typically at least partially recover their shape or at least not collapse under compression in the package of absorbent article.
  • the processes may also be conducted such that one or more secondary openings 76 are formed at the cap 72 or the distal end of the protrusions, due to the fibers of the ADS material not being sufficiently elongatable and breaking at the tip of the protrusions as illustrated in FIG. 12. This may be desired so that a fluid can more quickly move through the ADS towards the absorbent core.
  • the second opening 76 may extend through all the layers of the material, or only be formed in one layer, for example the one forming the external surface of the deformed ADS 50.
  • WO2012/148, 944 Marinelli et al., P&G
  • This is process may be referred to as SELF-on-SELF (SoS) and is illustrated on Fig. 16 and following of WO2012/148, 944A1.
  • the deformed ADS obtained by such a process may comprises protrusions formed on a first surface of an ADS and equivalent protrusion formed on the second surface of the ADS, with the corresponding openings.
  • the SoS process can be used on a single layer material or dual or multi-layer material.
  • the protrusions may be uniformly distributed on the forming members and thus on the deformed ADS.
  • the protrusions may also be distributed according to a pre-determined pattern by arranging the male and/or female elements on the forming elements, in particular forming rolls, according to a desired pattern.
  • the average number of protrusions on the deformed ADS may typically range from 0.5 to 5 per square centimeter.
  • a caliper of a sample is measured using an Electronic Tensile Tester with a computer interface such as the MTS Criterion C42 running TestWorks 4 Software (available from MTS SYSTEMS (CHINA) CO., LTD) or equivalent instrument.
  • a load cell is selected so that force results for the samples tested will be between 10 and 90%of capacity of the load cell used.
  • the instrument is calibrated according to the manufacturer’s instructions. Referring to FIGS. 5A and 5B, the tensile tester is fitted with a plunger (custom made 200 mm 2 circular plunger 304) for the upper fixture, and a stage (150mm ⁇ 310mm stage 305) for the lower fixture.
  • the instrument is set up to go through the following steps:
  • the crosshead is drawn down to a position such that the compression plunger 304 is close to, but not touching, the stage 305. Measure the rough thickness of the sample article using ruler. The rough thickness of the sample plus 1mm is the “platen separation” value. Set the movement of compression plunger 304 to initially reach the compression plate 305, then go up until the predetermined “platen separation” value is provided between the compression plunger 304 and the compression plate 305. Insert sample between the compression plunger 304 and the compression plate 305. Set the crosshead travel to compress the sample article until the load exceeds 400gf, then return to the “platen separation” position.
  • 3-point bending force is to measure a bending stiffness of an absorbent region of an absorbent article using for example Texture Analyzer (Stable Micro Systems, UK) or equivalent instrument.
  • a Texture Analyzer 700 is fitted with a 3-point bending blade 710 having a 70mm of a blade length L bl , 3mm of a blade width W bl , and 80mm of a blade height H bl , and a bending bridge720 having 130mm of a bending bridge length L br , 55mm of a bending bridge width W br , 25mm of a bending bridge height H br , and 25mm of a bending bridge gap G br as shown in FIGS. 7A-7C.
  • the instrument is calibrated according to the manufacturer’s instructions. The instrument is set up to go through the following steps:
  • Test mode Compression Test speed 0.5 mm/sec Target mode Distance Distance 13 mm calibrate height setting 35 mm Bending bridge gap 25mm Bending bridge depth 25mm
  • the Modified Fluid Acquisition ( "MFA” ) Test is designed to measure the speed at which 0.9%saline solution is absorbed into an absorbent article that is compressed at 2.07 kPa. A known volume is introduced four times, each successive dose starting five (5) minutes after the previous dose has absorbed. Times needed to absorb each dose are recorded.
  • the test fluid is 0.9%w/v saline solution and is prepared by weighing 9.0 g ⁇ 0.05g of NaCl into a weigh boat, transferring it into a 1L volumetric flask, and diluting to volume with de-ionized water.
  • the MFA apparatus is depicted in FIG. 8 through FIG. 10B.
  • the MFA apparatus comprises a bladder assembly 3001 and a top plate assembly 3200 that includes a deposition assembly 3100.
  • a controller 3005 is used to 1) monitor the impedance across electrodes 3106, recording the time interval 0.9%saline solution is in a cylinder 3102, 2) interface with a liquid pump 3004 to start/stop dispensing, and 3) time intervals between dosing.
  • the controller 3005 is capable of recording time events to ⁇ 0.01 sec.
  • a house air supply 3014 is connected to a pressure regulator 3006 capable of delivering air at a suitable flow/pressure to maintain 2.07 kPa in the bladder assembly 3001.
  • a liquid pump 3004 (Ismatec MCP-Z gear pump, available from Cole Palmer, Vernon Hills, IL or equivalent) capable of delivering a flow of 10-80 mL at a rate of 3-15 mL/sis attached to a stainless steel tube 3104 of the deposition assembly 3100 via tygon tubing 3015.
  • the bladder assembly 3001 is constructed of 12.7 mm Plexiglas with an overall dimension of 80 cm long by 30 cm wide by 10 cm tall.
  • a manometer 3007 to measure the pressure inside the assembly and a pressure gauge 3006 to regulate the introduction of air into the assembly are installed through two holes through the light side.
  • a bladder 3013 is assembled by draping a 50 mm by 100 mm piece of silicone film, (thickness 0.02", Shore A durometer value of 20, available as Part#86435K85 from McMaster-Carr, Cleveland, OH) over the top of the box with enough slack that the film touches the bottom of the box at its center point.
  • An aluminum frame 3003 with a flange is fitted over the top of the film and secured in place using mechanical clamps 3010.
  • a front 3008 and back 3009 sample support of 5 cm by 30 cm by 1 mm are used to anchor the sample.
  • the absorbent article is attached to the top surface of the sample supports by either adhesive tape or mechanical "hook” fasteners. These supports can be adjusted along the length of the aluminum frame 3003 via a simple pin and hole system to accommodate different size absorbent articles and to correctly align their loading point.
  • the top plate assembly 3200 is constructed of an 80 cm by 30 cm piece of 12.7 mm Plexiglas reinforced with an aluminum frame 3109 to enhance rigidity.
  • the plate has a cutout l70 mm wide by 201 mm long centered laterally on the plate, l70 mm from the front of the plate 3201 for mounting of the deposition assembly.
  • the top plate has thirty-six (36) 3.2 mm diameter holes drilled through it distributed as shown in FIG. 10A. The holes prevent air from being trapped under the top plate as the bladder is inflated.
  • the top plate assembly 3200 is connected to the bladder assembly 3001 via two hinges 3012. During use, the top assembly is closed onto the bladder assembly and locked into place using a mechanical clamp 301l.
  • the deposition assembly 3100 is fitted into the top plate 3200 and includes 1) a liquid introduction cylinder 3102, 2) a curved surface 3101 at the loading point of the absorbent article and 3) electrodes 3106 that are used to detect fluid in the cylinder 3102.
  • the detailed dimensions of the curved component are provided in FIG. 9A to FIG. 9E.
  • FIG. 9A is a side view of the curved component.
  • FIG. 9B is an end view of the curved component.
  • FIG. 9C is a bottom view of the curved component.
  • FIG. 9D is a bottom perspective view of the curved component.
  • FIG. 9E is a top perspective view of the curved component. This curved component can be milled or 3D printed.
  • the top portion of the introduction cylinder is a 50.8 mm O. D.
  • Plexiglas cylinder 3102 with a 38.1 mm LD This is fitted into the curved component to give the introduction cylinder a total height of 100 mm.
  • Imbedded electrodes run from connectors on the upper surface of the curved component and terminate flush with an inside wall of the introduction cylinder, 2 mm from the bottom of the cylinder. The two electrodes are positioned 180 degrees apart.
  • a nylon screen 3107 is cut and affixed flush with the bottom of the cylinder such that the sample cannot swell into the cylinder.
  • a 5 mm semi-circle is cut in the screen in the immediate area of the two electrodes.
  • the deposition assembly is inserted into the top plate as shown in FIG. 10A such that the curved surface is flush with the bottom of the top-plate assembly 3200.
  • the introduction cylinder 3102 is topped with a loose-fitting nylon cap 3103.
  • the cap has a 6.35 mm O.D. steel tube 3104 inserted through its center. When the cap is in place, the bottom of the tube ends 20 mm above the screen 3107.
  • the cap also has an air hole 3105 to ensure negative pressure does not impede the absorption speed.
  • the absorbent article is first prepared by excising any inner or outer leg cuffs, waist caps, elastic ears or side panels, taking care not to disturb the topsheet that resides above the article's core region. Place the absorbent article flat onto a lab bench and identify the intersection of the longitudinal centerline with the size dependent loading point as defined in Table 1.
  • the sample plate 3008 is attached to the aluminum frame 3003 such that the size-dependent Loading Point (as defined in Table 1) of the absorbent article will be centered longitudinally and laterally within the cylinder 3102 when the top plate assembly has been closed.
  • the back end of the absorbent article is secured to the back sample plate 3009 by either adhesive tape or mechanical "hook” fasteners, once again ensuring that only the chassis and not the absorptive core overlays the plate.
  • the back sample plate 3009 is then attached to the aluminum frame 3003 such that the article is taunt but not stretched.
  • the top plate assembly is closed and fastened, and the bladder is inflated to 2.07 kPa ⁇ 0.07 kPa. The pressure is maintained at this level during the complete loading sequence of the test.
  • the pump 3004 is primed and then calibrated to deliver the size-dependent volume and flow rate selected from Table 1. Volume and flow rate must be within ⁇ 2%of target.
  • the cap 3103 is placed into the cylinder 3102.
  • the controller 3005 is started, which in tum delivers the first dose of 0.9%saline solution. After the volume has been absorbed, the controller waits for 5.0 minutes before addition of the next dose. This cycle is repeated for a total of four doses. If the fluid leaks out of or around the article (i.e., is not absorbed into the article) then the test is aborted. Also if any acquisition time exceeds 1200 seconds, the test is aborted.
  • the acquisition time is defined as the difference between the start time (i.e., when the 0.9%saline is first introduced into the cylinder and that conducting fluid completes the circuit between the electrodes) and the stop time (i.e., when the fluid has completely drained from the cylinder and the circuit between the electrodes is broken) . Acquisition times are recorded by the controller for each dose to the nearest 0.01 second. After the last dose is acquired, pressure is applied for an additional 10 minutes. Open the pressure relief valve 3016 to deflate the bladder and then remove the sample from the acquisition system.
  • the Collagen Rewet Test is performed immediately after the MFA Test.
  • the Collagen Rewet Test comprises measuring the mass of fluid expressed from an absorbent article under pressure after loading by the MFA protocol.
  • Collagen sheets are used as the rewet substrate.
  • a suitable collagen is Naturin Coffi collagen sheets (available Bachin GmbH &KG, Germany) or equivalent.
  • the collagen sheets are stored at about 23°C ⁇ 2 °C and about 50% ⁇ 2 %relative humidity for 2 hours prior to testing.
  • Equipment for the test consists of a Plexiglas disk 70.0 mm in diameter and 20 mm thick and a stainless steel confining weight that rests upon it.
  • the mass of the disk and confining weight combined is 9100 g ⁇ 2 g which corresponds to a pressure of 23.2 kPa.
  • Collagen sheets are die cut into 70.0 mm diameter circles and stacks of four (4) assembled for use during rewet testing. Measure and record the mass of the dry filter paper stack and record to the nearest 0.0001 g.
  • Cuff Force Tests are performed on both the inner and outer cuffs, where present, for an absorbent article.
  • the measurement uses a digital force gauge with a capacity of 0 to 10 N and a minimum resolution of 0.01 N.
  • a suitable gauge is the Quantrol Advanced Force Gauge AFG 10N available from Dillon/Quality Plus Inc, Camarillo, CA, or equivalent.
  • the sample is mounted using two, a top and a bottom, spring-loaded bar grips.
  • the top grip is hung from the force gauge, with the bottom grip attached to a movable trolley.
  • the force gauge and trolley are mounted on a vertical test stand such that the force gauge is held stationary and the trolley moves vertically along the test stand.
  • the test stand must be tall enough to mount the extended article between the two grips.
  • any elastic waist feature For each replicate sample, remove, if present, any elastic waist feature. Also remove the front and back ears of the article, or in the case of a pant, the belt or side panels. Remove the inner cuff structure by disengaging any tack down bonds at the front and back waist and then cutting longitudinally, inboard along the base of the cuff. For the outer cuff cut longitudinally, approximately 1 cm inboard of the outer cuff elastic. While excising the cuffs structures, care is taken not to longitudinally stretch the elastics. The cuff specimens are analyzed 15 minutes after removal from the article.
  • the force gauge is set to continuously take data. Clamp the excised cuff laterally across the specimen, 1.27 mm inboard from the end of the cuff. Zero the force gauge. Move the trolley clamp up the test stand such that the cuff will be in the relaxed state. Attach the other end of the cuff laterally across the specimen, 1.27 mm inboard from the end of the cuff. The specimen should not be twisted within the grips. Begin the measure by lowering the bottom clamp to the MEL position. After one second, raise the bottom clamp till the cuff specimen is in relaxed state. After one second, the bottom clamp is again lowered to the MEL Point. After one second raise the clamp to the FEL position. Wait approximately five seconds then read and record the force from the force gauge to the nearest 0.01 N. Repeat procedure for each inner and outer cuff.
  • Results are collected for each cuff from 5 replicate articles and averaged keeping corresponding replicates separate. Report as Operator-Side Cuff Force (inner cuff, Drive-Side Inner Cuff, Operator-Side Outer Cuff, Drive-Side and Cuff Force (outer cuff) , to the nearest 0.01 N.
  • Urine leakage of an absorbent article is tested by 50 panelists who are caregivers of babies using Size S tape diapers. Each of panels is provided multiple pieces absorbent articles per each test sample. After use of all absorbent articles, the panels evaluate absorbent article leakage condition in the form of yes or no. Urine leakage percentage is calculated as numbers of absorbent articles reported as leakage (yes) divided by the total used pads.
  • Diaper samples 1, 2 and 4 were fabricated using ADS in Table 2 and components of Pampers Hajimeteno Hadaeno Ichiban, size S (Procter and Gamble Japan K. K. Japan) according to Table 3 below. Commercially available diapers were used as diaper samples 3, and 5-8.
  • ADS has a width of 90mm and the same length as an absorbent core.
  • the absorbent article of the present invention is thin and flexible, and even with a low caliper, the absorbent articles of the present invention achieves a fast acquisition time in comparison with Comparison samples 4, 7 and 8 of thin absorbent articles. It is also important to note that the absorbent article of the present, even with a low caliper, achieves about the same or lower level of rewet as a commercially available thick absorbent articles (Comparison samples 5 and 6) as well as thin absorbent articles (Comparison samples 3, 7 and 8) .
  • the absorbent article of the present invention can have a much low cuff force without compromising leakage prevention in comparison with commercially available thick absorbent articles (Comparison samples 5 and 6) as well as thin absorbent articles (Comparison samples 7 and 8) .
  • Diaper sample 9 (Silk8 Superflex) was fabricated using ADS 2 in Table 2 above and components of Pampers Ichiban, Pant size L (Procter and Gamble Japan K. K. Japan) according to Table 5 below. Commercially available diapers were used as diaper samples 10 and 11.
  • Sample 9 got significantly better score over samples 10 and 11 in most of items reflecting flexibility and comfort as well as leakage prevention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

L'invention concerne un article absorbant souple et mince (20) comprenant : un système d'acquisition-distribution (50) comprenant un premier composant (52) comprenant des premières fibres thermoplastiques et des fibres de cellulose, la quantité de fibres de cellulose étant inférieure à environ 90 % en poids du premier composant (52), l'article absorbant (20) ayant un temps d'absorption inférieur à environ 7 sec/g jusqu'à une plage de charge de 100 g, tel que mesuré selon un essai d'acquisition de fluide modifié; et l'article absorbant (20) ayant une épaisseur inférieure à environ 2,5 mm sous une pression d'environ 400 g par cm2, telle que mesurée selon un essai sur l'épaisseur, ou une force de flexion en trois points inférieure à environ 95g, telle que mesurée selon un essai de force de flexion en trois points.
PCT/CN2019/124518 2019-10-15 2019-12-11 Articles absorbants WO2021072950A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980101216.8A CN114555025B (zh) 2019-10-15 2019-12-11 吸收制品
JP2022521446A JP2022551170A (ja) 2019-10-15 2019-12-11 吸収性物品
EP19949391.7A EP4044979A1 (fr) 2019-10-15 2019-12-11 Articles absorbants
US17/068,933 US20210106471A1 (en) 2019-10-15 2020-10-13 Absorbent articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/111207 2019-10-15
PCT/CN2019/111207 WO2021072624A1 (fr) 2019-10-15 2019-10-15 Articles absorbants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111207 Continuation WO2021072624A1 (fr) 2019-10-15 2019-10-15 Articles absorbants

Publications (1)

Publication Number Publication Date
WO2021072950A1 true WO2021072950A1 (fr) 2021-04-22

Family

ID=75537500

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/111207 WO2021072624A1 (fr) 2019-10-15 2019-10-15 Articles absorbants
PCT/CN2019/124518 WO2021072950A1 (fr) 2019-10-15 2019-12-11 Articles absorbants

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111207 WO2021072624A1 (fr) 2019-10-15 2019-10-15 Articles absorbants

Country Status (1)

Country Link
WO (2) WO2021072624A1 (fr)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128269A (ja) * 1997-10-29 1999-05-18 Pigeon Corp 吸収性製品
CN2527252Y (zh) * 2002-02-04 2002-12-25 福建恒安集团有限公司 多重吸收层的妇女用卫生巾
CN2569784Y (zh) * 2002-10-10 2003-09-03 蔡玉林 弹性透气型、整体摺叠护围、中厚结构卫生巾
CN2601646Y (zh) * 2002-10-29 2004-02-04 福建恒安集团有限公司 持续动态贴合的一次性卫生用品
CN1559369A (zh) * 2004-02-25 2005-01-05 杭州可月卫生用品有限公司 妇女卫生巾
US20070219521A1 (en) 2006-03-17 2007-09-20 The Procter & Gamble Company Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article
WO2012148944A1 (fr) 2011-04-26 2012-11-01 The Procter & Gamble Company Éléments absorbant ayant des profils de densité
US8502013B2 (en) 2007-03-05 2013-08-06 The Procter And Gamble Company Disposable absorbent article
US20150065973A1 (en) * 2013-08-27 2015-03-05 The Procter & Gamble Company Absorbent Articles With Channels
US20150250662A1 (en) * 2014-03-06 2015-09-10 The Procter & Gamble Company Three-dimensional substrates
WO2016040101A1 (fr) 2014-09-12 2016-03-17 The Procter & Gamble Company Matériau non tissé présentant des déformations tridimensionnelles distinctes à larges ouvertures au niveau de la base
US20170203542A1 (en) 2016-01-15 2017-07-20 First Quality Nonwovens, Inc. Nonwoven composite including natural fiber web layer and method of forming the same
WO2017156200A1 (fr) 2016-03-11 2017-09-14 The Procter & Gamble Company Matériaux tridimensionnels comprenant des ouvertures
WO2019076288A1 (fr) 2017-10-19 2019-04-25 The Procter & Gamble Company Feuille supérieure comprenant des fibres naturelles dotées d'une bonne résistance mécanique
CN208808864U (zh) * 2018-05-24 2019-05-03 江苏宝姿实业有限公司 一种用拒水柔软材料做防侧漏护围卫生巾

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040024375A1 (en) * 2002-08-02 2004-02-05 John Litvay Multi-functional tissue for absorbent articles
PL3352718T3 (pl) * 2015-09-22 2021-06-28 The Procter & Gamble Company Wyroby chłonne posiadające zakrzywione kanały
EP3238679B1 (fr) * 2016-04-29 2019-08-07 The Procter and Gamble Company Article absorbant avec une couche de distribution comprenant des canaux
CN206548709U (zh) * 2016-11-09 2017-10-13 上海护理佳实业有限公司 一种防侧漏卫生巾
WO2019074710A1 (fr) * 2017-10-13 2019-04-18 The Procter & Gamble Company Articles absorbants comprenant des matériaux non-tissés ayant une conductivité thermique améliorée
CN109223321A (zh) * 2018-11-02 2019-01-18 长沙浩然医疗科技有限公司 一种婴幼儿用纸尿裤

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128269A (ja) * 1997-10-29 1999-05-18 Pigeon Corp 吸収性製品
CN2527252Y (zh) * 2002-02-04 2002-12-25 福建恒安集团有限公司 多重吸收层的妇女用卫生巾
CN2569784Y (zh) * 2002-10-10 2003-09-03 蔡玉林 弹性透气型、整体摺叠护围、中厚结构卫生巾
CN2601646Y (zh) * 2002-10-29 2004-02-04 福建恒安集团有限公司 持续动态贴合的一次性卫生用品
CN1559369A (zh) * 2004-02-25 2005-01-05 杭州可月卫生用品有限公司 妇女卫生巾
US20110152812A1 (en) 2006-03-17 2011-06-23 Bryn Hird Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article
US20110139658A1 (en) 2006-03-17 2011-06-16 Bryn Hird Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article
US20110139659A1 (en) 2006-03-17 2011-06-16 Bryn Hird Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article
US20110139657A1 (en) 2006-03-17 2011-06-16 Bryn Hird Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article
US20110139662A1 (en) 2006-03-17 2011-06-16 Bryn Hird Absorbent Article Comprising A Synthetic Polymer Derived From A Renewable Resource And Methods Of Producing Said Article
US20070219521A1 (en) 2006-03-17 2007-09-20 The Procter & Gamble Company Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article
US8502013B2 (en) 2007-03-05 2013-08-06 The Procter And Gamble Company Disposable absorbent article
WO2012148944A1 (fr) 2011-04-26 2012-11-01 The Procter & Gamble Company Éléments absorbant ayant des profils de densité
US20150065973A1 (en) * 2013-08-27 2015-03-05 The Procter & Gamble Company Absorbent Articles With Channels
US20150250662A1 (en) * 2014-03-06 2015-09-10 The Procter & Gamble Company Three-dimensional substrates
WO2015134359A1 (fr) 2014-03-06 2015-09-11 The Procter & Gamble Company Substrats tridimensionnels
WO2016040101A1 (fr) 2014-09-12 2016-03-17 The Procter & Gamble Company Matériau non tissé présentant des déformations tridimensionnelles distinctes à larges ouvertures au niveau de la base
US20170203542A1 (en) 2016-01-15 2017-07-20 First Quality Nonwovens, Inc. Nonwoven composite including natural fiber web layer and method of forming the same
WO2017156200A1 (fr) 2016-03-11 2017-09-14 The Procter & Gamble Company Matériaux tridimensionnels comprenant des ouvertures
WO2019076288A1 (fr) 2017-10-19 2019-04-25 The Procter & Gamble Company Feuille supérieure comprenant des fibres naturelles dotées d'une bonne résistance mécanique
CN208808864U (zh) * 2018-05-24 2019-05-03 江苏宝姿实业有限公司 一种用拒水柔软材料做防侧漏护围卫生巾

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Japanische Windeln Merries S (4-8 kg)", 9 April 2013 (2013-04-09), XP055881791, Retrieved from the Internet <URL:https://www.amazon.de/Japanische-Windeln-Merries-Japanese-diapers/dp/B0019C9KMC/ref=dp_prsubs_3?pd_rd_i=B0019C9KMC&psc=1> [retrieved on 20220120] *
SHEILA & STEPH: "REVIEW: Merries Diaper (#1 Diaper Brand in Japan)", 27 August 2019 (2019-08-27), XP055881727, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=Ug0h9RduL6I> [retrieved on 20210110] *

Also Published As

Publication number Publication date
WO2021072624A1 (fr) 2021-04-22

Similar Documents

Publication Publication Date Title
US20210030603A1 (en) Absorbent core with profiled distribution of absorbent material
JP6549241B2 (ja) 三次元鉢部を形成する吸収性物品
US20230099991A1 (en) Absorbent article with a distribution layer comprising channels
CN105828774B (zh) 带有对吸收材料的有效固定作用的吸收结构和芯
CN107205868B (zh) 形成三维盆的吸收制品
CN109803620B (zh) 具有包括通道和后口袋的中间层的吸收制品
AU2004264338A1 (en) Latex bonded acquisition layer for absorbent articles
JPH11514054A (ja) 低粘度及び中間低粘度の糞便のための改善された使用時蓄積容量を有する使い捨て吸収性物品
US11285053B2 (en) Absorbent article with an absorbent core having two longitudinally extending side regions and a longitudinally extending central region between said side regions and method for manufacturing said absorbent article
US20220031528A1 (en) Absorbent article with a lower intermediate layer partially bonded to the absorbent core
US20050059942A1 (en) Asymmetric multilayer absorbent article
US20210106471A1 (en) Absorbent articles
US12004934B2 (en) Absorbent article with a channel-forming area and a masking layer
WO2021072950A1 (fr) Articles absorbants
AU2015412560B2 (en) Absorbent article, absorbent core and method for manufacturing said absorbent article
WO2006135018A1 (fr) Article absorbant
RU2393279C1 (ru) Гидроперепутанный нетканый материал, способ его изготовления и впитывающее изделие, содержащее этот материал
WO2022252116A1 (fr) Article absorbant comprenant une couche intermédiaire
US20220362072A1 (en) Process for forming composite absorbent material and composite absorbent material made by the process
WO2005013872A1 (fr) Article absorbant multicouche asymetrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521446

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019949391

Country of ref document: EP

Effective date: 20220516