WO2021072726A1 - 电动叉车用锂离子电池模组及电源箱 - Google Patents

电动叉车用锂离子电池模组及电源箱 Download PDF

Info

Publication number
WO2021072726A1
WO2021072726A1 PCT/CN2019/111812 CN2019111812W WO2021072726A1 WO 2021072726 A1 WO2021072726 A1 WO 2021072726A1 CN 2019111812 W CN2019111812 W CN 2019111812W WO 2021072726 A1 WO2021072726 A1 WO 2021072726A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
box
battery module
relay
plate
Prior art date
Application number
PCT/CN2019/111812
Other languages
English (en)
French (fr)
Inventor
吴涛
贺中捷
冷枫
丁广波
王元
李开元
唐胜群
张梦颖
张秀萍
阎中超
Original Assignee
淄博火炬能源有限责任公司
全能质可科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淄博火炬能源有限责任公司, 全能质可科技有限责任公司 filed Critical 淄博火炬能源有限责任公司
Priority to CN201980034167.0A priority Critical patent/CN112585807A/zh
Priority to PCT/CN2019/111812 priority patent/WO2021072726A1/zh
Publication of WO2021072726A1 publication Critical patent/WO2021072726A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/236Hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium ion battery module and a power supply box for an electric forklift, belonging to the technical field of lithium ion batteries.
  • CAGR compound annual growth rate
  • Lithium-ionization of electric forklifts is the current development trend. High safety, high specific energy, and long life are the most critical performance requirements of lithium-ion battery systems, and they are also hotspots and difficulties in industry research. The reliability of structure and thermal management are two important factors in the design of lithium-ion battery packs, which directly affect the performance, cost and safety of the product.
  • Patent number CN208797070U discloses an electric forklift power lithium battery system, which aims to solve the problem of cumbersome connection and difficult maintenance of traditional lead-acid batteries, as well as insufficient stability and low balance and vibration resistance when multiple battery modules are directly built together.
  • the patent mainly introduces the structure of the power supply box, but does not talk about the internal structure design of the battery module.
  • Four larger circular holes are provided on the side wall of the power box shell, the purpose is to facilitate the installation and disassembly of the wiring harness inside the box body, and at the same time improve the heat dissipation effect of the system.
  • opening multiple larger holes in the box will reduce the IP rating of the power box.
  • the box cannot effectively prevent dust from entering it, which poses a safety hazard.
  • Patent No. CN207009575U discloses a battery pack design for electric forklifts, which is characterized in that the battery modules are fixed together and fixed on the electric forklift through the designed fixed structural frame; the battery management system (BMS) module is directly attached to the electric forklift. Place it above the battery module; the thermal management method is forced air cooling and requires an external fan.
  • the whole system structure has no designed cabinet, and the structure is open. The battery module, BMS module, and wiring harness are exposed. When impacted or squeezed, there is no cabinet protection, and there are certain safety hazards.
  • the forced air cooling design needs to consider factors such as fan installation and power consumption, noise reduction, and additional wiring harness design, but the patent does not introduce the above details. Compared with the natural cooling method, the above design factors will increase the product cost.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a lithium-ion battery module and power box for electric forklifts, which have high reliability in terms of structure and thermal performance.
  • the lithium-ion battery module for electric forklifts of the present invention includes a casing and a battery pack in the casing.
  • the battery pack includes a battery cell, a battery cell spacer, a bottom insulating plate, a side insulating plate, an end surface insulating plate, and
  • the busbar bracket at the top, the battery core is a square lithium iron phosphate battery, which adopts 1 parallel and 8 strings in a group mode, the surface of the side insulating plate and the bottom insulating plate are provided with protruding spacers, and the busbar bracket is provided with a connection row between the cells ⁇ And terminal connection row.
  • the lightweight design improves the energy density of the module; the heat shield design can effectively control the spread of thermal runaway between the cells; the modular structure is adopted, and the capacity can be scaled up to meet commercial and industrial needs.
  • the heat insulation sheet is made of soft polyethylene foam
  • the bottom insulation board, the side insulation board, and the end insulation board are made of PC-ABS plastic board.
  • the soft polyethylene foam has good cushioning and shock absorption performance.
  • the cross-linked structure makes the foam have a certain degree of rigidity, low hardness and high resilience, which can absorb the swelling stress of the battery, thereby playing a buffering effect.
  • the bottom insulating board, the side insulating board, and the end insulating board are used for insulation. As the basic design of lithium-ion battery modules for electric forklifts, it is cost-effective.
  • the housing includes an end plate, a bottom plate, a side plate, and an upper outer cover.
  • the side plate and the lower edge are provided with a bending structure, the front and rear ends of the side plate are provided with bending parts;
  • the edge of the busbar bracket is provided with a fixing groove,
  • the edge of the side plate is provided with a card slot matched with the fixing groove, the two sides of the upper outer cover are provided with an outer card slot, and the edge of the side plate is provided with an outer buckle matched with the outer card slot;
  • a wired clip is also provided on the busbar bracket And ring structure.
  • connection between the side plate, end plate and bottom plate is of better quality and higher structural reliability.
  • the ring structure is used to bind and roll the belt to fix the wiring harness.
  • connection row between the cells and the end connection row are rounded. Used to prevent tip discharge.
  • the front of the end plate is provided with a heat dissipation groove
  • the side plate is provided with an elliptical groove
  • the end plate is made of carbon fiber composite material
  • the bottom insulating plate, the side insulating plate, and the end insulating plate are made of thermoplastic thermally conductive insulating plastic TCP200-30-6A .
  • the lithium-ion battery module for electric forklifts As a high-end design of the lithium-ion battery module for electric forklifts, it changes the structure design and material of the end plate, the material of the plastic parts, and the side plate structure; achieving high structural strength, light weight, and high energy density without reducing heat dissipation effect.
  • the upper outer cover is provided with a total positive outer cover and a total negative outer cover
  • the end connection row includes two pieces of a total positive end connection row and a total negative end connection row, which are respectively located under the total positive outer cover and the total negative outer cover.
  • the lithium-ion power supply box for electric forklifts of the present invention includes a box body in which a high-voltage box, BMS and the above-mentioned lithium-ion battery module for electric forklifts are arranged, a box cover is provided on the box body, and a row is arranged on the box cover. Gas valve.
  • the invention has a box structure, which can provide protection for internal components such as battery modules, high-voltage boxes, and BMS, and has higher product safety.
  • the design of the present invention adopts natural cooling. Compared with forced air cooling, the system has a simple structure, no additional wiring harness and energy consumption (supply to the motor), no noise, and therefore lower thermal management costs.
  • the lithium-ion battery modules for electric forklifts are arranged in 6 groups, and the left and right sides are symmetrically placed; the connection mode is 2 parallel and 3 series, the modules on the same side are connected in series, and the modules on both sides are connected in parallel.
  • the energy density of the module is improved.
  • the high-voltage box is provided with a first relay, a second relay, a third relay, a precharge relay, a precharge resistor, a first fuse, a second fuse, and a current sensor.
  • the first fuse is connected to the first relay all the way.
  • the other end of the first relay is connected to the positive electrode of the battery module, the other end of the first fuse is connected to the pre-charge relay, the other end of the pre-charge relay is connected to the pre-charge resistor, and the other end of the pre-charge resistor is connected to the positive electrode of the battery module; the second fuse is connected to the The other end of the second relay and the second relay is connected to the positive electrode of the battery module; the current sensor is connected to the third relay, and the third relay is connected to the negative electrode of the battery module.
  • the other end of the first fuse is used as a fast charging positive electrode
  • the other end of the second fuse is used as an output positive electrode
  • the other end of the current sensor is used as a fast charging negative electrode
  • the other is used as an output negative electrode. Used for charging and discharging.
  • partitions are provided on the left and right sides of the middle of the box body, the battery module is placed on the lower layer of the separator, the high-voltage box and the BMS are placed on the upper layer, and the bottom of the box body has a cavity, and the interior is filled and compacted by steel plates as a counterweight.
  • the thickness of the bottom of the box is greater than 10 times the thickness of the side plate, and the thickness of the bottom of the box is greater than 20 times the thickness of the cover.
  • the structural design and thermal management design are reasonable and have high reliability.
  • the present invention has the following beneficial effects:
  • the side plate, end plate and bottom plate of the lithium-ion battery module for electric forklifts of the present invention have better quality and higher structural reliability;
  • the lithium-ion power box for electric forklifts of the present invention has a higher IP protection level, can better adapt to the dust working environment, and has higher product safety. At the same time, it can still ensure a good natural cooling effect without opening holes in the box;
  • the present invention has a box structure, which can provide protection for internal components such as lithium-ion battery modules, high-voltage boxes, and BMS for electric forklifts, and has higher product safety.
  • the design of the present invention adopts natural cooling.
  • the system has a simple structure, no additional wiring harness and energy consumption (supply to the motor), and no noise, so the thermal management cost is lower;
  • the lithium-ion battery module for electric forklifts adopts a modular structure, and the capacity can be scaled up to meet commercial and industrial needs.
  • FIG. 1 is a schematic diagram of the explosive structure of a lithium-ion battery module for an electric forklift according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of the explosive structure of the battery pack according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of the overall structure of a lithium-ion battery module (basic version design) for an electric forklift according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of the structure of the protruding spacer according to Embodiment 1 of the present invention.
  • Fig. 5 is a schematic diagram of the side plate structure according to the embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of the side structure of the side plate and the busbar bracket according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of the structure of the busbar bracket according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of the structure of the connecting bar according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of assembling the connecting bar according to Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram of the structure of the terminal connection bar according to the embodiment 1 of the present invention.
  • FIG. 11 is a schematic diagram of assembling the end connecting bar according to Embodiment 1 of the present invention.
  • FIG. 12 is a schematic diagram of the overall structure of a lithium-ion battery module (high-end design) for an electric forklift according to Embodiment 2 of the present invention.
  • FIG. 13 is a front view of a lithium-ion power supply box for electric forklifts according to Embodiment 3 of the present invention.
  • FIG. 14 is a side view of the lithium-ion power supply box for electric forklifts according to Embodiment 3 of the present invention.
  • FIG. 15 is a top view of a lithium-ion power supply box for electric forklifts according to Embodiment 3 of the present invention.
  • FIG. 16 is a schematic diagram of the overall structure of the lithium-ion power supply box for electric forklifts according to Embodiment 3 of the present invention.
  • FIG. 17 is a schematic diagram of the structure of the high-pressure box according to Embodiment 3 of the present invention.
  • FIG. 18 is a schematic diagram of the circuit of the high-voltage box according to Embodiment 3 of the present invention.
  • Figure 19 is a comparison between the simulation result (solid line) of the battery cell of the present invention and the data of the specification (symbol);
  • 20 is a simulation result of the temperature distribution and heat generation of the battery cell according to the present invention after being discharged at a rate of 0.5C, 1C, and 2C at an ambient temperature of 25°C;
  • Figure 21 is the thermal simulation results of the lithium-ion battery modules for electric forklifts described in Example 1 and Example 2 of the present invention at a rate of 1C at an ambient temperature of 25°C, where b and e are cross sections, and c and f are longitudinal sections. ;
  • Figure 22 is the simulation results of thermal runaway simulation results of the lithium-ion battery modules for electric forklifts according to embodiments 1 and 2 of the present invention at a rate of 1C at an ambient temperature of 25°C, where b and e are cross sections, and c and f are longitudinal section;
  • Example 23 is a temperature simulation result of a lithium-ion power box for an electric forklift using a lithium-ion battery module for an electric forklift described in Example 3 of the present invention at 1C discharge at 25°C;
  • 24 is a temperature simulation result of a 1C discharge thermal runaway temperature simulation result of a lithium-ion power box for an electric forklift using a lithium-ion battery module for an electric forklift according to the embodiment 3 of the present invention at 25°C;
  • 25 is a deformation simulation of a lithium-ion power box for an electric forklift using a lithium-ion battery module for an electric forklift according to embodiment 3 of the present invention under a vertical acceleration force of 3g;
  • 26 is the deformation simulation of the lithium-ion battery module for electric forklift according to the embodiment 1 and the embodiment 2 of the present invention under a vertical acceleration force of 3g;
  • Fig. 27 shows the simulation results of random vibration 1 ⁇ stress of the lithium-ion power box for electric forklifts using the lithium-ion battery module for electric forklifts according to Example 3 of the present invention: a vibrates along the X axis, b vibrates along the Y axis, c Vibrate along the Z axis;
  • Fig. 29 is the simulation result of the collision simulation of the lithium-ion power box for electric forklift using the lithium-ion battery module for electric forklift according to the third embodiment of the invention: a load parameter is taken from ABCD in Table 8, and b load parameter is taken from Table 8. EFGH;
  • Figure 30 shows the impact simulation results of the lithium-ion power box for electric forklifts using the lithium-ion battery module for electric forklifts according to the third embodiment of the invention.
  • FIG. 31 is the drop simulation result of the lithium-ion battery module for the electric forklift according to Embodiment 1 and Embodiment 2 of the present invention, where a and c are stress, and b and d are deformation.
  • Ring structure; 27 Rounded corners; 28, adapter bolts; 29, protruding structure; 30, support structure; 31, pole; 32, heat dissipation groove; 33, groove; 34, box body; 35, high voltage box; 36, main control BMS; 37, slave control BMS; 38, battery module; 39, box cover; 40, hoisting hole; 41, partition; 42, first relay; 43, second relay; 44, third relay; 45, pre- Charge relay; 46. Precharge resistor; 47. First fuse; 48. Second fuse; 49. Current sensor; 50. Exhaust valve.
  • the lithium-ion battery module for electric forklifts of the present invention includes a casing and a battery pack in the casing.
  • the bottom insulating plate 13, the end insulating plate 14, the side insulating plate 15 and the busbar bracket 7 at the top, the battery core 11 is a square lithium iron phosphate battery, which adopts a group of 1 parallel and 8 strings.
  • the busbar bracket 7 is provided with a connection row 4 between the cells 11 and an end connection row 6.
  • the housing includes an end plate 8, a bottom plate 9, a side plate 10, and an upper outer cover 2.
  • the end plate 8 and the side plate 10 are connected by rivets 16, and the bottom plate 9 and the side plate 10 are connected by long dry screws.
  • the end connection row 6 includes a total positive connection row 4 and a total negative connection row 4 with the same structure.
  • the upper and lower edges of the side plate 10 are provided with bending structures 19, and the front and rear ends of the side plate 10 are provided with bending parts 20.
  • the battery core 11 uses 3.2V 206Ah square lithium iron phosphate battery cells, and uses a group of 1 parallel 8 strings (1P8S).
  • the large module and integrated design help to improve the grouping efficiency of the modules, reduce the weight of the structural parts allocated by each battery cell 11, and increase the overall energy density of the system; at the system level, the number of accessory parts is reduced, and the manufacturing cost is reduced.
  • a heat insulation sheet 12 is arranged between the battery cores 11, which mainly plays a role of heat preservation and heat insulation and cushioning and shock absorption.
  • the heat insulation sheet 12 is made of soft polyethylene (PE) foam.
  • the low thermal conductivity of the foam (about 0.038W/m/K) is conducive to inhibiting heat diffusion and reducing its impact on the surrounding cells when the cell 11 is out of control.
  • Soft polyethylene (PE) foam has good cushioning and shock absorption performance.
  • the cross-linked structure makes the foam have a certain degree of rigidity, low hardness and high resilience, which can absorb the swelling stress of the battery, thereby playing a buffering role.
  • the material of the side plate 10, the end plate 8 and the bottom plate 9 can be 3003 (H12) aluminum alloy.
  • various related technologies of aluminum alloy are relatively mature: good mechanical properties; light weight (density is about 1/3 of steel); easy to process; good thermal conductivity and corrosion resistance; high strength; Good energy absorption; easier surface treatment, higher aesthetics, electrophoresis technology can be used for coloring.
  • the edge of the end plate 8 is thinned, so that the end plate 8 and the side plate 10 are smooth at the joint rear end surface, and the size will not increase.
  • the side plate 10 and the end plate 8 are connected by rivets 16.
  • protruding spacers 18 are provided on the surface of the side insulation board 15 and the bottom insulation board to clamp the battery core 11, so as to better fix the battery core 11 and restrict the front and rear movement of the battery core 11.
  • the bending structure 19 on the upper and lower edges of the side plate 10 clamps the stacked battery core 11 and the insulating plate to prevent them from being misaligned up and down; the bending parts 20 at the front and rear ends clamp the battery core 11 and the end plate 8; in addition, the busbar After the edge and the upper edge of the side plate 10 are clamped to each other, the restriction on the freedom of movement of the cell 11 is completed.
  • the upper cover 2, busbar bracket 7, total positive cover 1 and total negative cover 3 of the battery module are made of PC-ABS material, and the parts are rounded 27 to avoid uneven shrinkage during processing.
  • the bottom insulating plate 13, the side insulating plate 15, and the end insulating plate 14 on the periphery of the battery core 11 are made of PC-ABS plastic plates for insulation.
  • PC-ABS combines the mechanical properties, impact resistance, temperature resistance of PC and the formability of ABS materials, and has good overall performance. It is widely used in battery supports, frames, and other structural parts.
  • the busbar bracket 7 is also provided with a wire clip 25 and a ring structure 26, and the distance between the two wire clips 25 is less than 8 cm, which can effectively prevent the wire harness from being upturned when moving.
  • the bus output terminal is fixed on the ring structure 26 with a cable tie.
  • the sampling harness is located above the module and can be extended by 5-10cm to facilitate the wiring harness connection.
  • the connecting row 4 can be plated, and the sealing glue can be used after welding (to form an airtight condition to block electrochemical corrosion).
  • the total positive connection row 4 and the total negative connection row 4 can also be plated, and a spot sealant is used after welding (to form an airtight condition to block electrochemical corrosion).
  • the connecting row 4 between the electric cores 11 is a soft aluminum bar (tinned), which is light in weight and has low tolerance requirements during manufacturing.
  • the cross-sectional area of the connecting row 4 is 34mm ⁇ 3mm to ensure overflow and low temperature rise.
  • the total positive connection row 4 and the total negative connection row 4 are equipped with an adapter bolt 28, and the sharp corners are rounded 27 to avoid tip discharge.
  • the connecting bar 4 and the end connecting bar 6 are positioned by the protrusion structure 29 on the upper surface of the busbar bracket 7 during installation.
  • the support structure 30 on the busbar bracket 7 and the square structure of the head of the fastening bolt 5 are used to provide support for the end connection bar 6 so that it is not easy to receive vertical pressure. Deformed.
  • the positive and negative poles 31 are located above the busbar bracket 7 and use M8 screws for easy connection.
  • This embodiment is used as a basic version of the design of a lithium-ion battery module for an electric forklift, and is highly cost-effective in response to general market needs.
  • the list of materials is shown in Table 2.
  • this embodiment was designed on the basis of embodiment 1: 1) The structural design of the end plate 8 was changed And material; 2) change the material of the plastic parts, namely the upper outer cover 2, the total positive and negative insulating cover, the busbar bracket 7, the bottom insulating plate 13, the end insulating plate 14, the side insulating plate 15; 3) the structure of the side plate 10 .
  • the difference from Embodiment 1 is that the end plate 8 is made of carbon fiber composite material, which utilizes its excellent mechanical properties.
  • the end plate 8 is the structure that accounts for the largest weight in the module except for the battery core 11, and generally accounts for about 5% of the power battery pack, so it becomes a priority component for lightweight design.
  • carbon fiber composite materials have low density, high strength, high temperature resistance, friction resistance, shock resistance, and low thermal expansion coefficient. They have absolute advantages in impact resistance, airtightness, and weight reduction.
  • a rectangular arrangement of heat dissipation grooves 32 is added on the front of the end plate 8, which can reduce weight and facilitate heat dissipation.
  • the end plate 8 and the side plate 10 are connected together by rivets 16. At the same time, a metal ring can be embedded in the screw holes on the carbon fiber end plate 8 to fix the rivets 16.
  • the material of the end plate 8 is changed from metal 3003 (H12) aluminum alloy to a plastic material with relatively low thermal conductivity, in order to ensure the overall heat dissipation performance, the upper cover 2, the total positive cover 1, the total negative cover 3, the confluence
  • the material of the bracket 7 and the bottom insulating plate 13, the side insulating plate 15, and the end insulating plate 14 are changed from PC-ABS to a higher thermal conductivity thermoplastic thermally conductive insulating plastic TCP200-30-6A, and its thermal conductivity can reach 3W/m /K is 15 times that of PC-ABS, and the density is only 50% higher than PC-ABS.
  • the side plate 10 and the bottom plate 9 are made of aluminum alloy, which is easy to process and form, high temperature corrosion resistance, and good heat transfer. As shown in Fig. 12, in order to further reduce the weight, elliptical grooves 33 arranged on the side plate 10 are added, and the grooves 33 may be 1 mm deep. The side plate 10 and the end plate 8 are connected and fixed together by rivets 16.
  • this embodiment has a more advanced technical level, once again improving structural strength, light weight, and high energy density without reducing the heat dissipation effect.
  • the bill of materials is shown in Table 3.
  • the lithium-ion power supply box for electric forklifts of the present invention includes a box body 34 in which a high-voltage box 35 and a BMS are arranged, and the lithium-ion power box for electric forklifts of embodiment 1 or 2 is also included.
  • Ion battery module 38 The battery modules 38 are arranged in 6 groups, and the left and right sides are symmetrically placed; the connection mode is 2 parallel 3 series, the same side modules are connected in series, and the two sides of the module are connected in parallel.
  • the outer dimensions of the box 34 can be 1127mm in length, 669mm in width, and 686mm in height.
  • the material is Q235a carbon steel, the bottom thickness is 176mm, the surrounding plate thickness is 16mm, and the cover plate thickness is 5mm.
  • there is a cavity at the bottom of the box 34 which is filled with steel plates and compacted as a weight.
  • the bottom thickness of the box 34 is greater than 10 times the thickness of the side plate, and the bottom thickness of the box 34 is greater than 20 times the thickness of the cover.
  • the inner part of the box body 34 has two layers up and down, separated by two 5mm partitions 41 on the left and right, and the partitions 41 are steel plates fixed by screws.
  • the battery module 38 is placed on the lower layer, and the high-voltage box 35 and BMS are placed on the upper layer.
  • the BMS includes a master BMS36 and two slave BMS37.
  • a box cover 39 is provided on the box body 34.
  • the box cover 39 is provided with a charging and discharging interface and a communication interface, and is equipped with a PUW-EPTFE exhaust valve 50.
  • the box cover 39 is connected and fixed with the box body 34 by screws. There are no openings on the surface of the box body 34, which can ensure that when the electric forklift is working under dusty environmental conditions, dust particles will not enter the inside of the battery pack.
  • the weight of the lithium-ion battery module 38 for electric forklifts in Example 1 is 36.3 kg, and the weight of the lithium-ion battery module 38 for electric forklifts in Example 2 is 35.9 kg.
  • the high-pressure box weighs 9.06kg
  • the master BMS is 0.84kg
  • the two slave BMSs each weigh 0.46kg.
  • the weight of the bottom counterweight of the lithium-ion power box for electric forklifts the weight of the box 34 using the lithium-ion battery module 38 for electric forklifts in Example 1 can be controlled at 1149kg-1294kg; the electric forklift in Example 2 can be used
  • the weight of the box 34 with the lithium ion battery module 38 is controlled at 1151kg-1296kg.
  • the total weight of the system is between 1378kg and 1522kg.
  • the temperature of the battery cell 11 in the box 34 can be maintained in a more ideal working temperature range under the natural heat dissipation condition (the battery cell 11
  • the maximum temperature basically does not exceed 55°C
  • the temperature uniformity between the cells 11 is relatively high (temperature difference ⁇ T ⁇ 5°C).
  • the high-voltage box 35 is provided with a first relay 42, a second relay 43, a third relay 44, a precharge relay 45, a precharge resistor 46, a first fuse 47, and a second fuse 48.
  • the first fuse 47 is connected to the first relay 42, the other end of the first relay 42 is connected to the positive electrode of the battery module 38, the other end of the first fuse 47 is connected to the pre-charge relay 45, and the other end of the pre-charge relay 45 is connected
  • the other end of the precharging resistor 46 and the precharging resistor 46 is connected to the positive electrode of the battery module 38;
  • the second fuse 48 is connected to the second relay 43, and the other end of the second relay 43 is connected to the positive electrode of the battery module 38;
  • the current sensor 49 is connected to the third relay 44 ,
  • the third relay 44 is connected to the negative electrode of the battery module 38.
  • the other end of the first fuse 47 is used as a fast charging positive electrode
  • the other end of the second fuse 48 is used as an output positive electrode
  • the other end of the current sensor 49 is used as a fast charging negative electrode
  • the other is used as an output negative electrode.
  • the model of the second relay 43 can be EVR250-12V
  • the model of the first relay 42 the third relay 44 can be EVR400-12V
  • the model of the precharge relay 45 can be EVR10-12V
  • the model of the precharge resistor 46 can be RXG24 -100W
  • the models of the first fuse 47 and the second fuse 48 can be RS308-HB-3N350A.
  • braided copper soft connection its advantages include good flexibility, easy heat dissipation, bending resistance, strong conductivity, and easy installation.
  • the joint uses copper braided wire or copper stranded wire as the conductor, and the joints at both ends are covered and compacted with copper pipes.
  • the thermal fluid simulation includes electrochemical thermal simulation of battery cell 11, thermal simulation of lithium-ion battery modules for electric forklifts, and thermal simulation of lithium-ion power boxes for electric forklifts; structural simulation includes static simulation of lithium-ion battery modules for electric forklifts.
  • FIG. 20 illustrates the temperature distribution and heat generation of the cell 11 when the cell 11 is discharged at different rates at an ambient temperature of 25°C.
  • the battery cell 11 in the lithium-ion battery module for electric forklifts is from left to Number Cell 1 to Cell8 on the right.
  • Table 4 compares the temperature distribution simulation results of different lithium-ion battery modules for electric forklifts under thermal runaway:
  • JC1 The material of the metal plate is Q235, and the plastic part is PC/ABS;
  • JC2 (Example 1): That is, the material of the metal plate is 3003 (H12) aluminum, and the plastic part is PC/ABS;
  • the end plate 8 is carbon fiber composite material CFRP, the metal plate is 3003 (H12) aluminum, and the plastic part is PC/ABS;
  • the end plate 8 is carbon fiber composite material CFRP, the metal plate is 3003 (H12) aluminum, and the plastic part is TCP200-30-6A.
  • Example 5 the 8 cells 11 in the lithium-ion battery module for electric forklifts are numbered Cell 1 to Cell 8, in which Cell 1 and Cell 6 are set to cause thermal runaway.
  • the ambient temperature is 25°C.
  • the thermal simulation results of the 1C discharge of the lithium-ion power box for the electric forklift of the present invention at different ambient temperatures are as follows:
  • the maximum temperature in the module is 53.7°C, and the maximum temperature difference between the cells 11 is ⁇ T ⁇ 5°C;
  • the maximum temperature in the module is 56.1°C, and the maximum temperature difference between the cells 11 is ⁇ T ⁇ 5°C;
  • the maximum temperature inside the module is 8.2°C, and the maximum temperature difference between the cells 11 is ⁇ T ⁇ 7°C.
  • the above thermal simulation results verify that under natural cooling conditions, the maximum temperature of the cell 11 in the lithium-ion battery module for electric forklifts basically does not exceed 55°C, which is within the acceptable operating temperature range of the cell 11, and the temperature of the cell 11 Good uniformity, temperature difference ⁇ T ⁇ 5°C).
  • the thermal fins 12 between the cells 11 can effectively block the heat transfer between the cells 11 and reduce the influence of the runaway cells 11 on the temperature of the surrounding cells 11.
  • the structure simulation is divided into two parts: the lithium-ion power box for electric forklifts and the lithium-ion battery module for electric forklifts.
  • Statics analysis is mainly used to solve the load response that has nothing to do with time or the effect of time can be ignored.
  • Static load analysis is generally used to evaluate the structural rigidity of the battery system. It is mainly required that the maximum deformation of the battery system cannot exceed 1mm and 3mm under the acceleration of 1g and 3g. Generally, the stress condition of the battery box is the worst under the condition of vertical turbulence. Therefore, in this embodiment, a vertical acceleration of 3 g is applied to the entire battery box. As shown in Figure 25, the maximum deformation of the lithium-ion power box for electric forklifts under a vertical acceleration of 3g is 0.2mm, which meets the requirements. As shown in FIG. 26, when a vertical acceleration of 3g is applied to the lithium-ion battery module for an electric forklift alone, the deformation amount of the embodiment 1 and the embodiment 2 is far less than 1 mm, and both meet the requirements.
  • Modal is the natural vibration characteristics of the battery system.
  • the purpose of modal analysis is to obtain the natural frequency of the battery box structure. If the natural frequency of the structure is close to the frequency of the fixed-frequency vibration test, the structure needs to be improved. Modify the structure to change its natural frequency, so as to avoid the structure's main resonance frequency from falling within the range of random vibration high excitation load frequency.
  • the first-order natural frequency and the first-order vibration frequency of the system should be increased as much as possible.
  • GM's first-order frequency requirement for the battery system is greater than 30 Hz.
  • Table 5 shows the modal analysis results of the lithium-ion power box for electric forklifts and the lithium-ion battery module for electric forklifts. The first-order natural frequency is higher than 30Hz, so it meets the requirements.
  • Random vibration and fatigue analysis The acceleration spectrum parameters specified by the national standard, namely Table 6, are used as the load conditions to simulate the random vibration of the battery system when the car is running due to uneven road surfaces. Based on the lithium-ion power box for electric forklifts in Example 1, random vibration analysis was performed on the Pack model in three directions. Figure 27 shows the distribution of 1 ⁇ stress when vibrating in three directions. According to Table 7, the maximum 3 ⁇ stress in the three directions does not exceed the yield strength of the material, which meets the vibration fatigue design requirements. Similarly, in Example 1 and Example 2, the maximum 3 ⁇ stress of the two lithium-ion battery modules for electric forklifts in the three directions is less than 60 MPa, which is lower than the material yield strength and meets the vibration fatigue design requirements.
  • Table 7 Maximum stress and maximum displacement under random vibration of lithium-ion power box for electric forklift
  • the test time of random vibration test in each direction is 21h, which is equivalent to a warranty requirement that can guarantee the battery system for at least 8 years or more than 200,000 km.
  • Analyze the fatigue damage value of the battery box at this time combine the CAE analysis results of the battery pack vibration and the SN (stress-life curve) of the battery box material, the life of the battery pack structure under 1 ⁇ , 2 ⁇ and 3 ⁇ stress, and calculate the structure according to Miner's Rule
  • the fatigue accumulation damage coefficient is less than 1, indicating that the structure meets the requirements under the excitation of the load.
  • the damage coefficient of the lithium ion power supply box for electric forklifts along the Z axis is shown in Figure 28.
  • the damage value of the box 34 mechanism is less than 1.
  • the lithium ion power box for electric forklifts The damage value of the ion power box after vibration along the X-axis and Y-axis is also less than 1.
  • Simulation crash analysis refer to the standard GB/T31467.3-2015-7.5, apply the acceleration load as specified in Table 8 to the lithium-ion power box for electric forklifts.
  • the direction of the car is defined as the X axis, and the other is perpendicular to the direction of travel.
  • the horizontal direction is the Y axis.
  • the weight of the electric forklift considered in this embodiment is between 3.5 and 7 tons.
  • the simulation results are shown in Figure 29.
  • the stress in the other parts of the lithium-ion power box for electric forklifts is far It is lower than the yield strength of the material and meets the requirements.
  • lithium-ion battery modules for electric forklifts fall freely onto the concrete floor from a height of 1.2m with the positive and negative terminals downward.
  • the maximum stress of Example 1 appears at the sharp corners of the side plate 10; the maximum stress of Example 2 is relatively small, and the maximum deformation of both is about 1 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动叉车用锂离子电池模组及电源箱,属于锂离子电池技术领域;电池模组包括外壳、外壳内的电池组,电池组包括电芯(11)、电芯间隔热片(12)、电芯(11)外围的底面绝缘板(13)、侧面绝缘板(15)、端面绝缘板(14)及顶部的汇流排支架(7),电芯(11)为方形磷酸铁锂电池、采用1并8串的成组方式,侧面绝缘板(15)和底面绝缘板(13)表面设置有突出隔片(18),汇流排支架(7)上设置有电芯(11)间连接排(4)和端连接排(6);电源箱包括箱体(34),箱体(34)内设置有高压箱(35)、BMS和上述的电动叉车用锂离子电池模组,箱体(34)上设置有箱盖(39),箱盖(39)上设置有排气阀(50)。该锂离子电池模组及电源箱在结构和热性能方面都具有高可靠性。

Description

电动叉车用锂离子电池模组及电源箱 技术领域
本发明涉及一种电动叉车用锂离子电池模组及电源箱,属于锂离子电池技术领域。
背景技术
根据2018-2023年的全球电动叉车行业市场分析和预测,2017年电动叉车的产量估计为2766.99千台,预计到2023年底达到4097.06千台,2018年至2023年的复合年增长率为6.6%。全球第三大研究机构平台Persistence Market Research(以下简称为PMR)在2014年曾发布的题为“叉车的全球市场研究:亚太地区将在2021年见证最高增长”的报告,其调查结果显示,全球叉车市场价值为353亿美元,当时预计在预测期内电动叉车市场的年均复合增长率(CAGR)为6.9%,到2021年底达到559亿美元。锂离子电池系统因其功率密度和能量密度高、充放电寿命长、无记忆效应、无污染等特点,在电动叉车应用上替代铅酸电池是大势所趋。
一台内燃叉车的尾气排放量,大致相当于100台私家轿车的排放量。相比之下,电动叉车无污染、噪音小,未来势必会代替传统内燃叉车而成为主力。锂离子电池由于其工作电压高、功率密度和能量密度高、充放电寿命长、无记忆效应、无污染等优点,在电动叉车应用方面备受青睐。目前,合力、诺力、杭叉集团等多家主流叉车主机厂都在积极导入锂离子电池的应用,宁德时代、比亚迪、国轩高科等几大巨头企业也在积极开拓锂电叉车领域,中航锂电、江苏力信等知名锂电企业可为叉车用电池系统配套电池模组产品。电动叉车“锂电化”是目前发展的趋势。高安全性、高比能、长寿命是锂离子电池系统最关键的性能要求,同时也是行业研究的热点和难点。结构和热管理的可靠性是锂离子电池包设计的两个重要因素,直接影响到产品的性能、成本和安全。
专利号CN208797070U公开了一种电动叉车动力锂电系统,旨在解决传统铅酸蓄电池的连接繁琐和难以维护的问题、以及当多个电池模组直接相互搭建时稳定性不足、平衡性耐振动性低的问题。该专利主要介绍了电源箱体结构,但并未谈及电池模组内部结构设计。在其电源箱外壳侧壁上,设置有四个较大的圆形孔,目的是方便对箱体内部线束进行安装拆卸、同时提高系统的散热效果。但在箱体上开多个较大的孔,会降低电源箱的IP等级,特别是当电动叉车在粉尘环境下作业时,该箱体无法有效防止粉尘进入其中,存在安全隐患。
专利号CN207009575U公开了一种电动叉车用电池包设计,其特征在于:通过所设计的固定结构框架,将电池模组固定在一起、并固定在电动叉车上;电池管理系统(BMS)模块直接垒放在电池模组上方;热管理方式为强制风冷、需要外接风机。整套系统结构没有设计箱体,结构呈开放式状态,电池模组、BMS模块、以及线束暴露在外,当受到撞击或挤压时,没有箱体的保护,存在一定的安全隐患。热管理方面,强制风冷设计需要考虑风机的安装和功耗、降低噪音、额外的线束设计等因素,但该专利并未介绍以上细节。相比于自然冷却方式,上述设计因素将会增加产品成本。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种电动叉车用锂离子电池模组及电源箱,在结构和热性能方面都具有高可靠性。
本发明所述电动叉车用锂离子电池模组,包括外壳、外壳内的电池组,电池组包括电芯、电芯间隔热片、电芯外围的底面绝缘板、侧面绝缘板、端面绝缘板及顶部的汇流排支架,电芯为方形磷酸铁锂电池、采用1并8串的成组方式,侧面绝缘板和底面绝缘板表面设置有突出隔片,汇流排支架上设置有电芯间连接排和端连接排。
轻量化设计,提高了模组能量密度;隔热片设计,可有效控制热失控在电芯间蔓延;采用模块化结构,容量可等比例放大以满足商业和工业需求。
优选地,隔热片为软质聚乙烯泡棉,底面绝缘板、侧面绝缘板、端面绝缘板采用PC-ABS塑料板。
软质聚乙烯泡棉具有良好的缓冲减震性能,交联结构使泡棉具有一定刚性,低硬度高回弹性质,可吸收电池鼓胀应力,从而起到缓冲作用。底面绝缘板、侧面绝缘板、端面绝缘板用于绝缘。作为电动叉车用锂离子电池模组的基础版设计,性价比高。
优选地,外壳包括端板、底板、侧板、上外盖,侧板上、下边缘设置有弯折结构,侧板前后两端设置有弯折部分;汇流排支架边缘设置有固定凹槽、侧板上边缘设置有与固定凹槽配套的卡槽,上外盖两侧设置有外卡槽、侧板上边缘设置有与外卡槽配套的外卡扣;汇流排支架上还设置有线卡子和环形结构。
侧板、端板与底板连接处质量更好、结构可靠性更高,环形结构用于绑轧带固定线束。
优选地,电芯间连接排和端连接排四角为圆角。用于防止尖端放电。
优选地,端板正面设置有散热凹槽,侧板上设置有椭圆形凹槽,端板采用碳纤维复合材料,底面绝缘板、侧面绝缘板、端面绝缘板采用热塑性导热绝缘塑料TCP200-30-6A。
作为电动叉车用锂离子电池模组的高端版设计,改变端板结构设计和材质,改变塑料部件的材质,改变侧板结构;实现高结构强度、轻量化、高能量密度,同时又不减弱散热效果。
优选地,上外盖上设置有总正外盖和总负外盖,端连接排包括总正端连接排、总负端连接排两片,分别位于总正外盖和总负外盖下方。
本发明所述电动叉车用锂离子电源箱,包括箱体,箱体内设置有高压箱、BMS和上述的电动叉车用锂离子电池模组,箱体上设置有箱盖,箱盖上设置有排气阀。
本发明具有箱体结构,可对电池模组、高压箱、BMS等内部组件提供保护,产品安全性更高。同时,本发明设计采用自然冷却,相比于强制风冷,系统结构简洁、无需额外线束和能耗(供给电机)、无噪音,因而热管理成本较低。
优选地,所述电动叉车用锂离子电池模组设置6组,左右两侧对称放置;连接方式为2并3串,同侧模组串联、两侧模组并联。
通过轻量化设计,提高了模组能量密度。
优选地,高压箱内设置有第一继电器、第二继电器、第三继电器、预充继电器、预充电阻、第一熔断器、第二熔断器、电流传感器,第一熔断器一路连接第一继电器、第一继电器另一端 连接电池模组正极,第一熔断器另一路连接预充继电器、预充继电器另一端连接预充电阻、预充电阻另一端连接电池模组正极;第二熔断器连接第二继电器、第二继电器另一端连接电池模组正极;电流传感器连接第三继电器、第三继电器连接电池模组负极。
第一熔断器另一端作为快充正极,第二熔断器另一端作为输出正极,电流传感器另一端一路作为快充负极,另一路作为输出负极。用于充放电。
优选地,箱体内中部左右两侧各设置有隔板,隔板下层放置电池模组、上层放置高压箱和BMS,箱体底部有空腔,内部由钢制板材填充并压实作为配重,箱体底部厚度大于10倍侧板厚度,箱体底部厚度大于20倍盖板厚度。
结构设计和热管理设计合理,有高可靠性。
与现有技术相比,本发明具有以下有益效果:
1、通过轻量化设计,提高了电动叉车用锂离子电池模组能量密度,对比业内知名电池企业中航锂电的4款同类产品,高20%-26%;
2、与业内知名电池企业江苏力信某款同类产品的技术相比,本发明的电动叉车用锂离子电池模组侧板、端板与底板连接处质量更好、结构可靠性更高;
3、与业内知名电池企业江苏力信某款同类产品的技术相比,本发明的电动叉车用锂离子电池模组上盖板结构设计质量更好,大幅度提高机械性能、提升保护性;
4、与专利号CN208797070U的技术相比,本发明电动叉车用锂离子电源箱IP防护等级更高,能更好地适应粉尘工况环境,产品安全性更高。同时,在无需对箱体开孔的情况下,依然能保证良好的自然冷却效果;
5、与专利号CN207009575U的技术相比,本发明具有箱体结构,可对电动叉车用锂离子电池模组、高压箱、BMS等内部组件提供保护,产品安全性更高。同时,本发明设计采用自然冷却,相比于强制风冷,系统结构简洁、无需额外线束和能耗(供给电机)、无噪音,因而热管理成本较低;
6、高效的自然冷却性能,保证广泛的温度适应性、高低温兼顾,均温性好;
7、高效的隔热设计,可有效控制热失控在电芯间蔓延;
8、电动叉车用锂离子电池模组采用模块化结构,容量可等比例放大以满足商业和工业需求。
附图说明
图1为本发明实施例1所述电动叉车用锂离子电池模组爆炸结构示意图;
图2为本发明实施例1所述电池组爆炸结构示意图;
图3为本发明实施例1所述电动叉车用锂离子电池模组(基础版设计)整体结构示意图;
图4为本发明实施例1所述突出隔片结构示意图;
图5为本发明实施例1所述侧板结构示意图;
图6为本发明实施例1所述侧板与汇流排支架侧面结构示意图;
图7为本发明实施例1所述汇流排支架结构示意图;
图8为本发明实施例1所述连接排结构示意图;
图9为本发明实施例1所述连接排装配示意图;
图10为本发明实施例1所述端连接排结构示意图;
图11为本发明实施例1所述端连接排装配示意图;
图12本发明实施例2所述电动叉车用锂离子电池模组(高端版设计)整体结构示意图;
图13为本发明实施例3所述电动叉车用锂离子电源箱正视图;
图14为本发明实施例3所述电动叉车用锂离子电源箱侧视图;
图15为本发明实施例3所述电动叉车用锂离子电源箱俯视图;
图16为本发明实施例3所述电动叉车用锂离子电源箱整体结构示意图;
图17为本发明实施例3所述高压箱结构示意图;
图18为本发明实施例3所述高压箱电路原理图;
图19为本发明所述电芯仿真结果(实线)与规格书数据对比(符号);
图20为本发明所述电芯在25℃环境温度下以0.5C、1C、2C倍率放电后温度分布及产热量的仿真结果;
图21为本发明实施例1和实施例2所述电动叉车用锂离子电池模组在25℃环境温度下以1C倍率放电热仿真结果,其中b、e为横截面,c、f为纵截面;
图22为本发明实施例1和实施例2所述电动叉车用锂离子电池模组在25℃环境温度下以1C倍率放电热失控仿真结果,其中b、e为横截面,c、f为纵截面;
图23为本发明实施例3所述采用实施例1电动叉车用锂离子电池模组的电动叉车用锂离子电源箱在25℃下1C放电的温度仿真结果;
图24为本发明实施例3所述采用实施例1电动叉车用锂离子电池模组的电动叉车用锂离子电源箱在25℃下1C放电热失控的温度仿真结果;
图25为本发明实施例3所述采用实施例1电动叉车用锂离子电池模组的电动叉车用锂离子电源箱在垂直3g加速度作用力下的形变仿真;
图26为本发明实施例1和实施例2所述电动叉车用锂离子电池模组在垂直3g加速度作用力下的形变仿真;
图27为本发明实施例3所述采用实施例1电动叉车用锂离子电池模组的电动叉车用锂离子电源箱随机振动1σ应力仿真结果:a沿X轴振动,b沿Y轴振动,c沿Z轴振动;
图28为本发明实施例3所述采用实施例1电动叉车用锂离子电池模组的电动叉车用锂离子电源箱沿Z轴随机振动后的疲劳积累损伤系数;
图29为发明实施例3所述采用实施例1电动叉车用锂离子电池模组的电动叉车用锂离子电源箱模拟碰撞仿真结果:a载荷参数取表8中ABCD,b载荷参数取表8中EFGH;
图30为发明实施例3所述采用实施例1电动叉车用锂离子电池模组的电动叉车用锂离子电源箱冲击仿真仿真结果,在第3次冲击中出现最大应力点的时刻:a为应力,b为形变;
图31为本发明实施例1和实施例2所述电动叉车用锂离子电池模组跌落仿真的结果,a、 c为应力,b、d为形变。
其中:1、总正外盖;2、上外盖;3、总负外盖;4、连接排;5、紧固螺栓;6、端连接排;7、汇流排支架;8、端板;9、底板;10、侧板;11、电芯;12、隔热片;13、底面绝缘板;14、端面绝缘板;15、侧面绝缘板;16、铆钉;17、长杆螺丝;18、突出隔片;19、弯折结构;20、弯折部分;21、固定凹槽;22、卡槽;23、外卡槽;24、外卡扣;25、线卡子;26、环形结构;27、圆角;28、转接螺栓;29、突起结构;30、支撑结构;31、极柱;32、散热凹槽;33、凹槽;34、箱体;35、高压箱;36、主控BMS;37、从控BMS;38、电池模组;39、箱盖;40、吊装孔;41、隔板;42、第一继电器;43、第二继电器;44、第三继电器;45、预充继电器;46、预充电阻;47、第一熔断器;48、第二熔断器;49、电流传感器;50、排气阀。
具体实施方式
实施例1
如图1-3所示,本发明所述电动叉车用锂离子电池模组,包括外壳、外壳内的电池组,电池组包括电芯11、电芯11间隔热片12、电芯11外围的底面绝缘板13、端面绝缘板14、侧面绝缘板15及顶部的汇流排支架7,电芯11为方形磷酸铁锂电池、采用1并8串的成组方式。汇流排支架7上设置有电芯11间连接排4和端连接排6,外壳包括端板8、底板9、侧板10、上外盖2。端板8与侧板10通过铆钉16连接,底板9与侧板10通过长干螺丝连接。端连接排6包括结构相同的总正连接排4和总负连接排4。
如图6所示,侧板10上、下边缘设置有弯折结构19,侧板10前后两端设置有弯折部分20。
电芯11选用3.2V 206Ah方形磷酸铁锂电池单体,采用1并8串(1P8S)的成组方式。大模块、一体化设计有利于提高模组的成组效率,减少每一个电芯11所分摊的结构件重量、提高系统整体能量密度;从系统层面上减少附属配件数量,降低制造成本。
表1电池单体技术参数
Figure PCTCN2019111812-appb-000001
电芯11间设置有隔热片12,主要起保温隔热和缓冲减震的作用。隔热片12采用软质聚乙烯(PE)泡棉,泡棉的低导热系数(约0.038W/m/K)有利于在电芯11发热失控时抑制热扩散、减小其对周围电芯11的影响。软质聚乙烯(PE)泡棉具有良好的缓冲减震性能,交联结构使泡棉具有一定刚性,低硬度高回弹性质,可吸收电池鼓胀应力,从而起到缓冲作用。
侧板10、端板8及底板9材质可以为3003(H12)铝合金。作为目前应用最多的轻质材料,铝合金各项相关技术比较成熟:良好的机械性能;质量轻(密度约为钢铁的1/3);易加工;导热性、耐腐蚀性好;强度高;良好的吸能性;表面处理更容易、美观度更高,可采用电泳工艺上色。端板8边缘处做削薄处理,使端板8与侧板10在接合后端面平整,且尺寸不会额外增加。侧板10与端板8通过铆钉16连接。
如图7所示,为便于手工装配和拆解,汇流排支架7两侧边缘有固定凹槽21,可卡在侧板10上沿卡槽22。此外,上外盖2两侧通过外卡扣24与侧板10相连接,在保证连接牢靠的同时,也便于对上外盖2进行安装和拆卸。
如图4-5所示,在侧面绝缘板15和底面绝缘板表面设置有突出隔片18卡住电芯11,更好地固定电芯11、限制电芯11前后移动。侧板10上、下边缘的弯折结构19夹住堆叠后的电芯11及绝缘板,防止其上下错位;前后两端的弯折部分20夹紧电芯11和端板8;另外,汇流排边缘与侧板10上边缘相互卡紧后,完成对电芯11移动自由度的限制。
电池模组上外盖2、汇流排支架7、总正外盖1和总负外盖3采用PC-ABS材料,并对零件做圆角27处理、避免在加工时出现收缩不均现象。电芯11外围的的底面绝缘板13、侧面绝缘板15、端面绝缘板14采用PC-ABS塑料板,用于绝缘。作为改性工程塑料,PC-ABS结合了PC的机械性、抗冲击性、耐温和ABS材料的成型性,具有较好的综合性能,被广泛用于电池支架、框架、等结构件。
如图8所示,汇流排支架7上还设置有线卡子25和环形结构26,临近两个线卡子25的距离小于8cm,可有效防止线束在走位时上翘。总线输出端,采用扎带将其固定在环形结构26上。采样线束位于模组上方,可外延5-10cm,便于线束连接。对于采样线在电芯11间连接排4上的固定,可在连接排4上进行镀层处理,在焊接之后采用点封胶(形成气密条件,阻断电化学腐蚀)。总正连接排4和总负连接排4也可进行镀层处理,在焊接之后采用点封胶(形成气密条件,阻断电化学腐蚀)。
如图8所示,电芯11间连接排4为软铝巴(镀锡),重量轻、制作时对公差要求低。连接排4的横截面积为34mm×3mm,以确保过流量、低温升。如图10所示,总正连接排4和总负连接排4是配有一个转接螺栓28,尖角处做圆角27处理,避免尖端放电。如图9和图11所示,连接排4和端连接排6在安装时通过汇流排支架7上表面突起结构29来定位。另外,对于端连接排6,所示,利用汇流排支架7上的支撑结构30以及紧固螺栓5头部的方形结构,为端连接排6提供支撑,使其在受到竖直压力时不容易变形。正、负极柱31位于汇流排支架7上方,采用M8螺丝,便于连接。
本实施例作为电动叉车用锂离子电池模组设计的基础版,针对普通市场需求,性价比高。 物料清单如表2。
表2本发明实施例1的物料清单
序号 部件 数量 材质 屈服强度(MPa) 抗拉强度(MPa)
1 总正外盖1 1 PC-ABS - 40
2 上外盖2 1 PC-ABS - 40
3 总负外盖3 1 PC-ABS - 40
4 连接排4 7 3003(H12)铝合金(镀锡) 125 130
5 紧固螺栓5 2 3003(H12)铝合金(镀锡) 125 130
7 汇流排支架7 1 PC-ABS - 40
6 端连接排6 1 3003(H12)铝合金(镀锡) 125 130
8 端板8 2 3003(H12)铝合金 125 130
9 底板9 1 3003(H12)铝合金 125 130
10 侧板10 2 3003(H12)铝合金 125 130
11 电芯11 8 EFP54175200 - -
12 隔热片12 7 隔热棉 - -
13 底面绝缘板13 1 PC-ABS - 40
14 端面绝缘板14 2 PC-ABS - 40
15 侧面绝缘板15 2 PC-ABS - 40
16 铆钉16 12 不锈钢,M6×10 207 517
17 长杆螺丝17 4 不锈钢,M6×15 207 517
实施例2
为实现电动叉车用锂离子电池模组的高结构强度、轻量化、高能量密度,同时又不减弱散热效果,在实施例1的基础上设计了本实施例:1)改变端板8结构设计和材质;2)改变塑料部件的材质,即上外盖2、总正负绝缘盖、汇流排支架7、底面绝缘板13、端面绝缘板14、侧面绝缘板15;3)改变侧板10结构。
如图12所示,与实施例1不同的是,端板8采用碳纤维复合材料,利用其优异的力学性能。端板8是模组中除电芯11以外重量占比最大的结构,对于动力电池组一般约占5%,因此成为轻量化设计优先考虑的部件。相比于高强度钢和铝合金,碳纤维复合材料密度小,强度高,耐高温,耐摩擦,抗震,热膨胀系数低,在耐冲击性、密封性、及减重上具有绝对优势。在外型结构上,在端板8正面添加长方形排列的散热凹槽32,既可减轻重量、又利于散热。端板8与侧板10通过铆钉16连接在一起,同时,可以在碳纤维端板8上的螺孔内预埋金属环来固定铆钉16。
由于端板8的材质从金属3003(H12)铝合金换成了导热系数相对低的塑料材质,为保证整体的散热性能,上外盖2、总正外盖1、总负外盖3、汇流排支架7以及底面绝缘板13、侧面绝缘板15、端面绝缘板14的材质从PC-ABS换成了导热系数更高的热塑性导热绝缘塑料 TCP200-30-6A,其导热率可达3W/m/K,是PC-ABS的15倍,而密度只比PC-ABS增加了50%。
侧板10和底板9采用铝合金,易加工成型、高温耐腐蚀性、良好的传热性。如图12所示,为进一步减重,在侧板10上添加排列的椭圆形凹槽33,凹槽33可以为1mm深。侧板10与端板8通过铆钉16连接固定在一起。
本实施例作为电动叉车用锂离子电池模组设计的高端版,具备更先进技术水平,再次提高结构强度、轻量化、高能量密度,同时又不减弱散热效果。物料清单如表3。
表3本发明实施例2的物料清单
Figure PCTCN2019111812-appb-000002
实施例3
如图13-16所示,本发明所述的电动叉车用锂离子电源箱,包括箱体34,箱体34内设置有高压箱35、BMS,还包括实施例1或2的电动叉车用锂离子电池模组38。电池模组38设置6组,左右两侧对称放置;连接方式为2并3串,同侧模组串联、两侧模组并联。
箱体34外形尺寸可以为长1127mm、宽669mm、高686mm,材质为Q235a碳钢,底部厚度176mm,四周板厚度16mm,盖板厚度为5mm。为了增加配重,箱体34底部有空腔,内部填充钢制板材并压实作为配重,箱体34底部厚度大于10倍侧板厚度,箱体34底部厚度大于20倍盖板厚度。箱体34内部分上下两层,由左右两片5mm隔板41隔开,隔板41为钢板通过螺丝固定。下层放置电池模组38,上层放置高压箱35和BMS,BMS包括1个主控BMS36和2个从控BMS37。此外,箱体34上设置有箱盖39。箱盖39上设置有充放电接口和通讯接口,并装有 PUW-EPTFE排气阀50,箱盖39通过螺丝与箱体34连接固定。箱体34表面无开孔,可确保当电动叉车在粉尘环境条件下工作时,粉尘颗粒不会进入到电池包内部。
采用实施例1电动叉车用锂离子电池模组38质量为36.3kg,实施例2电动叉车用锂离子电池模组38质量为35.9kg。此外,高压盒重9.06kg,主控BMS为0.84kg,两个从控BMS各重0.46kg。通过调整电动叉车用锂离子电源箱底部配重的重量,可将采用实施例1电动叉车用锂离子电池模组38的箱体34的重量控制在1149kg-1294kg;可将采用实施例2电动叉车用锂离子电池模组38的箱体34的重量控制在1151kg-1296kg。系统总重量均在1378kg至1522kg之间,通过轻量化设计,提高了电动叉车用锂离子电源箱能量密度。
箱体34左右两侧顶端各有两个吊装孔40,用于吊装。
通过优化电动叉车用锂离子电池模组38结构、箱体34结构以及内部布局,实现了在自然散热条件下,箱体34内电芯11温度可维持在较理想的工作温度区间(电芯11最高温度基本不超过55℃),且电芯11间温度均一性较高(温差△T≤5℃)。
如图17-18所示,高压箱35内设置有第一继电器42、第二继电器43、第三继电器44、预充继电器45、预充电阻46、第一熔断器47、第二熔断器48、电流传感器49,第一熔断器47一路连接第一继电器42、第一继电器42另一端连接电池模组38正极,第一熔断器47另一路连接预充继电器45、预充继电器45另一端连接预充电阻46、预充电阻46另一端连接电池模组38正极;第二熔断器48连接第二继电器43、第二继电器43另一端连接电池模组38正极;电流传感器49连接第三继电器44、第三继电器44连接电池模组38负极。
第一熔断器47另一端作为快充正极,第二熔断器48另一端作为输出正极,电流传感器49另一端一路作为快充负极,另一路作为输出负极。
第二继电器43的型号可以为EVR250-12V,第一继电器42、第三继电器44的型号可以为EVR400-12V,预充继电器45的型号可以为EVR10-12V,预充电阻46的型号可以为RXG24-100W,第一熔断器47、第二熔断器48的型号可以为RS308-HB-3N350A。采用编织带铜软连接,其优点包括柔软度好、易散热、耐弯曲、导电率强、且安装方便。接头采用铜编织线或铜绞线作为导体,两端连接处用铜管套上、压实。
实施例4
为了验证本发明的设计概念,进行了数值模拟仿真,包括热流体仿真和结构仿真,以验证所设计模组和电池包在散热和结构方面的性能。其中,热流体仿真包括电芯11电化学热仿真、电动叉车用锂离子电池模组热仿真、以及电动叉车用锂离子电源箱热仿真;结构仿真分包括电动叉车用锂离子电池模组的静力学分析、模态分析、随机振动及疲劳分析、和跌落分析,以及电动叉车用锂离子电源箱结构的静力学分析、模态分析、随机振动及疲劳分析、机械冲击、和模拟碰撞分析。
通过对电芯11进行电化学仿真,可计算出电芯11在充放电时所释放的热量,将其表征为随时间变化的函数,再导入到电动叉车用锂离子电池模组的热模型,在模型中作为热源项,进而模拟电动叉车用锂离子电池模组的热行为。针本实施例所用的206Ah方形LFP电芯11,图 19展示了电芯11在不同倍率下的充放电曲线模拟结果,与实验数据吻合良好,最大相对误差不超过3%,验证了该模型模拟结果的准确性。由此电芯11电化学模型计算所得,图20例举了电芯11在25℃环境温度下、以不同倍率放电时的温度分布及产热量。
将电芯11产热量的仿真数据导入到电动叉车用锂离子电池模组热模型中,进行电动叉车用锂离子电池模组热仿真,电动叉车用锂离子电池模组中电芯11从左至右编号Cell 1至Cell8。经仿真验证,在采用CFRP端板8实现轻量化设计时,虽然CFRP的导热率低于铝合金,但通过使用导热率较高的TCP200-30-6A(导热率3W/m/K)替代PC-ABS(导热率0.21W/m/K)作为塑料部件材料,确保了实施例2电动叉车用锂离子电池模组良好的散热性能。以在25℃下1C放电为例,如图21所示,在实施例1和实施例2中,横截面和纵截面上电芯11之间的温差都小于3℃,具备良好的温度均一性。另外,当发生热失控时,实施例2的散热效果要优于实施例1。电池模组在25℃以1C放电10分钟后,Cell 1和Cell 6发生热失控,假设产热率增大到10倍,保持放电至1小时,如图22所示,实施例1横截面T max=115℃,纵截面T max=115℃;
实施例2,横截面T max=108℃,纵截面T max=112℃。对比电芯11横截面上最高温度,实施例2比实施例1低7℃;对比纵界面上的最高温度,实施例2比实施例1低3℃。
表4对比了不同电动叉车用锂离子电池模组在热失控下的温度分布仿真结果:
JC1:金属板材质为Q235、塑料部件为PC/ABS;
JC2(实施例1):即,金属板材质为3003(H12)铝、塑料部件为PC/ABS;
GD1:端板8为碳纤维复合材料CFRP、金属板为3003(H12)铝、塑料部件为PC/ABS;
GD2(实施例2):端板8为碳纤维复合材料CFRP、金属板为3003(H12)铝、塑料部件为TCP200-30-6A。
通过对比,在电芯11发生热失控的情况下,GD2的电芯11表面温度最低、散热效果最好。
表4不同电动叉车用锂离子电池模组在热失控下的温度分布仿真结果
Figure PCTCN2019111812-appb-000003
表4中,电动叉车用锂离子电池模组内8个电芯11编号Cell 1至Cell 8,其中Cell 1和Cell 6被设定为发生热失控。环境温度为25℃。实施例5
采用实施例1电动叉车用锂离子电池模组,本发明的电动叉车用锂离子电源箱在不同环境温度下1C放电的热仿真结果如下:
1)如图23所示,25℃环境下,模组内最高温度38.7℃,电芯11间最大温差△T≤5℃;
2)40℃环境下,模组内最高温度53.7℃,电芯11间最大温差△T≤5℃;
3)45℃环境下,模组内最高温度56.1℃,电芯11间最大温差△T≤5℃;
4)-10℃环境下,模组内最高温度8.2℃,电芯11间最大温差△T≤7℃。
该电动叉车用锂离子电源箱在25℃下充电的热仿真结果为:
1)1C充电,模组内最高温度39.2℃,电芯11间最大温差△T≤5℃;
2)0.5C充电,模组内最高温度32.3℃,电芯11间最大温差△T≤℃。
以上热仿真结果,验证了在自然冷却条件下,电动叉车用锂离子电池模组内电芯11的最高温度基本不超过55℃,在电芯11工作温度可接受范围内,且电芯11温度均一性良好,温差△T≤5℃)。另一方面,如图24所示,当发生热失控时,电芯11间隔热片12可以有效地阻隔电芯11间的热量传递、减小失控电芯11对周围电芯11温度的影响。
除了上述热模拟之外,还进行了结构模拟分析,以验证本发明的结构可靠性和安全性。结构仿真分为电动叉车用锂离子电源箱和电动叉车用锂离子电池模组两部分。
静力学分析:静力学分析主要用于求解与时间无关或时间作用效果可以忽略的载荷响应。静载荷分析一般被用于评价电池系统结构刚度,主要要求在1g和3g加速度下,电池系统的最大形变不能超过1mm和3mm。一般垂直方向颠簸工况下电池箱的应力状况是最恶劣的。因此本实施例中,对电池箱整体施加垂向加速度3g。如图25所示,电动叉车用锂离子电源箱在垂直3g加速度作用力下的形变量最大直为0.2mm,符合要求。如图26所示,当对电动叉车用锂离子电池模组单独施加垂向加速度3g时,实施例1和实施例2的形变量远小于1mm,均满足要求。
模态分析:模态是电池系统的固有振动特性。模态分析目的是为了得到电池箱结构的固有频率,如果结构固有频率与定频振动测试的频率接近,则需要对结构改进。通过对结构进行修改来改变其固有频率,从而避免结构的共振主频落在随机振动高激励载荷频率范围之内。在设计电池系统时,应尽量提高系统的一阶固有频率和一阶振动频率。GM对电池系统的第一阶频率要求是大于30Hz。表5为电动叉车用锂离子电源箱及电动叉车用锂离子电池模组的模态分析结果,一阶固有频率高于30Hz,所以满足要求。
表5电池包及模组模态频率
Figure PCTCN2019111812-appb-000004
随机振动及疲劳分析:以国标规定的加速度谱参数,即表6,作为载荷工况,模拟当汽车在行使中因路面不平而导致电池系统经历随机振动。基于实施例1的电动叉车用锂离子电源箱,对Pack模型在三个方向上进行随机振动分析。图27所示了在三个方向上振动时1σ应力的分布状况。根据表7,在三个方向上的最大3σ应力均没有超过材料屈服强度,满足振动疲劳 设计要求。类似的,实施例1、实施例2两个电动叉车用锂离子电池模组在三个方向上的3σ应力最大值均小于60MPa,低于材料屈服强度,满足振动疲劳设计要求。
表6随机振动功率谱
Figure PCTCN2019111812-appb-000005
表7电动叉车用锂离子电源箱随机振动下的最大应力和最大位移
Figure PCTCN2019111812-appb-000006
根据国标,随机振动测试在每个方向的测试时间是21h,相当于能够保证电池系统至少8 年或20万km以上的质保要求。分析此时的电池箱疲劳损伤值,结合电池包振动CAE分析结果和电池箱材料的S-N(应力-寿命曲线)、电池包结构在1σ、2σ和3σ应力下的寿命,根据Miner’s Rule计算出结构的疲劳积累损伤系数,损伤系数小于1表示在该载荷激励下结构满足要求。电动叉车用锂离子电源箱沿Z轴随机振动的损伤系数如图28所示,除在主控BMS固定脚的一个定点处外,箱体34机构的损伤值小于1;另外,电动叉车用锂离子电源箱沿X轴和Y轴振动后的损伤值也都小于1。
模拟碰撞分析:参考标准GB/T31467.3-2015-7.5,对电动叉车用锂离子电源箱施加如表8所规定的加速度载荷,这里定义汽车行驶方向为X轴,另一垂直于行驶方向的水平方向为Y轴。本实施例所考虑的电动叉车重量在3.5至7吨之间。仿真结果如图29所示,对于两组脉宽载荷ABCD和EFGH,除了有一根紧固长螺栓底部出现应力集中点(229MPa和396MPa),电动叉车用锂离子电源箱内其他部分的应力均远低于材料屈服强度,满足要求。
表8模拟碰撞参数表
Figure PCTCN2019111812-appb-000007
机械冲击分析:参考标准GB/T31467.3-2015-7.2,对电动叉车用锂离子电源箱施加25g、15ms的半正弦冲击波形,Z轴方向冲击3次。根据仿真结果,最大应力288MPa出现在主控BMS固定脚一顶点处,电动叉车用锂离子电源箱中其他处的应力均小于材料屈服强度,如图30所示,最大形变为2.76mm,整体而言满足要求。
跌落分析:
根据国标GB/T31485-2015-6.3.5,电动叉车用锂离子电池模组以正负端子向下的姿态从1.2m高度处自由跌落到水泥地面上。如图31所示,实施例1的应力最大值出现在侧板10的尖角处;实施例2的最大应力相对要小,二者的最大形变量均在1mm左右。
以上所述仅为本发明的较佳实施例而己,并不以本发明为限制,凡在本发明的精神和原则之内所作的均等修改、等同替换和改进等,均应包含在本发明的专利涵盖范围内。

Claims (10)

  1. 一种电动叉车用锂离子电池模组,其特征在于:包括外壳、外壳内的电池组,电池组包括电芯(11)、电芯(11)间隔热片(12)、电芯(11)外围的底面绝缘板(13)、侧面绝缘板(15)、端面绝缘板(14)及顶部的汇流排支架(7),电芯(11)为方形磷酸铁锂电池、采用1并8串的成组方式,侧面绝缘板(15)和底面绝缘板(13)表面设置有突出隔片(18),汇流排支架(7)上设置有电芯(11)间连接排(4)和端连接排(6)。
  2. 根据权利要求1所述的电动叉车用锂离子电池模组,其特征在于:隔热片(12)为软质聚乙烯泡棉,底面绝缘板(13)、侧面绝缘板(15)、端面绝缘板(14)采用PC-ABS塑料板。
  3. 根据权利要求1所述的电动叉车用锂离子电池模组,其特征在于:外壳包括端板(8)、底板(9)、侧板(10)、上外盖(2),侧板(10)上、下边缘设置有弯折结构(19),侧板(10)前后两端设置有弯折部分(20);汇流排支架(7)边缘设置有固定凹槽(21)、侧板(10)上边缘设置有与固定凹槽(21)配套的卡槽(22),上外盖(2)两侧设置有外卡槽(23)、侧板(10)上边缘设置有与外卡槽(23)配套的外卡扣(24);汇流排支架(7)上还设置有线卡子(25)和环形结构(26)。
  4. 根据权利要求1所述的电动叉车用锂离子电池模组,其特征在于:电芯(11)间连接排(4)和端连接排(6)四角为圆角(27)。
  5. 根据权利要求3所述的电动叉车用锂离子电池模组,其特征在于:端板(8)正面设置有散热凹槽(32),侧板(10)上设置有椭圆形凹槽(33),端板(8)采用碳纤维复合材料,底面绝缘板(13)、侧面绝缘板(15)、端面绝缘板(14)采用热塑性导热绝缘塑料TCP200-30-6A。
  6. 根据权利要求3所述的电动叉车用锂离子电池模组,其特征在于:上外盖(2)上设置有总正外盖(1)和总负外盖(3),端连接排(6)包括总正端连接排和总负端连接排,分别位于总正外盖(1)和总负外盖(3)下方。
  7. 一种电动叉车用锂离子电源箱,其特征在于:包括箱体(34),箱体(34)内设置有高压箱(35)、BMS和权利要求1-5任一项所述的电动叉车用锂离子电池模组(38),箱体(34)上设置有箱盖(39),箱盖(39)上设置有排气阀(50)。
  8. 根据权利要求8所述的电动叉车用锂离子电源箱,其特征在于:所述电动叉车用锂离子电池模组(38)设置6组,左右两侧对称放置;连接方式为2并3串,同侧模组串联、两侧模组并联。
  9. 根据权利要求9所述的电动叉车用锂离子电源箱,其特征在于:高压箱(35)内设置有第一继电器(42)、第二继电器(43)、第三继电器(44)、预充继电器(45)、预充电阻(46)、第一熔断器(47)、第二熔断器(48)、电流传感器(49),第一熔断器(47)一路连接第一继电器(42)、第一继电器(42)另一端连接电池模组(38)正极,第一熔断器(47)另一路连接预充继电器(45)、预充继电器(45)另一端连接预充电阻(46)、预充电阻(46)另一端连接电池模组(38)正极;第二熔断器(48)连接第二继电器(43)、第二继电器(43)另一端连接电池模组(38)正极;电流传感器(49)连接第三继电器(44)、第三继电器(44)连接电池模组(38)负极。
  10. 根据权利要求9所述的电动叉车用锂离子电源箱,其特征在于:箱体(34)内中部左右两侧各设置有隔板(41),隔板(41)下层放置电池模组(38)、上层放置高压箱(35)和BMS,箱体(34)底部设置有空腔,箱体(34)底部厚度大于10倍侧板厚度,箱体(34)底部厚度大于20倍盖板厚度。
PCT/CN2019/111812 2019-10-18 2019-10-18 电动叉车用锂离子电池模组及电源箱 WO2021072726A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980034167.0A CN112585807A (zh) 2019-10-18 2019-10-18 电动叉车用锂离子电池模组及电源箱
PCT/CN2019/111812 WO2021072726A1 (zh) 2019-10-18 2019-10-18 电动叉车用锂离子电池模组及电源箱

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111812 WO2021072726A1 (zh) 2019-10-18 2019-10-18 电动叉车用锂离子电池模组及电源箱

Publications (1)

Publication Number Publication Date
WO2021072726A1 true WO2021072726A1 (zh) 2021-04-22

Family

ID=75117008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111812 WO2021072726A1 (zh) 2019-10-18 2019-10-18 电动叉车用锂离子电池模组及电源箱

Country Status (2)

Country Link
CN (1) CN112585807A (zh)
WO (1) WO2021072726A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114006079A (zh) * 2021-10-25 2022-02-01 惠州亿纬锂能股份有限公司 一种风冷电池系统
CN114079107A (zh) * 2021-11-18 2022-02-22 广州小鹏汽车科技有限公司 电池模组及电池包
CN114447462A (zh) * 2021-12-11 2022-05-06 国网甘肃省电力公司电力科学研究院 一种设有辅助系统的储能电池系统
CN115548563A (zh) * 2022-10-25 2022-12-30 楚能新能源股份有限公司 一种模块化电池插箱结构、电池和模组组装方法
WO2023274311A1 (zh) * 2021-06-30 2023-01-05 东莞新能安科技有限公司 一种电池包及用电设备
FR3135569A1 (fr) 2022-05-16 2023-11-17 Valeo Systemes Thermiques Espaceur inter-batteries et système de régulation thermique pour un ensemble de batteries.
CN117525756A (zh) * 2024-01-04 2024-02-06 上海聚信海聚新能源科技有限公司 一种汇流排焊接支架及具有其的电池包
WO2024032641A1 (zh) * 2022-08-09 2024-02-15 天津市捷威动力工业有限公司 电池模组及电池包
CN117673624A (zh) * 2024-02-01 2024-03-08 福建常青新能源科技有限公司 一种锂电池安装用减振外壳及使用其的叉车锂电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214589152U (zh) * 2021-04-30 2021-11-02 宁德时代新能源科技股份有限公司 电池及用电装置
CN113258195B (zh) * 2021-05-07 2023-03-03 东莞新能安科技有限公司 电池包及其制造方法、用电设备
CN114436174B (zh) * 2022-04-11 2022-07-05 杭叉集团股份有限公司 一种锂电专用架构前移式叉车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129457A (zh) * 2016-08-12 2016-11-16 淄博火炬能源有限责任公司 叉车用锂离子电池组
CN206340634U (zh) * 2016-09-29 2017-07-18 蔚来汽车有限公司 电池模组和新能源汽车
CN107508012A (zh) * 2017-08-25 2017-12-22 中通客车控股股份有限公司 一种动力电池模组及电池箱体
CN208797070U (zh) * 2018-09-26 2019-04-26 合肥英俊新能源科技有限公司 一种电动叉车动力锂电系统
CN109742285A (zh) * 2019-01-16 2019-05-10 合肥国轩高科动力能源有限公司 一种软包电池模组及其组装方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102169631B1 (ko) * 2017-03-21 2020-10-23 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
CN207303174U (zh) * 2017-08-17 2018-05-01 国联汽车动力电池研究院有限责任公司 动力电池模组总成
CN107403894A (zh) * 2017-08-24 2017-11-28 江苏正昀新能源技术有限公司 一种方形电池组及其组装方法
CN108832053B (zh) * 2018-07-25 2024-03-19 江苏正力新能电池技术有限公司 一种电池模组
CN209169233U (zh) * 2018-12-10 2019-07-26 广州市垠瀚能源科技有限公司 一种软包电池模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129457A (zh) * 2016-08-12 2016-11-16 淄博火炬能源有限责任公司 叉车用锂离子电池组
CN206340634U (zh) * 2016-09-29 2017-07-18 蔚来汽车有限公司 电池模组和新能源汽车
CN107508012A (zh) * 2017-08-25 2017-12-22 中通客车控股股份有限公司 一种动力电池模组及电池箱体
CN208797070U (zh) * 2018-09-26 2019-04-26 合肥英俊新能源科技有限公司 一种电动叉车动力锂电系统
CN109742285A (zh) * 2019-01-16 2019-05-10 合肥国轩高科动力能源有限公司 一种软包电池模组及其组装方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274311A1 (zh) * 2021-06-30 2023-01-05 东莞新能安科技有限公司 一种电池包及用电设备
CN114006079A (zh) * 2021-10-25 2022-02-01 惠州亿纬锂能股份有限公司 一种风冷电池系统
CN114006079B (zh) * 2021-10-25 2023-09-01 惠州亿纬锂能股份有限公司 一种风冷电池系统
CN114079107A (zh) * 2021-11-18 2022-02-22 广州小鹏汽车科技有限公司 电池模组及电池包
CN114447462A (zh) * 2021-12-11 2022-05-06 国网甘肃省电力公司电力科学研究院 一种设有辅助系统的储能电池系统
CN114447462B (zh) * 2021-12-11 2024-03-01 国网甘肃省电力公司电力科学研究院 一种设有辅助系统的储能电池系统
FR3135569A1 (fr) 2022-05-16 2023-11-17 Valeo Systemes Thermiques Espaceur inter-batteries et système de régulation thermique pour un ensemble de batteries.
WO2023222459A1 (fr) 2022-05-16 2023-11-23 Valeo Systemes Thermiques Espaceur inter-batteries et système de régulation thermique pour un ensemble de batteries
WO2024032641A1 (zh) * 2022-08-09 2024-02-15 天津市捷威动力工业有限公司 电池模组及电池包
CN115548563A (zh) * 2022-10-25 2022-12-30 楚能新能源股份有限公司 一种模块化电池插箱结构、电池和模组组装方法
CN117525756A (zh) * 2024-01-04 2024-02-06 上海聚信海聚新能源科技有限公司 一种汇流排焊接支架及具有其的电池包
CN117525756B (zh) * 2024-01-04 2024-04-30 上海聚信海聚新能源科技有限公司 一种汇流排焊接支架及具有其的电池包
CN117673624A (zh) * 2024-02-01 2024-03-08 福建常青新能源科技有限公司 一种锂电池安装用减振外壳及使用其的叉车锂电池
CN117673624B (zh) * 2024-02-01 2024-04-26 福建常青新能源科技有限公司 一种锂电池安装用减振外壳及使用其的叉车锂电池

Also Published As

Publication number Publication date
CN112585807A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2021072726A1 (zh) 电动叉车用锂离子电池模组及电源箱
Yu et al. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack
CN207657588U (zh) 一种电池包壳体
US9945098B2 (en) Shovel including power storage device with housing having coolant flow path
CN105895843A (zh) 一种智能锂离子电池模组
KR20130035192A (ko) 신규한 냉각구조를 가진 전지팩
CN205429045U (zh) 一种电池模组
KR102235650B1 (ko) 이차 전지 모듈 및 이를 포함하는 이차 전지 팩
Shen et al. Thermal analysis of modified Z-shaped air-cooled battery thermal management system for electric vehicles
CN112072026A (zh) 动力电池包
CN107706325A (zh) 电源模块及车辆
Shan et al. Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module
CN107611475A (zh) 软包动力锂离子电池模组及其组装方法
CN113381107A (zh) 一种结构简化的储能电池簇
CN211428228U (zh) 一种锂电池减震隔热保护装置
CN106654101A (zh) 电动汽车动力锂电池模组固定装置
KR20210036902A (ko) 이차 전지 모듈 및 이를 포함하는 이차 전지 팩
CN218997005U (zh) 电池包和车辆
Liu et al. An experimental parametric study of air-based battery thermal management system for electric vehicles
CN219476785U (zh) 电池模组及电池系统和电动汽车
CN205429111U (zh) 锂电池导热模块
Peng et al. Thermal management system design for batteries packs of electric vehicles: A survey
CN209240915U (zh) 一种电动汽车换电的电池充电装置
CN201590441U (zh) 一种用于电动汽车动力的电池包
CN212587624U (zh) 动力电池包

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949197

Country of ref document: EP

Kind code of ref document: A1