WO2021071176A1 - 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체 - Google Patents
발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체 Download PDFInfo
- Publication number
- WO2021071176A1 WO2021071176A1 PCT/KR2020/013445 KR2020013445W WO2021071176A1 WO 2021071176 A1 WO2021071176 A1 WO 2021071176A1 KR 2020013445 W KR2020013445 W KR 2020013445W WO 2021071176 A1 WO2021071176 A1 WO 2021071176A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- projectile
- diameter
- supercavitation
- pressure
- natural supercavitation
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B10/00—Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
- F42B10/32—Range-reducing or range-increasing arrangements; Fall-retarding means
- F42B10/38—Range-increasing arrangements
- F42B10/42—Streamlined projectiles
- F42B10/46—Streamlined nose cones; Windshields; Radomes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B10/00—Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
- F42B10/32—Range-reducing or range-increasing arrangements; Fall-retarding means
- F42B10/38—Range-increasing arrangements
- F42B10/42—Streamlined projectiles
- F42B10/44—Boat-tails specially adapted for drag reduction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B30/00—Projectiles or missiles, not otherwise provided for, characterised by the ammunition class or type, e.g. by the launching apparatus or weapon used
- F42B30/08—Ordnance projectiles or missiles, e.g. shells
Definitions
- the present invention relates to a projectile that generates natural supercavitation in accordance with the projectile diameter, and relates to a projectile of a mechanism that generates natural supercavitation in accordance with the diameter and speed of the projectile.
- a high-speed, fast projectile is used to generate natural supercavitation.
- the tip point is very narrow in order to change the state of the fluid due to the low pressure generated when the projectile is incident at an ultra-high speed, and it generates natural supercavitation only with the width and angle of the tip point. Disadvantages) are very small. In order to pass through such natural supercavitation tunnels, the diameter of the projectile must be very small.
- the rear tail of the projectile such as a tail slap touches the wall of the cavity, so that the projectile can no longer advance.
- the present invention relates to a projectile of a mechanism that prevents tail slap while generating natural supercavitation suitable for the diameter of the projectile, which is a limitation of the conventional projectiles as described above.
- the second angle is applied to form the width of the natural supercavitation tunnel that fits the various diameters of the projectiles to form a natural supercavitation tunnel width that is larger than the diameter of the projectile.
- the pressure center and the center of gravity of the projectile should be close to each other to reduce energy loss.
- a projectile with a mechanism that adjusts the center of gravity and pressure of the projectile to attenuate the tail slap, and allows the tip fluid flow part to generate natural supercavitation optimally to the projectile diameter.
- the pressure in the form of a disk of a certain diameter (D/4 to D/8) from the upper point (100A) of the projectile 1 to L/8 to L/3 of the projectile length (L) Offset plate 11; And at the front end of the pressure canceling plate 11 R (D/3 ⁇ D/2) angle and (D/4 ⁇ D/8) / 10 diameter cone 12; consisting of The tip fluid flow unit 10 and
- Figure 2-A is a side cross-sectional view of the projectile of the present invention
- Figure 2-B is a side cross-sectional view of a conventional projectile
- FIG. 3 is a perspective view of partial elements constituting the projectile of the present invention
- Figure 4 is a procedure diagram illustrating the assembly of the projectile components of the present invention
- 6-A is a simulation result diagram showing an embodiment in which the air film of the air and the diluted fluid 100B is broken by adjusting the cone angle of the present invention
- 6-B is a simulation result diagram showing an embodiment in which an air film of air and diluted fluid 100B is formed by adjusting the cone angle of the present invention.
- 7-A is a photograph showing a state in which the cavity according to the cone angle is broken by actual shooting according to an embodiment of the present invention
- 7-B is a photograph showing a state in which a cavity according to a cone angle is formed and proceeds with an actual shooting according to an embodiment of the present invention
- 8-A-a/b is a view showing a description of the occurrence of a tail slap in a conventional projectile
- 8-B is a view showing a description of the attenuation of the tail slap of the projectile of the present invention
- the bullet (hereinafter referred to as underwater) that advances in the water by generating natural supercavitation uses the same flat plate as in the front end 100, so that the diameter of the bullet must be very small. You can proceed without hitting the bullet in the tunnel. Particularly, a slight yaw angle is formed by the rear wing portion, and the tail slap that the rear portion hits the tunnel wall occurs very often, and the effect as a bullet is limited.
- the present invention improves the problems of the conventional bullets as described above and is incident while conserving energy so as to allow continuous penetration as well as penetration into the medium so that it can be used for gun (cannon) heat using conventional bullets.
- gun gun
- the tip fluid flow part 10 of a certain shape is L/8 ⁇ L/ of the projectile length (L) from the upper point (100A).
- a pressure canceling plate 11 in the form of a disk having a certain diameter (D/4 ⁇ D/8) is configured at the foremost end of the projectile 1, and the resistance force (pressure ) So that natural supercavitation occurs at a large angle.
- it is extended at an angle R1 from the end of the pressure canceling plate 11 so that the fast-flowing fluid is maintained without interrupting the natural supercavitation.
- a cone 12 of R (D/3 ⁇ D/2) angle and (D/4 ⁇ D/8)/10 diameter dispersing the high pressure coming from the medium in initial contact. ) To further attenuate the resistance.
- the cone angle 20 at a certain angle R2 from the diameter end of the pressure canceling plate 11 to further increase the width of the tunnel initially generated by the natural supercavitation through the cone angle 20. So that the fast flow fluid keeps the natural supercavitation unbroken.
- a damping jaw capable of maintaining the low pressure of the natural supercavitation proceeding to the rear is provided so that the medium can penetrate while saving energy more.
- FIGS. 6-A and 7-A are the results of shooting a conventional underwater bomb
- FIGS. 6-B and 7-B are the results of the projectile of the present invention.
- the projectile of the present invention forms a certain air guide groove in the anthrax.
- the projectile of the present invention is provided with an air guide groove (30) for stabilizing flight by attenuating the vortex generated in the anthrax during flight and stabilizing the flight of the projectile by discharging compressed gas evenly at the moment the projectile is launched to the anthrax.
- the air guide groove as described above is generated by rotating even in a medium such as water, and thereby further increases the tunnel of natural supercavitation at the anthrax, thereby mitigating the occurrence of tail slap.
- the center of gravity (CG) of the projectile (1) is between L/4 and L/2 from the upper point (100A) of the projectile (1) of a certain length (L) and a certain form, and the upper point of the projectile (1) ( 100A) between 6L/8 ⁇ 7L/8, the air guide groove 30 is formed within a certain angle,
- the tip fluid flow unit 10 is provided with at least one between the upper end point of the projectile (100A) ⁇ L/4,
- the tip fluid flow unit 10 is a pressure canceling plate 11 in the form of a disk having a diameter (D)/4 to a diameter (D)/8 of the projectile; and at the center of the pressure canceling plate 11, it penetrates into the medium. Easy,
- a protrusion that connects to the inner end of the metal material and the outer end of the non-metal or metal material is formed and is inserted into the groove to be inserted in the inner end of the non-metal or metal material, and the non-metal or metal material outer end is divided into parts as shown in Fig. 4 and caulked (F). do.
- 5 is an embodiment showing the result of compression using the outer mold through the caulking as described above.
- the air guide groove in the anthrax is created by applying pressure from the lower mold during the caulking process.
- the center of pressure (CP) and the center of gravity (CG) of the projectile (1) become a straight line (C), and the projectile is evenly discharged to the outer circumferential surface of the projectile at the moment the projectile leaves the gun (cannon) heat.
- the front end of the projectile is divided into a front end 100 and the rear end 200 of the projectile, and the front end of the projectile is a non-metal or metallic material having a higher specific gravity than the rear end of the projectile, and a protrusion that is coupled with the rear end of the projectile by caulking.
- the rear end of the projectile is in the form of a jacket with an inner end 201 of a non-metal or metal material and an outer end 202 of a non-metal or metal material having a lower specific gravity than the front end of the projectile, and the front end of the projectile is the rear end of the projectile.
- the groove 203 or the jacket outer circumferential surface 205 of the rear end of the projectile into which the protrusion 101 that is coupled with is inserted is caulked to form a projectile that is fixedly coupled.
- the present invention as described above generates natural supercavitation through a second cone angle that increases the width of natural supercavitation while maintaining the natural supercavitation without breaking the fast-flowing fluid.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Toys (AREA)
Abstract
본 발명은 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체에 관한 것이다. 보다 상세하게는 모든 발사체의 직경에 적응할 수 있는 자연 슈퍼케비테이션 발생이 효과적이며, 입사후 전진성을 보장하기 위해 압력중심과 무게중심이 근접하고, 테일스랩(Tail slap)을 감쇄시키도록 공기유도홈의 각도 및 발사체 무게중심 조정과 압력중심의 후방으로 위치하기 위한 선단유체흐름부를 구비하는 것이다. 상기의 선단유체흐름부는 발사체의 최선단부에 발사체가 매질과 접촉하는 순간에 매질과의 접촉되는 저항력(압력)을 감쇄하여 침투하는 발사체의 직경대비한 일정 직경의 디스크 형태의 압력상쇄판과 중심에는 매질에 침투가 용이하고, 고압력을 분산시키는 일정 R을 갖는 원추뿔로 구성한다. 발사체 길이의 L/8 ~ L/4에 위치하여 일정각도를 형성하여 빠른 흐름의 유체가 자연 슈퍼케비테이션이 끊어지지 않고 유지하면서 자연 슈퍼케비테이션의 폭을 증대시키는 2차 원추각을 통해 자연 슈퍼케비테이션을 발생시킨다. 이로인해, 모든 발사체의 직경에 적응할 수 있는 자연 슈퍼케비테이션 발생이 효과적이며, 입사후 전진성이 보장되어 작전성이 우수하고, 경제적인 제조로 대량생산을 극대화 할 수 있는 장점이 있다.
Description
본 발명은 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체에 관한 것으로, 자연 슈퍼케비테이션을 발사체의 직경과 속도에 맞는 자연 슈퍼케비테이션을 발생시키는 메커니즘의 발사체에 대한 것이다.
종래에는 자연 슈퍼케비테이션을 발생시키기 위해서 고속의 빠른 발사체를 사용한다. 상기 발사체가 초고속의 입사시에 발생되는 저압으로 유체를 상태 변화시키기 위해서 선단점이 매우 좁으며, 선단점의 폭과 각도로만 자연 슈퍼케비테이션을 발생시키는 것으로 매질에 침투하는 순간에 접촉하는 면(이하 선단점)이 매우 작다. 그러한 자연 슈퍼케비테이션 터널을 통과하기 위해서는 발사체의 직경이 매우 작아야 한다.
그러나, 발사체의 직경을 크게 하기 위해서는 선단점에서 큰 직경을 이용하는데, 이렇게 되면 많은 에너지를 입사 시부터 소모하게 되어 자연 슈퍼케비테이션의 효과를 많이 얻지 못한다.
또한, 상기와 같은 종래의 발사체는 무게중심이 발사체 후면에 있어 테일스랩(Tail slap)과 같은 발사체 후면 꼬리부분이 공동의 벽에 닿아 발사체가 더 이상 전진하지 못하는 제한점도 있다.
본 발명은 상기와 같은 종래의 발사체들의 제한사항인 발사체의 직경에 적합한 자연 슈퍼케비테이션을 발생시키면서, 테일스랩(Tail slap)을 방지하는 메커니의 발사체에 대한 것이다.
발사체들의 다양한 직경에도 맞는 자연 슈퍼케비테이션의 터널의 폭이 형성되게 2차 각도를 적용하여 발사체의 직경보다 큰 자연 슈퍼케비테이션 터널 폭을 형성하게 하고, 입사 후 발사체의 전진성을 보장하기 위해 최초 접촉면을 최대한 줄여 에너지 손실을 줄이도록 하도록 발사체의 압력중심과 무게중심이 근접하게 한다.
또한, 테일스랩(Tail slap)을 감쇄시키기 위해 발사체의 무게중심과 압력중심을 조정하고, 선단유체흐름부가 자연 슈퍼케비테이션을 발사체 직경에 최적으로 발생토록 하는 메커니즘의 발사체에 대한 것이다.
상기와 같은 메커니즘의 발사체를 위해, 발사체(1)의 상단점(100A)으로부터 발사체 길이(L)의 L/8 ~ L/3에 일정 직경(D/4~D/8)의 디스크 형태의 압력상쇄판(11);및 상기 압력상쇄판(11)의 선단에는 R (D/3 ~ D/2 )각도와 (D/4~D/8)/10 직경의 원추뿔(12);로 구성하는 선단유체흐름부(10)와
상기 선단유체흐름부(10)를 통해 빠른 흐름의 유체가 자연 슈퍼케비테이션이 끊어지지 않고 유지하면서 자연 슈퍼케비테이션의 폭을 증대시키는 상기 압력상쇄 판(11)의 직경 끝단으로 부터 일정각도 R2각도 원추각(20);을 구비한다.
상기 압력상쇄판(11)의 직경의 끝단 부에 ((D/4~D/5) / 12 ~ (D/4~D/5) / 15 )의 크기로 하나 또는 2개 이상의 감쇄턱(13)을 구성하는 특징을 더 포함한다.
상기 발사체(1)의 탄저부에는 발사체가 발사되는 순간에 압축가스를 균등하게 배출하여 발사체의 비행안정과 비행중에는 탄저부에 생성되는 와류를 감쇄시켜 비행을 안정시키는 공기 유도홈(30);을 구비하는 특징을 더 포함한다.
모든 발사체의 직경에 적응할 수 있는 공동 발생이 효과적이며, 입사후 전진성이 보장되어 작전성이 우수하고, 경제적인 제조로 대량생산을 극대화 할 수 있는 장점이 있다.
도 1은 본 발명의 공동이 발생되는 메커니즘 설명도
도 2-A는 본 발명의 발사체 측면 단면도
도 2-B는 종래의 발사체 측면 단면도
도 3은 본 발명의 발사체를 구성하는 부분 요소들의 사시도
도 4는 본 발명의 발사체 구성요소들의 조립하는 것을 설명하는 절차도
도 5는 본 발명의 원추각을 구성하는 실시 예를 보여주는 도면
도 6-A는 본 발명의 원추각 조정으로 공기와 희석된 유체(100B)의 공기막이 끊어진 실시 예를 보여주는 시뮬레이션 결과도
도 6-B는 본 발명의 원추각 조정으로 공기와 희석된 유체(100B)의 공기막이 형성되어 진행하는 실시 예를 보여주는 시뮬레이션 결과도
도 7-A는 본 발명의 실시 예의 실제 사격으로 원추각에 따른 공동이 끊어진 상태를 보여주는 사진
도 7-B는 본 발명의 실시 예의 실제 사격으로 원추각에 따른 공동이 형성되어 진행하는 상태를 보여주는 사진
도 8-A-a/b는 종래의 발사체가 테일스랩(Tail slap)이 발생하는 것을 대한 설명을 도시한 도면
도 8-B는 본 발명의 발사체가 테일스랩(Tail slap)이 감쇄되는 것에 대한 설명을 도시한 도면
이하에서는 바람직한 실시예를 도시한 첨부 도면을 참조하여 본 발명의 구성과 작용을 더욱 상세히 설명한다.
도 2의 B와 같이 종래의 자연 슈퍼케비테이션을 발생시켜 물속에서 전진하는 탄환(이하 수중탄)은 전단부(100)에서와 같은 평판을 사용함으로써, 탄환의 직경이 매우 작게 구성되어야만 자연 슈퍼케비테이션의 터널에 탄환이 부딪히지 않고 진행할 수있다. 특히 후면의 날개부에 의해 조금의 편주각이 형성되어 후면부가 터널벽에 부딪히는 테일 스랩이 매우 자주 발생되어 탄환으로써의 효과가 제한되는 실정이다.
상기와 같은 종래의 탄환도 전면의 디스크 형태로 매질에 침투하는 순간에 저항력이 엄청난 압력으로 전해져 입사부터 문제가 있을 뿐 만 아니라, 입사되어도 침투하는 에너지를 조기에 소진하게 되어 긴 깊이를 침투하지 못하는 기술적 제한 사항도 있는 것이 현실이다.
본 발명은 상기와 같은 종래의 탄환의 문제점을 개선하고 기존의 탄환을 사용하는 총(포)열에도 사용할 수 있는 융통성이 있도록 매질에 침투는 물론이고 지속적인 침투가 가능토록 에너지를 보존하면서 입사가 되며, 초기 입사될 때의 순간에 비행안정이 되어서 입사됨을 보장하기 위해서 자연 슈퍼케비테이션을 발사체의 직경에 맞게 생성할 수 있고, 침투성을 증대시키도록 무게중심이 발사체의 전면부로 이동된 발사체에 대한 것이다.
도 1에서와 같이 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 메카니즘을 발생하기 위해서는 일정형태의 선단유체흐름부(10)는 상단점(100A)으로 부터 발사체 길이(L)의 L/8 ~ L/3에 일정 직경(D/4~D/8)의 디스크 형태의 압력상쇄판(11)을 구성하여 발사체(1)의 최선단부에 발사체가 매질과 접촉하는 순간에 매질과의 접촉되는 저항력(압력)을 감쇄하도록 자연 슈퍼케비테이션이 큰 각도로 발생되도록 한다. 이후의 자연 슈퍼케비테이션을 연장시키도록 압력상쇄판(11)의 끝단에서 R1 각도로 연장시켜 빠른 흐름의 유체가 자연 슈퍼케비테이션이 끊어지지 않고 유지토록 한다.
이러한 압력상쇄판(11)의 상단 중심부에는 초기 접촉되는 매질에서 오는 고압력을 분산시키는 R (D/3 ~ D/2)각도와 (D/4~D/8)/10 직경의 원추뿔(12)을 구성함으로써 저항력을 더욱 감쇄시키도록 구성한다.
또한, 도 1에서와 같이 원추각(20)을 통해 자연 슈퍼케비테이션의 초기 생성되는 터널 폭을 보다 증대 시키도록 상기 압력상쇄 판(11)의 직경 끝단으로 부터 일정각도 R2각도의 원추각(20)를 형성하여 빠른 흐름의 유체가 자연 슈퍼케비테이션이 끊어지지 않고 유지하도록 한다.
종래의 발사체에서도 처음 접촉하는 면을 최대한 줄이면 초기 받는 압력을 줄이며, 매질속을 전진할 때 에너지 소실도 무척 줄어들어 큰 성능증대를 가져올 수 있다.
본 발명에서는 상기와 같은 압력상쇄판(11)의 직경을 더 줄이면서, 후방으로 진행되는 자연 슈퍼케비테이션의 저압력을 유지할 수 있는 감쇄턱을 주어 에너지를 보다 절약하면서 매질을 침투할 수 있게 하였다.
이러한 결과는 도6, 도 7에서와 같은 실험결과로써 종래의 발사체에 대비해 더욱 좋은 결과로 나타났다.
도 6-A 및 7-A는 종래의 수중탄을 사격한 결과이며, 도 6-B 및 7-B는 본 발명의 발사체에 대한 결과이다.
도 1에서와 같이 상기 압력상쇄판(11)의 직경의 끝단 부에 ((D/4~D/5) / 12 ~ (D/4~D/5) / 15 )의 크기로 하나 또는 2개 이상의 감쇄턱(13)을 구성하는 특징을 더 포함한다.
도 1 및 도3에서와 같이 본 발명의 발사체는 탄저부에 일정 공기 유도홈을 형성한다.
모든 수중탄은 공기중에서 비행하여 물과 같은 매질에 입사되는 방식으로 사격되어서 초기 입사할 때 편주각에 의한 요(YAW)가 없어야 한다. 그러나 종래의 발사체는 상당한 요가 있어, 수중탄으로써의 역할을 제한적으로만 수행한다.
본 발명의 발사체는 탄저부에 발사체가 발사되는 순간에 압축가스를 균등하게 배출하여 발사체의 비행안정과 비행중에는 탄저부에 생성되는 와류를 감쇄시켜 비행을 안정시키는 공기 유도홈(30)을 구비한다. 상기와 같은 공기 유도홈은 물과 같은 매질내에서도 회전하여 발생되어 자연 슈퍼케비테이션의 터널을 탄저부에서 더욱 증대시켜 줌으로써 테일 스랩(Tail slap)이 일어나는 것을 완화시켜 준다.
상기와 같이 본 발명에서와 같은 자연 슈퍼케비테이션을 발생하는 메카니즘의 발사체 구성을 위해서는 도 3을 통해 설명한다.
일정길이(L), 일정형태의 발사체(1) 상단점(100A) 기준에서 L/4 ~ L/2 사이에 발사체(1)의 무게중심(CG)이 있고, 발사체(1)의 상단점(100A)으로 부터 6L/8 ~ 7L/8의 사이에 공기유도홈(30)이 일정각도이내에 형성되며,
선단유체흐름부(10)는 발사체 상단점(100A) ~ L/4 사이에 하나 이상을 구비하고,
상기 선단유체흐름부(10)는 발사체의 직경(D)/4~직경(D)/8의 디스크 형태의 압력상쇄판(11);과 상기 압력상쇄판(11)의 중심에는 매질에 침투가 용이하고,
고압력을 분산시키는 R(D/3 ~ D/2)의 (D/4~D/8)/10 직경의 원추뿔(12);을 구성토록 발사체의 전단부(100)을 구성하고 전단부는 비금속 또는 금속재 내부단과 비금속 또는 금속재 외부단과 결합하기 위해 결합하는 돌출부를 구성하여 비금속 또는 금속재 내부단의 삽입하는 홈에 인입하고, 비금속 또는 금속재 외부단과 함께 도 4에서와 같이 부분에 구분하여 코킹(F) 한다.
도 5는 상기와 같은 코킹을 통해 외형 금형틀을 이용하여 압착하여 나오는 결과를 보여 주는 실시 예이다.
또한, 4에서와 같이 탄저부에 있는 공기 유도홈은 코킹과정에서 아래의 형틀에서 압력을 가해 생성토록 한다. 이러한 과정을 통해서 발사체(1)가 압력중심(CP)과 무게중심(CG)이 일직선(C)이 되어 발사체가 총(포)열을 이탈하는 순간에 발사체 외주면으로 균등하게 방출하게 된다.
도 3에서와 같이 발사체의 전단부(100)와 발사체의 후단부(200)로 구분하여 상기 발사체의 전단부는 발사체의 후단부보다 비중이 높은 비금속 또는 금속재로 발사체의 후단부와 코킹으로 결합하는 돌출부(101)를 구성하고, 발사체의 후단부는 발사체의 전단부보다 비중이 낮은 비금속 또는 금속재 내부단(201)과 비금속 또는 금속재 외부단(202)으로 자켓형태로, 상기 발사체의 전단부를 발사체의 후단부와 결합하는 돌출부(101)를 삽입하는 발사체의 후단부의 홈(203) 또는 자켓 외주면(205)을 코킹하여 고정 결합하는 발사체를 형성한다.
상기와 같은 본 발명은 빠른 흐름의 유체가 자연 슈퍼케비테이션이 끊어지지 않고 유지하면서 자연 슈퍼케비테이션의 폭을 증대시키는 2차 원추각을 통해 자연 슈퍼케비테이션을 발생시킨다.
이로인해, 모든 발사체의 직경에 적응할 수 있는 자연 슈퍼케비테이션 발생이 효과적이며, 입사후 전진성이 보장되어 작전성이 우수하고, 경제적인 제조로 대량생산을 극대화 할 수 있는 장점이 있다.
* 테일 스랩(Tail slap) : 도 8-A-b에서와 같이 발사체의 후면부가 자연 슈퍼케이데이션의 터널 벽에 부딪혀 발사체 전체가 전진을 못하고 돌아버리는 현상
Claims (2)
- 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체에 있어서,발사체(1)의 상단점(100A)으로부터 발사체 길이(L)의 L/8 ~ L/3에 일정 직경(D/4~D/8)의 디스크 형태의 압력상쇄판(11);및 상기 압력상쇄판(11)의 선단에는 R(D/3 ~ D/2)각도와 (D/4~D/8)/10 직경의 원추뿔(12);로 구성하는 선단유체흐름부(10); 와상기 선단유체흐름부(10)를 통해 빠른 흐름의 유체가 자연 슈퍼케비테이션이 끊어지지 않고 유지하면서 자연 슈퍼케비테이션의 폭을 증대시키는 상기 압력상쇄판(11)의 직경 끝단으로 부터 일정각도 R2 각도의 원추각(20);을 구비하는 특징으로 하는 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체.
- 청구항 1에 있어서,상기 압력상쇄판(11)의 직경의 끝단 부에 ((D/4~D/5) / 12 ~ (D/4~D/5) / 15 )의 크기로 하나 또는 2개 이상의 감쇄턱(13)을 구성하는 특징을 더 포함하는 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0123786 | 2019-10-07 | ||
KR1020190123786A KR102108713B1 (ko) | 2019-10-07 | 2019-10-07 | 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021071176A1 true WO2021071176A1 (ko) | 2021-04-15 |
Family
ID=70677272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/013445 WO2021071176A1 (ko) | 2019-10-07 | 2020-10-05 | 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102108713B1 (ko) |
WO (1) | WO2021071176A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113124718A (zh) * | 2021-04-21 | 2021-07-16 | 东北大学 | 一种超空泡枪弹 |
CN115265289A (zh) * | 2022-05-16 | 2022-11-01 | 东北大学 | 一种临界入射角小的枪弹 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102108713B1 (ko) * | 2019-10-07 | 2020-05-08 | 주식회사 두레텍 | 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090173248A1 (en) * | 2007-12-03 | 2009-07-09 | Lockheed Martin Corporation | Supercavitating Projectile and Operation Thereof |
KR101347167B1 (ko) * | 2013-08-22 | 2014-01-03 | 국방과학연구소 | 공동생성부를 구비한 수중탄환 |
KR101568319B1 (ko) * | 2015-03-13 | 2015-11-12 | 주식회사 두레텍 | 조립형 탄두 |
KR101660887B1 (ko) * | 2016-02-25 | 2016-09-28 | 주식회사 두레텍 | 명중률이 개선된 다목적 탄두 |
KR101702955B1 (ko) * | 2016-11-03 | 2017-02-09 | 주식회사 두레텍 | 유효 사거리가 향상된 탄두 |
KR102108713B1 (ko) * | 2019-10-07 | 2020-05-08 | 주식회사 두레텍 | 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101754061B1 (ko) * | 2017-04-18 | 2017-07-05 | 주식회사 두레텍 | 무게중심이 헤드부에 있는 비행안정 탄두 및 그 제조 방법 |
-
2019
- 2019-10-07 KR KR1020190123786A patent/KR102108713B1/ko active IP Right Grant
-
2020
- 2020-10-05 WO PCT/KR2020/013445 patent/WO2021071176A1/ko active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090173248A1 (en) * | 2007-12-03 | 2009-07-09 | Lockheed Martin Corporation | Supercavitating Projectile and Operation Thereof |
KR101347167B1 (ko) * | 2013-08-22 | 2014-01-03 | 국방과학연구소 | 공동생성부를 구비한 수중탄환 |
KR101568319B1 (ko) * | 2015-03-13 | 2015-11-12 | 주식회사 두레텍 | 조립형 탄두 |
KR101660887B1 (ko) * | 2016-02-25 | 2016-09-28 | 주식회사 두레텍 | 명중률이 개선된 다목적 탄두 |
KR101702955B1 (ko) * | 2016-11-03 | 2017-02-09 | 주식회사 두레텍 | 유효 사거리가 향상된 탄두 |
KR102108713B1 (ko) * | 2019-10-07 | 2020-05-08 | 주식회사 두레텍 | 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113124718A (zh) * | 2021-04-21 | 2021-07-16 | 东北大学 | 一种超空泡枪弹 |
CN115265289A (zh) * | 2022-05-16 | 2022-11-01 | 东北大学 | 一种临界入射角小的枪弹 |
CN115265289B (zh) * | 2022-05-16 | 2023-08-29 | 东北大学 | 一种临界入射角小的枪弹 |
Also Published As
Publication number | Publication date |
---|---|
KR102108713B1 (ko) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021071176A1 (ko) | 발사체 직경에 맞는 자연 슈퍼케비테이션을 발생하는 발사체 | |
WO2012030048A2 (ko) | 공기안내홈이 형성된 탄환 | |
EP0774105B1 (en) | Aerodynamically stabilized projectile system for use against underwater objects | |
US5515787A (en) | Tubular projectile | |
WO2018084391A1 (ko) | 유효 사거리가 향상된 탄두 | |
FI126940B (fi) | Luoti ja menetelmä luodin laajentamiseksi sienettymällä | |
US4612860A (en) | Projectile | |
US3905299A (en) | Discarding sabot projectiles | |
WO2016148369A1 (ko) | 조립형 탄두 | |
WO2018079957A1 (ko) | 탄환면 유체유입로를 구비한 탄환 및 그 제조방법 | |
WO2018080199A2 (en) | Projectile | |
US10739118B2 (en) | Long range bullet | |
US4878432A (en) | Multistage kinetic energy penetrator | |
CZ20021869A3 (cs) | Průbojná podkaliberní střela | |
CN208187262U (zh) | 一种大中口径特种子弹弹头 | |
US10443990B2 (en) | Fragmenting shotgun projectile with radially-disposed segments | |
CN210570259U (zh) | 一种炮弹弹丸导带结构 | |
WO2012105765A2 (ko) | 탄약 | |
CN212620395U (zh) | 一种使用滑膛身管的枪弹弹头 | |
US9541362B2 (en) | Customizable projectile designed to tumble | |
KR101823819B1 (ko) | 복합기능탄두용 이중성능관통자 라이너 | |
WO2018230807A1 (ko) | 균등한 압축가스를 배출하는 보트테일의 가스만곡로를 구비한 탄환 | |
KR102354045B1 (ko) | 포탄용 이탈피 및 이를 포함하는 포탄용 이탈피 결합체 | |
JPH07174499A (ja) | 羽根で安定化された縮射用の発射体の速度低下の低減 | |
USH165H (en) | Means to control sabot petal trajectory at start of discard |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20875410 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20875410 Country of ref document: EP Kind code of ref document: A1 |