WO2021070775A1 - レジスト下層膜形成組成物 - Google Patents

レジスト下層膜形成組成物 Download PDF

Info

Publication number
WO2021070775A1
WO2021070775A1 PCT/JP2020/037711 JP2020037711W WO2021070775A1 WO 2021070775 A1 WO2021070775 A1 WO 2021070775A1 JP 2020037711 W JP2020037711 W JP 2020037711W WO 2021070775 A1 WO2021070775 A1 WO 2021070775A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
underlayer film
resist underlayer
forming composition
resist
Prior art date
Application number
PCT/JP2020/037711
Other languages
English (en)
French (fr)
Inventor
裕斗 緒方
裕和 西巻
中島 誠
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080070907.9A priority Critical patent/CN114503032A/zh
Priority to KR1020227010536A priority patent/KR20220079828A/ko
Priority to US17/641,852 priority patent/US20220334483A1/en
Priority to JP2021551640A priority patent/JPWO2021070775A1/ja
Publication of WO2021070775A1 publication Critical patent/WO2021070775A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/025Polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/36Chemically modified polycondensates by etherifying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention exhibits a high etching resistance, a good dry etching rate ratio and an optical constant, has good coating properties even on a so-called stepped substrate, has a small difference in film thickness after embedding, and can form a flat film.
  • the present invention relates to an underlayer film forming composition, a resist underlayer film using the resist underlayer film forming composition, and a method for producing a semiconductor apparatus.
  • Patent Document 1 a polymer having a repeating unit containing a benzene ring has been proposed.
  • a lithography process in which at least two resist underlayer films are formed and the resist underlayer film is used as a mask material in order to reduce the thickness of the resist layer required with the miniaturization of the resist pattern.
  • This involves providing at least one layer of an organic film (lower layer organic film) and at least one layer of an inorganic lower layer film on a semiconductor substrate, and patterning the inorganic lower layer film using the resist pattern formed on the upper layer resist film as a mask. It is a method of patterning the lower organic film using the above as a mask, and it is said that a pattern having a high aspect ratio can be formed.
  • an organic resin for example, acrylic resin, novolak resin
  • an inorganic material silicon resin (for example, organopolysiloxane), inorganic silicon compound (for example, SiON, SiO 2 ), etc.
  • silicon resin for example, organopolysiloxane
  • inorganic silicon compound for example, SiON, SiO 2
  • the organic film formed after the first pattern is formed is required to have the property of flattening the step.
  • the coating property of the resist underlayer film forming composition is low, the film thickness difference after embedding becomes large, and the substrate is flat. There is also a problem that it is difficult to form a thin film.
  • the present invention has been made on the basis of solving such a problem, exhibits high etching resistance, a good dry etching rate ratio and an optical constant, and has good coverage even on a so-called stepped substrate, and after embedding.
  • An object of the present invention is to provide a resist underlayer film forming composition capable of forming a flat film with a small difference in film thickness.
  • Another object of the present invention is to provide a resist underlayer film using the resist underlayer film forming composition, and a method for manufacturing a semiconductor device.
  • the present invention includes the following.
  • Ar represents an aromatic group having 6 to 20 carbon atoms which may be substituted.
  • Ar in the formula (1) is a naphthyl group, an anthracenyl group, or a combination thereof.
  • a step of forming a resist film on the formed resist underlayer film A step of forming a resist pattern by irradiating and developing a resist film formed with light or an electron beam.
  • a method for manufacturing a semiconductor device which comprises a step of etching and patterning the resist underlayer film through the formed resist pattern, and a step of processing a semiconductor substrate through the patterned resist underlayer film.
  • the resist underlayer film forming composition of the present invention not only has high etching resistance, a good dry etching rate ratio and an optical constant, but the obtained resist underlayer film has good coverage even on a so-called stepped substrate.
  • the difference in film thickness after embedding is small, a flat film is formed, and finer substrate processing is achieved.
  • the resist underlayer film forming composition of the present invention is effective for a lithography process in which at least two resist underlayer films are formed for the purpose of thinning the resist film thickness and the resist underlayer film is used as an etching mask. is there.
  • the resist underlayer film forming composition according to the present invention is a polymer having a partial structure represented by the following formula (1).
  • Ar represents an aromatic group having 6 to 20 carbon atoms which may be substituted). It contains a solvent and other components. This will be described in order below.
  • Ar in the partial structure represented by the formula (1) represents an aromatic group having 6 to 20 carbon atoms which may be substituted.
  • the aromatic group having 6 to 20 carbon atoms include a group obtained by removing one hydrogen atom from an aromatic compound which may be substituted.
  • Such aromatic compounds (A) It may be a monocyclic compound such as benzene.
  • C Heterocyclic compounds such as furan, thiophene and pyridine may be used.
  • D A compound in which the aromatic rings (a) to (c) are bonded by a single bond, such as biphenyl, may be used.
  • aromatic compounds include benzene, toluene, xylene, mesitylene, cumene, styrene, indole, naphthalene, azulene, anthracene, phenanthrene, naphthalene, triphenylene, pyrene, chrysen, thiophene, furan, pyridine, pyrimidine, pyrazine, pyrrole.
  • the aromatic group comprises a halogen atom, an alkyl group having 1 to 20 carbon atoms, a condensed ring group, a heterocyclic group, a hydroxy group, an amino group, a nitro group, an ether group, an alkoxy group, a cyano group, and a carboxyl group. It may be singly or plurally substituted with at least one group selected from the group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group having 1 to 20 carbon atoms examples include a linear or branched alkyl group which may or may not have a substituent, and examples thereof include a methyl group, an ethyl group, and an n-propyl group.
  • cyclic alkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group which may or may not have a substituent.
  • An alkyl group having 1 to 12 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • Oxygen atom, the alkyl group of a sulfur atom or an amide interrupted by coupling a 1 to 20 carbon atoms for example, structural units -CH 2 -O -, - CH 2 -S -, - CH 2 -NHCO- or - Those containing CH 2- CONH- can be mentioned.
  • -O-, -S-, -NHCO- or -CONH- may be one unit or two or more units in the alkyl group.
  • alkyl groups having 1 to 20 carbon atoms interrupted by -O-, -S-, -NHCO- or -CONH- units include methoxy group, ethoxy group, propoxy group, butoxy group, methylthio group and ethylthio.
  • methyl group an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group or an octadecyl group, each of which is a methoxy group or an ethoxy group.
  • the fused ring group is a substituent derived from a fused ring compound, and specific examples thereof include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a naphthacenyl group, a triphenylenyl group, a pyrenyl group and a chrysenyl group. Of these, a phenyl group, a naphthyl group, an anthracenyl group and a pyrenyl group are preferable.
  • the heterocyclic group is a substituent derived from a heterocyclic compound, and specifically, a thiophene group, a furan group, a pyridine group, a pyrimidine group, a pyrazine group, a pyrrole group, an oxazole group, a thiazole group, an imidazole group, and a quinoline.
  • Benzopyran group isochromen group (benzopyran group), xanthene group, thiazole group, pyrazole group, imidazoline group, azine group, among these, thiophene group, furan group, pyridine group, pyrimidine group, pyrazine group, pyrrole Groups, oxazole groups, thiazole groups, imidazole groups, quinoline groups, carbazole groups, quinazoline groups, purine groups, indridin groups, benzothiophene groups, benzofuran groups, indol groups and acrydin groups are preferable, and thiophene groups and furans are most preferable.
  • Ar is preferably a phenyl group, a naphthyl group, an anthrasenyl group, or a pyrenyl group, and more preferably a naphthyl group or an anthrasenyl group.
  • the polymer having the partial structure represented by the formula (1) has a plurality of Ars in the molecule, they may be the same or different from each other.
  • the polymer having a partial structure represented by the formula (1) has a partial structure other than the partial structure in an amount within a range that does not impair the effect of the present invention (for example, less than 50 mol%, less than 30 mol%, 20 mol). It may be contained in less than%, less than 10 mol%, or less than 5 mol%).
  • the mass ratio of Ar groups to the entire polymer is usually 1: 0.1 to 1: 0.5, preferably 1: 0.15 to 1: 0.4.
  • the weight average molecular weight Mw of the polymer having the partial structure represented by the formula (1) is usually 4,400 or less, preferably 2,200 or less, more preferably 1,100 or less, and usually 500 or more.
  • the polymer having the partial structure represented by the formula (1) can be obtained by reacting a main chain polymer having at least one epoxy group in the molecule with an aromatic carboxylic acid under appropriate conditions. Can be done.
  • a main chain polymer having at least one epoxy group in the molecule As a main chain polymer having at least one epoxy group in the molecule, And so on.
  • NC-7300L manufactured by Nippon Kayaku Co., Ltd.
  • an aromatic unit without a glycidyl group may be contained as long as the effect of the present invention is not impaired.
  • aromatic carboxylic acid examples include benzoic acid, 1-naphthalene carboxylic acid, 9-anthracene carboxylic acid, 1-pyrene carboxylic acid and the like.
  • the reaction can be carried out in a suitable solvent and in the presence of a suitable catalyst.
  • a suitable solvent is a solvent capable of uniformly dissolving the main chain polymer having at least one epoxy group in the above molecule and the aromatic carboxylic acid, and does not inhibit the reaction or induce a side reaction. If there is, it is not particularly limited.
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Propropylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, cycloheptanone, 4-methyl-2-pentanol, methyl 2-hydroxyisobutyrate, ethyl 2-hydroxyisobutyrate, ethoxy Ethyl acetate, 2-hydroxyethyl acetate, methyl 3-methoxypropionate, ethyl 3-methoxy
  • solvents can be used alone or in combination of two or more.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, and cyclohexanone are preferable.
  • the catalyst examples include a quaternary ammonium salt such as tetrabutylammonium bromide, a quaternary phosphonium salt such as ethyltriphenylphosphonium bromide, and a phosphine compound such as triphenylphosphine. Ethyltriphenylphosphonium bromide is preferred.
  • the reaction temperature is usually 40 ° C to 200 ° C.
  • the reaction time is variously selected depending on the reaction temperature, but is usually about 30 minutes to 50 hours.
  • a cation exchange resin for a catalyst and an anion exchange resin can be used in order to prevent unreacted acids, catalysts, inactivated catalysts, etc. from remaining in the reaction system.
  • solvent of the resist underlayer film forming composition according to the present invention any solvent that can dissolve the above reaction products can be used without particular limitation.
  • the resist underlayer film forming composition according to the present invention is used in a uniform solution state, it is recommended to use a solvent generally used in the lithography process in combination in consideration of its coating performance. ..
  • Examples of such a solvent include methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, methyl isobutyl carbinol, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, and propylene glycol mono.
  • R 1 , R 2 and R 3 in the formula (i) represent alkyl groups having 1 to 20 carbon atoms which may be interrupted by hydrogen atoms, oxygen atoms, sulfur atoms or amide bonds, respectively, and are identical to each other. They may be present or different, and may be combined with each other to form a ring structure.
  • alkyl group having 1 to 20 carbon atoms examples include a linear or branched alkyl group having or not having a substituent, for example, a methyl group, an ethyl group, and an n-propyl group.
  • a substituent for example, a methyl group, an ethyl group, and an n-propyl group.
  • An alkyl group having 1 to 12 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • Oxygen atom, the alkyl group of a sulfur atom or an amide interrupted by coupling a 1 to 20 carbon atoms for example, structural units -CH 2 -O -, - CH 2 -S -, - CH 2 -NHCO- or - Those containing CH 2- CONH- can be mentioned.
  • -O-, -S-, -NHCO- or -CONH- may be one unit or two or more units in the alkyl group.
  • alkyl groups having 1 to 20 carbon atoms interrupted by -O-, -S-, -NHCO- or -CONH- units include methoxy group, ethoxy group, propoxy group, butoxy group, methylthio group and ethylthio.
  • methyl group an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group or an octadecyl group, each of which is a methoxy group or an ethoxy group.
  • the compound represented by (i) is preferable, and 3-methoxy-N, N-dimethylpropionamide and N, N-dimethylisobutyramide are particularly preferable as the compound represented by the formula (i).
  • solvents can be used alone or in combination of two or more.
  • these solvents those having a boiling point of 160 ° C. or higher are preferable, and propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, cyclohexanone, 3-methoxy-N, N-dimethylpropionamide, N, N-Dimethylisobutyramide, 2,5-dimethylhexane-1,6-diyldiacetate (DAH; cas, 89182-68-3), and 1,6-diacetoxyhexane (cas, 6222-17-9), etc.
  • DASH 2,5-dimethylhexane-1,6-diyldiacetate
  • cas, 89182-68-3 1,6-diacetoxyhexane
  • cas, 6222-17-9 1,6-diacetoxyhexane
  • the resist underlayer film forming composition of the present invention may contain a cross-linking agent component.
  • the cross-linking agent include melamine-based, substituted urea-based, and polymers thereof.
  • it is a cross-linking agent having at least two cross-linking substituents, such as methoxymethylated glycol uryl (eg, tetramethoxymethyl glycol uryl), butoxymethylated glycol uryl, methoxymethylated melamine, butoxymethylated melamine, methoxy.
  • a cross-linking agent having high heat resistance can be used.
  • a compound containing a cross-linking substituent having an aromatic ring (for example, a benzene ring or a naphthalene ring) in the molecule can be preferably used.
  • Examples of this compound include a compound having a partial structure of the following formula (4) and a polymer or oligomer having a repeating unit of the following formula (5).
  • the above R 11 , R 12 , R 13 and R 14 are hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, and these alkyl groups can use the above-mentioned examples.
  • the above compounds can be obtained as products of Asahi Organic Materials Industry Co., Ltd. and Honshu Chemical Industry Co., Ltd.
  • the compound of formula (4-23) is Honshu Chemical Industry Co., Ltd., trade name TMOM-BP
  • the compound of formula (4-24) is Asahi Organic Materials Industry Co., Ltd., trade name TM. -Available as BIP-A.
  • the amount of the cross-linking agent added varies depending on the coating solvent used, the base substrate used, the required solution viscosity, the required film shape, etc., but is 0.001% by mass or more, 0.01, based on the total solid content.
  • Mass% or more 0.05 mass% or more, 0.5 mass% or more, or 1.0 mass% or more, 80 mass% or less, 50 mass% or less, 40 mass% or less, 20 mass% or less, or 10 It is mass% or less.
  • These cross-linking agents may cause a cross-linking reaction by self-condensation, but if cross-linking substituents are present in the polymer of the present invention, they can cause a cross-linking reaction with those cross-linking substituents.
  • the resist underlayer film forming composition of the present invention can contain an acid and / or an acid generator.
  • the acid include p-toluene sulfonic acid, trifluoromethane sulfonic acid, pyridinium p-toluene sulfonic acid, pyridinium phenol sulfonic acid, salicylic acid, 5-sulfosalicylic acid, 4-phenol sulfonic acid, camphor sulfonic acid, 4-chlorobenzene sulfonic acid.
  • Benzindisulfonic acid 1-naphthalenesulfonic acid, citric acid, benzoic acid, hydroxybenzoic acid, naphthalenecarboxylic acid and the like. Only one type of acid can be used, or two or more types can be used in combination.
  • the blending amount is usually 0.0001 to 20% by mass, preferably 0.0005 to 10% by mass, and more preferably 0.01 to 5% by mass with respect to the total solid content.
  • thermoacid generator examples include 2,4,4,6-tetrabromocyclohexadienone, benzointosylate, 2-nitrobenzyltosylate, K-PURE® CXC-1612, CXC-1614, and TAG. -2172, TAG-2179, TAG-2678, TAG2689, TAG2700 (manufactured by King Industries), and SI-45, SI-60, SI-80, SI-100, SI-110, SI-150 ( Sanshin Chemical Industry Co., Ltd.) Other organic sulfonic acid alkyl esters and the like can be mentioned.
  • the photoacid generator produces an acid when the resist is exposed. Therefore, the acidity of the underlayer film can be adjusted. This is a method for adjusting the acidity of the lower layer film to the acidity of the upper layer resist. Further, by adjusting the acidity of the lower layer film, the pattern shape of the resist formed in the upper layer can be adjusted.
  • the photoacid generator contained in the resist underlayer film forming composition of the present invention include an onium salt compound, a sulfonimide compound, and a disulfonyldiazomethane compound.
  • sulfoneimide compound examples include N- (trifluoromethanesulfonyloxy) succinimide, N- (nonafluoronormal butanesulfonyloxy) succinimide, N- (kanfersulfonyloxy) succinimide and N- (trifluoromethanesulfonyloxy) naphthalimide. Can be mentioned.
  • disulfonyl diazomethane compound examples include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, and bis (2,4-dimethylbenzenesulfonyl).
  • Diazomethane methylsulfonyl-p-toluenesulfonyldiazomethane and the like.
  • the ratio thereof is 0.01 to 10 parts by mass, 0.1 to 8 parts by mass, or 0.% by mass with respect to 100 parts by mass of the solid content of the resist underlayer film forming composition. It is 5 to 5 parts by mass.
  • the resist underlayer film forming composition of the present invention does not generate pinholes or stings, and a surfactant can be blended in order to further improve the coatability against surface unevenness.
  • a surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and polyoxyethylene nonylphenol ether.
  • Polyoxyethylene sorbitan such as sorbitan fatty acid esters, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc.
  • Nonionic surfactants such as fatty acid esters, Ftop EF301, EF303, EF352 (manufactured by Tochem Products Co., Ltd., trade name), Megafuck F171, F173, R-40, R-40N, R-40LM (DIC stock) Company, product name), Florard FC430, FC431 (Sumitomo 3M Co., Ltd., product name), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd., product name) ) And the like, organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Industry Co., Ltd.) and the like.
  • organosiloxane polymer KP341 manufactured by Shin-Etsu Chemical Industry Co., Ltd.
  • the blending amount of these surfactants is usually 2.0% by mass or less, preferably 1.0% by mass or less, based on the total solid content of the resist underlayer film material.
  • These surfactants may be used alone or in combination of two or more.
  • the ratio thereof is 0.0001 to 5 parts by mass, 0.001 to 1 part by mass, or 0.01 with respect to 100 parts by mass of the solid content of the resist underlayer film forming composition. To 0.5 parts by mass.
  • a light absorbing agent, a rheology adjusting agent, an adhesion auxiliary agent, or the like can be added to the resist underlayer film forming composition of the present invention.
  • Rheology modifiers are effective in improving the fluidity of the underlayer film forming composition.
  • Adhesive aids are effective in improving the adhesion between the semiconductor substrate or resist and the underlayer film.
  • Examples of the light-absorbing agent include commercially available light-absorbing agents described in "Technology and Market of Industrial Dyes” (CMC Publishing) and “Dye Handbook” (edited by Synthetic Organic Chemistry Association), for example, C.I. I. Disperse Yellow 1,3,4,5,7,8,13,23,31,49,50,51,54,60,64,66,68,79,82,88,90,93,102,114 and 124; C.I. I. Disperse Orange 1,5,13,25,29,30,31,44,57,72 and 73; C.I. I. Disperse Red 1,5,7,13,17,19,43,50,54,58,65,72,73,88,117,137,143,199 and 210; C.I.
  • the above-mentioned absorbent is usually blended in a proportion of 10% by mass or less, preferably 5% by mass or less, based on the total solid content of the resist underlayer film forming composition.
  • the rheology adjuster mainly improves the fluidity of the resist underlayer film forming composition, and particularly improves the film thickness uniformity of the resist underlayer film and the filling property of the resist underlayer film forming composition into the hole in the baking step. It is added for the purpose of enhancing.
  • Specific examples include phthalic acid derivatives such as dimethylphthalate, diethylphthalate, diisobutylphthalate, dihexylphthalate and butylisodecylphthalate, adipic acid derivatives such as dinormal butyl adipate, diisobutyl adipate, diisooctyl adipate and octyldecyl adipate, and didi.
  • Examples include maleic acid derivatives such as normal butylmalate, diethylmalate, and dinonylmalate, oleic acid derivatives such as methyloleate, butyloleate, and tetrahydrofurfuryloleate, and stearic acid derivatives such as normalbutylstearate and glyceryl stearate. It can.
  • These rheology adjusters are usually blended in a proportion of less than 30% by mass with respect to the total solid content of the resist underlayer film forming composition.
  • Adhesive aids are added mainly for the purpose of improving the adhesion between the substrate or resist and the resist underlayer film forming composition, and particularly preventing the resist from peeling off during development.
  • Specific examples include chlorosilanes such as trimethylchlorosilane, dimethylmethylolchlorosilane, methyldiphenylchlorosilane, and chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylmethylolethoxysilane, diphenyldimethoxysilane, and fluorine.
  • Alkoxysilanes such as enyltriethoxysilane, hexamethyldisilazane, N, N'-bis (trimethylsilyl) urea, dimethyltrimethylsilylamine, cilazanes such as trimethylsilylimidazole, methyloltrichlorosilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -Silanes such as aminopropyltriethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane, benzotriazole, benzimidazole, indazole, imidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, urasol , Heterocyclic compounds such as thiouracil, mercaptoimidazole, mercaptopyrimidine, urea such as 1,1-dimethylurea and 1,3-dimethyl
  • the solid content of the resist underlayer film forming composition according to the present invention is usually 0.1 to 70% by mass, preferably 0.1 to 60% by mass.
  • the solid content is the content ratio of all the components excluding the solvent from the resist underlayer film forming composition.
  • the proportion of the polymer in the solid content is preferably 1 to 100% by mass, 1 to 99.9% by mass, 50 to 99.9% by mass, 50 to 95% by mass, and 50 to 90% by mass in this order.
  • One of the scales for evaluating whether or not the resist underlayer film forming composition is in a uniform solution state is to observe the passability of a specific microfilter, but the resist underlayer film forming composition according to the present invention has. , Passes through a microfilter having a pore size of 0.2 ⁇ m and exhibits a uniform solution state.
  • microfilter material examples include fluororesins such as PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), PE (polyethylene), UPE (ultrahigh molecular weight polyethylene), and PP ( (Polypropylene), PSF (polysulphon), PES (polyethersulfone), nylon can be mentioned, but it is preferably made of PTFE (polytetrafluoroethylene).
  • fluororesins such as PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer)
  • PE polyethylene
  • UPE ultrahigh molecular weight polyethylene
  • PP polypropylene
  • PSF polysulphon
  • PES polyethersulfone
  • nylon but it is preferably made of PTFE (polytetrafluoroethylene).
  • the resist underlayer film forming composition of the present invention is applied by an appropriate coating method such as a spinner or a coater, and then the resist underlayer film is formed by firing.
  • the firing conditions are appropriately selected from a firing temperature of 80 ° C. to 400 ° C. and a firing time of 0.3 to 60 minutes.
  • the firing temperature is 150 ° C. to 350 ° C. and the firing time is 0.5 to 2 minutes.
  • the film thickness of the underlayer film formed is, for example, 10 to 1000 nm, 20 to 500 nm, 30 to 400 nm, or 50 to 300 nm.
  • an inorganic resist underlayer film (hard mask) on the organic resist underlayer film according to the present invention.
  • a Si-based inorganic material film can be formed by a CVD method or the like.
  • the resist underlayer film forming composition according to the present invention is applied onto a semiconductor substrate (so-called stepped substrate) having a portion having a step and a portion having no step, and fired to obtain the portion having the step. It is possible to form a resist underlayer film in which the step with the portion having no step is in the range of 3 to 70 nm.
  • a resist film for example, a photoresist layer is formed on the resist underlayer film.
  • the layer of the photoresist can be formed by a well-known method, that is, by applying and firing the photoresist composition solution on the underlayer film.
  • the film thickness of the photoresist is, for example, 50 to 10000 nm, 100 to 2000 nm, or 200 to 1000 nm.
  • the photoresist formed on the resist underlayer film is not particularly limited as long as it is sensitive to the light used for exposure. Both negative photoresists and positive photoresists can be used.
  • a chemically amplified photoresist composed of a low molecular weight compound that decomposes to increase the alkali dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, and a binder having a group that decomposes with an acid to increase the alkali dissolution rate.
  • the product name APEX-E manufactured by Shipley Co., Ltd. the product name PAR710 manufactured by Sumitomo Chemical Co., Ltd., and the product name SEPR430 manufactured by Shin-Etsu Chemical Co., Ltd. can be mentioned.
  • Proc. SPIE, Vol. 3999, 330-334 (2000), Proc. SPIE, Vol. 3999,357-364 (2000), and Proc. SPIE, Vol. Fluorine-containing atomic polymer-based photoresists as described in 3999,365-374 (2000) can be mentioned.
  • a resist pattern is formed by irradiation and development with light or an electron beam.
  • Exposure is performed through a predetermined mask. Near ultraviolet rays, far ultraviolet rays, extreme ultraviolet rays (for example, EUV (wavelength 13.5 nm)) and the like are used for exposure.
  • KrF excimer laser wavelength 248 nm
  • ArF excimer laser wavelength 193 nm
  • F 2 excimer laser wavelength 157 nm
  • ArF excimer laser (wavelength 193 nm) and EUV (wavelength 13.5 nm) are preferable.
  • post-exposure heating post exposure break
  • Post-exposure heating is carried out under appropriately selected conditions from a heating temperature of 70 ° C. to 150 ° C. and a heating time of 0.3 to 10 minutes.
  • a resist for electron beam lithography can be used instead of a photoresist as a resist.
  • the electron beam resist either a negative type or a positive type can be used.
  • a chemically amplified resist consisting of an acid generator and a binder having a group that decomposes with an acid to change the alkali dissolution rate, and a low molecular weight compound that decomposes with an alkali-soluble binder, an acid generator and an acid to change the alkali dissolution rate of the resist.
  • a chemically amplified resist composed of an acid generator, a binder having a group that decomposes with an acid to change the alkali dissolution rate, and a chemically amplified resist composed of a low molecular weight compound that decomposes with an acid to change the alkali dissolution rate of the resist are non-chemically amplified resists made of binders having a group that is decomposed by an electron beam to change the alkali dissolution rate, and non-chemically amplified resists made of a binder that is cut by an electron beam and has a site that changes the alkali dissolution rate. Even when these electron beam resists are used, a resist pattern can be formed in the same manner as when a photoresist is used with the irradiation source as an electron beam.
  • the developing solution includes an aqueous solution of alkali metal hydroxide such as potassium hydroxide and sodium hydroxide, an aqueous solution of quaternary ammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline, ethanolamine and propylamine.
  • An alkaline aqueous solution such as an amine aqueous solution such as ethylenediamine can be mentioned as an example.
  • a surfactant or the like can be added to these developers.
  • the development conditions are appropriately selected from a temperature of 5 to 50 ° C. and a time of 10 to 600 seconds.
  • the inorganic lower layer film (intermediate layer) is removed using the pattern of the photoresist (upper layer) thus formed as a protective film, and then the patterned photoresist and the inorganic lower layer film (intermediate layer) are formed.
  • the organic lower layer film (lower layer) is removed using the film as a protective film.
  • the semiconductor substrate is processed using the patterned inorganic lower layer film (intermediate layer) and the organic lower layer film (lower layer) as protective films.
  • the inorganic underlayer film (intermediate layer) of the portion from which the photoresist has been removed is removed by dry etching to expose the semiconductor substrate.
  • dry etching of the inorganic underlayer film tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, carbon monoxide, argon, oxygen, nitrogen, 6 Gases such as sulfur fluorofluoride, difluoromethane, nitrogen trifluoride and chlorine trifluoride, chlorine, trichloroborane and dichloroborane can be used.
  • a halogen-based gas for dry etching of the inorganic underlayer film, and more preferably a fluorine-based gas is used.
  • the fluorogas include tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, and difluoromethane (CH 2 F 2 ). Can be mentioned.
  • the organic underlayer film is removed using a film composed of a patterned photoresist and an inorganic underlayer film as a protective film.
  • the organic lower layer film (lower layer) is preferably performed by dry etching with an oxygen-based gas. This is because the inorganic underlayer film containing a large amount of silicon atoms is difficult to be removed by dry etching with an oxygen-based gas.
  • the processing of the semiconductor substrate is preferably performed by dry etching with a fluorine-based gas.
  • fluorine-based gas examples include tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, and difluoromethane (CH 2 F 2 ). Can be mentioned.
  • an organic antireflection film can be formed on the upper layer of the resist lower layer film before the photoresist is formed.
  • the antireflection film composition used there is not particularly limited, and can be arbitrarily selected and used from those conventionally used in the lithography process, and a commonly used method such as a spinner can be used.
  • the antireflection film can be formed by coating and firing with a coater.
  • an organic underlayer film can be formed on a substrate, an inorganic underlayer film can be formed on the film, and a photoresist can be further coated on the film.
  • the substrate can be processed by selecting an appropriate etching gas.
  • a fluorine-based gas having a sufficiently fast etching rate for a photoresist can be used as an etching gas to process a resist underlayer film, and a fluorine-based gas having a sufficiently fast etching rate for an inorganic underlayer film can be etched.
  • the substrate can be processed as a gas, and the substrate can be processed using an oxygen-based gas having a sufficiently high etching rate for the organic underlayer film as an etching gas.
  • the resist underlayer film formed from the resist underlayer film forming composition may also have absorption for the light depending on the wavelength of the light used in the lithography process. Then, in such a case, it can function as an antireflection film having an effect of preventing the reflected light from the substrate. Further, the underlayer film formed of the resist underlayer film forming composition of the present invention can also function as a hard mask.
  • the underlayer film of the present invention has a function of preventing an adverse effect on the substrate of a layer for preventing the interaction between the substrate and the photoresist, a material used for the photoresist, or a substance generated during exposure to the photoresist.
  • It can also be used as a layer, a layer having a function of preventing diffusion of substances generated from the substrate during heating and firing into the upper photoresist, and a barrier layer for reducing the poisoning effect of the photoresist layer by the dielectric layer of the semiconductor substrate. It is possible.
  • the underlayer film formed from the resist underlayer film forming composition is applied to the substrate on which the via holes are formed used in the dual damascene process, and can be used as an embedding material capable of filling the holes without gaps. It can also be used as a flattening material for flattening the surface of a semiconductor substrate having irregularities.
  • PGME Propylene glycol monomethyl ether
  • trade name NC-7300L manufactured by Nippon Kayaku Co., Ltd.
  • 1-naphthalene carboxylic acid Tokyo Kasei Kogyo Co., Ltd.
  • Manufactured 4.91 g and 0.26 g of ethyltriphenylphosphonium bromide as a catalyst were added and then reacted at 140 ° C. for 24 hours to obtain a solution containing a reaction product.
  • Anion exchange resin (Product name: Dowex [registered trademark] MONOSPHERE [registered trademark] 550A, Muromachi Technos Co., Ltd.) 12.00 g and cation exchange resin (Product name: Amberlist [registered trademark] 15JWET, Organo Corporation) 12.00 g was added, and the mixture was stirred at 25 ° C. to 30 ° C. for 4 hours and then filtered. GPC analysis of the obtained reaction product revealed that the weight average molecular weight was 770 in terms of standard polystyrene. The obtained reaction product is presumed to be a copolymer having a structural unit represented by the following formula (1).
  • Anion exchange resin (Product name: Dowex [registered trademark] MONOSPHERE [registered trademark] 550A, Muromachi Technos Co., Ltd.) 13.00 g and cation exchange resin (Product name: Amberlist [registered trademark] 15JWET, Organo Corporation) 13.00 g was added, and the mixture was stirred at 25 ° C. to 30 ° C. for 4 hours and then filtered. GPC analysis of the obtained reaction product revealed that the weight average molecular weight was 830 in terms of standard polystyrene. The obtained reaction product is presumed to be a copolymer having a structural unit represented by the following formula (2).
  • Anion exchange resin (Product name: Dowex [registered trademark] MONOSPHERE [registered trademark] 550A, Muromachi Technos Co., Ltd.) 10.00 g and cation exchange resin (Product name: Amberlist [registered trademark] 15JWET, Organo Corporation) 10.00 g was added, and the mixture was stirred at 25 ° C. to 30 ° C. for 4 hours and then filtered. GPC analysis of the obtained reaction product revealed that the weight average molecular weight was 750 in terms of standard polystyrene. The obtained reaction product is presumed to be a copolymer having a structural unit represented by the following formula (4).
  • Anion exchange resin (Product name: Dowex [registered trademark] MONOSPHERE [registered trademark] 550A, Muromachi Technos Co., Ltd.) 11.00 g and cation exchange resin (Product name: Amberlist [registered trademark] 15JWET, Organo Corporation) 11.00 g was added, and the mixture was stirred at 25 ° C. to 30 ° C. for 4 hours and then filtered. GPC analysis of the obtained reaction product revealed that the weight average molecular weight was 720 in terms of standard polystyrene. The obtained reaction product is presumed to be a copolymer having a structural unit represented by the following formula (5).
  • PGMEA propylene glycol monomethyl ether acetate
  • EHPE-3150 manufactured by Daicel Co., Ltd.
  • 9-anthracenecarboxylic acid 3 11 g, 2.09 g of benzoic acid, and 0.62 g of ethyltriphenylphosphonium bromide were added, and the mixture was heated and refluxed for 13 hours under a nitrogen atmosphere.
  • Example 2 To 4.63 g of the solution containing 1.26 g of the copolymer obtained in Synthesis Example 2 (solvent is PGME, solid content is 27.23% by mass), trade name TMOM-BP (manufactured by Honshu Chemical Industry Co., Ltd.) 0. 25 g, trade name K-PURE (registered trademark) TAG2689 (manufactured by King Industries) 1 mass% PGME solution 2.52 g, PGME 6.93 g, PGMEA 5.54 g, and surfactant (manufactured by DIC Corporation, trade name: R- 30N) 0.13 g of 1 mass% PGME solution was mixed to prepare a 7.7 mass% solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
  • solvent is PGME, solid content is 27.23% by mass
  • trade name K-PURE registered trademark
  • TAG2689 manufactured by King Industries
  • Example 3 To 5.06 g of the solution containing 1.26 g of the copolymer obtained in Synthesis Example 3 (solvent is PGME, solid content is 24.95% by mass), trade name TMOM-BP (manufactured by Honshu Chemical Industry Co., Ltd.) 0. 25 g, trade name K-PURE (registered trademark) TAG2689 (manufactured by King Industries) 1 mass% PGME solution 2.52 g, PGME 6.51 g, PGMEA 5.54 g, and surfactant (manufactured by DIC Corporation, trade name: R- 30N) 0.13 g of 1 mass% PGME solution was mixed to prepare a 7.7 mass% solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
  • solvent is PGME, solid content is 24.95% by mass
  • trade name K-PURE registered trademark
  • TAG2689 manufactured by King Industries
  • Example 4 4.19 g of the solution containing 1.26 g of the copolymer obtained in Synthesis Example 4 (solvent is PGME, solid content is 30.12% by mass), and the trade name TMOM-BP (manufactured by Honshu Chemical Industry Co., Ltd.) 0. 25 g, trade name K-PURE (registered trademark) TAG2689 (manufactured by King Industries) 1 mass% PGME solution 2.52 g, PGME 7.37 g, PGMEA 5.54 g, and surfactant (manufactured by DIC Corporation, trade name: R- 30N) 0.13 g of 1 mass% PGME solution was mixed to prepare a 7.7 mass% solution. The solution was filtered using a polytetrafluoroethylene microfilter having a pore size of 0.2 ⁇ m to prepare a resist underlayer film forming composition.
  • solvent is PGME, solid content is 30.12% by mass
  • trade name K-PURE registered trademark
  • TAG2689 manufactured by King
  • the resist underlayer film forming compositions prepared in Examples 1 to 4 and Comparative Example 1 were respectively applied onto a silicon wafer by a spinner. Then, it was baked on a hot plate at the temperature shown in Table 1 below for 1 minute to form a resist underlayer film (film thickness 0.2 ⁇ m). Then, the refractive index (n value) and attenuation coefficient (k value) at a wavelength of 193 nm were measured using an optical ellipsometer (VUV-VASE VU-302 manufactured by JA Woollam) for these resist underlayer films. .. The results are shown in Table 1 below. In order for the resist underlayer film to have a sufficient antireflection function, it is desirable that the k value at a wavelength of 193 nm is 0.1 or more and 0.4 or less.
  • the dry etching rate of the resist underlayer film formed by using the resist underlayer film forming composition prepared in Examples 1 and 2 has a sufficiently slower dry etching rate than the dry etching rate of Comparative Example 1. Therefore, it was shown that the substrate can be easily processed by using the resist underlayer film forming composition as a mask.
  • the step coating property of this substrate was observed using a scanning electron microscope (S-4800) manufactured by Hitachi High-Technologies Corporation, and the film thickness difference between the dense area (pattern portion) and the open area (non-pattern portion) of the step substrate was observed.
  • the flatness was evaluated by measuring (the coating step between the dense area and the open area, which is called Bias). Table 2 shows the values of the film thickness and the coating step in each area. In the flatness evaluation, the smaller the Bias value, the higher the flatness.
  • the present invention exhibits high etching resistance, a good dry etching rate ratio and an optical constant, has good coverage even on a so-called stepped substrate, has a small difference in film thickness after embedding, and forms a flat film.
  • a resist underlayer film forming composition to be obtained a resist underlayer film using the resist underlayer film forming composition, and a method for producing a semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials For Photolithography (AREA)

Abstract

高いエッチング耐性、良好なドライエッチング速度比及び光学定数を示し、いわゆる段差基板に対しても被覆性が良好で、埋め込み後の膜厚差が小さく、平坦な膜を形成し得るレジスト下層膜形成組成物を提供する。また、当該レジスト下層膜形成組成物を用いたレジスト下層膜、並びに半導体装置の製造方法を提供する。下記式(1)で表される部分構造を有する重合体と、溶剤とを含むレジスト下層膜形成組成物。(式中、Arは置換されていても良い炭素数6~20の芳香族基を表す)

Description

レジスト下層膜形成組成物
 本発明は、高いエッチング耐性、良好なドライエッチング速度比及び光学定数を示し、いわゆる段差基板に対しても被覆性が良好で、埋め込み後の膜厚差が小さく、平坦な膜を形成し得るレジスト下層膜形成組成物、当該レジスト下層膜形成組成物を用いたレジスト下層膜、並びに半導体装置の製造方法に関する。
 近年、多層レジストプロセス用のレジスト下層膜材料には、特に短波長の露光に対して反射防止膜として機能し、適当な光学定数を有すると共に、基板加工におけるエッチング耐性をも併せ持つことが求められており、ベンゼン環を含む繰返し単位を有する重合体の利用が提案されている(特許文献1)。
特開2004-354554
 レジストパターンの微細化に伴い求められるレジスト層の薄膜化のため、レジスト下層膜を少なくとも2層形成し、該レジスト下層膜をマスク材として使用する、リソグラフィープロセスが知られている。これは、半導体基板上に、少なくとも一層の有機膜(下層有機膜)と、少なくとも一層の無機下層膜とを設け、上層レジスト膜に形成したレジストパターンをマスクとして無機下層膜をパターニングし、該パターンをマスクとして下層有機膜のパターニングを行う方法であり、高アスペクト比のパターンを形成できるとされている。前記少なくとも2層を形成する材料として、有機樹脂(例えば、アクリル樹脂、ノボラック樹脂)と、無機系材料(ケイ素樹脂(例えば、オルガノポリシロキサン)、無機ケイ素化合物(例えば、SiON、SiO)等)の組み合わせが挙げられる。さらに近年では、1つのパターンを得るために2回のリソグラフィーと2回のエッチングを行うダブルパターニング技術が広く適用されており、それぞれの工程にて上記の多層プロセスが用いられている。その際、最初のパターンが形成された後に成膜する有機膜には段差を平坦化する特性が必要とされている。
 しかしながら、被加工基板上に形成されたレジストパターンに高低差や疎密のあるいわゆる段差基板に対して、レジスト下層膜形成用組成物による被覆性が低く、埋め込み後の膜厚差が大きくなり、平坦な膜を形成しにくいという問題もある。
 本発明は、このような課題解決に基づいてなされたものであり、高いエッチング耐性、良好なドライエッチング速度比及び光学定数を示し、いわゆる段差基板に対しても被覆性が良好で、埋め込み後の膜厚差が小さく、平坦な膜を形成し得るレジスト下層膜形成組成物を提供することにある。また本発明は、当該レジスト下層膜形成組成物を用いたレジスト下層膜、並びに半導体装置の製造方法を提供することを目的とする。
 本発明は以下を包含する。
[1] 下記式(1)で表される部分構造を有する重合体と、溶剤とを含むレジスト下層膜形成組成物。
Figure JPOXMLDOC01-appb-C000002

(式中、Arは置換されていても良い炭素数6~20の芳香族基を表す)
[2] 前記式(1)中のArがフェニル基、ナフチル基、アントラセニル基、ピレニル基、またはそれらの組み合わせである[1]記載のレジスト下層膜形成組成物。
[3] 前記式(1)中のArがナフチル基、アントラセニル基、またはそれらの組み合わせである[1]記載のレジスト下層膜形成組成物。
[4] 更に架橋剤を含む、[1]~[3]のいずれか1項に記載のレジスト下層膜形成組成物。
[5] 更に酸及び/又は酸発生剤を含む、[1]~[4]のいずれか1項に記載のレジスト下層膜形成組成物。
[6] 前記溶剤の沸点が、160℃以上である[1]に記載のレジスト下層膜形成組成物。
[7] [1]~[6]のいずれか1項に記載のレジスト下層膜形成組成物からなる塗布膜の焼成物であることを特徴とするレジスト下層膜。
[8] 半導体基板上に[1]~[6]のいずれか1項に記載のレジスト下層膜形成組成物を用いてレジスト下層膜を形成する工程、
 形成されたレジスト下層膜の上にレジスト膜を形成する工程、
 形成されたレジスト膜に対する光又は電子線の照射と現像によりレジストパターンを形成する工程、
 形成されたレジストパターンを介して前記レジスト下層膜をエッチングし、パターン化する工程、及び
 パターン化されたレジスト下層膜を介して半導体基板を加工する工程
を含む半導体装置の製造方法。
 本発明のレジスト下層膜形成組成物は、高エッチング耐性、良好なドライエッチング速度比及び光学定数を有するだけでなく、得られるレジスト下層膜は、いわゆる段差基板に対しても被覆性が良好で、埋め込み後の膜厚差が小さく、平坦な膜を形成し、より微細な基板加工が達成される。
 特に、本発明のレジスト下層膜形成組成物は、レジスト膜厚の薄膜化を目的としたレジスト下層膜を少なくとも2層形成し、該レジスト下層膜をエッチングマスクとして使用するリソグラフィープロセスに対して有効である。
[レジスト下層膜形成組成物]
 本発明に係るレジスト下層膜形成組成物は、下記式(1)で表される部分構造を有する重合体、
Figure JPOXMLDOC01-appb-C000003
(式中、Arは置換されていても良い炭素数6~20の芳香族基を表す)
溶剤、及びその他の成分を含むものである。以下に順に説明する。
[式(1)で表される部分構造を有する重合体]
 式(1)で表される部分構造におけるArは、置換されていても良い炭素数6~20の芳香族基を表す。
 炭素数6~20の芳香族基としては、置換されていても良い芳香族化合物から水素原子を1個除いた基が挙げられる。
 そのような芳香族化合物は、
(a)ベンゼンのような単環化合物であってもよく、
(b)ナフタレンのような縮合環化合物であってもよく、
(c)フラン、チオフェン、ピリジンのような複素環化合物であってもよく、
(d)ビフェニルのように(a)~(c)の芳香族環が単結合で結合された化合物であってもよく、
(e)フェニルナフチルアミンのように-(CH-(n=1~20)、-CH=CH-、-C≡C-、-N=N-、-NH-、-NR-、-NHCO-、-NRCO-、-S-、-COO-、-O-、-CO-及び-CH=N-で例示される一種又は二種以上のスペーサーにより(a)~(d)から選択される2つ以上の芳香族環が連結された化合物であってもよい。また、これらのスペーサーは2つ以上連結していてもよい。
 芳香族化合物の具体例としては、ベンゼン、トルエン、キシレン、メシチレン、クメン、スチレン、インデン、ナフタレン、アズレン、アントラセン、フェナントレン、ナフタセン、トリフェニレン、ピレン、クリセン、チオフェン、フラン、ピリジン、ピリミジン、ピラジン、ピロール、オキサゾール、チアゾール、イミダゾール、ナフタレン、アントラセン、キノリン、カルバゾール、キナゾリン、プリン、インドリジン、ベンゾチオフェン、ベンゾフラン、インドール、フェニルインドール、アクリジン等が挙げられる。
 上記芳香族基は、ハロゲン原子、炭素原子数1~20のアルキル基、縮環基、複素環基、ヒドロキシ基、アミノ基、ニトロ基、エーテル基、アルコキシ基、シアノ基、及びカルボキシル基からなる群より選択される少なくとも一つの基によって単数置換又は複数置換されていてもよい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 上記炭素原子数1~20のアルキル基としては、置換基を有しても、有さなくてもよい直鎖または分岐を有するアルキル基が挙げられ、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、シクロヘキシル基、2-エチルヘキシル基、n-ノニル基、イソノニル基、p-tert-ブチルシクロヘキシル基、n-デシル基、n-ドデシルノニル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基およびエイコシル基などが挙げられる。環状アルキル基としては、置換基を有しても、有さなくてもよいシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などが挙げられる。
 好ましくは炭素原子数1~12のアルキル基、より好ましくは炭素原子数1~8のアルキル基、更に好ましくは炭素原子数1~4のアルキル基である。
 酸素原子、硫黄原子又はアミド結合により中断された炭素原子数1~20のアルキル基としては、例えば、構造単位-CH-O-、-CH-S-、-CH-NHCO-又は-CH-CONH-を含有するものが挙げられる。-O-、-S-、-NHCO-又は-CONH-は前記アルキル基中に一単位又は二単位以上あってよい。-O-、-S-、-NHCO-又は-CONH-単位により中断された炭素原子数1~20のアルキル基の具体例は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、メチルカルボニルアミノ基、エチルカルボニルアミノ基、プロピルカルボニルアミノ基、ブチルカルボニルアミノ基、メチルアミノカルボニル基、エチルアミノカルボニル基、プロピルアミノカルボニル基、ブチルアミノカルボニル基等であり、更には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基又はオクタデシル基であって、その各々がメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、メチルカルボニルアミノ基、エチルカルボニルアミノ基、メチルアミノカルボニル基、エチルアミノカルボニル基等により置換されたものである。好ましくはメトキシ基、エトキシ基、メチルチオ基、エチルチオ基であり、より好ましくはメトキシ基、エトキシ基である。
 縮環基とは、縮合環化合物に由来する置換基であり、具体的にはフェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ナフタセニル基、トリフェニレニル基、ピレニル基及びクリセニル基が挙げられるが、これらの中でもフェニル基、ナフチル基、アントラセニル基及びピレニル基が好ましい。
 複素環基とは、複素環式化合物に由来する置換基であり、具体的にはチオフェン基、フラン基、ピリジン基、ピリミジン基、ピラジン基、ピロール基、オキサゾール基、チアゾール基、イミダゾール基、キノリン基、カルバゾール基、キナゾリン基、プリン基、インドリジン基、ベンゾチオフェン基、ベンゾフラン基、インドール基、アクリジン基、イソインドール基、ベンゾイミダゾール基、イソキノリン基、キノキサリン基、シンノリン基、プテリジン基、クロメン基(ベンゾピラン基)、イソクロメン基(ベンゾピラン基)、キサンテン基、チアゾール基、ピラゾール基、イミダゾリン基、アジン基が挙げられるが、これらの中でもチオフェン基、フラン基、ピリジン基、ピリミジン基、ピラジン基、ピロール基、オキサゾール基、チアゾール基、イミダゾール基、キノリン基、カルバゾール基、キナゾリン基、プリン基、インドリジン基、ベンゾチオフェン基、ベンゾフラン基、インドール基及びアクリジン基が好ましく、最も好ましいのはチオフェン基、フラン基、ピリジン基、ピリミジン基、ピロール基、オキサゾール基、チアゾール基、イミダゾール基及びカルバゾール基である。
 好ましくは、Arは、フェニル基、ナフチル基、アントラセニル基、又はピレニル基であり、より好ましくはナフチル基、又はアントラセニル基である。
 なお、式(1)で表される部分構造を有する重合体がその分子内に複数のArを有するとき、それらは同一であってもよく、相互に異なってもよい。
 式(1)で表される部分構造を有する重合体は、当該部分構造以外の部分構造を、本発明の効果を損なわない範囲の量(例えば、50モル%未満、30モル%未満、20モル%未満、10モル%未満、又は5モル%未満)で含んでいてもよい。
 重合体全体に対するAr基の質量比は、通常1:0.1乃至1:0.5であり、好ましくは1:0.15乃至1:0.4である。
 式(1)で表される部分構造を有する重合体の重量平均分子量Mwは、通常4,400以下、好ましくは2,200以下、より好ましくは1,100以下であり、通常500以上である。
[合成方法]
 式(1)で表される部分構造を有する重合体は、分子内に少なくとも一つのエポキシ基を有する主鎖重合体と、芳香族カルボン酸とを、適切な条件下に反応させることによって得ることができる。
 分子内に少なくとも一つのエポキシ基を有する主鎖重合体としては、
Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

などが挙げられる。例えば、商品名NC-7300L(日本化薬株式会社製)が入手可能である。なお、本発明の効果を損なわない限りにおいてグリシジル基がついていない芳香族ユニットが含まれてもよい。
 芳香族カルボン酸としては、安息香酸、1-ナフタレンカルボン酸、9-アントラセンカルボン酸、1-ピレンカルボン酸等が挙げられる。
 反応は適切な溶媒中において、適切な触媒の存在下に行うことができる。
 かかる溶媒は、上記の分子内に少なくとも一つのエポキシ基を有する主鎖重合体、及び芳香族カルボン酸を均一に溶解することができ、反応を阻害したり、副反応を誘発したりしない溶媒であれば特に限定されるものではない。
 例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、4-メチル-2-ペンタノール、2―ヒドロキシイソ酪酸メチル、2―ヒドロキシイソ酪酸エチル、エトキシ酢酸エチル、酢酸2-ヒドロキシエチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、2-ヘプタノン、メトキシシクロペンタン、アニソール、γ-ブチロラクトン、N-メチルピロリドン、N,N-ジメチルホルムアミド、及びN,N-ジメチルアセトアミドが挙げられる。これらの溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。これらの溶媒の中でプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、及びシクロヘキサノンが好ましい。
 触媒としては、例えば、テトラブチルアンモニウムブロマイド等の第四級アンモニウム塩、エチルトリフェニルホスホニウムブロマイド等の第四級ホスホニウム塩、トリフェニルホスフィン等のホスフィン系化合物等が挙げられる。エチルトリフェニルホスホニウムブロマイドが好ましい。
 反応温度は通常40℃乃至200℃である。反応時間は反応温度によって種々選択されるが、通常30分乃至50時間程度である。
 また、反応系に未反応の酸や触媒、不活性化した触媒などを残存させないために触媒用陽イオン交換樹脂、陰イオン交換樹脂を用いることができる。
[溶剤]
 本発明に係るレジスト下層膜形成組成物の溶剤としては、上記反応生成物を溶解できる溶剤であれば、特に制限なく使用することができる。特に、本発明に係るレジスト下層膜形成組成物は均一な溶液状態で用いられるものであるため、その塗布性能を考慮すると、リソグラフィー工程に一般的に使用される溶剤を併用することが推奨される。
 そのような溶剤としては、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、メチルイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエテルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル、乳酸エチル、乳酸プロピル、乳酸イソプロピル、乳酸ブチル、乳酸イソブチル、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソプロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸アミル、ギ酸イソアミル、酢酸メチル、酢酸エチル、酢酸アミル、酢酸イソアミル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-3-メチル酪酸メチル、メトキシ酢酸エチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシブチルアセテート、3-メトキシプロピルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、アセト酢酸メチル、トルエン、キシレン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン、N、N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、4-メチル-2-ペンタノール、及びγ-ブチロラクトン等を挙げることができる。これらの溶剤は単独で、または二種以上の組み合わせで使用することができる。
 また、WO2018/131562A1に記載された下記の化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000007

(式(i)中のR、R及びRは各々水素原子、酸素原子、硫黄原子又はアミド結合で中断されていてもよい炭素原子数1~20のアルキル基を表し、互いに同一であっても異なっても良く、互いに結合して環構造を形成しても良い。)
 炭素原子数1~20のアルキル基としては、置換基を有しても、有さなくてもよい直鎖または分岐を有するアルキル基が挙げられ、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、シクロヘキシル基、2-エチルヘキシル基、n-ノニル基、イソノニル基、p-tert-ブチルシクロヘキシル基、n-デシル基、n-ドデシルノニル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基およびエイコシル基などが挙げられる。好ましくは炭素原子数1~12のアルキル基、より好ましくは炭素原子数1~8のアルキル基、更に好ましくは炭素原子数1~4のアルキル基である。
 酸素原子、硫黄原子又はアミド結合により中断された炭素原子数1~20のアルキル基としては、例えば、構造単位-CH-O-、-CH-S-、-CH-NHCO-又は-CH-CONH-を含有するものが挙げられる。-O-、-S-、-NHCO-又は-CONH-は前記アルキル基中に一単位又は二単位以上あってよい。-O-、-S-、-NHCO-又は-CONH-単位により中断された炭素原子数1~20のアルキル基の具体例は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、メチルカルボニルアミノ基、エチルカルボニルアミノ基、プロピルカルボニルアミノ基、ブチルカルボニルアミノ基、メチルアミノカルボニル基、エチルアミノカルボニル基、プロピルアミノカルボニル基、ブチルアミノカルボニル基等であり、更には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基又はオクタデシル基であって、その各々がメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、メチルカルボニルアミノ基、エチルカルボニルアミノ基、メチルアミノカルボニル基、エチルアミノカルボニル基等により置換されたものである。好ましくはメトキシ基、エトキシ基、メチルチオ基、エチルチオ基であり、より好ましくはメトキシ基、エトキシ基である。
 これらの溶剤は比較的高沸点であることから、レジスト下層膜形成組成物に高埋め込み性や高平坦化性を付与するためにも有効である。
  以下に式(i)で表される好ましい化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000008
 上記の中で、3-メトキシ-N,N-ジメチルプロピオンアミド、N,N-ジメチルイソブチルアミド、及び
下記式:
Figure JPOXMLDOC01-appb-C000009

で表される化合物が好ましく、式(i)で表される化合物として特に好ましいのは、3-メトキシ-N,N-ジメチルプロピオンアミド、及びN,N-ジメチルイソブチルアミドである。
 これらの溶剤は単独で、または二種以上の組み合わせで使用することができる。これらの溶剤の中で沸点が160℃以上であるものが好ましく、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、シクロヘキサノン、3-メトキシ-N,N-ジメチルプロピオンアミド、N,N-ジメチルイソブチルアミド、2,5-ジメチルヘキサン-1,6-ジイルジアセテート(DAH;cas,89182-68-3)、及び1,6-ジアセトキシヘキサン(cas,6222-17-9)等が好ましい。特にプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、N,N-ジメチルイソブチルアミドが好ましい。
[架橋剤成分]
 本発明のレジスト下層膜形成組成物は架橋剤成分を含むことができる。その架橋剤としては、メラミン系、置換尿素系、またはそれらのポリマー系等が挙げられる。好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、メトキシメチル化グリコールウリル(例えば、テトラメトキシメチルグリコールウリル)、ブトキシメチル化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メトキシメチル化ベンゾグワナミン、ブトキシメチル化ベンゾグワナミン、メトキシメチル化尿素、ブトキシメチル化尿素、またはメトキシメチル化チオ尿素等の化合物である。また、これらの化合物の縮合体も使用することができる。
 また、上記架橋剤としては耐熱性の高い架橋剤を用いることができる。耐熱性の高い架橋剤としては分子内に芳香族環(例えば、ベンゼン環、ナフタレン環)を有する架橋形成置換基を含有する化合物を好ましく用いることができる。
 この化合物は下記式(4)の部分構造を有する化合物や、下記式(5)の繰り返し単位を有するポリマー又はオリゴマーが挙げられる。
Figure JPOXMLDOC01-appb-C000010

上記R11、R12、R13、及びR14は水素原子又は炭素数1乃至10のアルキル基であり、これらのアルキル基は上述の例示を用いることができる。
 式(4)及び式(5)の化合物、ポリマー、オリゴマーは以下に例示される。
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012
 上記化合物は旭有機材工業株式会社、本州化学工業株式会社の製品として入手することができる。例えば、上記架橋剤の中で、式(4-23)の化合物は本州化学工業株式会社、商品名TMOM-BPとして、式(4-24)の化合物は旭有機材工業株式会社、商品名TM-BIP-Aとして入手することができる。
 架橋剤の添加量は、使用する塗布溶媒、使用する下地基板、要求される溶液粘度、要求される膜形状などにより変動するが、全固形分に対して0.001質量%以上、0.01質量%以上、0.05質量%以上、0.5質量%以上、又は1.0質量%以上であり、80質量%以下、50質量%以下、40質量%以下、20質量%以下、又は10質量%以下である。これら架橋剤は自己縮合による架橋反応を起こすこともあるが、本発明の上記重合体中に架橋性置換基が存在する場合は、それらの架橋性置換基と架橋反応を起こすことができる。
[酸及び/又は酸発生剤]
 本発明のレジスト下層膜形成組成物は酸及び/又は酸発生剤を含有することができる。
 酸としては例えば、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムp-トルエンスルホン酸、ピリジニウムフェノールスルホン酸、サリチル酸、5-スルホサリチル酸、4-フェノールスルホン酸、カンファースルホン酸、4-クロロベンゼンスルホン酸、ベンゼンジスルホン酸、1-ナフタレンスルホン酸、クエン酸、安息香酸、ヒドロキシ安息香酸、ナフタレンカルボン酸等が挙げられる。
 酸は一種のみを使用することができ、または二種以上を組み合わせて使用することができる。配合量は全固形分に対して、通常0.0001乃至20質量%、好ましくは0.0005乃至10質量%、さらに好ましくは0.01乃至5質量%である。
 酸発生剤としては、熱酸発生剤や光酸発生剤が挙げられる。
 熱酸発生剤としては、2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、K-PURE〔登録商標〕CXC-1612、同CXC-1614、同TAG-2172、同TAG-2179、同TAG-2678、同TAG2689、同TAG2700(King Industries社製)、及びSI-45、SI-60、SI-80、SI-100、SI-110、SI-150(三新化学工業(株)製)その他有機スルホン酸アルキルエステル等が挙げられる。
 光酸発生剤は、レジストの露光時に酸を生ずる。そのため、下層膜の酸性度の調整ができる。これは、下層膜の酸性度を上層のレジストとの酸性度に合わせるための一方法である。また、下層膜の酸性度の調整によって、上層に形成されるレジストのパターン形状の調整ができる。
 本発明のレジスト下層膜形成組成物に含まれる光酸発生剤としては、オニウム塩化合物、スルホンイミド化合物、及びジスルホニルジアゾメタン化合物等が挙げられる。
 オニウム塩化合物としてはジフェニルヨードニウムヘキサフルオロホスフエート、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロノルマルブタンスルホネート、ジフェニルヨードニウムパーフルオロノルマルオクタンスルホネート、ジフェニルヨードニウムカンファースルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムカンファースルホネート及びビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等のヨードニウム塩化合物、及びトリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムノナフルオロノルマルブタンスルホネート、トリフェニルスルホニウムカンファースルホネート及びトリフェニルスルホニウムトリフルオロメタンスルホネート等のスルホニウム塩化合物等が挙げられる。
 スルホンイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)スクシンイミド、N-(ノナフルオロノルマルブタンスルホニルオキシ)スクシンイミド、N-(カンファースルホニルオキシ)スクシンイミド及びN-(トリフルオロメタンスルホニルオキシ)ナフタルイミド等が挙げられる。
 ジスルホニルジアゾメタン化合物としては、例えば、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(2,4-ジメチルベンゼンスルホニル)ジアゾメタン、及びメチルスルホニル-p-トルエンスルホニルジアゾメタン等が挙げられる。
 酸発生剤は一種のみを使用することができ、または二種以上を組み合わせて使用することができる。
 酸発生剤が使用される場合、その割合としては、レジスト下層膜形成組成物の固形分100質量部に対して、0.01乃至10質量部、または0.1乃至8質量部、または0.5乃至5質量部である。
[その他の成分]
 本発明のレジスト下層膜形成組成物には、ピンホールやストレーション等の発生がなく、表面むらに対する塗布性をさらに向上させるために、界面活性剤を配合することができる。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップEF301、EF303、EF352(株式会社トーケムプロダクツ製、商品名)、メガファックF171、F173、R-40、R-40N、R-40LM(DIC株式会社製、商品名)、フロラードFC430、FC431(住友スリーエム株式会社製、商品名)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子株式会社製、商品名)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業株式会社製)等を挙げることができる。これらの界面活性剤の配合量は、レジスト下層膜材料の全固形分に対して通常2.0質量%以下、好ましくは1.0質量%以下である。これらの界面活性剤は単独で使用してもよいし、また二種以上の組み合わせで使用することもできる。界面活性剤が使用される場合、その割合としては、レジスト下層膜形成組成物の固形分100質量部に対して0.0001乃至5質量部、または0.001乃至1質量部、または0.01乃至0.5質量部である。
 本発明のレジスト下層膜形成組成物には、吸光剤、レオロジー調整剤、接着補助剤などを添加することができる。レオロジー調整剤は、下層膜形成組成物の流動性を向上させるのに有効である。接着補助剤は、半導体基板またはレジストと下層膜の密着性を向上させるのに有効である。
 吸光剤としては例えば、「工業用色素の技術と市場」(CMC出版)や「染料便覧」(有機合成化学協会編)に記載の市販の吸光剤、例えば、C.I.Disperse Yellow 1,3,4,5,7,8,13,23,31,49,50,51,54,60,64,66,68,79,82,88,90,93,102,114及び124;C.I.Disperse Orange1,5,13,25,29,30,31,44,57,72及び73;C.I.Disperse Red 1,5,7,13,17,19,43,50,54,58,65,72,73,88,117,137,143,199及び210;C.I.Disperse Violet 43;C.I.Disperse Blue 96;C.I.Fluorescent Brightening Agent 112,135及び163;C.I.Solvent Orange2及び45;C.I.Solvent Red 1,3,8,23,24,25,27及び49;C.I.Pigment Green 10;C.I.Pigment Brown 2等を好適に用いることができる。上記吸光剤は通常、レジスト下層膜形成組成物の全固形分に対して10質量%以下、好ましくは5質量%以下の割合で配合される。
 レオロジー調整剤は、主にレジスト下層膜形成組成物の流動性を向上させ、特にベーキング工程において、レジスト下層膜の膜厚均一性の向上やホール内部へのレジスト下層膜形成組成物の充填性を高める目的で添加される。具体例としては、ジメチルフタレート、ジエチルフタレート、ジイソブチルフタレート、ジヘキシルフタレート、ブチルイソデシルフタレート等のフタル酸誘導体、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオクチルアジペート、オクチルデシルアジペート等のアジピン酸誘導体、ジノルマルブチルマレート、ジエチルマレート、ジノニルマレート等のマレイン酸誘導体、メチルオレート、ブチルオレート、テトラヒドロフルフリルオレート等のオレイン酸誘導体、またはノルマルブチルステアレート、グリセリルステアレート等のステアリン酸誘導体を挙げることができる。これらのレオロジー調整剤は、レジスト下層膜形成組成物の全固形分に対して通常30質量%未満の割合で配合される。
 接着補助剤は、主に基板あるいはレジストとレジスト下層膜形成組成物の密着性を向上させ、特に現像においてレジストが剥離しないようにするための目的で添加される。具体例としては、トリメチルクロロシラン、ジメチルメチロールクロロシラン、メチルジフエニルクロロシラン、クロロメチルジメチルクロロシラン等のクロロシラン類、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルメチロールエトキシシラン、ジフエニルジメトキシシラン、フエニルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、N,N’-ビス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、トリメチルシリルイミダゾール等のシラザン類、メチロールトリクロロシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のシラン類、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2-メルカプトベンズイミダゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、ウラゾール、チオウラシル、メルカプトイミダゾール、メルカプトピリミジン等の複素環式化合物や、1,1-ジメチルウレア、1,3-ジメチルウレア等の尿素、またはチオ尿素化合物を挙げることができる。これらの接着補助剤は、レジスト下層膜形成組成物の全固形分に対して通常5質量%未満、好ましくは2質量%未満の割合で配合される。
 本発明に係るレジスト下層膜形成組成物の固形分は通常0.1乃至70質量%、好ましくは0.1乃至60質量%とする。固形分はレジスト下層膜形成組成物から溶剤を除いた全成分の含有割合である。固形分中における上記重合体の割合は、1乃至100質量%、1乃至99.9質量%、50乃至99.9質量%、50乃至95質量%、50乃至90質量%の順で好ましい。
 レジスト下層膜形成組成物が均一な溶液状態であるかどうかを評価する尺度の一つは、特定のマイクロフィルターの通過性を観察することであるが、本発明に係るレジスト下層膜形成組成物は、孔径0.2μmのマイクロフィルターを通過し、均一な溶液状態を呈する。
 上記マイクロフィルター材質としては、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)などのフッ素系樹脂、PE(ポリエチレン)、UPE(超高分子量ポリエチレン)、PP(ポリプロピレン)、PSF(ポリスルフォン)、PES(ポリエーテルスルホン)、ナイロンが挙げられるが、PTFE(ポリテトラフルオロエチレン)製であることが好ましい。
[レジスト下層膜及び半導体装置の製造方法]
 以下、本発明に係るレジスト下層膜形成組成物を用いたレジスト下層膜及び半導体装置の製造方法について説明する。
 半導体装置の製造に使用される基板(例えば、シリコンウエハー基板、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、ガラス基板、ITO基板、ポリイミド基板、及び低誘電率材料(low-k材料)被覆基板等)の上に、スピナー、コーター等の適当な塗布方法により本発明のレジスト下層膜形成組成物が塗布され、その後、焼成することによりレジスト下層膜が形成される。焼成する条件としては、焼成温度80℃乃至400℃、焼成時間0.3乃至60分間の中から適宜、選択される。好ましくは、焼成温度150℃乃至350℃、焼成時間0.5乃至2分間である。ここで、形成される下層膜の膜厚としては、例えば、10乃至1000nmであり、または20乃至500nmであり、または30乃至400nmであり、または50乃至300nmである。
 また、本発明に係る有機レジスト下層膜上に無機レジスト下層膜(ハードマスク)を形成することもできる。例えば、WO2009/104552A1に記載のシリコン含有レジスト下層膜(無機レジスト下層膜)形成組成物をスピンコートで形成する方法の他、Si系の無機材料膜をCVD法などで形成することができる。
 また、本発明に係るレジスト下層膜形成組成物を、段差を有する部分と段差を有しない部分とを有する半導体基板(いわゆる段差基板)上に塗布し、焼成することにより、当該段差を有する部分と段差を有しない部分との段差が3~70nmの範囲内である、レジスト下層膜を形成することができる。
 次いでそのレジスト下層膜の上にレジスト膜、例えばフォトレジストの層が形成される。フォトレジストの層の形成は、周知の方法、すなわち、フォトレジスト組成物溶液の下層膜上への塗布及び焼成によって行なうことができる。フォトレジストの膜厚としては例えば50乃至10000nmであり、または100乃至2000nmであり、または200乃至1000nmである。
 レジスト下層膜の上に形成されるフォトレジストとしては露光に使用される光に感光するものであれば特に限定はない。ネガ型フォトレジスト及びポジ型フォトレジストのいずれも使用できる。ノボラック樹脂と1,2-ナフトキノンジアジドスルホン酸エステルとからなるポジ型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと光酸発生剤からなる化学増幅型フォトレジスト、酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物とアルカリ可溶性バインダーと光酸発生剤とからなる化学増幅型フォトレジスト、及び酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤からなる化学増幅型フォトレジストなどがある。例えば、シプレー社製商品名APEX-E、住友化学工業株式会社製商品名PAR710、及び信越化学工業株式会社製商品名SEPR430等が挙げられる。また、例えば、Proc.SPIE,Vol.3999,330-334(2000)、Proc.SPIE,Vol.3999,357-364(2000)、やProc.SPIE,Vol.3999,365-374(2000)に記載されているような、含フッ素原子ポリマー系フォトレジストを挙げることができる。
 次に、光又は電子線の照射と現像によりレジストパターンを形成する。まず、所定のマスクを通して露光が行なわれる。露光には、近紫外線、遠紫外線、又は極端紫外線(例えば、EUV(波長13.5nm))等が用いられる。具体的には、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)及びFエキシマレーザー(波長157nm)等を使用することができる。これらの中でも、ArFエキシマレーザー(波長193nm)及びEUV(波長13.5nm)が好ましい。露光後、必要に応じて露光後加熱(post exposure bake)を行なうこともできる。露光後加熱は、加熱温度70℃乃至150℃、加熱時間0.3乃至10分間から適宜、選択された条件で行われる。
 また、本発明ではレジストとしてフォトレジストに変えて電子線リソグラフィー用レジストを用いることができる。電子線レジストとしてはネガ型、ポジ型いずれも使用できる。酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーからなる化学増幅型レジスト、アルカリ可溶性バインダーと酸発生剤と酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーと酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、電子線によって分解してアルカリ溶解速度を変化させる基を有するバインダーからなる非化学増幅型レジスト、電子線によって切断されアルカリ溶解速度を変化させる部位を有するバインダーからなる非化学増幅型レジストなどがある。これらの電子線レジストを用いた場合も照射源を電子線としてフォトレジストを用いた場合と同様にレジストパターンを形成することができる。
 次いで、現像液によって現像が行なわれる。これにより、例えばポジ型フォトレジストが使用された場合は、露光された部分のフォトレジストが除去され、フォトレジストのパターンが形成される。
 現像液としては、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物の水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリンなどの水酸化四級アンモニウムの水溶液、エタノールアミン、プロピルアミン、エチレンジアミンなどのアミン水溶液等のアルカリ性水溶液を例として挙げることができる。さらに、これらの現像液に界面活性剤などを加えることもできる。現像の条件としては、温度5乃至50℃、時間10乃至600秒から適宜選択される。
 そして、このようにして形成されたフォトレジスト(上層)のパターンを保護膜として無機下層膜(中間層)の除去が行われ、次いでパターン化されたフォトレジスト及び無機下層膜(中間層)からなる膜を保護膜として、有機下層膜(下層)の除去が行われる。最後に、パターン化された無機下層膜(中間層)及び有機下層膜(下層)を保護膜として、半導体基板の加工が行なわれる。
 まず、フォトレジストが除去された部分の無機下層膜(中間層)をドライエッチングによって取り除き、半導体基板を露出させる。無機下層膜のドライエッチングにはテトラフルオロメタン(CF)、パーフルオロシクロブタン(C)、パーフルオロプロパン(C)、トリフルオロメタン、一酸化炭素、アルゴン、酸素、窒素、六フッ化硫黄、ジフルオロメタン、三フッ化窒素及び三フッ化塩素、塩素、トリクロロボラン及びジクロロボラン等のガスを使用することができる。無機下層膜のドライエッチングにはハロゲン系ガスを使用することが好ましく、フッ素系ガスによることがより好ましい。フッ素系ガスとしては、例えば、テトラフルオロメタン(CF)、パーフルオロシクロブタン(C)、パーフルオロプロパン(C)、トリフルオロメタン、及びジフルオロメタン(CH)等が挙げられる。
 その後、パターン化されたフォトレジスト及び無機下層膜からなる膜を保護膜として有機下層膜の除去が行われる。有機下層膜(下層)は酸素系ガスによるドライエッチングによって行なわれることが好ましい。シリコン原子を多く含む無機下層膜は、酸素系ガスによるドライエッチングでは除去されにくいからである。
 最後に、半導体基板の加工が行なわれる。半導体基板の加工はフッ素系ガスによるドライエッチングによって行なわれることが好ましい。
 フッ素系ガスとしては、例えば、テトラフルオロメタン(CF)、パーフルオロシクロブタン(C)、パーフルオロプロパン(C)、トリフルオロメタン、及びジフルオロメタン(CH)等が挙げられる。
 また、レジスト下層膜の上層には、フォトレジストの形成前に有機系の反射防止膜を形成することができる。そこで使用される反射防止膜組成物としては特に制限はなく、これまでリソグラフィープロセスにおいて慣用されているものの中から任意に選択して使用することができ、また、慣用されている方法、例えば、スピナー、コーターによる塗布及び焼成によって反射防止膜の形成を行なうことができる。
 本発明では基板上に有機下層膜を成膜した後、その上に無機下層膜を成膜し、更にその上にフォトレジストを被覆することができる。これによりフォトレジストのパターン幅が狭くなり、パターン倒れを防ぐためにフォトレジストを薄く被覆した場合でも、適切なエッチングガスを選択することにより基板の加工が可能になる。例えば、フォトレジストに対して十分に早いエッチング速度となるフッ素系ガスをエッチングガスとしてレジスト下層膜に加工が可能であり、また無機下層膜に対して十分に早いエッチング速度となるフッ素系ガスをエッチングガスとして基板の加工が可能であり、更に有機下層膜に対して十分に早いエッチング速度となる酸素系ガスをエッチングガスとして基板の加工を行うことができる。
 レジスト下層膜形成組成物より形成されるレジスト下層膜は、また、リソグラフィープロセスにおいて使用される光の波長によっては、その光に対する吸収を有することがある。そして、そのような場合には、基板からの反射光を防止する効果を有する反射防止膜として機能することができる。さらに、本発明のレジスト下層膜形成組成物で形成された下層膜はハードマスクとしても機能し得るものである。本発明の下層膜は、基板とフォトレジストとの相互作用の防止するための層、フォトレジストに用いられる材料又はフォトレジストへの露光時に生成する物質の基板への悪作用を防ぐ機能とを有する層、加熱焼成時に基板から生成する物質の上層フォトレジストへの拡散を防ぐ機能を有する層、及び半導体基板誘電体層によるフォトレジスト層のポイズニング効果を減少させるためのバリア層等として使用することも可能である。
 また、レジスト下層膜形成組成物より形成される下層膜は、デュアルダマシンプロセスで用いられるビアホールが形成された基板に適用され、ホールを隙間なく充填することができる埋め込み材として使用できる。また、凹凸のある半導体基板の表面を平坦化するための平坦化材として使用することもできる。
 以下、本発明のレジスト下層膜形成組成物の具体例を、下記実施例を用いて説明するが、これによって本発明が限定されるものではない。
 下記合成例で得られた反応生成物の重量平均分子量の測定に用いた装置等を示す。
装置:東ソー株式会社製HLC-8320GPC
GPCカラム:TSKgel Super-MultiporeHZ-N (2本)
カラム温度:40℃
流量:0.35ml/分
溶離液:THF 
標準試料:ポリスチレン
 使用した主な原料の化学構造(例示)と略称は以下のとおりである。
Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014

Figure JPOXMLDOC01-appb-C000015
<合成例1>
 プロピレングリコールモノメチルエーテル(以下、本明細書ではPGMEと略称する。)26.07gに、商品名NC-7300L(日本化薬株式会社製)6.00g、1-ナフタレンカルボン酸(東京化成工業株式会社製)4.91g、及び触媒としてエチルトリフェニルホスホニウムブロマイド0.26gを添加した後、140℃で24時間反応させ、反応生成物を含む溶液を得た。陰イオン交換樹脂(製品名:ダウエックス[登録商標]MONOSPHERE[登録商標]550A、ムロマチテクノス株式会社)12.00gと陽イオン交換樹脂(製品名:アンバーリスト[登録商標]15JWET、オルガノ株式会社)12.00gを加え、25℃乃至30℃で4時間撹拌後ろ過した。
 得られた反応生成物のGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は770であった。得られた反応生成物は、下記式(1)で表される構造単位を有する共重合体と推定される。
Figure JPOXMLDOC01-appb-C000016
<合成例2>
 PGME26.07gに、商品名NC-7300L(日本化薬株式会社製)6.00g、9-アントラセンカルボン酸(みどり化学株式会社製)6.33g、及び触媒としてエチルトリフェニルホスホニウムブロマイド0.26gを添加した後、140℃で24時間反応させ、反応生成物を含む溶液を得た。陰イオン交換樹脂(製品名:ダウエックス[登録商標]MONOSPHERE[登録商標]550A、ムロマチテクノス株式会社)13.00gと陽イオン交換樹脂(製品名:アンバーリスト[登録商標]15JWET、オルガノ株式会社)13.00gを加え、25℃乃至30℃で4時間撹拌後ろ過した。
 得られた反応生成物のGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は830であった。得られた反応生成物は、下記式(2)で表される構造単位を有する共重合体と推定される。
Figure JPOXMLDOC01-appb-C000017
<合成例3>
 PGME22.74gに、商品名NC-7300L(日本化薬株式会社製)6.00g、安息香酸(東京化成工業株式会社製)3.48g、及び触媒としてエチルトリフェニルホスホニウムブロマイド0.26gを添加した後、140℃で24時間反応させ、反応生成物を含む溶液を得た。陰イオン交換樹脂(製品名:ダウエックス[登録商標]MONOSPHERE[登録商標]550A、ムロマチテクノス株式会社)10.00gと陽イオン交換樹脂(製品名:アンバーリスト[登録商標]15JWET、オルガノ株式会社)10.00gを加え、25℃乃至30℃で4時間撹拌後ろ過した。
 得られた反応生成物のGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は750であった。得られた反応生成物は、下記式(4)で表される構造単位を有する共重合体と推定される。
Figure JPOXMLDOC01-appb-C000018
<合成例4>
 PGME25.83gに、商品名NC-7300L(日本化薬株式会社製)5.00g、1-ピレンカルボン酸(東京化成工業株式会社製)5.85g、及び触媒としてエチルトリフェニルホスホニウムブロマイド0.22gを添加した後、140℃で24時間反応させ、反応生成物を含む溶液を得た。陰イオン交換樹脂(製品名:ダウエックス[登録商標]MONOSPHERE[登録商標]550A、ムロマチテクノス株式会社)11.00gと陽イオン交換樹脂(製品名:アンバーリスト[登録商標]15JWET、オルガノ株式会社)11.00gを加え、25℃乃至30℃で4時間撹拌後ろ過した。
 得られた反応生成物のGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は720であった。得られた反応生成物は、下記式(5)で表される構造単位を有する共重合体と推定される。
Figure JPOXMLDOC01-appb-C000019
<比較合成例1>
 PGME7.57gに、プロピレングリコールモノメチルエーテルアセテート(以下、本明細書ではPGMEAと略称する。)17.67g、商品名:EHPE-3150(株式会社ダイセル製)5.00g、9-アントラセンカルボン酸3.11g、安息香酸2.09g、エチルトリフェニルホスホニウムブロマイド0.62gを加え、窒素雰囲気下、13時間加熱還流した。得られた溶液に陽イオン交換樹脂(製品名:アンバーリスト[登録商標]15JWET、オルガノ株式会社)16g、陰イオン交換樹脂(製品名:ダウエックス[登録商標]MONOSPHERE[登録商標]550A、ムロマチテクノス株式会社)16gを加え、25℃乃至30℃で4時間撹拌後ろ過した。
 得られた反応生成物のGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は4,700であった。得られた反応生成物は、下記式(3)で表される構造単位を有する共重合体と推定される。
Figure JPOXMLDOC01-appb-C000020
〔レジスト下層膜形成組成物の調製〕
<実施例1>
 前記合成例1で得た共重合体1.26gを含む溶液(溶剤はPGME、固形分は25.74質量%)4.90gに、商品名TMOM-BP(本州化学工業株式会社製)0.25g、商品名K-PURE〔登録商標〕TAG2689(King Industries社製)1質量%PGME溶液2.52g、PGME6.66g、PGMEA5.54g、及び界面活性剤(DIC株式会社製、商品名:R-30N)1質量%PGME溶液0.13gを混合し、7.7質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
<実施例2>
 前記合成例2で得た共重合体1.26gを含む溶液(溶剤はPGME、固形分は27.23質量%)4.63gに、商品名TMOM-BP(本州化学工業株式会社製)0.25g、商品名 K-PURE〔登録商標〕TAG2689(King Industries社製)1質量%PGME溶液2.52g、PGME6.93g、PGMEA5.54g、及び界面活性剤(DIC株式会社製、商品名:R-30N)1質量%PGME溶液0.13gを混合し、7.7質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
<実施例3>
 前記合成例3で得た共重合体1.26gを含む溶液(溶剤はPGME、固形分は24.95質量%)5.06gに、商品名TMOM-BP(本州化学工業株式会社製)0.25g、商品名K-PURE〔登録商標〕TAG2689(King Industries社製)1質量%PGME溶液2.52g、PGME6.51g、PGMEA5.54g、及び界面活性剤(DIC株式会社製、商品名:R-30N)1質量%PGME溶液0.13gを混合し、7.7質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
<実施例4>
 前記合成例4で得た共重合体1.26gを含む溶液(溶剤はPGME、固形分は30.12質量%)4.19gに、商品名TMOM-BP(本州化学工業株式会社製)0.25g、商品名K-PURE〔登録商標〕TAG2689(King Industries社製)1質量%PGME溶液2.52g、PGME7.37g、PGMEA5.54g、及び界面活性剤(DIC株式会社製、商品名:R-30N)1質量%PGME溶液0.13gを混合し、7.7質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
<比較例1>
 前記比較合成例1で得た共重合体4.51gを含む溶液(溶剤は合成時に用いたPGME/PGMEA混合溶剤、固形分は23.26質量%)19.52gに、テトラメトキシメチルグリコールウリル(製品名:POWDERLINK〔登録商標〕1174、日本サイテックインダストリーズ株式会社製)1.14g、ピリジニウムp-トルエンスルホナート1質量%PGME溶液3.41g、PGME50.68g、PGMEA14.80g、及び界面活性剤(DIC株式会社製、商品名:R-30)1質量%PGME溶液0.45gを混合し、6.35質量%溶液とした。その溶液を、孔径0.2μmのポリテトラフルオロエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成組成物を調製した。
〔フォトレジスト溶剤への溶出試験〕
 実施例1乃至実施例4、比較例1で調製されたレジスト下層膜形成組成物を、それぞれ、スピナーにより、シリコンウエハー上に塗布した。その後、ホットプレート上で下記表1に示す温度で1分間ベークし、レジスト下層膜(膜厚0.2μm)を形成した。これらのレジスト下層膜を、フォトレジスト溶液に使用される溶剤であるPGME/PGMEA混合溶媒(質量混合比70/30)に浸漬し、溶剤に不溶であることを確認し、その結果を下記表1に“○”で表した。
〔光学パラメーターの試験〕
 実施例1乃至実施例4、及び比較例1で調製されたレジスト下層膜形成組成物を、それぞれ、スピナーにより、シリコンウエハー上に塗布した。その後、ホットプレート上で下記表1に示す温度で1分間ベークし、レジスト下層膜(膜厚0.2μm)を形成した。そして、これらのレジスト下層膜を光エリプソメーター(J.A.Woollam社製、VUV-VASE VU-302)を用い、波長193nmでの屈折率(n値)及び減衰係数(k値)を測定した。その結果を下記表1に示す。上記レジスト下層膜が十分な反射防止機能を有するためには、波長193nmでのk値は0.1以上乃至0.4以下であることが望ましい。
〔ドライエッチング速度の測定〕
 実施例1乃至実施例4、及び比較例1で調製したレジスト下層膜形成組成物を用い、上記と同様の方法によって、シリコンウエハー上にレジスト下層膜を形成した。そして、これらのレジスト下層膜のドライエッチング速度を、サムコ株式会社製RIEシステムを用い、ドライエッチングガスとしてCFを使用した条件下で測定した。前記比較例1のドライエッチング速度を1.00としたときの、前記各レジスト下層膜のドライエッチング速度を算出した。その結果を下記表1に“相対ドライエッチング速度”として示す。実施例1及至実施例2で調製したレジスト下層膜形成組成物を用いて形成したレジスト下層膜のドライエッチング速度は、前記比較例1のドライエッチング速度に比べ、十分に遅いドライエッチング速度を有している為、本レジスト下層膜形成組成物をマスクとして基板加工が容易であることが示された。
Figure JPOXMLDOC01-appb-T000021
[埋め込み性評価]
 200nm膜厚のSiO基板、トレンチ幅50nm、ピッチ100nmのデンスパターンエリアにて埋め込み性を確認した。実施例1及至実施例2、及び比較例1及至比較例3で調製されたレジスト下層膜形成組成物の各々を上記基板上に塗布後、所定の条件で焼成して約200nmのレジスト下層膜を形成した。この基板の平坦化性を日立ハイテクノロジーズ株式会社製走査型電子顕微鏡(S-4800)を用いて観察し、パターン内部へのレジスト下層膜形成組成物の充填の有無を確認したところ、実施例1及至実施例2、及び比較例2及至比較例3は良好であったが比較例1はボイドが確認された。
[段差基板への被覆試験]
 段差被覆性の評価として、200nm膜厚のSiO基板で、トレンチ幅50nm、ピッチ100nmのデンスパターンエリア(DENSE)とパターンが形成されていないオープンエリア(OPEN)の被覆膜厚の比較を行った。実施例1乃至実施例2、及び比較例1乃至比較例3のレジスト下層膜形成組成物の各々を上記基板上に150nmの膜厚で塗布後、所定の温度で焼成した。この基板の段差被覆性を日立ハイテクノロジーズ株式会社製走査型電子顕微鏡(S-4800)を用いて観察し、段差基板のデンスエリア(パターン部)とオープンエリア(パターンなし部)との膜厚差(デンスエリアとオープンエリアとの塗布段差であり、Biasと呼ぶ)を測定することで平坦化性を評価した。各エリアでの膜厚と塗布段差の値を表2に示した。平坦化性評価はBiasの値が小さいほど、平坦化性が高い。
Figure JPOXMLDOC01-appb-T000022
 本発明によれば、高いエッチング耐性、良好なドライエッチング速度比及び光学定数を示し、いわゆる段差基板に対しても被覆性が良好で、埋め込み後の膜厚差が小さく、平坦な膜を形成し得るレジスト下層膜形成組成物、当該レジスト下層膜形成組成物を用いたレジスト下層膜、並びに半導体装置の製造方法が提供される。

Claims (8)

  1.  下記式(1)で表される部分構造を有する重合体と、溶剤とを含むレジスト下層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは置換されていても良い炭素数6~20の芳香族基を表す)
  2.  前記式(1)中のArがフェニル基、ナフチル基、アントラセニル基、ピレニル基、またはそれらの組み合わせである請求項1記載のレジスト下層膜形成組成物。
  3.  前記式(1)中のArがナフチル基、アントラセニル基、またはそれらの組み合わせである請求項1記載のレジスト下層膜形成組成物。
  4.  更に架橋剤を含む、請求項1~3のいずれか1項に記載のレジスト下層膜形成組成物。
  5.  更に酸及び/又は酸発生剤を含む、請求項1~4のいずれか1項に記載のレジスト下層膜形成組成物。
  6.  前記溶剤の沸点が、160℃以上である請求項1に記載のレジスト下層膜形成組成物。
  7.  請求項1~6のいずれか1項に記載のレジスト下層膜形成組成物からなる塗布膜の焼成物であることを特徴とするレジスト下層膜。
  8.  半導体基板上に請求項1~6のいずれか1項に記載のレジスト下層膜形成組成物を用いてレジスト下層膜を形成する工程、
     形成されたレジスト下層膜の上にレジスト膜を形成する工程、
     形成されたレジスト膜に対する光又は電子線の照射と現像によりレジストパターンを形成する工程、
     形成されたレジストパターンを介して前記レジスト下層膜をエッチングし、パターン化する工程、及び
     パターン化されたレジスト下層膜を介して半導体基板を加工する工程
    を含む半導体装置の製造方法。
PCT/JP2020/037711 2019-10-09 2020-10-05 レジスト下層膜形成組成物 WO2021070775A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080070907.9A CN114503032A (zh) 2019-10-09 2020-10-05 抗蚀剂下层膜形成用组合物
KR1020227010536A KR20220079828A (ko) 2019-10-09 2020-10-05 레지스트 하층막 형성 조성물
US17/641,852 US20220334483A1 (en) 2019-10-09 2020-10-05 Resist underlayer film-forming composition
JP2021551640A JPWO2021070775A1 (ja) 2019-10-09 2020-10-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-185975 2019-10-09
JP2019185975 2019-10-09

Publications (1)

Publication Number Publication Date
WO2021070775A1 true WO2021070775A1 (ja) 2021-04-15

Family

ID=75438164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037711 WO2021070775A1 (ja) 2019-10-09 2020-10-05 レジスト下層膜形成組成物

Country Status (6)

Country Link
US (1) US20220334483A1 (ja)
JP (1) JPWO2021070775A1 (ja)
KR (1) KR20220079828A (ja)
CN (1) CN114503032A (ja)
TW (1) TW202120576A (ja)
WO (1) WO2021070775A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132088A1 (ja) * 2005-06-10 2006-12-14 Nissan Chemical Industries, Ltd. ナフタレン樹脂誘導体を含有するリソグラフィー用塗布型下層膜形成組成物
WO2008105266A1 (ja) * 2007-02-27 2008-09-04 Nissan Chemical Industries, Ltd. 電子線リソグラフィー用レジスト下層膜形成組成物
WO2015041208A1 (ja) * 2013-09-19 2015-03-26 日産化学工業株式会社 脂肪族多環構造を含む自己組織化膜の下層膜形成組成物
JP2015081248A (ja) * 2013-10-24 2015-04-27 メルクパフォーマンスマテリアルズマニュファクチャリング合同会社 レジスト下層膜形成組成物
JP2015517126A (ja) * 2012-04-23 2015-06-18 ブルーワー サイエンス アイ エヌシー. 感光性、現像液可溶性の底面反射防止膜材料
WO2017183612A1 (ja) * 2016-04-18 2017-10-26 日産化学工業株式会社 ナフトールアラルキル樹脂を含むレジスト下層膜形成組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4105036B2 (ja) 2003-05-28 2008-06-18 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132088A1 (ja) * 2005-06-10 2006-12-14 Nissan Chemical Industries, Ltd. ナフタレン樹脂誘導体を含有するリソグラフィー用塗布型下層膜形成組成物
WO2008105266A1 (ja) * 2007-02-27 2008-09-04 Nissan Chemical Industries, Ltd. 電子線リソグラフィー用レジスト下層膜形成組成物
JP2015517126A (ja) * 2012-04-23 2015-06-18 ブルーワー サイエンス アイ エヌシー. 感光性、現像液可溶性の底面反射防止膜材料
WO2015041208A1 (ja) * 2013-09-19 2015-03-26 日産化学工業株式会社 脂肪族多環構造を含む自己組織化膜の下層膜形成組成物
JP2015081248A (ja) * 2013-10-24 2015-04-27 メルクパフォーマンスマテリアルズマニュファクチャリング合同会社 レジスト下層膜形成組成物
WO2017183612A1 (ja) * 2016-04-18 2017-10-26 日産化学工業株式会社 ナフトールアラルキル樹脂を含むレジスト下層膜形成組成物

Also Published As

Publication number Publication date
KR20220079828A (ko) 2022-06-14
JPWO2021070775A1 (ja) 2021-04-15
TW202120576A (zh) 2021-06-01
US20220334483A1 (en) 2022-10-20
CN114503032A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
JP5561494B2 (ja) Euvリソグラフィー用レジスト下層膜形成組成物
JP7287389B2 (ja) 炭素酸素間二重結合を利用したレジスト下層膜形成組成物
JP7327479B2 (ja) ジシアノスチリル基を有する複素環化合物を含むウェットエッチング可能なレジスト下層膜形成組成物
JP7056651B2 (ja) フルオレン化合物を用いたレジスト下層膜形成組成物
JP7092036B2 (ja) アミド溶媒を含むレジスト下層膜形成組成物
WO2019225614A1 (ja) 環式カルボニル化合物を用いたレジスト下層膜形成組成物
JP7255487B2 (ja) レジスト下層膜形成組成物
JP7416062B2 (ja) レジスト下層膜形成組成物
JP7322949B2 (ja) ジシアノスチリル基を含むウェットエッチング可能なレジスト下層膜形成組成物
WO2021070775A1 (ja) レジスト下層膜形成組成物
TWI842901B (zh) 阻劑下層膜形成組成物、阻劑下層膜及半導體裝置之製造方法
WO2021015181A1 (ja) レジスト下層膜形成組成物
TWI839551B (zh) 阻劑下層膜形成組成物
WO2021256527A1 (ja) ジアリールメタン誘導体を用いたレジスト下層膜形成組成物
JP2022132962A (ja) レジスト下層膜形成組成物
WO2021200241A1 (ja) レジスト下層膜形成組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873821

Country of ref document: EP

Kind code of ref document: A1