WO2021070531A1 - ウェーハ形状の測定方法 - Google Patents

ウェーハ形状の測定方法 Download PDF

Info

Publication number
WO2021070531A1
WO2021070531A1 PCT/JP2020/033514 JP2020033514W WO2021070531A1 WO 2021070531 A1 WO2021070531 A1 WO 2021070531A1 JP 2020033514 W JP2020033514 W JP 2020033514W WO 2021070531 A1 WO2021070531 A1 WO 2021070531A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
main surface
thickness unevenness
amount
optical system
Prior art date
Application number
PCT/JP2020/033514
Other languages
English (en)
French (fr)
Inventor
大西 理
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to US17/764,379 priority Critical patent/US20220290975A1/en
Priority to CN202080069761.6A priority patent/CN114467007B/zh
Priority to DE112020004242.1T priority patent/DE112020004242T5/de
Priority to KR1020227011054A priority patent/KR20220076466A/ko
Publication of WO2021070531A1 publication Critical patent/WO2021070531A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02021Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different faces of object, e.g. opposite faces

Definitions

  • the present invention relates to a method of measuring the shape of a wafer using an outer circumference holding type wafer flatness measuring machine.
  • Wafer Warp is obtained as the swell of the center line of the wafer thickness.
  • the outer circumference of the wafer is held by some method, but WaferSight and AFS manufactured by KLA Tencor are mechanically directly contacted from the chamfered portion of the wafer toward the center of the wafer by three grippers to hold the wafer. doing. Therefore, an external force is applied to the wafer due to the failure of the gripper and the degree of force applied at the three points, and the wafer is slightly deformed into a shape different from the original shape.
  • Paragraph 44 of Patent Document 1 describes that the amount of deformation of the wafer differs depending on the support position due to the influence of the anisotropy of the elastic modulus of the silicon single crystal. No impact has been suggested.
  • Warp is a parameter for measuring the shape of the wafer as it is, it affects the reproducibility of the measured value and particularly the machine difference.
  • it is possible to numerically represent the difference in Warp it is not possible to know how the wafer is deformed depending on the holding state, and it is not possible to know the true value of Warp of the wafer to be measured. There was no way to know if the device was healthy.
  • FIG. 9 shows the machine difference of the Warp measurement value of WaferSight2 + manufactured by KLA Tencor.
  • FIG. 9 is a bar graph showing the standard deviation of each wafer obtained when 15 wafers (300 mm in diameter) having various shapes (DSP, CMP, EPW) extracted from various processes are measured by 5 measuring machines. It is the one that was made. It can be seen that the standard deviation differs depending on the wafer. Due to the synergistic effect of the wafer shape and the outer peripheral holding state of the measuring machine, the machine difference of the Warp value indicating the magnitude relationship of the surface displacement amount of the wafer shape is not constant.
  • the present invention has been made in view of the above problems, and a wafer capable of measuring the original Warp value of a wafer using a flatness measuring machine and obtaining a Warp value in which a machine difference is suppressed can be obtained. It is an object of the present invention to provide a method for measuring a shape.
  • the present invention has a flatness measurement having a first optical system and a second optical system located on both side surfaces of a wafer having a first main surface and a second main surface, which are loaded into the machine.
  • a method for measuring a wafer shape which comprises a third step of calculating the original Warp value of the wafer by subtracting the outer peripheral holding deformation amount from the Warp value output by the flatness measuring machine. provide.
  • the Warp value measured and output while holding the outer circumference of the wafer by using a flatness measuring machine having the first optical system and the second optical system as described above includes the outer circumference holding deformation amount. Therefore, the original Warp value of the wafer could not be obtained.
  • the method for measuring the shape of a wafer of the present invention it is possible to obtain the original Warp value of the wafer excluding the amount of deformation for holding the outer circumference. Therefore, it is possible to obtain a Warp value with high reproducibility and suppressed machine error.
  • the wafer is put into the flatness measuring machine, and the amount of surface displacement of the first main surface is measured using only one of the optical systems.
  • the wafer With respect to the state at the time of loading the wafer in the measurement of the surface displacement amount of the first main surface, the wafer is charged into the flatness measuring machine in an inverted state, and the wafer is charged using only one of the optical systems.
  • the second step is It has a first thickness unevenness acquisition stage of the wafer, a second thickness unevenness acquisition stage of the wafer, and an outer peripheral holding deformation amount acquisition stage.
  • the surface displacement amount of the second main surface measured in the first step is corrected, and the corrected surface displacement amount of the second main surface is acquired.
  • the first thickness unevenness is obtained from the difference between the surface displacement amount of the first main surface measured in the first step and the surface displacement amount of the second main surface after the correction.
  • the second thickness unevenness is obtained from the difference between the surface displacement amount of the first main surface measured using one of the optical systems and the surface displacement amount of the second main surface measured using the other optical system.
  • the average value of the first thickness unevenness and the average value of the second thickness unevenness are calculated.
  • the revised first thickness unevenness is obtained.
  • the value of 1/2 of the difference between the revised first thickness unevenness and the second thickness unevenness can be used as the outer peripheral holding deformation amount.
  • the shape of the wafer can be measured using a plurality of the flatness measuring machines.
  • the wafer shape measuring method of the present invention the amount of deformation due to the holding of the outer circumference of the wafer at the time of measurement by the flatness measuring machine can be removed, and the original Warp value of the wafer can be obtained. Therefore, it is possible to obtain a Warp value with high reproducibility without any difference.
  • the maximum deviation from the Warp-bf value (the center surface (center line of thickness) of the wafer is calculated from the best fit surface (calculated from the center surface)) measured by the measuring method of the present invention with five flatness measuring machines. It is a graph which shows the standard deviation of the difference between the minimum value and the minimum value. It is a graph which shows the standard deviation of the Warp-bf value measured by the conventional method by 5 flatness measuring machines.
  • FIG. 5 shows a flatness measuring machine that can be used in the wafer shape measuring method of the present invention.
  • the flatness measuring machine 1 has a first optical system 2 and a second optical system 3 located on both side surfaces of a wafer W having a first main surface and a second main surface, which are loaded into the machine. have.
  • the first optical system 2 and the second optical system 3 each include an optical interference type measuring unit.
  • the distance between the sensor and the first main surface of the wafer W can be measured, and the amount of surface displacement of the first main surface can be measured.
  • the distance between the sensor and the second main surface can be measured, and the amount of surface displacement of the second main surface can be measured.
  • the amount of surface displacement of the first main surface and the amount of surface displacement of the second main surface can be measured individually.
  • the thickness unevenness (thickness distribution (flatness)) of the wafer W and the Warp value of the wafer W can be measured by the first optical system 2 and the second optical system 3.
  • FIG. 6 shows an example of a mechanism for holding the outer circumference of the wafer at the time of measurement.
  • the flatness measuring machine 1 has, for example, three grippers 4-6, and these grippers 4-6 hold the outer periphery of the wafer in a vertically standing state, and the first optical system 2.
  • the shape of the wafer W can be measured by the second optical system 3.
  • the wafer W (diameter 300 mm, plane orientation (100)) is 0 °, 135 °, and 225 °. It is held by grippers 4 to 6 at the position of. Note that DF1-3 in FIG.
  • the gripper 6 is an instrument that suppresses the vibration of the wafer W between the three grippers 4-6. However, it is in contact with the wafer W only to the extent that it touches it, does not positively apply force to the wafer W, and is not a holder such as the gripper 4-6.
  • Such a flatness measuring machine 1 includes, for example, Wafersight and AFS manufactured by KLA Tencor, but of course, the present invention is not limited to this.
  • FIG. 1 shows an example of the flow of the measurement method of the present invention.
  • the surface displacement amount of the first main surface and the surface displacement amount of the second main surface of the wafer W are measured, respectively.
  • the second step of calculating the outer circumference holding deformation amount caused by the outer peripheral holding of the wafer W using the measured surface displacement amounts of the first and second main surfaces has a third step of calculating the original Warp value of the wafer by subtracting the holding deformation amount.
  • the significance of the first step will be explained.
  • the usual measurement in the conventional measurement method the first main surface of the wafer is the first optical system 2 and the second main surface of the wafer. Measures the amount of surface displacement with the second optical system 3), the effect of the shape change due to the holding of the outer circumference of the wafer W on the parameter (thickness unevenness of the wafer W) obtained from the measured amount of surface displacement is the calculation of the thickness. In principle, it does not appear.
  • the influence of wafer deformation due to wafer holding is directly applied to the parameter (thickness unevenness (thickness distribution)).
  • the outer circumference holding deformation amount may be extracted from the parameter and subtracted from the Warp value (raw Warp value) from the measuring machine.
  • FIG. 2 is an explanatory diagram showing the flow of the following procedure 1-4.
  • the wafer is put into a flatness measuring machine, and the amount of surface displacement of the first main surface is measured using only one optical system (procedure 1).
  • the surface displacement amount of the first main surface of the wafer W is measured by the first optical system 2.
  • the wafer is charged into the flatness measuring machine in an inverted state, and the second main surface uses only one of the above optical systems.
  • the amount of surface displacement is measured (procedure 2).
  • the same wafer W is inverted, and the surface displacement amount of the second main surface of the wafer W is measured by the first optical system 2.
  • the wafer W is loaded in an inverted state with respect to the state at the time of loading the wafer W in the measurement of the surface displacement amount of the first main surface, and the first optical system is charged in the same manner as in the case of the first main surface. Measure according to 2.
  • the second step is roughly divided into a first thickness unevenness acquisition stage of the wafer, a second thickness unevenness acquisition stage of the wafer, and an outer peripheral holding deformation amount acquisition stage.
  • the surface displacement amount of the second main surface measured in the first step is corrected, and the corrected surface displacement amount of the second main surface is acquired (procedure 3).
  • the amount of surface displacement of the second main surface of the wafer W measured in the first step is expressed by the r-theta coordinate system, and the deviation of the r-theta coordinates due to the inversion of the wafer W in the first step is corrected.
  • the amount of surface displacement of the second main surface is matched because the phase in the r-theta coordinate system is different from that of the first main surface due to the fact that the wafer is inverted.
  • the phase is adjusted so as to be the position of the surface displacement amount of the second main surface as seen from the first main surface side.
  • the amount of surface displacement of the second main surface measured in the first step is reversed by using the rotation axis at the time of inversion at the time of measuring the second main surface in the first step as the rotation axis. It is preferable to perform the first step and the inversion here with reference to the notch of the wafer W and the like. Further, correction is performed to invert the sign of the surface displacement amount. By doing so, the relationship between the r-theta coordinates of the surface displacement amount of the second main surface and the state of the surface displacement amount become the same as the state seen from the first main surface side of the wafer (the corrected second main surface). Surface displacement amount).
  • the first thickness unevenness is acquired from the difference between the surface displacement amount of the first main surface measured in the first step and the surface displacement amount of the second main surface after correction (procedure 4).
  • step 5 if it is a normal measurement, (the amount of surface displacement of the first main surface measured by the first optical system 2)-(the second measured by the second optical system 3).
  • the thickness unevenness of the wafer W can be obtained by subtracting the surface displacement amount of the main surface), but here (the surface displacement amount of the first main surface measured in the first step)-(the corrected second main surface). Since the subtraction of the surface displacement amount) is simply the difference between the surface displacement amounts obtained only by the first optical system 2, it becomes a temporary thickness unevenness that does not include the absolute thickness information.
  • FIG. 3 is an explanatory diagram showing the flow of the procedure 5.
  • the first thickness unevenness cannot be said to be the original thickness unevenness of the wafer. Therefore, in order to acquire the thickness unevenness measured only by the first optical system 2 in the procedure 6 described later, first, here, both the first optical system 2 and the second optical system 3 are used according to a normal measurement method.
  • the thickness unevenness of the wafer is measured by the standard method (conventional normal measuring method) originally used by the measuring machine (second thickness unevenness).
  • the surface displacement amount of the second main surface measured by the second optical system 3 is subtracted from the surface displacement amount of the first main surface measured by the first optical system 2 to obtain the second thickness unevenness.
  • the amount of surface displacement of the first main surface by the first optical system 2 and the amount of surface displacement of the second main surface by the second optical system 3 may be measured at this time, or may be performed in advance.
  • the amount of surface displacement thereof may be acquired in advance. For example, it can be measured at the same time as in step 1.
  • FIG. 4 is an explanatory diagram showing the flow of the following steps 6 and 7. It was revised by calculating the average value of the first thickness unevenness and the average value of the second thickness unevenness, and adding the difference between the average value of the second thickness unevenness and the average value of the first thickness unevenness to the first thickness unevenness. Acquire the first thickness unevenness (procedure 6). As described in step 5, in this procedure 6, the thickness unevenness measured only by the first optical system 2 is acquired. First, the average value of the first thickness unevenness and the average value of the second thickness unevenness are calculated.
  • each of the first thickness unevenness and the second thickness unevenness is about 1.76 million points in the wafer surface. It is a set of thickness data.
  • the average value of the first thickness unevenness and the average value of the second thickness unevenness mean those average values.
  • the average value (average thickness) of the first thickness unevenness becomes the average value (average thickness) of the second thickness unevenness.
  • the value of 1/2 of the difference between the revised first thickness unevenness and the second thickness unevenness is set as the outer peripheral holding deformation amount (procedure 7). In this way, by subtracting the second thickness unevenness from the revised first thickness unevenness and multiplying by 1/2, it is possible to quantitatively extract and obtain only the amount of deformation due to the holding of the outer circumference.
  • the original Warp value of the wafer is calculated by subtracting the outer peripheral holding deformation amount from the Warp value output by the flatness measuring machine (Procedure 8). In this way, the calculated outer circumference holding deformation amount is subtracted from the raw Warp value (including wafer deformation due to outer circumference holding) directly output from the flatness measuring machine 1.
  • Warp is an index that shows how much the center line of thickness differs from the best fit surface of the entire wafer or the best fit surface calculated at the specified three points at the maximum when looking at the cross section of the wafer.
  • the raw Warp value from the flatness measuring machine 1 is automatically calculated based on the state including the influence of deformation due to the holding of the outer circumference.
  • the outer circumference holding deformation amount is subtracted from the raw Warp value as in step 8.
  • the true value the one excluding the outer circumference holding deformation amount. Therefore, it is possible to improve the machine difference regarding the Warp value between the measuring machines caused by the outer circumference holding deformation.
  • steps 1 and 2 are not limited, but by obtaining the outer peripheral holding deformation amount by a method such as steps 1 to 7, the true Warp value can be approached even more reliably. be able to.
  • the amount of deformation caused by holding the outer circumference by the gripper for each measuring machine is reflected as a machine difference, but as described above, in the present invention, such a machine is used. Since the amount of outer circumference holding deformation that causes the difference can be excluded, it is possible to improve and reduce the machine difference. Therefore, even if a plurality of measuring machines are used, it is possible to suppress a large variation in the Warp value among the measuring machines.
  • FIG. 7 is a measurement diagram showing the amount of outer peripheral holding deformation of the five flatness measuring machines.
  • FIG. 8 shows the standard deviation between the measuring machines of the true Warp value for each wafer obtained in this way.
  • the graph of FIG. 9 is also displayed for easy comparison with the results of the conventional method.
  • the graph on the left is based on the conventional method, and the graph on the right is based on the present invention. According to the measuring method of the present invention, the standard deviation of the Warp value between the measuring machines is reduced and improved, and the effect of improving the machine difference can be clearly seen.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is an example, and any one having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本発明は、機内に投入された第1主面および第2主面を有するウェーハの両面側にそれぞれ位置する第1光学系と第2光学系を有するフラットネス測定機により、ウェーハの外周を保持しながらその形状を測定する方法であって、第1、第2光学系のうちのどちらか一方の光学系のみを用いて、ウェーハの第1主面および第2主面の表面変位量を各々測定する第1工程と、一方の光学系により測定した第1主面および第2主面の表面変位量を用いて、ウェーハの外周保持によって生じる外周保持変形量を算出する第2工程と、フラットネス測定機が出力するWarp値から、外周保持変形量を減算することで、ウェーハの本来のWarp値を算出する第3工程とを有するウェーハ形状の測定方法である。これにより、フラットネス測定機を用いてウェーハ本来のWarp値を測定することができ、機差の抑制されたWarp値を得ることができるウェーハ形状の測定方法が提供される。

Description

ウェーハ形状の測定方法
 本発明は、外周保持タイプのウェーハのフラットネス測定機を用いたウェーハの形状を測定する方法に関する。
 デザインルールの狭小化に伴い、ウェーハ厚みの平坦度(厚みムラ)はもちろん、ウェーハ形状(Warp、SORI)の平滑性まで品質として求められるようになってきた。
 一般的にウェーハのWarpはウェーハの厚みの中心線のうねりとして求められる。その際、ウェーハは何らかの方法で外周を保持されるが、KLA Tencor社製のWaferSightやAFSは、3点のグリッパーによってウェーハの面取り部からウェーハ中心に向かって力学的に直接接触してウェーハを保持している。そのため、グリッパーの出来不出来、3点の力の掛り具合によって、ウェーハには外力が加わることになり、本来の形状とは異なる形状にウェーハが僅かに変形してしまう。
 特許文献1の段落44にシリコン単結晶の持つ弾性率の異方性の影響により、支持位置の違いによりウェーハの変形量が異なることが記載されているが、そのときの測定機の機差の影響は示唆されていない。
特開2007-64748号公報
 このウェーハの外周保持による変形は、厚み測定には原理上、ほとんど影響しないが、Warpはウェーハの形状をそのまま測定するパラメーターであるため、測定値の再現性や、特に機差として影響を与える。
 数値上、Warpの機差を表すことは出来るが、保持状態によってどのようにウェーハが変形しているのかを知ることができない上に測定対象ウェーハのWarpの真値を知ることができないため、どの装置が健全であるかを知る方法が無かった。
 図9は、KLA Tencor社製のWaferSight2+のWarp測定値の機差を示すものである。図9は様々な工程から抜き取った様々な形状(DSP、CMP、EPW)を持つ15枚のウェーハ(直径300mm)を5台の測定機で測定した際に得られる、ウェーハ毎の標準偏差を棒グラフにしたものである。ウェーハによって標準偏差が異なっているのが分かる。ウェーハ形状と測定機の外周保持状態の相乗効果によって、ウェーハ形状の表面変位量の大小関係を示すWarp値の機差は一定にはならない。
 本発明は、上記問題点に鑑みてなされたものであって、フラットネス測定機を用いてウェーハ本来のWarp値を測定することができ、機差の抑制されたWarp値を得ることができるウェーハ形状の測定方法を提供することを目的とする。
 上記目的を達成するために、本発明は、機内に投入された第1主面および第2主面を有するウェーハの両面側にそれぞれ位置する第1光学系と第2光学系を有するフラットネス測定機により、前記ウェーハの外周を保持しながら、該ウェーハの形状を測定する方法であって、
 前記第1光学系および前記第2光学系のうちのどちらか一方の光学系のみを用いて、前記ウェーハの第1主面の表面変位量および第2主面の表面変位量を各々測定する第1工程と、
 前記一方の光学系により測定した前記第1主面の表面変位量および前記第2主面の表面変位量を用いて、前記ウェーハの外周保持によって生じる外周保持変形量を算出する第2工程と、
 前記フラットネス測定機が出力するWarp値から、前記外周保持変形量を減算することで、前記ウェーハの本来のWarp値を算出する第3工程と
 を有することを特徴とするウェーハ形状の測定方法を提供する。
 従来、上記のような第1光学系および第2光学系を有するフラットネス測定機を用い、ウェーハの外周を保持しながら測定して出力されるWarp値は上記外周保持変形量を含んでおり、そのためウェーハ本来のWarp値を得られていなかった。これに対して本発明のウェーハ形状の測定方法では、その外周保持変形量を除いたウェーハ本来のWarp値を得ることができる。したがって、再現性高く、また、機差の抑制されたWarp値を得ることができる。
 このとき、前記第1工程において、
 前記フラットネス測定機に前記ウェーハを投入し、前記一方の光学系のみを用いて前記第1主面の表面変位量を測定し、
 該第1主面の表面変位量の測定における前記ウェーハの投入時の状態に対して、前記ウェーハを反転させた状態で前記フラットネス測定機に投入し、前記一方の光学系のみを用いて前記第2主面の表面変位量を測定し、
 前記第2工程は、
 前記ウェーハの第1厚みムラの取得段階と、前記ウェーハの第2厚みムラの取得段階と、前記外周保持変形量の取得段階とを有し、
 前記ウェーハの第1厚みムラの取得段階において、
 前記第1工程で測定した第2主面の表面変位量について補正を行い、補正後の第2主面の表面変位量を取得し、
 前記第1工程で測定した第1主面の表面変位量と、前記補正後の第2主面の表面変位量との差から、前記第1厚みムラを取得し、
 前記ウェーハの第2厚みムラの取得段階では、
 前記一方の光学系を用いて測定した第1主面の表面変位量と、他方の光学系を用いて測定した第2主面の表面変位量との差から、前記第2厚みムラを取得し、
 前記外周保持変形量の取得段階では、
 前記第1厚みムラの平均値と前記第2厚みムラの平均値を算出し、
 該第2厚みムラの平均値と前記第1厚みムラの平均値との差を前記第1厚みムラに加算することにより、改定した第1厚みムラを取得し、
 該改定した第1厚みムラと前記第2厚みムラとの差の1/2の値を前記外周保持変形量とすることができる。
 このようにすれば、より確実に、外周保持変形量を除いたウェーハ本来のWarp値を得ることができる。
 このとき、前記ウェーハの形状を、複数の前記フラットネス測定機を用いて測定することができる。
 このように複数のフラットネス測定機を用いて測定しても、各々の測定においてウェーハ本来のWarp値を測定することができるため、測定されたWarp値間で大きな機差が生じるのを抑制することができる。
 以上のように、本発明のウェーハ形状の測定方法であれば、フラットネス測定機での測定時のウェーハの外周保持による変形量を除くことができ、ウェーハ本来のWarp値を得ることができる。このため、機差なく再現性の高いWarp値を得ることができる。
本発明のウェーハ形状の測定方法の一例を示すフロー図である。 手順1-4のフローを示す説明図である。 手順5のフローを示す説明図である。 手順6、7のフローを示す説明図である。 本発明のウェーハ形状の測定方法で用いることができるフラットネス測定機の一例を示す概略図である。 測定時におけるウェーハの外周を保持する機構の一例を示す説明図である。 5台のフラットネス測定機の外周保持変形量を示す測定図である。 5台のフラットネス測定機により本発明の測定方法で測定したWarp―bf値(ウェーハの中央面(厚みの中心線)がベストフィット面(中央面から算出されるもの)からのズレの最大値と最小値との差)の標準偏差を示すグラフである。 5台のフラットネス測定機により従来法で測定したWarp―bf値の標準偏差を示すグラフである。
 以下、本発明について図面を参照して実施の形態を説明するが、本発明はこれに限定されるものではない。
 図5に本発明のウェーハ形状の測定方法で使用することができるフラットネス測定機を示す。
 図5に示すように、フラットネス測定機1は、機内に投入された第1主面および第2主面を有するウェーハWの両面側にそれぞれ位置する第1光学系2と第2光学系3を有している。第1光学系2および第2光学系3は、各々、光学干渉式の測定部を備えている。第1光学系2においてセンサーとウェーハWの第1主面との距離を測定することができ、第1主面の表面変位量を測定可能である。一方、第2光学系3においてはセンサーと第2主面との距離を測定することができ、第2主面の表面変位量を測定可能である。このように第1主面の表面変位量と第2主面の表面変位量を個別に測定可能なものである。
 そして、これらの第1光学系2、第2光学系3によって、ウェーハWの厚みムラ(厚み分布(フラットネス))とウェーハWのWarp値を測定することができるものである。
 CCDカメラによりウェーハの全体形状を捉えることが可能であり、1サイトあたり0.2mm×0.2mmのピクセルサイズで、ウェーハの全面を撮像可能なものとすることができる。直径300mmウェーハの場合、ウェーハ面内には約176万点ものデータを取得することができる。
 また図6に測定時におけるウェーハの外周を保持する機構の一例を示す。
 図6に示すように、フラットネス測定機1は例えば3つのグリッパー4-6を有しており、これらのグリッパー4-6で鉛直に立てた状態のウェーハの外周を保持し、第1光学系2、第2光学系3によりウェーハWの形状を測定可能になっている。この例では、鉛直方向の上方を0°とし、ノッチの位置を反時計回りで270°とすると、ウェーハW(直径300mm、面方位(100))が0°、135°、225°の3点の位置でグリッパー4~6により保持されている。
 なお、図6中のDF1-3は3点のグリッパー4-6間でのウェーハWの震動を抑制する器具である。ただし、ウェーハWには触れる程度でしか接触しておらず、積極的にウェーハWに力を加えるものではなく、グリッパー4-6のような保持具ではない。
 このようなフラットネス測定機1の具体例としては、例えば、KLA Tencor社製のWafersightやAFSなどが挙げられるが、当然、これに限定されるものではない。
 次に、上記のようなフラットネス測定機1を用いた本発明のウェーハ形状の測定方法について説明する。
 図1に本発明の測定方法のフローの一例を示す。
 第1光学系2および第2光学系3のうちのどちらか一方の光学系のみを用いて、ウェーハWの第1主面の表面変位量および第2主面の表面変位量を各々測定する第1工程、該測定した第1、2主面の表面変位量を用いて、ウェーハWの外周保持によって生じる外周保持変形量を算出する第2工程、フラットネス測定機が出力するWarp値から、外周保持変形量を減算することで、ウェーハ本来のWarp値を算出する第3工程を有する。
 ここでまず、第1工程の意義について説明する。ウェーハW上に外周保持に起因した何らかの変形量(外周保持変形量)が存在する場合、従来の測定法における通常の測定(ウェーハ第1主面は第1光学系2で、ウェーハ第2主面は第2光学系3で表面変位量を測定する)を行えば、測定した表面変位量から得られるパラメータ(ウェーハWの厚みムラ)に、ウェーハWの外周保持による形状変化の影響は厚みの算出原理上、現れない。これは、上記通常の測定の場合、保持方法によるウェーハ形状の変形量と元々のウェーハの形状によるうねりは、ウェーハ表裏(第1主面および第2主面)を個別の光学系(第1光学系および第2光学系)で測定したとき、表裏の差分を取ることでキャンセルされてしまうので、従来の測定方法では検出することができないからである。
 しかしながら、本発明のように一方の光学系のみでウェーハ第1主面とウェーハ第2主面とを測定した場合、ウェーハ保持によるウェーハ変形の影響はそのままパラメータ(厚みムラ(厚み分布))に乗ってくる。そこで、そのパラメータから外周保持変形量を抽出し、測定機からのWarp値(生のWarp値)から差し引けば良い。このようにすることで、外周保持変形量の影響が抑制されたウェーハ本来のWarp値を簡便に得ることができることを本発明者は見出した。
 以下、各工程について詳述する。
<第1工程>
 上述したように、第1光学系2および第2光学系3のうちのどちらか一方の光学系のみを用いて、ウェーハWの第1主面の表面変位量および第2主面の表面変位量を各々測定する。なお、ここでは第1光学系2のみを用いて測定する場合を例に挙げるが、逆に第2光学系3のみを用いて測定することも可能である。この測定手順について例を挙げて以下に説明する。
 図2は以下の手順1-4のフローを示す説明図である。
 まず、フラットネス測定機にウェーハを投入し、一方の光学系のみを用いて第1主面の表面変位量を測定する(手順1)。
 ここでは、第1光学系2でウェーハWの第1主面の表面変位量を測定する。
 次に第1主面の表面変位量の測定におけるウェーハの投入時の状態に対して、ウェーハを反転させた状態でフラットネス測定機に投入し、上記一方の光学系のみを用いて第2主面の表面変位量を測定する(手順2)。
 ここでは、同一のウェーハWを反転させ、第1光学系2でウェーハWの第2主面の表面変位量を測定する。このように、第1主面の表面変位量の測定におけるウェーハWの投入時の状態に対して、ウェーハWを反転させた状態で投入し、第1主面のときと同様に第1光学系2により測定を行う。
<第2工程>
 第2工程は、大きく分けて、ウェーハの第1厚みムラの取得段階と、ウェーハの第2厚みムラの取得段階と、外周保持変形量の取得段階とを有する。
(第1厚みムラの取得段階)
 第1工程で測定した第2主面の表面変位量について補正を行い、補正後の第2主面の表面変位量を取得する(手順3)。
 まず第1工程で測定したウェーハWの第2主面の表面変位量をr-theta座標系で表現し、第1工程でのウェーハWの反転によるr-theta座標のずれを補正する。第2主面の表面変位量は、ウェーハを反転させている都合上、r-theta座標系における位相が第1主面とは異なるため、位相を合わせる。すなわち、第1主面側から見た第2主面の表面変位量の位置となるように位相合わせをする。具体的には、第1工程の第2主面測定時における反転時の回転軸を回転軸として、第1工程で測定した第2主面の表面変位量を反転させる。ウェーハWのノッチなどを基準にして第1工程およびここでの反転を行うと良い。
 更に表面変位量の符号を反転させる補正をする。
 こうすることで、第2主面の表面変位量のr-theta座標の関係と表面変位量の状態がウェーハの第1主面側から見た状態と同じになる(補正後の第2主面の表面変位量)。
 次に、第1工程で測定した第1主面の表面変位量と、補正後の第2主面の表面変位量との差から、第1厚みムラを取得する(手順4)。
 基本的に、下記の手順5でも説明するように通常の測定であれば、(第1光学系2で測定した第1主面の表面変位量)-(第2光学系3で測定した第2主面の表面変位量)の減算を行うことによってウェーハWの厚みムラは得られるが、ここでの(第1工程で測定した第1主面の表面変位量)-(補正後の第2主面の表面変位量)の減算は、第1光学系2のみで求めた単なる表面変位量同士の差分であるため、絶対厚みの情報は含まれていない仮の厚みムラとなる。
(第2厚みムラの取得段階)
 次に、一方の光学系を用いて測定した第1主面の表面変位量と、他方の光学系を用いて測定した第2主面の表面変位量との差から、第2厚みムラを取得する(手順5)。図3は手順5のフローを示す説明図である。
 上記のように、第1厚みムラはウェーハ本来の厚みムラとは言えない。そこで、後述する手順6で第1光学系2のみで測定した厚みムラを取得するため、ここでは、まず、通常の測定方法に従って、第1光学系2および第2光学系3の両方を用いて、測定機本来の標準的な手法(従来の通常の測定法)でウェーハの厚みムラを測定する(第2厚みムラ)。すなわち、ここでは第1光学系2により測定した第1主面の表面変位量から、第2光学系3により測定した第2主面の表面変位量を減算して第2厚みムラを得る。
 なお、第1光学系2による第1主面の表面変位量や、第2光学系3による第2主面の表面変位量の測定自体はこのとき行っても良いし、あるいは、事前に行ってそれらの表面変位量を予め取得しておいても良い。例えば手順1のときに併せて測定しておくこともできる。
(外周保持変形量の取得段階)
 図4は以下の手順6、7のフローを示す説明図である。
 第1厚みムラの平均値と第2厚みムラの平均値を算出し、第2厚みムラの平均値と第1厚みムラの平均値との差を第1厚みムラに加算することにより、改定した第1厚みムラを取得する(手順6)。
 手順5で説明したように、この手順6では第1光学系2のみで測定した厚みムラを取得するわけだが、まず、第1厚みムラの平均値と第2厚みムラの平均値を算出する。例えば、前述したように1サイトあたり0.2mm×0.2mmのピクセルサイズとすると、直径300mmウェーハの場合、第1厚みムラ、第2厚みムラの各々は、ウェーハ面内に約176万点もの厚みデータの集合である。第1厚みムラの平均値や第2厚みムラの平均値とは、それらの平均値を意味する。
 そして、第1厚みムラの平均値(平均厚み)が第2厚みムラの平均値(平均厚み)になるように、第1厚みムラの全面データに対し、第2厚みムラの平均値から第1厚みムラの平均値を引いて取得した値を足し合わせることで、第2厚みムラと平均値を等しくした、第1光学系2のみで測定した厚みムラ(改定した第1厚みムラ)を求める。
 次に、改定した第1厚みムラと第2厚みムラとの差の1/2の値を外周保持変形量とする(手順7)。
 このように、改定した第1厚みムラから第2厚みムラを減算し、1/2を乗じることにより、定量的に外周保持起因の変形量のみを抽出して求めることができる。
<工程3>
 フラットネス測定機が出力するWarp値から、外周保持変形量を減算することで、ウェーハの本来のWarp値を算出する(手順8)。
 このようにフラットネス測定機1から直接出力される生のWarp値(外周保持によるウェーハ変形を含む)から、算出した外周保持変形量を差引く。Warpは、ウェーハの断面を見たときに厚みの中心線が、ウェーハ全体のベストフィット面、あるいは、規定された3点で算出されたベストフィット面から、最大でどのくらい差が有るかを見る指標であり、フラットネス測定機1からの生のWarp値は、外周保持による変形の影響を含んだ状態に基づいて自動算出されるものである。そこで、その余分な影響を除外するために、手順8のように生のWarp値から外周保持変形量を差引いている。これによって、真の値に近いWarp値(外周保持変形量が除かれているもの)を求めることができる。そのため、外周保持変形により引き起こされる測定機同士間のWarp値に関する機差を改善することができる。
 なお、工程1、工程2の具体的な手順は限定されるものではないが、手順1~7のような方法で外周保持変形量を求めることで、より一層確実に、真のWarp値に近づけることができる。
 従来では複数のフラットネス測定機を用いて測定した場合、測定機ごとのグリッパーによる外周保持起因の変形量が機差として反映されてしまっていたが、上記のように本発明ではそのような機差の原因となる外周保持変形量を除外できるので、機差を改善して小さくすることが可能である。したがって、複数の測定機を用いても測定機の間でWarp値が大きくばらつくのを抑制することができる。
 以下、実施例及び比較例を挙げて本発明を具体的に説明するが、これは本発明を限定するものではない。
(比較例)
 複数(ここでは5台)のフラットネス測定機(#A~#E)を用いて従来の通常の測定法でDSP、CMP、EPWの工程から抜き取った15枚の直径300mmのウェーハのWarp値を測定した。その結果、図9と同様の結果が得られた。このWarp値の機差による標準偏差のグラフに示すように、ウェーハ形状と外周保持状態の相乗効果によって標準偏差はウェーハ毎に異なるが、最大で0.8μm程度の標準偏差が機差としてWarp値に乗っている。
(実施例)
 ここで、本発明の有効性を確かめるため、図9のときと同じウェーハ15枚を、同じ5台のフラットネス測定機を用いて、図1に示すフローの本発明の測定方法で測定した。
 図7は5台のフラットネス測定機の外周保持変形量を示す測定図である。「Range」はウェーハ面内における外周保持変形量の変位の最大差を示す。#A号機の外周保持変形量が最も小さく(Range=389.7μm)、#Bの外周保持変形量が最も大きいことが分かる(Range=2470.2μm)。
 ウェーハ毎、測定機毎にこれらのような外周保持変形量を算出し、測定機からの生のWarp値から差し引いて、真のWarp値を各々求めた。
 このようにして求めた、ウェーハごとの、真のWarp値の測定機間の標準偏差を図8に示す。なお、従来法による結果と比較し易いように、図9のグラフも併せて表示している。左側のグラフが従来法によるものであり、右側のグラフが本発明によるものである。
 本発明の測定方法により、測定機同士間のWarp値の標準偏差は小さくなり改善されており、機差の改善効果が明確に分かる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (3)

  1.  機内に投入された第1主面および第2主面を有するウェーハの両面側にそれぞれ位置する第1光学系と第2光学系を有するフラットネス測定機により、前記ウェーハの外周を保持しながら、該ウェーハの形状を測定する方法であって、
     前記第1光学系および前記第2光学系のうちのどちらか一方の光学系のみを用いて、前記ウェーハの第1主面の表面変位量および第2主面の表面変位量を各々測定する第1工程と、
     前記一方の光学系により測定した前記第1主面の表面変位量および前記第2主面の表面変位量を用いて、前記ウェーハの外周保持によって生じる外周保持変形量を算出する第2工程と、
     前記フラットネス測定機が出力するWarp値から、前記外周保持変形量を減算することで、前記ウェーハの本来のWarp値を算出する第3工程と
     を有することを特徴とするウェーハ形状の測定方法。
  2.  前記第1工程において、
     前記フラットネス測定機に前記ウェーハを投入し、前記一方の光学系のみを用いて前記第1主面の表面変位量を測定し、
     該第1主面の表面変位量の測定における前記ウェーハの投入時の状態に対して、前記ウェーハを反転させた状態で前記フラットネス測定機に投入し、前記一方の光学系のみを用いて前記第2主面の表面変位量を測定し、
     前記第2工程は、
     前記ウェーハの第1厚みムラの取得段階と、前記ウェーハの第2厚みムラの取得段階と、前記外周保持変形量の取得段階とを有し、
     前記ウェーハの第1厚みムラの取得段階において、
     前記第1工程で測定した第2主面の表面変位量について補正を行い、補正後の第2主面の表面変位量を取得し、
     前記第1工程で測定した第1主面の表面変位量と、前記補正後の第2主面の表面変位量との差から、前記第1厚みムラを取得し、
     前記ウェーハの第2厚みムラの取得段階では、
     前記一方の光学系を用いて測定した第1主面の表面変位量と、他方の光学系を用いて測定した第2主面の表面変位量との差から、前記第2厚みムラを取得し、
     前記外周保持変形量の取得段階では、
     前記第1厚みムラの平均値と前記第2厚みムラの平均値を算出し、
     該第2厚みムラの平均値と前記第1厚みムラの平均値との差を前記第1厚みムラに加算することにより、改定した第1厚みムラを取得し、
     該改定した第1厚みムラと前記第2厚みムラとの差の1/2の値を前記外周保持変形量とすることを特徴とする請求項1に記載のウェーハ形状の測定方法。
  3.  前記ウェーハの形状を、複数の前記フラットネス測定機を用いて測定することを特徴とする請求項1または請求項2に記載のウェーハ形状の測定方法。
PCT/JP2020/033514 2019-10-11 2020-09-04 ウェーハ形状の測定方法 WO2021070531A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/764,379 US20220290975A1 (en) 2019-10-11 2020-09-04 Method for measuring wafer profile
CN202080069761.6A CN114467007B (zh) 2019-10-11 2020-09-04 晶圆形状的测量方法
DE112020004242.1T DE112020004242T5 (de) 2019-10-11 2020-09-04 Verfahren zur Messung des Waferprofils
KR1020227011054A KR20220076466A (ko) 2019-10-11 2020-09-04 웨이퍼형상의 측정방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-187838 2019-10-11
JP2019187838A JP7143831B2 (ja) 2019-10-11 2019-10-11 ウェーハ形状の測定方法

Publications (1)

Publication Number Publication Date
WO2021070531A1 true WO2021070531A1 (ja) 2021-04-15

Family

ID=75437134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033514 WO2021070531A1 (ja) 2019-10-11 2020-09-04 ウェーハ形状の測定方法

Country Status (6)

Country Link
US (1) US20220290975A1 (ja)
JP (1) JP7143831B2 (ja)
KR (1) KR20220076466A (ja)
DE (1) DE112020004242T5 (ja)
TW (1) TWI828944B (ja)
WO (1) WO2021070531A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061477A (zh) * 2021-11-19 2022-02-18 楚赟精工科技(上海)有限公司 翘曲测量方法、翘曲测量装置及成膜系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351857A (ja) * 1998-06-08 1999-12-24 Kuroda Precision Ind Ltd 薄板の表面形状測定方法および薄板の表面形状測定装置
US6275770B1 (en) * 1999-05-27 2001-08-14 Ipec Precision Inc. Method to remove station-induced error pattern from measured object characteristics and compensate the measured object characteristics with the error
JP2004020286A (ja) * 2002-06-13 2004-01-22 Shin Etsu Handotai Co Ltd 半導体ウエーハの形状評価方法及び形状評価装置
JP2007064748A (ja) * 2005-08-30 2007-03-15 Tokyo Univ Of Agriculture & Technology 形状測定装置固有の系統誤差を測定する方法と縦型形状測定装置。
JP2008076269A (ja) * 2006-09-22 2008-04-03 Tokyo Univ Of Agriculture & Technology 縦型形状測定装置、および形状測定方法。

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112512A (ja) * 1997-06-11 1999-01-06 Super Silicon Kenkyusho:Kk ウェーハの光学式形状測定器
JP3769262B2 (ja) * 2002-12-20 2006-04-19 株式会社東芝 ウェーハ平坦度評価方法、その評価方法を実行するウェーハ平坦度評価装置、その評価方法を用いたウェーハの製造方法、その評価方法を用いたウェーハ品質保証方法、その評価方法を用いた半導体デバイスの製造方法、およびその評価方法によって評価されたウェーハを用いた半導体デバイスの製造方法
US9052190B2 (en) * 2013-03-12 2015-06-09 Kla-Tencor Corporation Bright-field differential interference contrast system with scanning beams of round and elliptical cross-sections
FR3052869B1 (fr) * 2016-06-17 2018-06-22 Unity Semiconductor Dispositif de positionnement d'une plaquette de circuit integre, et appareil d'inspection d'une plaquette de circuit integre comprenant un tel dispositif de positionnement
TWM552096U (zh) * 2017-06-21 2017-11-21 Chun-Lin Tian 光學薄膜殘留應力之測量裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351857A (ja) * 1998-06-08 1999-12-24 Kuroda Precision Ind Ltd 薄板の表面形状測定方法および薄板の表面形状測定装置
US6275770B1 (en) * 1999-05-27 2001-08-14 Ipec Precision Inc. Method to remove station-induced error pattern from measured object characteristics and compensate the measured object characteristics with the error
JP2004020286A (ja) * 2002-06-13 2004-01-22 Shin Etsu Handotai Co Ltd 半導体ウエーハの形状評価方法及び形状評価装置
JP2007064748A (ja) * 2005-08-30 2007-03-15 Tokyo Univ Of Agriculture & Technology 形状測定装置固有の系統誤差を測定する方法と縦型形状測定装置。
JP2008076269A (ja) * 2006-09-22 2008-04-03 Tokyo Univ Of Agriculture & Technology 縦型形状測定装置、および形状測定方法。

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061477A (zh) * 2021-11-19 2022-02-18 楚赟精工科技(上海)有限公司 翘曲测量方法、翘曲测量装置及成膜系统
CN114061477B (zh) * 2021-11-19 2022-09-23 楚赟精工科技(上海)有限公司 翘曲测量方法、翘曲测量装置及成膜系统

Also Published As

Publication number Publication date
DE112020004242T5 (de) 2022-05-19
JP2021063693A (ja) 2021-04-22
CN114467007A (zh) 2022-05-10
US20220290975A1 (en) 2022-09-15
TWI828944B (zh) 2024-01-11
JP7143831B2 (ja) 2022-09-29
TW202122786A (zh) 2021-06-16
KR20220076466A (ko) 2022-06-08

Similar Documents

Publication Publication Date Title
JP4486991B2 (ja) 新校正方法を使った形状精度の改良
JP7398483B2 (ja) 非対称ウエハ形状特徴付けのためのメトリック
JP2009025079A (ja) 形状測定装置,形状測定方法
WO2021070531A1 (ja) ウェーハ形状の測定方法
TW201631631A (zh) 使用干涉儀預測及控制在晶圓中之關鍵尺寸問題及圖案缺陷
JP4531685B2 (ja) 形状測定装置、形状測定方法
JP2019515267A (ja) 測定台上のマスクホルダの位置を検出する方法
EP2577266B1 (en) Apparatus and method for compensating for sample misalignment
JP4427460B2 (ja) 形状特性取得方法、プログラム及び記録媒体
CN114467007B (zh) 晶圆形状的测量方法
JP2008286700A (ja) 角度測定方法及び角度測定装置
JP2007064748A (ja) 形状測定装置固有の系統誤差を測定する方法と縦型形状測定装置。
US10552569B2 (en) Method for calculating non-correctable EUV blank flatness for blank dispositioning
US20080052035A1 (en) Three-Dimensional Measurement Method and Device
JP2008547033A (ja) 表面プロファイルのマッピング
JP2009168634A (ja) 形状測定方法,形状測定装置
JP4238402B2 (ja) 移動台の姿勢誤差に起因する誤差を除去した測長装置
JP2010019742A (ja) 真直度測定方法および真直度測定装置
JP3638120B2 (ja) 表面形状測定系の系統誤差の決定方法および表面形状測定装置
JP2000323399A (ja) アライメント方法
JP2015082555A (ja) 露光装置
JP2002236006A (ja) 表面形状測定系の系統誤差の自律的決定方法および表面形状測定装置
JP2014013226A (ja) 干渉形状測定機構の校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873951

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20873951

Country of ref document: EP

Kind code of ref document: A1