WO2021070458A1 - Electric motor and electrical apparatus - Google Patents

Electric motor and electrical apparatus Download PDF

Info

Publication number
WO2021070458A1
WO2021070458A1 PCT/JP2020/029866 JP2020029866W WO2021070458A1 WO 2021070458 A1 WO2021070458 A1 WO 2021070458A1 JP 2020029866 W JP2020029866 W JP 2020029866W WO 2021070458 A1 WO2021070458 A1 WO 2021070458A1
Authority
WO
WIPO (PCT)
Prior art keywords
brush
commutator
energizing
voltage
electric motor
Prior art date
Application number
PCT/JP2020/029866
Other languages
French (fr)
Japanese (ja)
Inventor
圭策 中野
和雄 遠矢
知子 従野
貴洋 浅野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080057589.2A priority Critical patent/CN114223116A/en
Priority to JP2021550386A priority patent/JPWO2021070458A1/ja
Publication of WO2021070458A1 publication Critical patent/WO2021070458A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/10Arrangements of brushes or commutators specially adapted for improving commutation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/10Arrangements of brushes or commutators specially adapted for improving commutation
    • H02K13/105Spark suppressors associated with the commutator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/14Circuit arrangements for improvement of commutation, e.g. by use of unidirectionally conductive elements

Definitions

  • This disclosure relates to electric motors and electrical equipment.
  • Electric motors are used in various products such as electric blowers installed in vacuum cleaners.
  • a commutator electric motor that uses a brush and a commutator, or a brushless electric motor that does not use a brush and a commutator is known.
  • the commutator motor includes, for example, a stator, a rotor, a commutator attached to the rotating shaft of the rotor, and an energizing brush that is in sliding contact with the commutator.
  • the commutator has a plurality of commutator segments provided at equal intervals along the circumferential direction of the rotation axis of the rotor. A winding coil wound around the core of the rotor is electrically connected to each of the plurality of commutator segments.
  • the energizing brush and commutator are used to energize the winding coil of the rotor.
  • a spark also called spark
  • sparks occur, the energizing brush wears faster. This reduces the life of the motor.
  • an auxiliary brush is provided in addition to the energizing brush, and an electronic component for absorbing the arc voltage in the spark is connected to the auxiliary brush.
  • an electronic component for absorbing the arc voltage in the spark is connected to the auxiliary brush.
  • This disclosure is made to solve such problems. It is an object of the present disclosure to provide an electric motor capable of suppressing a spark generated between an energizing brush and a commutator segment, and an electric device including the electric motor.
  • one aspect of the electric motor according to the present disclosure includes a rotor having a rotating shaft, a commutator attached to the commutator, an energizing brush in contact with the commutator, and an auxiliary brush in contact with the commutator.
  • the commutator has a plurality of commutator segments provided along the circumferential direction of the axis of rotation, and the energizing brush and the auxiliary brush are electrically connected via a non-linear element to assist.
  • the brush When a plurality of commutator segments rotate around the axis of rotation, the brush is arranged so as to be in contact with the commutator segment immediately after the energizing brush is separated from the plurality of commutator segments.
  • a spark that is higher than the voltage between two adjacent commutator segments in a plurality of commutator segments and is generated between the commutator segment and the energizing brush immediately after the energizing brush is separated from the plurality of commutator segments. It is below the arc voltage.
  • one aspect of the electric device according to the present disclosure is the one using the above-mentioned electric motor.
  • FIG. 1 is a cross-sectional view of the electric motor 1 according to the embodiment.
  • FIG. 2 is a diagram showing a circuit configuration for suppressing the generation of sparks in the electric motor 1.
  • thin black arrows indicate current flow.
  • the electric motor 1 is a commutator electric motor. As shown in FIGS. 1 and 2, the electric motor 1 includes a stator 10, a rotor 20, a commutator 30, an energizing brush 40, an auxiliary brush 50, and a frame 60 for accommodating the stator 10 and the rotor 20. ..
  • the rotor 20 is rotated by the magnetic force of the stator 10.
  • the commutator 30 is attached to the shaft 21 of the rotor 20.
  • the energizing brush 40 comes into contact with the commutator 30.
  • the auxiliary brush 50 contacts the commutator 30.
  • the frame 60 houses the stator 10 and the rotor 20.
  • the electric motor 1 is a DC motor (DC motor) driven by direct current.
  • a magnet 11 is used as the stator 10
  • an armature having a winding coil 22 is used as the rotor 20.
  • the electric motor 1 can be used for various electric devices.
  • the electric motor 1 can be used for an electric blower mounted on a vacuum cleaner, an air towel, or the like. Further, the electric motor 1 can also be used for an electric device, an electric tool, or the like mounted on an automobile.
  • the stator 10 (stator) generates a magnetic force acting on the rotor 20.
  • the stator 10 constitutes a magnetic circuit together with the rotor 20 which is an armature.
  • the stator 10 has a plurality of magnetic poles. Specifically, the stator 10 is configured such that N poles and S poles alternately exist on the air gap surface with the rotor 20 along the circumferential direction of the shaft 21.
  • the stator 10 is composed of a plurality of magnets 11 (magnets).
  • the magnet 11 is a field magnet that creates a magnetic flux for generating torque.
  • the magnet 11 is, for example, a permanent magnet having an S pole and an N pole.
  • the plurality of magnets 11 constituting the stator 10 are arranged so that the north and south poles are alternately and evenly present along the circumferential direction of the shaft 21. Therefore, the direction of the main magnetic flux generated by the stator 10 (magnet 11) is a direction orthogonal to the direction of the axis C of the shaft 21.
  • the plurality of magnets 11 are arranged at equal intervals along the circumferential direction so as to surround the rotor 20.
  • the plurality of magnets 11 are located on the outer peripheral side of the rotor core 23 in the radial direction of the rotor 20. Specifically, a plurality of magnets 11 in which the north pole and the south pole are magnetized are arranged so that the center of the magnetic pole of the north pole and the center of the magnetic pole of the south pole are evenly spaced along the circumferential direction.
  • each of the plurality of magnets 11 has an arc shape having a substantially constant thickness when viewed from above.
  • the plurality of magnets 11 are fixed to the frame 60. Specifically, each magnet 11 is adhesively fixed to the inner peripheral surface of the frame 60.
  • the rotor 20 (rotor) generates a magnetic force acting on the stator 10.
  • the direction of the main magnetic flux generated by the rotor 20 is a direction orthogonal to the direction of the axis C of the shaft 21.
  • the rotor 20 rotates around the shaft 21 by the magnetic force of the stator 10.
  • the rotor 20 is an inner rotor and is arranged inside the stator 10. Specifically, the rotor 20 is surrounded by a plurality of magnets 11 constituting the stator 10. The rotor 20 is arranged with the stator 10 via an air gap. Specifically, there is a minute air gap between the outer peripheral surface of the rotor 20 and the inner surface of each magnet 11.
  • the rotor 20 has a shaft 21.
  • the rotor 20 is an armature.
  • the rotor 20 has a winding coil 22 and a rotor core 23.
  • the shaft 21 is a rotating shaft having an axis C.
  • the shaft 21 is a long rod-shaped member that serves as a center when the rotor 20 rotates.
  • the longitudinal direction (extension direction) of the shaft 21 is the direction of the axis C (axis direction).
  • the shaft 21 is rotatably held by a bearing such as a bearing.
  • a bearing such as a bearing.
  • the first end 21a which is one end of the shaft 21, is supported by a first bearing held by a bracket fixed to the frame 60 or directly held by the frame 60.
  • the second end 21b which is the other end of the shaft 21, is supported by a second bearing held by a bracket fixed to the frame 60 or directly held by the frame 60.
  • the bracket is fixed to the frame 60 so as to cover the opening of the frame 60, for example.
  • the shaft 21 is fixed to the center of the rotor 20.
  • the shaft 21 is, for example, a metal rod.
  • the shaft 21 is fixed to the rotor core 23 so as to penetrate the rotor core 23.
  • the shaft 21 is fixed to the rotor core 23 by press-fitting or shrink-fitting into the center hole of the rotor core 23.
  • the winding coil 22 (rotor coil) is wound so as to generate a magnetic force acting on the stator 10 when an electric current flows.
  • the winding coil 22 is wound around the rotor core 23 via the insulator 24.
  • the winding coil 22 has a main coil wound around each of the plurality of teeth of the rotor core 23.
  • the main coil is provided for each slot of the rotor 20.
  • the winding coil 22 is electrically connected to the commutator 30. Specifically, the winding coil 22 is electrically connected to the commutator segment 31 of the commutator 30. When a current flows through the winding coil 22 via the commutator 30, the rotor 20 generates a magnetic force acting on the stator 10.
  • the winding coil 22 includes a crossover wire that connects the commutator segments 31 to each other and electrically connects them.
  • the crossover is integrally formed with the main coil. That is, the crossover wire and the main coil are one continuous conductive wire without being cut in the middle.
  • the crossover wire may be a portion of one conductive wire that connects two adjacent main coils, or may be a portion before the main coil starts to be wound, or the main coil. It may be the part after the winding is finished.
  • the crossover wire and the main coil may not be one continuous conductive wire, but may be a separate conductive wire connected by the commutator segment 31 or the like.
  • the rotor core 23 is an armature core around which the winding coil 22 is wound.
  • the rotor core 23 is, for example, a laminated body in which a plurality of punched electrical steel plates formed in a predetermined shape are laminated in the direction of the axis C of the shaft 21.
  • the rotor core 23 is not limited to a laminated body of electromagnetic steel sheets, and may be a bulk body made of a magnetic material. There is a minute air gap between the outer peripheral surface of the rotor core 23 and the inner surface of each magnet 11 of the stator 10.
  • the rotor core 23 has a plurality of teeth.
  • the plurality of teeth extend in a direction (radial direction) orthogonal to the axis C of the shaft 21 in a direction away from the rotation axis.
  • the plurality of teeth are present at equal intervals along the rotation direction of the shaft 21.
  • the commutator 30 is attached to the shaft 21. Therefore, the commutator 30 rotates together with the shaft 21 as the rotor 20 rotates.
  • the commutator 30 is attached to the first end 21a of the shaft 21.
  • the commutator 30 has a plurality of commutator segments 31. As shown in FIG. 2, the plurality of commutator segments 31 are provided along the circumferential direction of the shaft 21. Specifically, the plurality of commutator segments 31 are arranged in an annular shape at equal intervals so as to surround the shaft 21. In this embodiment, the commutator 30 has twelve commutator segments 31.
  • Each of the plurality of commutator segments 31 is a commutator piece extending in the longitudinal direction of the shaft 21.
  • Each of the plurality of commutator segments 31 is a conductive terminal made of a metal material such as copper.
  • Each of the plurality of commutator segments 31 is electrically connected to the winding coil 22 of the rotor 20.
  • the commutator 30 is a mold commutator. As shown in FIG. 1, the commutator 30 has a configuration in which a plurality of commutator segments 31 are resin-molded. In this case, the plurality of commutator segments 31 are embedded in the mold resin 32 so that the surface is exposed.
  • the plurality of commutator segments 31 may be electrically connected to each other by a pressure equalizing wire so as to have the same potential (equalizing pressure).
  • the commutator 30 is in contact with the energizing brush 40 and the auxiliary brush 50.
  • the energizing brush 40 and the auxiliary brush 50 are in sliding contact with the commutator segment 31 of the commutator 30.
  • the energizing brush 40 and the auxiliary brush 50 are slidably held by the brush holder.
  • the energizing brush 40 and the auxiliary brush 50 are housed in the storage portion of the brush holder. In this case, the energizing brush 40 and the auxiliary brush 50 slide inside the storage portion of the brush holder.
  • the electric motor 1 is provided with a brush spring such as a coil spring or a torsion spring in order to press the energizing brush 40 and the auxiliary brush 50 against the commutator 30.
  • the brush spring applies pressure to the energizing brush 40 and the auxiliary brush 50 by utilizing the elasticity of the spring.
  • Each of the energizing brush 40 and the auxiliary brush 50 is in a state where the surface of the tip portion is always in contact with the commutator segment 31 of the commutator 30 under the pressing force from the brush spring.
  • the surface on which each of the energizing brush 40 and the auxiliary brush 50 and the commutator segment 31 slide is a sliding surface.
  • the brush spring is provided for each energizing brush 40 and for each auxiliary brush 50, but the present invention is not limited to this.
  • the energizing brush 40 and the auxiliary brush 50 are conductive conductors.
  • the energizing brush 40 and the auxiliary brush 50 are long, substantially rectangular parallelepiped carbon brushes made of carbon.
  • the energizing brush 40 and the auxiliary brush 50 are carbon brushes containing a metal such as copper.
  • the energizing brush 40 and the auxiliary brush 50 can be produced by crushing a kneaded product obtained by kneading graphite powder, copper powder, a binder resin, and a curing agent, compression molding into a rectangular parallelepiped, and firing.
  • the energizing brush 40 and the auxiliary brush 50 may be metallic graphite brushes containing a large amount of metal components such as copper (for example, 30% metal components and 70% carbon components), or have rubber elasticity. It may be a resin brush in which the characteristics of the resin remain (for example, the resin component is 20% and the carbon component is 80%).
  • the energizing brush 40 is a power feeding brush that supplies electric power to the rotor 20 by coming into contact with the commutator 30. Specifically, the tip portion of the energizing brush 40 comes into contact with the commutator segment 31 of the commutator 30. Therefore, the energizing brush 40 is connected to an electric wire through which a current supplied from a power source 70 provided outside the electric motor 1 flows. For example, the energizing brush 40 is electrically connected to an electrode terminal that receives electric power from the power source 70 via an electric wire such as a pigtail wire.
  • the other end of the pigtail wire whose one end is connected to the electrode terminal is connected to the rear end of the energizing brush 40, and the energizing brush 40 comes into contact with the commutator segment 31.
  • the armature current supplied to the energizing brush 40 via the pigtail wire flows through each winding coil 22 of the rotor 20 via the commutator segment 31.
  • the energizing brush 40 is configured so that there is a state in which the energizing brush 40 is in contact with the two adjacent commutator segments 31. That is, the width of the energizing brush 40 in the rotation direction of the rotor 20 is larger than the length of the distance between the two adjacent commutator segments 31. As a result, the energizing brush 40 can short-circuit the winding coil 22 connected between the two commutator segments 31. For example, as shown in FIG. 2, when one energizing brush 40 is in contact with both of two adjacent commutator segments 31, the winding coil 22 connected to these two commutator segments 31 is short-circuited. ..
  • a plurality of energizing brushes 40 are provided. Each of the plurality of energizing brushes 40 is in contact with the commutator 30.
  • the plurality of energizing brushes 40 include a first energizing brush 41 and a second energizing brush 42 as a pair of energizing brushes 40.
  • the first energizing brush 41 and the second energizing brush 42 are arranged so as to sandwich the commutator 30. That is, the first energizing brush 41 and the second energizing brush 42 are arranged line-symmetrically about the axis C of the shaft 21.
  • the first energizing brush 41 and the second energizing brush 42 are in contact with the commutator segment 31 of the commutator 30 in a direction (radial direction) orthogonal to the axis C of the shaft 21.
  • the first energizing brush 41 and the second energizing brush 42 are connected to the power supply 70.
  • the power source 70 is a DC power source.
  • the first energizing brush 41 is an anode side brush connected to the anode side (positive electrode side) of the power supply 70 which is a DC power supply
  • the second energizing brush 42 is a cathode side (negative electrode side) of the power supply 70 which is a DC power supply. It is a cathode side brush connected to.
  • the power supply 70 is a 12V DC power supply. In this case, the input voltage V IN of the electric motor 1 becomes 12 V. That is, a DC voltage of 12 V is applied to the pair of energizing brushes 40.
  • the auxiliary brush 50 is a brush added to the energizing brush 40.
  • the auxiliary brush 50 is a spark suppressing brush for suppressing sparks generated by separating the energizing brush 40 and the commutator segment 31.
  • the auxiliary brush 50 is arranged so as to be in contact with the commutator segment 31 immediately after the energizing brush 40 is separated from the plurality of commutator segments 31.
  • a plurality of auxiliary brushes 50 are arranged. Each of the plurality of auxiliary brushes 50 is in contact with the commutator 30.
  • the plurality of auxiliary brushes 50 include a first auxiliary brush 51 and a second auxiliary brush 52 as a pair of auxiliary brushes 50.
  • Each of the first auxiliary brush 51 and the second auxiliary brush 52 is arranged so as to be in contact with the commutator segment 31 of the commutator 30.
  • the first auxiliary brush 51 is arranged so as to be in contact with the commutator segment 31 immediately after the first energizing brush 41 is separated from the plurality of commutator segments 31. That is, the first auxiliary brush 51 is arranged so as to come into contact with the one commutator segment 31 when the first energizing brush 41 separates from the commutator segment 31 of one of the two adjacent commutator segments 31. ing. At this time, the first energizing brush 41 is the other commutator segment 31 of the two commutator segments 31 located behind the one commutator segment 31 in contact with the first auxiliary brush 51 in the rotation direction of the rotor 20. It touches the child segment 31.
  • the second auxiliary brush 52 is arranged so as to be in contact with the commutator segment 31 immediately after the second energizing brush 42 is separated from the plurality of commutator segments 31. That is, the second auxiliary brush 52 is arranged so as to come into contact with the commutator segment 31 when the second energizing brush 42 separates from the commutator segment 31 of the two adjacent commutator segments 31. ing.
  • the second energizing brush 42 is the other commutator segment 31 of the two commutator segments 31 located behind the one commutator segment 31 in contact with the second auxiliary brush 52 in the rotation direction of the rotor 20. It touches the child segment 31.
  • the energizing brush 40 and the auxiliary brush 50 are arranged on the same plane. Specifically, the energizing brush 40 and the auxiliary brush 50 are arranged on the same plane orthogonal to the direction of the axis C of the shaft 21.
  • the first energizing brush 41, the second energizing brush 42, the first auxiliary brush 51, and the second auxiliary brush 52 are arranged on the same plane in the frame 60 without being displaced in the direction of the axis C of the shaft 21. There is.
  • the energizing brush 40 and the auxiliary brush 50 are electrically connected via a Zener diode 80. That is, the Zener diode 80 is connected between the energizing brush 40 and the auxiliary brush 50.
  • the energizing brush 40, the auxiliary brush 50, and the Zener diode 80 are electrically connected by, for example, an electric wire such as a lead wire.
  • the Zener diode 80 is an example of a non-linear element having a breakdown voltage (Zener voltage) as a breakdown voltage.
  • Zener voltage Zener voltage
  • As the Zener diode 80 for example, a Zener diode 80 having a breakdown voltage of 3 V or 2.5 V can be used.
  • the Zener diode 80 functions as a spark suppression unit that suppresses sparks generated between the energizing brush 40 and the commutator segment 31. Specifically, a voltage is generated across the winding coil 22 by the counter electromotive force generated by the self-induction action of the winding coil 22 at the moment when the energizing brush 40 separates from the commutator segment 31. However, this voltage is applied in the opposite direction to the Zener diode 80. At this time, when a voltage larger than the breakdown voltage is applied to the Zener diode 80, a current flows from the anode to the cathode, and the voltage across the Zener diode 80 is maintained at the breakdown voltage.
  • the voltage between the energizing brush 40 and the commutator segment 31 is maintained at a breakdown voltage lower than the voltage generated across the winding coil 22 by the counter electromotive force, so that the energizing brush 40 and the commutator segment 31 are maintained. Sparks generated between the segment 31 and the segment 31 can be suppressed.
  • a plurality of Zener diodes 80 are used as in the energizing brush 40 and the auxiliary brush 50.
  • the Zener diode 80 includes a first Zener diode 81 and a second Zener diode 82.
  • the first energizing brush 41 and the first auxiliary brush 51 are electrically connected via a first Zener diode 81. That is, the first Zener diode 81 is inserted in the wiring path between the first energizing brush 41 and the first auxiliary brush 51. Specifically, in the first Zener diode 81, the anode side terminal of the first Zener diode 81 is connected to the first auxiliary brush 51, and the cathode side terminal of the first Zener diode 81 is connected to the first energizing brush 41. There is. Therefore, the cathode side terminal of the first Zener diode 81 has the same potential as the anode of the power supply 70, which is a DC power supply.
  • the second energizing brush 42 and the second auxiliary brush 52 are electrically connected via the second Zener diode 82. That is, the second Zener diode 82 is inserted in the wiring path between the second energizing brush 42 and the second auxiliary brush 52. Specifically, in the second Zener diode 82, the anode side terminal of the second Zener diode 82 is connected to the second energizing brush 42, and the cathode side terminal of the second Zener diode 82 is connected to the second auxiliary brush 52. There is. Therefore, the cathode side terminal of the second Zener diode 82 has the same potential as the cathode of the power source 70, which is a DC power source.
  • the first Zener diode 81 and the second Zener diode 82 may be built in the electric motor 1 or may be arranged outside the electric motor 1.
  • the present inventors have focused on the state at the time of spark generation and examined the optimum breakdown voltage of the Zener diode.
  • FIGS. 3A and 3B are diagrams for explaining the principle of spark generation.
  • the electric motor shown in FIGS. 3A and 3B has a configuration in which the auxiliary brush 50 and the Zener diode 80 are not provided in the electric motor 1 shown in FIG.
  • FIG. 4 is a diagram showing the voltage and current between the energizing brush 40 and the commutator segment 31 in the electric motor of the experimental example, and shows the measured values.
  • the electric motor of the experimental example used in this experiment has a configuration in which the auxiliary brush 50 and the Zener diode 80 are not provided in the electric motor 1 in the above embodiment, and other than that, the electric motor 1 in the above embodiment It has the same configuration.
  • the commutator segment 31 a commutator segment 31 made of copper was used.
  • the total number of commutator segments 31 in the commutator 30 was 12.
  • the power supply 70 was a DC power supply, and the power supply voltage (input voltage) was 12V.
  • the energizing brush 40 was a first energizing brush 41 and a second energizing brush 42, both of which were metallic graphite brushes.
  • the current path from the first energizing brush 41 to the second energizing brush 42 is a parallel circuit in which two current paths passing through the six commutator segments 31 and the six winding coils 22 are connected in parallel.
  • the data line L1 shows the voltage V B-S between the current brush 40 and commutator segments 31. Specifically, the data line L1 shows the voltage between the first energizing brush 41 and the first commutator segment 31a in FIGS. 3A and 3B. The data line L1 shows the change in voltage with the passage of time.
  • the data line L2 shows the current I B-S between the current brush 40 and commutator segments 31. Specifically, the data line L2 shows the current between the first energizing brush 41 and the first commutator segment 31a in FIGS. 3A and 3B.
  • First power supply brush 41 shown in Figure 3A and 3B since it is the positive brushes, a first power supply brush 41 current I B-S between the first commutator segment 31a is first energized brushes 41 Flows in the direction from the first commutator segment 31a.
  • the data line L2 shows the change in current with the passage of time.
  • Voltage V B-S in this case is about 4V. That is, the spark starting voltage is 4V, if the voltage V B-S exceeds 4V, spark initiates an arc discharge occurs.
  • the arc voltage is fixed at a substantially constant voltage value. In FIG. 4, the arc voltage is about 13V.
  • the arc discharge continues until the spark is extinguished. That is, while the arc discharge continues, the energy of the winding coil 22 (see FIGS. 3A and 3B) between the first commutator segment 31a and the second commutator segment 31b is released and wound. The current flowing through the wire coil 22 is consumed by the arc voltage. When the current flowing through the winding coil 22 between the first commutator segment 31a and the second commutator segment 31b disappears, the arc voltage becomes zero and the spark is extinguished.
  • the spark starting voltage is about 3V to 4V regardless of the conditions. I found out that it was a degree.
  • the arc voltage is about 13V, but experiments have shown that when the energizing brush 40 is a metallic graphite brush, the arc voltage falls within the range of 10V or more and 15V or less. As a result of conducting the same experiment by replacing the energizing brush 40 with the resin brush, it was also found that when the energizing brush 40 is a resin brush, the arc voltage is within the range of 13V or more and 20V or less.
  • FIGS. 5A and 5B adjoins the Zener diode 80 when the Zener diode 80 is connected between the energizing brush 40 and the auxiliary brush 50. Focusing on the voltage between the two commutator segments 31 and the arc voltage at the time of spark generation, the optimum breakdown voltage VBR range of the Zener diode 80 capable of effectively suppressing the spark was found.
  • 5A and 5B are diagrams for explaining the principle for suppressing the generation of sparks in the electric motor 1 according to the embodiment.
  • the electric motor 1 uses a Zener diode 80 having such a breakdown voltage VBR.
  • the breakdown voltage V BR of the Zener diode 80 the voltage between the two commutator segments 31 adjacent the plurality of commutator segments 31 (adjacent stator pieces It is set to be higher than the voltage) and lower than the arc voltage in the spark generated between the commutator segment 31 and the energizing brush 40 immediately after the energizing brush 40 is separated from the plurality of commutator segments 31.
  • the breakdown voltage V BR of the Zener diode 80 is set to be equal to or lower than the arc voltage in the spark generated between the first commutator segment 31a and the energizing brush 40 immediately after the energizing brush 40 is separated.
  • the breakdown voltage V BR of the Zener diode 80 by setting the above range, the number of commutator segments 31, regardless of the quality difference of the input voltage and current brushes 40 of the motor 1, the zener diode 80 The arc voltage at the time of spark generation can be effectively absorbed. Therefore, the spark generated between the commutator segment 31 and the energizing brush 40 can be sufficiently suppressed.
  • the upper limit of the breakdown voltage V BR of the Zener diode 80 it is preferable to set the voltage between the two commutator segments 31 adjacent to the reference. Specifically, the breakdown voltage VBR is preferably 150% or less of the voltage between two adjacent commutator segments 31.
  • V IN / (N SEG / 2) x 100% ⁇ V BR ⁇ V IN / (N SEG / 2) x 150% ...
  • the voltage between the nearest neighboring two commutator segments 31, because it is 12V / 6 2V
  • the breakdown voltage V BR of the Zener diode 80 is adjacent
  • the breakdown voltage VBR is preferably 140% or less, more preferably 130% or less, still more preferably 125% or less, of the voltage between two adjacent commutator segments 31.
  • the value of the breakdown voltage V BR of the Zener diode 80 is lower is better.
  • the breakdown voltage V BR of the Zener diode 80 may is not more than 80% of the arc voltage, preferably 70% or less, more preferably 50% or less, more preferably 30% or less.
  • the breakdown voltage V BR is about 23% of the arc voltage.
  • the spark starting voltage is about 3V to 4V regardless of the conditions. Further, in the above embodiment, the voltage between two adjacent commutator segments 31 was 2V.
  • the breakdown voltage V BR of the Zener diode 80 may is 2V or 3V or less.
  • the arc voltage is 10 V or more and 15 V or less.
  • the arc voltage is 13 V or more and 20 V or less.
  • the breakdown voltage VBR is set to be equal to or lower than the spark start voltage between the energizing brush 40 and the commutator segment 31, it is possible to suppress the generation of sparks between the energizing brush 40 and the commutator segment 31. .. That is, it is possible to achieve the effect that it is possible to avoid the occurrence of sparks.
  • the electric motor 1 of the present embodiment includes a rotor 20 having a rotating shaft corresponding to the shaft 21, a commutator 30 attached to the rotating shaft, an energizing brush 40 in contact with the commutator 30, and a commutator.
  • An auxiliary brush 50 in contact with 30 is provided.
  • the commutator 30 has a plurality of commutator segments 31 provided along the circumferential direction of the rotation axis.
  • the energizing brush 40 and the auxiliary brush 50 are electrically connected via a non-linear element corresponding to the Zener diode 80.
  • the auxiliary brush 50 is arranged so as to be in contact with the commutator segment 31 immediately after the energizing brush 40 is separated from the plurality of commutator segments 31 when the plurality of commutator segments 31 rotate around the rotation axis. ..
  • the breakdown voltage of the non-linear element is higher than the voltage between two adjacent commutator segments in the plurality of commutator segments 31, and the commutator segment 31 of the plurality of commutator segments 31 immediately after the energizing brush 40 is separated. It is equal to or less than the arc voltage in the spark generated between the energizing brush 40 and the energizing brush 40.
  • the Zener diode 80 is used as a spark suppressing component to be inserted into the wiring path between the energizing brush 40 and the auxiliary brush 50, but the present invention is not limited to this.
  • other non-linear elements such as a varistor and a MOSFET (Metal-Oxide-Semiconductor Field-Effective Transistor) may be inserted in the wiring path between the energizing brush 40 and the auxiliary brush 50. That is, the energizing brush 40 and the auxiliary brush 50 may be connected via a non-linear element such as a varistor or a MOSFET.
  • the breakdown voltage of the non-linear element is higher than the voltage between two adjacent commutator segments 31 in the plurality of commutator segments 31, and immediately after the energizing brush 40 of the plurality of commutator segments 31 is separated. It may be set to be equal to or lower than the arc voltage of the spark generated between the commutator segment 31 and the energizing brush 40.
  • the number of the energizing brush 40 and the auxiliary brush 50 is two, but the number is not limited to this. Specifically, the energizing brush 40 and the auxiliary brush 50 may be one or three or more.
  • the stator 10 is composed of the magnet 11, but the stator 10 is not limited to this.
  • the stator 10 may be composed of a stator core and a winding coil wound around the stator core.
  • the rotor 20 has a core, but the rotor 20 is not limited to this.
  • the electric motor 1 can also be applied to a coreless motor having no core.
  • the electric motor 1 can be applied to a coreless motor which is a flat flat motor in which the magnetic fluxes of the stator 10 and the rotor 20 are generated in the direction of the axis C of the shaft 21.
  • This disclosure can be used for various products equipped with an electric motor, such as a vacuum cleaner or an automobile.

Abstract

This electric motor comprises: a rotor having a rotating shaft, a commutator attached to the rotating shaft, an energizing brush in contact with the commutator, and an auxiliary brush in contact with the commutator, wherein the commutator has a plurality of commutator segments provided along the circumferential direction of the rotating shaft, the energizing brush and the auxiliary brush are electrically connected to each other via a non-linear element, the auxiliary brush is disposed so as to be in contact with a commutator segment immediately after the energizing brush is separated, among the plurality of commutator segments, when the plurality of commutator segments rotate around the rotating shaft, and the breakdown voltage of the non-linear element is higher than the voltage between two adjacent commutator segments among the plurality of commutator segments, and is less than or equal to an arc voltage in a spark generated between the energizing brush and the commutator segment immediately after the energizing brush is separated among the plurality of commutator segments.

Description

電動機及び電気機器Electric motors and electrical equipment
 本開示は、電動機及び電気機器に関する。 This disclosure relates to electric motors and electrical equipment.
 電動機は、電気掃除機に搭載される電動送風機等の種々の製品に用いられている。電動機としては、ブラシと整流子とを用いた整流子電動機(整流子モータ)、又は、ブラシと整流子とを用いないブラシレス電動機が知られている。 Electric motors are used in various products such as electric blowers installed in vacuum cleaners. As an electric motor, a commutator electric motor (commutator motor) that uses a brush and a commutator, or a brushless electric motor that does not use a brush and a commutator is known.
 整流子電動機は、例えば、ステータと、ロータと、ロータの回転軸に取り付けられた整流子と、整流子に摺接する通電ブラシとを備える。整流子は、ロータの回転軸の周方向に沿って等間隔に設けられた複数の整流子セグメントを有する。複数の整流子セグメントの各々には、ロータのコアに巻回された巻線コイルが電気的に接続されている。 The commutator motor includes, for example, a stator, a rotor, a commutator attached to the rotating shaft of the rotor, and an energizing brush that is in sliding contact with the commutator. The commutator has a plurality of commutator segments provided at equal intervals along the circumferential direction of the rotation axis of the rotor. A winding coil wound around the core of the rotor is electrically connected to each of the plurality of commutator segments.
 この整流子電動機では、通電ブラシと整流子とでロータの巻線コイルに通電を行っている。この場合、整流子の回転によって通電される巻線コイルが切り替わる際に(つまり通電ブラシが整流子セグメントから離れる瞬間に)、通電ブラシと整流子セグメントとの間にスパーク(火花ともいう)が発生することがある。スパークが発生すると、通電ブラシの磨耗が早まる。これにより、電動機の寿命が低下する。 In this commutator motor, the energizing brush and commutator are used to energize the winding coil of the rotor. In this case, when the winding coil that is energized by the rotation of the commutator is switched (that is, at the moment when the energizing brush separates from the commutator segment), a spark (also called spark) is generated between the energizing brush and the commutator segment. I have something to do. When sparks occur, the energizing brush wears faster. This reduces the life of the motor.
 そこで、従来、スパークの発生を抑制して通電ブラシの長寿命化を図るために、通電ブラシ以外に補助ブラシを設けるとともに、スパークにおけるアーク電圧を吸収するための電子部品を補助ブラシに接続する技術が提案されている(例えば特許文献1、2を参照)。具体的には、特許文献1、2に開示された整流子電動機では、ツェナーダイオードを介して通電ブラシと補助ブラシとを接続している。 Therefore, conventionally, in order to suppress the generation of sparks and extend the life of the energizing brush, an auxiliary brush is provided in addition to the energizing brush, and an electronic component for absorbing the arc voltage in the spark is connected to the auxiliary brush. Have been proposed (see, for example, Patent Documents 1 and 2). Specifically, in the commutator motor disclosed in Patent Documents 1 and 2, the energizing brush and the auxiliary brush are connected via a Zener diode.
 しかしながら、特許文献1、2に開示された構成では、通電ブラシと整流子セグメントとの間で発生するスパークを十分に抑制することができない場合がある。 However, with the configurations disclosed in Patent Documents 1 and 2, it may not be possible to sufficiently suppress the spark generated between the energizing brush and the commutator segment.
特開昭52-54903号公報Japanese Unexamined Patent Publication No. 52-54903 特開2017-192233号公報JP-A-2017-192233
 本開示は、このような課題を解決するためになされたものである。本開示は、通電ブラシと整流子セグメントとの間に発生するスパークを抑制することができる電動機及びこれを備えた電気機器を提供することを目的とする。 This disclosure is made to solve such problems. It is an object of the present disclosure to provide an electric motor capable of suppressing a spark generated between an energizing brush and a commutator segment, and an electric device including the electric motor.
 上記目的を達成するために、本開示に係る電動機の一態様は、回転軸を有するロータと、回転軸に取り付けられた整流子と、整流子に接する通電ブラシと、整流子に接する補助ブラシと、を備え、整流子は、回転軸の周方向に沿って設けられた複数の整流子セグメントを有し、通電ブラシと補助ブラシとは、非線形素子を介して電気的に接続されており、補助ブラシは、回転軸を中心にして複数の整流子セグメントが回転する時、複数の整流子セグメントのうち通電ブラシが離れた直後の整流子セグメントに接するように配置され、非線形素子の降伏電圧は、複数の整流子セグメントにおける隣り合う2つの整流子セグメント間の電圧よりも高く、かつ、複数の整流子セグメントのうち通電ブラシが離れた直後の整流子セグメントと通電ブラシとの間で発生するスパークにおけるアーク電圧以下である。 In order to achieve the above object, one aspect of the electric motor according to the present disclosure includes a rotor having a rotating shaft, a commutator attached to the commutator, an energizing brush in contact with the commutator, and an auxiliary brush in contact with the commutator. , The commutator has a plurality of commutator segments provided along the circumferential direction of the axis of rotation, and the energizing brush and the auxiliary brush are electrically connected via a non-linear element to assist. When a plurality of commutator segments rotate around the axis of rotation, the brush is arranged so as to be in contact with the commutator segment immediately after the energizing brush is separated from the plurality of commutator segments. In a spark that is higher than the voltage between two adjacent commutator segments in a plurality of commutator segments and is generated between the commutator segment and the energizing brush immediately after the energizing brush is separated from the plurality of commutator segments. It is below the arc voltage.
 また、本開示に係る電気機器の一態様は、上記の電動機を用いたものである。 Further, one aspect of the electric device according to the present disclosure is the one using the above-mentioned electric motor.
 本開示によれば、通電ブラシと整流子セグメントとの間に発生するスパークを抑制することができる。 According to the present disclosure, it is possible to suppress the spark generated between the energizing brush and the commutator segment.
実施の形態に係る電動機の断面図である。It is sectional drawing of the electric motor which concerns on embodiment. 実施の形態に係る電動機におけるスパークの発生を抑制するための回路構成を示す図である。It is a figure which shows the circuit structure for suppressing the occurrence of the spark in the electric motor which concerns on embodiment. スパークの発生原理を説明するための図である。It is a figure for demonstrating the principle of spark generation. スパークの発生原理を説明するための図である。It is a figure for demonstrating the principle of spark generation. 実験例の電動機において、通電ブラシと整流子セグメントとの間の電圧及び電流を示す図である。It is a figure which shows the voltage and current between an energizing brush and a commutator segment in the electric motor of an experimental example. 実施の形態に係る電動機において、スパークの発生を抑制するための原理を説明するための図である。It is a figure for demonstrating the principle for suppressing the occurrence of a spark in the electric motor which concerns on embodiment. 実施の形態に係る電動機において、スパークの発生を抑制するための原理を説明するための図である。It is a figure for demonstrating the principle for suppressing the occurrence of a spark in the electric motor which concerns on embodiment.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The embodiments described below are specific examples of the present disclosure. Therefore, the numerical values, shapes, materials, components, arrangement positions of the components, connection forms, and the like shown in the following embodiments are examples and are not intended to limit the present disclosure. Therefore, among the components in the following embodiments, the components not described in the independent claims are described as arbitrary components.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Note that each figure is a schematic view and is not necessarily exactly illustrated. Further, in each figure, the same reference numerals are given to substantially the same configurations, and duplicate description will be omitted or simplified.
 (実施の形態)
 まず、実施の形態に係る電動機1の構成について、図1及び図2を用いて説明する。図1は、実施の形態に係る電動機1の断面図である。図2は、同電動機1におけるスパークの発生を抑制するための回路構成を示す図である。図2において、細い黒矢印は、電流の流れを示している。
(Embodiment)
First, the configuration of the electric motor 1 according to the embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of the electric motor 1 according to the embodiment. FIG. 2 is a diagram showing a circuit configuration for suppressing the generation of sparks in the electric motor 1. In FIG. 2, thin black arrows indicate current flow.
 電動機1は、整流子電動機である。電動機1は、図1及び図2に示すように、ステータ10と、ロータ20と、整流子30と、通電ブラシ40と、補助ブラシ50と、ステータ10及びロータ20を収納するフレーム60とを備える。ロータ20は、ステータ10の磁力により回転する。整流子30は、ロータ20のシャフト21に取り付けられる。通電ブラシ40は、整流子30に接する。補助ブラシ50は、整流子30に接する。フレーム60は、ステータ10及びロータ20を収納する。 The electric motor 1 is a commutator electric motor. As shown in FIGS. 1 and 2, the electric motor 1 includes a stator 10, a rotor 20, a commutator 30, an energizing brush 40, an auxiliary brush 50, and a frame 60 for accommodating the stator 10 and the rotor 20. .. The rotor 20 is rotated by the magnetic force of the stator 10. The commutator 30 is attached to the shaft 21 of the rotor 20. The energizing brush 40 comes into contact with the commutator 30. The auxiliary brush 50 contacts the commutator 30. The frame 60 houses the stator 10 and the rotor 20.
 電動機1は、直流により駆動する直流電動機(DCモータ)である。電動機1は、ステータ10として磁石11が用いられているとともに、ロータ20として巻線コイル22を有する電機子が用いられている。 The electric motor 1 is a DC motor (DC motor) driven by direct current. In the electric motor 1, a magnet 11 is used as the stator 10, and an armature having a winding coil 22 is used as the rotor 20.
 電動機1は、種々の電気機器に用いることができる。例えば、電動機1は、電気掃除機又はエアタオル等に搭載される電動送風機に用いることができる。また、電動機1は、自動車に搭載される電装機器又は電動工具等に用いることもできる。 The electric motor 1 can be used for various electric devices. For example, the electric motor 1 can be used for an electric blower mounted on a vacuum cleaner, an air towel, or the like. Further, the electric motor 1 can also be used for an electric device, an electric tool, or the like mounted on an automobile.
 以下、電動機1の各構成部材について詳細に説明する。 Hereinafter, each component of the electric motor 1 will be described in detail.
 ステータ10(固定子)は、ロータ20に作用する磁力を発生させる。ステータ10は、電機子であるロータ20とともに磁気回路を構成している。ステータ10は、複数の磁極を有する。具体的には、ステータ10は、シャフト21の周方向に沿ってロータ20とのエアギャップ面にN極とS極とが交互に存在するように構成されている。ステータ10は、複数の磁石11(マグネット)によって構成されている。磁石11は、トルクを発生するための磁束を作る界磁石である。磁石11は、例えばS極及びN極を有する永久磁石である。 The stator 10 (stator) generates a magnetic force acting on the rotor 20. The stator 10 constitutes a magnetic circuit together with the rotor 20 which is an armature. The stator 10 has a plurality of magnetic poles. Specifically, the stator 10 is configured such that N poles and S poles alternately exist on the air gap surface with the rotor 20 along the circumferential direction of the shaft 21. The stator 10 is composed of a plurality of magnets 11 (magnets). The magnet 11 is a field magnet that creates a magnetic flux for generating torque. The magnet 11 is, for example, a permanent magnet having an S pole and an N pole.
 ステータ10を構成する複数の磁石11は、シャフト21の周方向に沿ってN極とS極とが交互に均等に存在するように配置されている。したがって、ステータ10(磁石11)が発生する主磁束の向きは、シャフト21の軸心Cの方向と直交する方向である。複数の磁石11は、ロータ20を囲むようにして周方向に沿って等間隔で配置されている。複数の磁石11は、ロータ20におけるロータコア23の径方向の外周側に位置している。具体的には、N極及びS極が着磁された複数の磁石11が、N極の磁極中心とS極の磁極中心とが周方向に沿って等間隔となるように配置されている。 The plurality of magnets 11 constituting the stator 10 are arranged so that the north and south poles are alternately and evenly present along the circumferential direction of the shaft 21. Therefore, the direction of the main magnetic flux generated by the stator 10 (magnet 11) is a direction orthogonal to the direction of the axis C of the shaft 21. The plurality of magnets 11 are arranged at equal intervals along the circumferential direction so as to surround the rotor 20. The plurality of magnets 11 are located on the outer peripheral side of the rotor core 23 in the radial direction of the rotor 20. Specifically, a plurality of magnets 11 in which the north pole and the south pole are magnetized are arranged so that the center of the magnetic pole of the north pole and the center of the magnetic pole of the south pole are evenly spaced along the circumferential direction.
 一例として、複数の磁石11の各々は、上面視において、厚さが実質的に一定の円弧形状である。複数の磁石11は、フレーム60に固定されている。具体的には、各磁石11は、フレーム60の内周面に接着固定されている。 As an example, each of the plurality of magnets 11 has an arc shape having a substantially constant thickness when viewed from above. The plurality of magnets 11 are fixed to the frame 60. Specifically, each magnet 11 is adhesively fixed to the inner peripheral surface of the frame 60.
 ロータ20(回転子)は、ステータ10に作用する磁力を発生させる。ロータ20が発生する主磁束の向きは、シャフト21の軸心Cの方向と直交する方向である。ロータ20は、ステータ10の磁力によってシャフト21を回転中心として回転する。 The rotor 20 (rotor) generates a magnetic force acting on the stator 10. The direction of the main magnetic flux generated by the rotor 20 is a direction orthogonal to the direction of the axis C of the shaft 21. The rotor 20 rotates around the shaft 21 by the magnetic force of the stator 10.
 ロータ20は、インナーロータであり、ステータ10の内側に配置されている。具体的には、ロータ20は、ステータ10を構成する複数の磁石11に囲まれている。ロータ20は、ステータ10とエアギャップを介して配置されている。具体的には、ロータ20の外周面と各磁石11の内面との間には微小なエアギャップが存在する。 The rotor 20 is an inner rotor and is arranged inside the stator 10. Specifically, the rotor 20 is surrounded by a plurality of magnets 11 constituting the stator 10. The rotor 20 is arranged with the stator 10 via an air gap. Specifically, there is a minute air gap between the outer peripheral surface of the rotor 20 and the inner surface of each magnet 11.
 ロータ20は、シャフト21を有する。ロータ20は、電機子である。ロータ20は、巻線コイル22とロータコア23とを有する。 The rotor 20 has a shaft 21. The rotor 20 is an armature. The rotor 20 has a winding coil 22 and a rotor core 23.
 シャフト21は、軸心Cを有する回転軸である。シャフト21は、ロータ20が回転する際の中心となる長尺状の棒状部材である。シャフト21の長手方向(延伸方向)は、軸心Cの方向(軸心方向)である。シャフト21は、ベアリング等の軸受けによって回転自在に保持されている。詳細は図示されていないが、例えば、シャフト21の一方の端部である第1端部21aは、フレーム60に固定されたブラケットに保持又はフレーム60に直接保持された第1軸受けに支持されている。シャフト21の他方の端部である第2端部21bは、フレーム60に固定されたブラケットに保持又はフレーム60に直接保持された第2軸受けに支持されている。ブラケットは、例えば、フレーム60の開口部を覆うようにしてフレーム60に固定される。 The shaft 21 is a rotating shaft having an axis C. The shaft 21 is a long rod-shaped member that serves as a center when the rotor 20 rotates. The longitudinal direction (extension direction) of the shaft 21 is the direction of the axis C (axis direction). The shaft 21 is rotatably held by a bearing such as a bearing. Although details are not shown, for example, the first end 21a, which is one end of the shaft 21, is supported by a first bearing held by a bracket fixed to the frame 60 or directly held by the frame 60. There is. The second end 21b, which is the other end of the shaft 21, is supported by a second bearing held by a bracket fixed to the frame 60 or directly held by the frame 60. The bracket is fixed to the frame 60 so as to cover the opening of the frame 60, for example.
 シャフト21は、ロータ20の中心に固定されている。シャフト21は、例えば金属棒である。シャフト21は、ロータコア23を貫通する状態でロータコア23に固定されている。例えば、シャフト21は、ロータコア23の中心孔に圧入したり焼き嵌めしたりすることでロータコア23に固定されている。 The shaft 21 is fixed to the center of the rotor 20. The shaft 21 is, for example, a metal rod. The shaft 21 is fixed to the rotor core 23 so as to penetrate the rotor core 23. For example, the shaft 21 is fixed to the rotor core 23 by press-fitting or shrink-fitting into the center hole of the rotor core 23.
 巻線コイル22(ロータコイル)は、電流が流れることでステータ10に作用する磁力を発生するように巻回されている。巻線コイル22は、インシュレータ24を介してロータコア23に巻回されている。具体的には、巻線コイル22は、ロータコア23の複数のティースの各々に巻回された主コイルを有する。主コイルは、ロータ20のスロットごとに設けられている。 The winding coil 22 (rotor coil) is wound so as to generate a magnetic force acting on the stator 10 when an electric current flows. The winding coil 22 is wound around the rotor core 23 via the insulator 24. Specifically, the winding coil 22 has a main coil wound around each of the plurality of teeth of the rotor core 23. The main coil is provided for each slot of the rotor 20.
 巻線コイル22は、整流子30と電気的に接続されている。具体的には、巻線コイル22は、整流子30の整流子セグメント31と電気的に接続される。整流子30を介して巻線コイル22に電流が流れることで、ロータ20は、ステータ10に作用させる磁力を発生させる。 The winding coil 22 is electrically connected to the commutator 30. Specifically, the winding coil 22 is electrically connected to the commutator segment 31 of the commutator 30. When a current flows through the winding coil 22 via the commutator 30, the rotor 20 generates a magnetic force acting on the stator 10.
 巻線コイル22は、主コイル以外に、整流子セグメント31の相互間を結線して電気的に接続する渡り線を含む。渡り線は、主コイルと一体に構成されている。つまり、渡り線と主コイルとは、途中でカットされることなく連続する1本の導電線となっている。この場合、渡り線は、1本の導電線のうち、隣り合う2つの主コイル同士を接続する部分であってもよいし、主コイルを巻き始める前の部分であってもよいし、主コイルを巻き終わった後の部分であってもよい。なお、渡り線と主コイルとは連続する1本の導電線ではなく、整流子セグメント31等において連結された別体の導電線であってもよい。 In addition to the main coil, the winding coil 22 includes a crossover wire that connects the commutator segments 31 to each other and electrically connects them. The crossover is integrally formed with the main coil. That is, the crossover wire and the main coil are one continuous conductive wire without being cut in the middle. In this case, the crossover wire may be a portion of one conductive wire that connects two adjacent main coils, or may be a portion before the main coil starts to be wound, or the main coil. It may be the part after the winding is finished. The crossover wire and the main coil may not be one continuous conductive wire, but may be a separate conductive wire connected by the commutator segment 31 or the like.
 ロータコア23は、巻線コイル22が巻回される電機子コアである。ロータコア23は、例えば、所定形状に形成された複数の打ち抜き電磁鋼板がシャフト21の軸心Cの方向に積層された積層体である。ロータコア23は、電磁鋼板の積層体に限るものではなく、磁性材料によって構成されたバルク体であってもよい。ロータコア23の外周面とステータ10の各磁石11の内面との間には微小なエアギャップが存在する。 The rotor core 23 is an armature core around which the winding coil 22 is wound. The rotor core 23 is, for example, a laminated body in which a plurality of punched electrical steel plates formed in a predetermined shape are laminated in the direction of the axis C of the shaft 21. The rotor core 23 is not limited to a laminated body of electromagnetic steel sheets, and may be a bulk body made of a magnetic material. There is a minute air gap between the outer peripheral surface of the rotor core 23 and the inner surface of each magnet 11 of the stator 10.
 ロータコア23は、複数のティースを有する。複数のティースは、シャフト21の軸心Cと直交する方向(ラジアル方向)に回転軸から離れる方向に延在している。複数のティースは、シャフト21の回転方向に沿って等間隔に存在している。 The rotor core 23 has a plurality of teeth. The plurality of teeth extend in a direction (radial direction) orthogonal to the axis C of the shaft 21 in a direction away from the rotation axis. The plurality of teeth are present at equal intervals along the rotation direction of the shaft 21.
 整流子30は、シャフト21に取り付けられている。したがって、整流子30は、ロータ20が回転することでシャフト21とともに回転する。整流子30は、シャフト21の第1端部21aに取り付けられている。 The commutator 30 is attached to the shaft 21. Therefore, the commutator 30 rotates together with the shaft 21 as the rotor 20 rotates. The commutator 30 is attached to the first end 21a of the shaft 21.
 整流子30は、複数の整流子セグメント31を有する。図2に示すように、複数の整流子セグメント31は、シャフト21の周方向に沿って設けられている。具体的には、複数の整流子セグメント31は、シャフト21を囲むように円環状に等間隔で配列されている。本実施の形態において、整流子30は、12個の整流子セグメント31を有する。 The commutator 30 has a plurality of commutator segments 31. As shown in FIG. 2, the plurality of commutator segments 31 are provided along the circumferential direction of the shaft 21. Specifically, the plurality of commutator segments 31 are arranged in an annular shape at equal intervals so as to surround the shaft 21. In this embodiment, the commutator 30 has twelve commutator segments 31.
 複数の整流子セグメント31の各々は、シャフト21の長手方向に延在する整流子片である。複数の整流子セグメント31の各々は、例えば、銅等の金属材料によって構成された導電端子である。複数の整流子セグメント31の各々は、ロータ20の巻線コイル22と電気的に接続されている。一例として、整流子30は、モールド整流子である。整流子30は、図1に示すように、複数の整流子セグメント31が樹脂モールドされた構成になっている。この場合、複数の整流子セグメント31は、表面が露出するようにモールド樹脂32に埋め込まれている。なお、複数の整流子セグメント31同士は、均圧線によって互いに同電位(均圧)となるように電気的に接続されていてもよい。 Each of the plurality of commutator segments 31 is a commutator piece extending in the longitudinal direction of the shaft 21. Each of the plurality of commutator segments 31 is a conductive terminal made of a metal material such as copper. Each of the plurality of commutator segments 31 is electrically connected to the winding coil 22 of the rotor 20. As an example, the commutator 30 is a mold commutator. As shown in FIG. 1, the commutator 30 has a configuration in which a plurality of commutator segments 31 are resin-molded. In this case, the plurality of commutator segments 31 are embedded in the mold resin 32 so that the surface is exposed. The plurality of commutator segments 31 may be electrically connected to each other by a pressure equalizing wire so as to have the same potential (equalizing pressure).
 図2に示すように、整流子30には、通電ブラシ40及び補助ブラシ50が接している。具体的には、通電ブラシ40及び補助ブラシ50は、整流子30の整流子セグメント31に摺接する。図示されていないが、通電ブラシ40及び補助ブラシ50は、摺動自在にブラシホルダに保持されている。例えば、通電ブラシ40及び補助ブラシ50は、ブラシホルダの収納部に収納されている。この場合、通電ブラシ40及び補助ブラシ50は、ブラシホルダの収納部の内部を摺動する。また、図示されていないが、電動機1には、通電ブラシ40及び補助ブラシ50を整流子30に押し当てるために、コイルバネ又はトーションバネ等のブラシバネが設けられている。ブラシバネは、バネ弾性を利用して通電ブラシ40及び補助ブラシ50に押圧を付与する。通電ブラシ40及び補助ブラシ50の各々は、ブラシバネからの押圧力を受けて常に先端部の表面が整流子30の整流子セグメント31に接触する状態になっている。通電ブラシ40及び補助ブラシ50の各々と整流子セグメント31とが摺れ合う面は摺動面となる。なお、ブラシバネは、1つの通電ブラシ40ごと及び1つの補助ブラシ50ごとに設けられているが、これに限らない。 As shown in FIG. 2, the commutator 30 is in contact with the energizing brush 40 and the auxiliary brush 50. Specifically, the energizing brush 40 and the auxiliary brush 50 are in sliding contact with the commutator segment 31 of the commutator 30. Although not shown, the energizing brush 40 and the auxiliary brush 50 are slidably held by the brush holder. For example, the energizing brush 40 and the auxiliary brush 50 are housed in the storage portion of the brush holder. In this case, the energizing brush 40 and the auxiliary brush 50 slide inside the storage portion of the brush holder. Further, although not shown, the electric motor 1 is provided with a brush spring such as a coil spring or a torsion spring in order to press the energizing brush 40 and the auxiliary brush 50 against the commutator 30. The brush spring applies pressure to the energizing brush 40 and the auxiliary brush 50 by utilizing the elasticity of the spring. Each of the energizing brush 40 and the auxiliary brush 50 is in a state where the surface of the tip portion is always in contact with the commutator segment 31 of the commutator 30 under the pressing force from the brush spring. The surface on which each of the energizing brush 40 and the auxiliary brush 50 and the commutator segment 31 slide is a sliding surface. The brush spring is provided for each energizing brush 40 and for each auxiliary brush 50, but the present invention is not limited to this.
 通電ブラシ40及び補助ブラシ50は、導電性を有する導電体である。一例として、通電ブラシ40及び補助ブラシ50は、カーボンによって構成された長尺状の実質的に直方体のカーボンブラシである。具体的には、通電ブラシ40及び補助ブラシ50は、銅等の金属を含むカーボンブラシである。例えば、通電ブラシ40及び補助ブラシ50は、黒鉛粉と銅紛とバインダー樹脂と硬化剤とを混錬した混錬物を粉砕して直方体に圧縮成形して焼成することで作製することができる。この場合、通電ブラシ40及び補助ブラシ50は、銅等の金属成分が多く含まれる(例えば金属成分が30%で炭素成分が70%)金属黒鉛質ブラシであってもよいし、ゴム弾性を有する樹脂の特性が残っている(例えば樹脂成分が20%で炭素成分が80%)レジン質ブラシであってもよい。 The energizing brush 40 and the auxiliary brush 50 are conductive conductors. As an example, the energizing brush 40 and the auxiliary brush 50 are long, substantially rectangular parallelepiped carbon brushes made of carbon. Specifically, the energizing brush 40 and the auxiliary brush 50 are carbon brushes containing a metal such as copper. For example, the energizing brush 40 and the auxiliary brush 50 can be produced by crushing a kneaded product obtained by kneading graphite powder, copper powder, a binder resin, and a curing agent, compression molding into a rectangular parallelepiped, and firing. In this case, the energizing brush 40 and the auxiliary brush 50 may be metallic graphite brushes containing a large amount of metal components such as copper (for example, 30% metal components and 70% carbon components), or have rubber elasticity. It may be a resin brush in which the characteristics of the resin remain (for example, the resin component is 20% and the carbon component is 80%).
 通電ブラシ40は、整流子30に接することでロータ20に電力を供給する給電ブラシである。具体的には、通電ブラシ40の先端部分が整流子30の整流子セグメント31に接する。したがって、通電ブラシ40には、電動機1の外部に設けられた電源70から供給される電流が流れる電線が接続されている。例えば、通電ブラシ40は、ピグテール線等の電線を介して、電源70からの電力を受電する電極端子と電気的に接続されている。具体的には、一方の端部が電極端子に接続されたピグテール線の他方の端部が通電ブラシ40の後端部に接続されており、通電ブラシ40が整流子セグメント31に接触することで、ピグテール線を介して通電ブラシ40に供給される電機子電流が整流子セグメント31を介してロータ20の各巻線コイル22に流れる。 The energizing brush 40 is a power feeding brush that supplies electric power to the rotor 20 by coming into contact with the commutator 30. Specifically, the tip portion of the energizing brush 40 comes into contact with the commutator segment 31 of the commutator 30. Therefore, the energizing brush 40 is connected to an electric wire through which a current supplied from a power source 70 provided outside the electric motor 1 flows. For example, the energizing brush 40 is electrically connected to an electrode terminal that receives electric power from the power source 70 via an electric wire such as a pigtail wire. Specifically, the other end of the pigtail wire whose one end is connected to the electrode terminal is connected to the rear end of the energizing brush 40, and the energizing brush 40 comes into contact with the commutator segment 31. , The armature current supplied to the energizing brush 40 via the pigtail wire flows through each winding coil 22 of the rotor 20 via the commutator segment 31.
 通電ブラシ40は、隣接する2つの整流子セグメント31を跨って接触する状態が存在するように構成されている。つまり、ロータ20の回転方向における通電ブラシ40の幅の長さは、隣接する2つの整流子セグメント31の間隔の長さよりも大きくなっている。これにより、通電ブラシ40は、2つの整流子セグメント31の間に接続された巻線コイル22を短絡させることができる。例えば、図2に示すように、隣り合う2つの整流子セグメント31の両方に1つの通電ブラシ40が接している場合、これらの2つの整流子セグメント31に接続された巻線コイル22は短絡する。 The energizing brush 40 is configured so that there is a state in which the energizing brush 40 is in contact with the two adjacent commutator segments 31. That is, the width of the energizing brush 40 in the rotation direction of the rotor 20 is larger than the length of the distance between the two adjacent commutator segments 31. As a result, the energizing brush 40 can short-circuit the winding coil 22 connected between the two commutator segments 31. For example, as shown in FIG. 2, when one energizing brush 40 is in contact with both of two adjacent commutator segments 31, the winding coil 22 connected to these two commutator segments 31 is short-circuited. ..
 通電ブラシ40は、複数設けられている。複数の通電ブラシ40の各々が整流子30に接している。具体的には、複数の通電ブラシ40は、一対の通電ブラシ40として、第1通電ブラシ41と第2通電ブラシ42とを含んでいる。第1通電ブラシ41と第2通電ブラシ42とは、整流子30を挟持するように対向して配置される。つまり、第1通電ブラシ41と第2通電ブラシ42とは、シャフト21の軸心Cを中心に線対称に配置されている。第1通電ブラシ41及び第2通電ブラシ42のそれぞれは、シャフト21の軸心Cと直交する方向(ラジアル方向)で整流子30の整流子セグメント31に接している。第1通電ブラシ41及び第2通電ブラシ42は、電源70に接続されている。電源70は、直流電源である。第1通電ブラシ41は、直流電源である電源70の陽極側(正極側)に接続された陽極側ブラシであり、第2通電ブラシ42は、直流電源である電源70の陰極側(負極側)に接続された陰極側ブラシである。一例として、電源70は、12Vの直流電源である。この場合、電動機1の入力電圧VINは、12Vになる。つまり、一対の通電ブラシ40に12Vの直流電圧が印加される。 A plurality of energizing brushes 40 are provided. Each of the plurality of energizing brushes 40 is in contact with the commutator 30. Specifically, the plurality of energizing brushes 40 include a first energizing brush 41 and a second energizing brush 42 as a pair of energizing brushes 40. The first energizing brush 41 and the second energizing brush 42 are arranged so as to sandwich the commutator 30. That is, the first energizing brush 41 and the second energizing brush 42 are arranged line-symmetrically about the axis C of the shaft 21. Each of the first energizing brush 41 and the second energizing brush 42 is in contact with the commutator segment 31 of the commutator 30 in a direction (radial direction) orthogonal to the axis C of the shaft 21. The first energizing brush 41 and the second energizing brush 42 are connected to the power supply 70. The power source 70 is a DC power source. The first energizing brush 41 is an anode side brush connected to the anode side (positive electrode side) of the power supply 70 which is a DC power supply, and the second energizing brush 42 is a cathode side (negative electrode side) of the power supply 70 which is a DC power supply. It is a cathode side brush connected to. As an example, the power supply 70 is a 12V DC power supply. In this case, the input voltage V IN of the electric motor 1 becomes 12 V. That is, a DC voltage of 12 V is applied to the pair of energizing brushes 40.
 補助ブラシ50は、通電ブラシ40に対して追加されたブラシである。具体的には、補助ブラシ50は、通電ブラシ40と整流子セグメント31とが切り離されて発生するスパークを抑制するためのスパーク抑制ブラシである。補助ブラシ50は、複数の整流子セグメント31のうち通電ブラシ40が離れた直後の整流子セグメント31に接するように配置されている。 The auxiliary brush 50 is a brush added to the energizing brush 40. Specifically, the auxiliary brush 50 is a spark suppressing brush for suppressing sparks generated by separating the energizing brush 40 and the commutator segment 31. The auxiliary brush 50 is arranged so as to be in contact with the commutator segment 31 immediately after the energizing brush 40 is separated from the plurality of commutator segments 31.
 補助ブラシ50は、複数配置されている。複数の補助ブラシ50の各々が整流子30に接している。具体的には、複数の補助ブラシ50は、一対の補助ブラシ50として、第1補助ブラシ51と第2補助ブラシ52とを含んでいる。第1補助ブラシ51及び第2補助ブラシ52のそれぞれは、整流子30の整流子セグメント31に接するように配置されている。 A plurality of auxiliary brushes 50 are arranged. Each of the plurality of auxiliary brushes 50 is in contact with the commutator 30. Specifically, the plurality of auxiliary brushes 50 include a first auxiliary brush 51 and a second auxiliary brush 52 as a pair of auxiliary brushes 50. Each of the first auxiliary brush 51 and the second auxiliary brush 52 is arranged so as to be in contact with the commutator segment 31 of the commutator 30.
 具体的には、第1補助ブラシ51は、複数の整流子セグメント31のうち第1通電ブラシ41が離れた直後の整流子セグメント31に接するように配置されている。つまり、第1補助ブラシ51は、第1通電ブラシ41が隣接する2つの整流子セグメント31のうちの一の整流子セグメント31から離れるときに、当該一の整流子セグメント31に接するように配置されている。このとき、第1通電ブラシ41は、2つの整流子セグメント31のうち、第1補助ブラシ51が接している当該一の整流子セグメント31よりもロータ20の回転方向の後方に位置する他の整流子セグメント31に接している。 Specifically, the first auxiliary brush 51 is arranged so as to be in contact with the commutator segment 31 immediately after the first energizing brush 41 is separated from the plurality of commutator segments 31. That is, the first auxiliary brush 51 is arranged so as to come into contact with the one commutator segment 31 when the first energizing brush 41 separates from the commutator segment 31 of one of the two adjacent commutator segments 31. ing. At this time, the first energizing brush 41 is the other commutator segment 31 of the two commutator segments 31 located behind the one commutator segment 31 in contact with the first auxiliary brush 51 in the rotation direction of the rotor 20. It touches the child segment 31.
 同様に、第2補助ブラシ52は、複数の整流子セグメント31のうち第2通電ブラシ42が離れた直後の整流子セグメント31に接するように配置されている。つまり、第2補助ブラシ52は、第2通電ブラシ42が隣接する2つの整流子セグメント31のうちの一の整流子セグメント31から離れるときに、当該一の整流子セグメント31に接するように配置されている。このとき、第2通電ブラシ42は、2つの整流子セグメント31のうち、第2補助ブラシ52が接している当該一の整流子セグメント31よりもロータ20の回転方向の後方に位置する他の整流子セグメント31に接している。 Similarly, the second auxiliary brush 52 is arranged so as to be in contact with the commutator segment 31 immediately after the second energizing brush 42 is separated from the plurality of commutator segments 31. That is, the second auxiliary brush 52 is arranged so as to come into contact with the commutator segment 31 when the second energizing brush 42 separates from the commutator segment 31 of the two adjacent commutator segments 31. ing. At this time, the second energizing brush 42 is the other commutator segment 31 of the two commutator segments 31 located behind the one commutator segment 31 in contact with the second auxiliary brush 52 in the rotation direction of the rotor 20. It touches the child segment 31.
 なお、通電ブラシ40及び補助ブラシ50は、同一平面上に配置されている。具体的には、通電ブラシ40及び補助ブラシ50は、シャフト21の軸心Cの方向と直交する同一平面上に配置されている。第1通電ブラシ41、第2通電ブラシ42、第1補助ブラシ51及び第2補助ブラシ52が、フレーム60内において、シャフト21の軸心Cの方向にずれることなく、同一平面上に配置されている。 The energizing brush 40 and the auxiliary brush 50 are arranged on the same plane. Specifically, the energizing brush 40 and the auxiliary brush 50 are arranged on the same plane orthogonal to the direction of the axis C of the shaft 21. The first energizing brush 41, the second energizing brush 42, the first auxiliary brush 51, and the second auxiliary brush 52 are arranged on the same plane in the frame 60 without being displaced in the direction of the axis C of the shaft 21. There is.
 通電ブラシ40と補助ブラシ50とは、ツェナーダイオード80を介して電気的に接続されている。つまり、通電ブラシ40と補助ブラシ50との間にツェナーダイオード80が接続されている。通電ブラシ40及び補助ブラシ50とツェナーダイオード80とは、例えば、リード線等の電線によって電気的に接続される。 The energizing brush 40 and the auxiliary brush 50 are electrically connected via a Zener diode 80. That is, the Zener diode 80 is connected between the energizing brush 40 and the auxiliary brush 50. The energizing brush 40, the auxiliary brush 50, and the Zener diode 80 are electrically connected by, for example, an electric wire such as a lead wire.
 ツェナーダイオード80は、降伏電圧としてブレークダウン電圧(ツェナー電圧)を有する非線形素子の一例である。ツェナーダイオード80としては、例えば、ブレークダウン電圧が3V又は2.5Vのものを用いることができる。 The Zener diode 80 is an example of a non-linear element having a breakdown voltage (Zener voltage) as a breakdown voltage. As the Zener diode 80, for example, a Zener diode 80 having a breakdown voltage of 3 V or 2.5 V can be used.
 ツェナーダイオード80は、通電ブラシ40と整流子セグメント31との間に発生するスパークを抑制するスパーク抑制部として機能する。具体的には、通電ブラシ40が整流子セグメント31から離れる瞬間に巻線コイル22の自己誘導作用によって生成する逆起電力によって巻線コイル22の両端に電圧が発生する。しかし、この電圧がツェナーダイオード80に対して逆方向に印加されることになる。このとき、ツェナーダイオード80は、ブレークダウン電圧より大きい電圧が印加されると、陽極から陰極に向かって電流が流れて両端の電圧がブレークダウン電圧に維持される。これにより、通電ブラシ40と整流子セグメント31との間の電圧は、逆起電力によって巻線コイル22の両端に発生する電圧よりも低いブレークダウン電圧に維持されるので、通電ブラシ40と整流子セグメント31との間に発生するスパークを抑制することができる。 The Zener diode 80 functions as a spark suppression unit that suppresses sparks generated between the energizing brush 40 and the commutator segment 31. Specifically, a voltage is generated across the winding coil 22 by the counter electromotive force generated by the self-induction action of the winding coil 22 at the moment when the energizing brush 40 separates from the commutator segment 31. However, this voltage is applied in the opposite direction to the Zener diode 80. At this time, when a voltage larger than the breakdown voltage is applied to the Zener diode 80, a current flows from the anode to the cathode, and the voltage across the Zener diode 80 is maintained at the breakdown voltage. As a result, the voltage between the energizing brush 40 and the commutator segment 31 is maintained at a breakdown voltage lower than the voltage generated across the winding coil 22 by the counter electromotive force, so that the energizing brush 40 and the commutator segment 31 are maintained. Sparks generated between the segment 31 and the segment 31 can be suppressed.
 本実施の形態において、ツェナーダイオード80は、通電ブラシ40及び補助ブラシ50と同様に、複数用いられている。具体的には、ツェナーダイオード80は、第1ツェナーダイオード81と、第2ツェナーダイオード82とを含んでいる。 In the present embodiment, a plurality of Zener diodes 80 are used as in the energizing brush 40 and the auxiliary brush 50. Specifically, the Zener diode 80 includes a first Zener diode 81 and a second Zener diode 82.
 第1通電ブラシ41と第1補助ブラシ51とは、第1ツェナーダイオード81を介して電気的に接続されている。つまり、第1通電ブラシ41と第1補助ブラシ51との間の配線経路に第1ツェナーダイオード81が挿入されている。具体的には、第1ツェナーダイオード81は、第1ツェナーダイオード81の陽極側端子が第1補助ブラシ51に接続され、第1ツェナーダイオード81の陰極側端子が第1通電ブラシ41に接続されている。したがって、第1ツェナーダイオード81の陰極側端子は、直流電源である電源70の陽極と同電位になっている。 The first energizing brush 41 and the first auxiliary brush 51 are electrically connected via a first Zener diode 81. That is, the first Zener diode 81 is inserted in the wiring path between the first energizing brush 41 and the first auxiliary brush 51. Specifically, in the first Zener diode 81, the anode side terminal of the first Zener diode 81 is connected to the first auxiliary brush 51, and the cathode side terminal of the first Zener diode 81 is connected to the first energizing brush 41. There is. Therefore, the cathode side terminal of the first Zener diode 81 has the same potential as the anode of the power supply 70, which is a DC power supply.
 同様に、第2通電ブラシ42と第2補助ブラシ52とは、第2ツェナーダイオード82を介して電気的に接続されている。つまり、第2通電ブラシ42と第2補助ブラシ52との間の配線経路に第2ツェナーダイオード82が挿入されている。具体的には、第2ツェナーダイオード82は、第2ツェナーダイオード82の陽極側端子が第2通電ブラシ42に接続され、第2ツェナーダイオード82の陰極側端子が第2補助ブラシ52に接続されている。したがって、第2ツェナーダイオード82の陰極側端子は、直流電源である電源70の陰極と同電位になっている。 Similarly, the second energizing brush 42 and the second auxiliary brush 52 are electrically connected via the second Zener diode 82. That is, the second Zener diode 82 is inserted in the wiring path between the second energizing brush 42 and the second auxiliary brush 52. Specifically, in the second Zener diode 82, the anode side terminal of the second Zener diode 82 is connected to the second energizing brush 42, and the cathode side terminal of the second Zener diode 82 is connected to the second auxiliary brush 52. There is. Therefore, the cathode side terminal of the second Zener diode 82 has the same potential as the cathode of the power source 70, which is a DC power source.
 なお、第1ツェナーダイオード81及び第2ツェナーダイオード82は、電動機1に内蔵されていてもよいし、電動機1の外部に配置されていてもよい。 The first Zener diode 81 and the second Zener diode 82 may be built in the electric motor 1 or may be arranged outside the electric motor 1.
 次に、電動機1の特徴について、本発明に至った経緯も含めて説明する。 Next, the features of the electric motor 1 will be described, including the background to the present invention.
 従来から、通電ブラシと補助ブラシとの間にツェナーダイオードを挿入することで、通電ブラシと整流子セグメントとの間に発生するスパークを抑制する技術が知られている。しかしながら、従来の構成では、スパークの発生を十分に抑制することができない場合があることが分かった。 Conventionally, there has been known a technique for suppressing sparks generated between the energizing brush and the commutator segment by inserting a Zener diode between the energizing brush and the auxiliary brush. However, it has been found that the conventional configuration may not be able to sufficiently suppress the generation of sparks.
 本発明者らが検討したところ、整流子セグメントの数、電動機の入力電圧及び通電ブラシの材質の違いによって、スパークの発生を抑制できない場合があることが分かった。つまり、整流子セグメントの数、電動機の入力電圧及び通電ブラシの材質に応じてツェナーダイオードのブレークダウン電圧が所定の範囲内になっていなければ、スパークの発生を十分に抑制することができない場合があることが分かった。 As a result of the examination by the present inventors, it was found that the generation of sparks may not be suppressed depending on the number of commutator segments, the input voltage of the electric motor, and the material of the energizing brush. That is, if the breakdown voltage of the Zener diode is not within a predetermined range according to the number of commutator segments, the input voltage of the motor, and the material of the energizing brush, it may not be possible to sufficiently suppress the generation of sparks. It turned out that there was.
 そこで、本発明者らは、スパーク発生時の状態に着目して、ツェナーダイオードの最適なブレークダウン電圧を検討した。 Therefore, the present inventors have focused on the state at the time of spark generation and examined the optimum breakdown voltage of the Zener diode.
 ここで、まず、スパークの発生原理について、図3Aと図3Bを用いて説明する。図3Aと図3Bは、スパークの発生原理を説明するための図である。なお、図3Aと図3Bに示される電動機は、図2に示す電動機1において、補助ブラシ50及びツェナーダイオード80を設けていない構成のものである。 Here, first, the principle of spark generation will be described with reference to FIGS. 3A and 3B. 3A and 3B are diagrams for explaining the principle of spark generation. The electric motor shown in FIGS. 3A and 3B has a configuration in which the auxiliary brush 50 and the Zener diode 80 are not provided in the electric motor 1 shown in FIG.
 図3Aに示すように、隣り合う2つの整流子セグメント31である第1整流子セグメント31a及び第2整流子セグメント31bの両方に1つの通電ブラシ40が接している状態である場合、第1整流子セグメント31aと第2整流子セグメント31bとの間に挿入された巻線コイル22は短絡している。 As shown in FIG. 3A, when one energizing brush 40 is in contact with both the first commutator segment 31a and the second commutator segment 31b, which are two adjacent commutator segments 31, the first commutator The winding coil 22 inserted between the child segment 31a and the second commutator segment 31b is short-circuited.
 この状態からロータ20の回転により整流子30の回転が進むと、図3Bに示される状態になる。つまり、通電ブラシ40は、第1整流子セグメント31aから切り離されて、第1整流子セグメント31aよりも回転方向の後方に位置する第2整流子セグメント31bのみに接する状態になる。 When the commutator 30 rotates due to the rotation of the rotor 20 from this state, the state shown in FIG. 3B is obtained. That is, the energizing brush 40 is separated from the first commutator segment 31a and comes into contact with only the second commutator segment 31b located behind the first commutator segment 31a in the rotational direction.
 このとき、第1整流子セグメント31aが通電ブラシ40から離れた瞬間に、巻線コイル22の自己誘導作用によって逆起電力が生成し、その逆起電力による還流電圧が通電ブラシ40と第1整流子セグメント31aとの間に印加されてアーク放電が発生する。この結果、通電ブラシ40と第1整流子セグメント31aとの間にアーク電圧Vaが生成されてスパークが発生する。つまり、この場合、第1整流子セグメント31aがスパーク発生子片となる。 At this time, at the moment when the first commutator segment 31a separates from the energizing brush 40, a counter electromotive force is generated by the self-induction action of the winding coil 22, and the recirculation voltage due to the counter electromotive force is the energizing brush 40 and the first commutator. It is applied between the child segment 31a and an arc discharge is generated. As a result, an arc voltage Va is generated between the energizing brush 40 and the first commutator segment 31a, and sparks are generated. That is, in this case, the first commutator segment 31a becomes a spark generator piece.
 本発明者らは、ツェナーダイオードの最適なブレークダウン電圧を検討するにあたり、スパークが発生したときの通電ブラシ40と整流子セグメント31との間の電圧及び電流を、実験により測定した。その結果を図4に示す。図4は、実験例の電動機において、通電ブラシ40と整流子セグメント31との間の電圧及び電流を示す図であり、実測値を示している。 In examining the optimum breakdown voltage of the Zener diode, the present inventors experimentally measured the voltage and current between the energizing brush 40 and the commutator segment 31 when a spark occurred. The result is shown in FIG. FIG. 4 is a diagram showing the voltage and current between the energizing brush 40 and the commutator segment 31 in the electric motor of the experimental example, and shows the measured values.
 ここで、この実験で用いた実験例の電動機は、上記実施の形態における電動機1において、補助ブラシ50及びツェナーダイオード80を設けていない構成であり、それ以外は、上記実施の形態における電動機1と同じ構成である。この場合、整流子セグメント31としては、銅によって構成されたものを用いた。整流子30における整流子セグメント31の総数は、12とした。電源70については、直流電源とし、電源電圧(入力電圧)を12Vとした。通電ブラシ40は、第1通電ブラシ41及び第2通電ブラシ42の2つとし、いずれも金属黒鉛質ブラシとした。したがって、第1通電ブラシ41から第2通電ブラシ42への電流経路は、6つの整流子セグメント31と6つの巻線コイル22とを通る電流経路を2つ並列接続した並列回路になるので、隣り合う2つの整流子セグメント31の間の電圧(隣接子片間電圧)は、12V/6=2Vとなる。 Here, the electric motor of the experimental example used in this experiment has a configuration in which the auxiliary brush 50 and the Zener diode 80 are not provided in the electric motor 1 in the above embodiment, and other than that, the electric motor 1 in the above embodiment It has the same configuration. In this case, as the commutator segment 31, a commutator segment 31 made of copper was used. The total number of commutator segments 31 in the commutator 30 was 12. The power supply 70 was a DC power supply, and the power supply voltage (input voltage) was 12V. The energizing brush 40 was a first energizing brush 41 and a second energizing brush 42, both of which were metallic graphite brushes. Therefore, the current path from the first energizing brush 41 to the second energizing brush 42 is a parallel circuit in which two current paths passing through the six commutator segments 31 and the six winding coils 22 are connected in parallel. The voltage between the two commutator segments 31 that match (the voltage between the adjacent commutators) is 12V / 6 = 2V.
 図4において、データ線L1は、通電ブラシ40と整流子セグメント31との間の電圧VB-Sを示している。具体的には、データ線L1は、図3Aと図3Bにおいて、第1通電ブラシ41と第1整流子セグメント31aとの間の電圧を示している。データ線L1は、時間の経過に伴う電圧の変化を示している。 4, the data line L1 shows the voltage V B-S between the current brush 40 and commutator segments 31. Specifically, the data line L1 shows the voltage between the first energizing brush 41 and the first commutator segment 31a in FIGS. 3A and 3B. The data line L1 shows the change in voltage with the passage of time.
 図4において、データ線L2は、通電ブラシ40と整流子セグメント31との間の電流IB-Sを示している。具体的には、データ線L2は、図3Aと図3Bにおいて、第1通電ブラシ41と第1整流子セグメント31aとの間の電流を示している。図3Aと図3Bに示される第1通電ブラシ41は、陽極側ブラシであるので、第1通電ブラシ41と第1整流子セグメント31aとの間の電流IB-Sは、第1通電ブラシ41から第1整流子セグメント31aに向かう方向に流れる。データ線L2は、時間の経過に伴う電流の変化を示している。 4, the data line L2 shows the current I B-S between the current brush 40 and commutator segments 31. Specifically, the data line L2 shows the current between the first energizing brush 41 and the first commutator segment 31a in FIGS. 3A and 3B. First power supply brush 41 shown in Figure 3A and 3B, since it is the positive brushes, a first power supply brush 41 current I B-S between the first commutator segment 31a is first energized brushes 41 Flows in the direction from the first commutator segment 31a. The data line L2 shows the change in current with the passage of time.
 図4のデータ線L1に示すように、通電ブラシ40と整流子セグメント31とが切り離される瞬間に、通電ブラシ40と整流子セグメント31との間の電圧VB-Sが増加し、スパークが開始することが分かる。このときの電圧VB-Sは、約4Vである。つまり、火花開始電圧が4Vであり、電圧VB-Sが4Vを超えると、アーク放電が発生してスパークが開始する。アーク放電が継続しているアーク継続期間(つまりスパーク発生中)において、アーク電圧は、ほぼ一定の電圧値に固定される。図4において、アーク電圧は、約13Vである。 As shown in the data line L1 in FIG. 4, at the moment when the current brush 40 and the commutator segment 31 is disconnected, the voltage V B-S between the current brush 40 and the commutator segments 31 is increased, spark initiation You can see that it does. Voltage V B-S in this case is about 4V. That is, the spark starting voltage is 4V, if the voltage V B-S exceeds 4V, spark initiates an arc discharge occurs. During the arc duration (that is, during spark generation) in which the arc discharge continues, the arc voltage is fixed at a substantially constant voltage value. In FIG. 4, the arc voltage is about 13V.
 アーク放電は、スパークが消弧するまで継続する。つまり、アーク放電が継続している間は、第1整流子セグメント31aと第2整流子セグメント31bとの間の巻線コイル22(図3Aと図3Bを参照)のエネルギが放出して、巻線コイル22に流れていた電流がアーク電圧で消費されることになる。第1整流子セグメント31aと第2整流子セグメント31bとの間の巻線コイル22に流れる電流がなくなったときにアーク電圧がゼロとなって、スパークが消弧する。 The arc discharge continues until the spark is extinguished. That is, while the arc discharge continues, the energy of the winding coil 22 (see FIGS. 3A and 3B) between the first commutator segment 31a and the second commutator segment 31b is released and wound. The current flowing through the wire coil 22 is consumed by the arc voltage. When the current flowing through the winding coil 22 between the first commutator segment 31a and the second commutator segment 31b disappears, the arc voltage becomes zero and the spark is extinguished.
 本発明者らは、整流子セグメント31の数、電動機の入力電圧及び通電ブラシ40の材質の条件を変えて上記の実験を重ねた結果、火花開始電圧は、条件によらず、約3V~4V程度であることを突き止めた。 As a result of repeating the above experiments by changing the number of commutator segments 31, the input voltage of the electric motor, and the material conditions of the energizing brush 40, the present inventors, the spark starting voltage is about 3V to 4V regardless of the conditions. I found out that it was a degree.
 さらに、図4において、アーク電圧は約13Vであるが、実験により、通電ブラシ40が金属黒鉛質ブラシである場合、アーク電圧は10V以上15V以下の範囲に収まることも分かった。通電ブラシ40をレジン質ブラシに代えて同様の実験を行った結果、通電ブラシ40がレジン質ブラシである場合、アーク電圧は、13V以上20V以下の範囲に収まることも分かった。 Further, in FIG. 4, the arc voltage is about 13V, but experiments have shown that when the energizing brush 40 is a metallic graphite brush, the arc voltage falls within the range of 10V or more and 15V or less. As a result of conducting the same experiment by replacing the energizing brush 40 with the resin brush, it was also found that when the energizing brush 40 is a resin brush, the arc voltage is within the range of 13V or more and 20V or less.
 本発明者は、以上のような実験をもとに鋭意検討した結果、図5Aと図5Bに示すように、通電ブラシ40と補助ブラシ50との間にツェナーダイオード80が接続したときに、隣り合う2つの整流子セグメント31の間の電圧及びスパーク発生時のアーク電圧に着目して、スパークを効果的に抑制できるツェナーダイオード80の最適なブレークダウン電圧VBRの範囲を見出した。図5Aと図5Bは、実施の形態に係る電動機1において、スパークの発生を抑制するための原理を説明するための図である。電動機1では、そのようなブレークダウン電圧VBRを有するツェナーダイオード80を用いている。 As a result of diligent studies based on the above experiments, the present inventor, as shown in FIGS. 5A and 5B, adjoins the Zener diode 80 when the Zener diode 80 is connected between the energizing brush 40 and the auxiliary brush 50. Focusing on the voltage between the two commutator segments 31 and the arc voltage at the time of spark generation, the optimum breakdown voltage VBR range of the Zener diode 80 capable of effectively suppressing the spark was found. 5A and 5B are diagrams for explaining the principle for suppressing the generation of sparks in the electric motor 1 according to the embodiment. The electric motor 1 uses a Zener diode 80 having such a breakdown voltage VBR.
 具体的には、本実施の形態に係る電動機1において、ツェナーダイオード80のブレークダウン電圧VBRは、複数の整流子セグメント31における隣り合う2つの整流子セグメント31の間の電圧(隣接子片間電圧)よりも高く、かつ、複数の整流子セグメント31のうち通電ブラシ40が離れた直後の整流子セグメント31と通電ブラシ40との間で発生するスパークにおけるアーク電圧以下に設定されている。 Specifically, in the electric motor 1 according to this embodiment, the breakdown voltage V BR of the Zener diode 80, the voltage between the two commutator segments 31 adjacent the plurality of commutator segments 31 (adjacent stator pieces It is set to be higher than the voltage) and lower than the arc voltage in the spark generated between the commutator segment 31 and the energizing brush 40 immediately after the energizing brush 40 is separated from the plurality of commutator segments 31.
 より具体的には、ツェナーダイオード80のブレークダウン電圧VBRは、図5Aと図5Bに示すように、隣り合う第1整流子セグメント31aと第2整流子セグメント31bとの間の電圧よりも高く、かつ、通電ブラシ40が離れた直後の第1整流子セグメント31aと通電ブラシ40との間で発生するスパークにおけるアーク電圧以下に設定されている。 More specifically, the breakdown voltage V BR of the Zener diode 80, as shown in FIGS. 5A and 5B, higher than the first commutator segment 31a adjacent the voltage between the second commutator segment 31b Moreover, it is set to be equal to or lower than the arc voltage in the spark generated between the first commutator segment 31a and the energizing brush 40 immediately after the energizing brush 40 is separated.
 このように、ツェナーダイオード80のブレークダウン電圧VBRをスパークにおけるアーク電圧以下にすることで、通電ブラシ40が離れた直後の整流子セグメント31と通電ブラシ40との間で発生するスパークを効果的に抑制することができる。仮にブレークダウン電圧VBRが隣り合う2つの整流子セグメント31の間の電圧よりも低いと、ツェナーダイオード80に常時電流が流れてしまう。したがって、上記のように、ブレークダウン電圧VBRを隣り合う2つの整流子セグメント31の間の電圧よりも高くすることで、スパーク発生時にのみツェナーダイオード80に電流を流すことができる。 In this way, by the breakdown voltage V BR of the Zener diode 80 below the arc voltage at the spark, effectively a spark generated between the commutator segments 31 immediately after the energization brush 40 leaves the current brush 40 Can be suppressed. If the breakdown voltage VBR is lower than the voltage between two adjacent commutator segments 31, a current always flows through the Zener diode 80. Therefore, as described above, by making the breakdown voltage VBR higher than the voltage between the two adjacent commutator segments 31, it is possible to pass a current through the Zener diode 80 only when a spark occurs.
 このように、ツェナーダイオード80のブレークダウン電圧VBRを上記範囲に設定することによって、整流子セグメント31の数、電動機1の入力電圧及び通電ブラシ40の材質の違いによらず、ツェナーダイオード80によってスパーク発生時のアーク電圧を効果的に吸収することができる。したがって、整流子セグメント31と通電ブラシ40との間に発生するスパークを十分に抑制することができる。 Thus, the breakdown voltage V BR of the Zener diode 80 by setting the above range, the number of commutator segments 31, regardless of the quality difference of the input voltage and current brushes 40 of the motor 1, the zener diode 80 The arc voltage at the time of spark generation can be effectively absorbed. Therefore, the spark generated between the commutator segment 31 and the energizing brush 40 can be sufficiently suppressed.
 ツェナーダイオード80のブレークダウン電圧VBRの上限については、隣り合う2つの整流子セグメント31の間の電圧を基準に設定するとよい。具体的には、ブレークダウン電圧VBRは、隣り合う2つの整流子セグメント31の間の電圧の150%以下であるとよい。 The upper limit of the breakdown voltage V BR of the Zener diode 80, it is preferable to set the voltage between the two commutator segments 31 adjacent to the reference. Specifically, the breakdown voltage VBR is preferably 150% or less of the voltage between two adjacent commutator segments 31.
 つまり、整流子30の整流子セグメント31の総数をNSEGとし、電動機1の入力電圧(電源70の直流電圧)をVINとし、隣り合う2つの整流子セグメント31の間の電圧をVS-Sとすると、ツェナーダイオード80のブレークダウン電圧VBRは、以下の式(1)を満たすとよい。 That is, the total number of commutator segments 31 of the commutator 30 and N SEG, the input voltage of the motor 1 (the direct current voltage of the power supply 70) and V IN, the voltage between the two commutator segments 31 adjacent V S- When S, the breakdown voltage V BR of the Zener diode 80, it may satisfy the following equation (1).
 VIN/(NSEG/2)×100%<VBR≦VIN/(NSEG/2)×150%・・・(1)
 上記のように、本実施の形態における電動機1では、隣り合う2つの整流子セグメント31の間の電圧は、12V/6=2Vであるので、ツェナーダイオード80のブレークダウン電圧VBRは、隣り合う2つの整流子セグメント31の間の電圧の150%=2V×150%=3Vに設定している。
V IN / (N SEG / 2) x 100% <V BR ≤ V IN / (N SEG / 2) x 150% ... (1)
As described above, in the electric motor 1 of the present embodiment, the voltage between the nearest neighboring two commutator segments 31, because it is 12V / 6 = 2V, the breakdown voltage V BR of the Zener diode 80 is adjacent The voltage between the two commutator segments 31 is set to 150% = 2V × 150% = 3V.
 ブレークダウン電圧VBRは、隣り合う2つの整流子セグメント31の間の電圧の140%以下であるとよく、より好ましくは130%以下であり、さらに好ましくは125%以下である。 The breakdown voltage VBR is preferably 140% or less, more preferably 130% or less, still more preferably 125% or less, of the voltage between two adjacent commutator segments 31.
 ツェナーダイオード80のブレークダウン電圧VBRの値は、低い方がよい。この場合、ツェナーダイオード80のブレークダウン電圧VBRは、アーク電圧の80%以下であるとよく、好ましくは70%以下、さらに好ましくは50%以下、より好ましくは30%以下である。 The value of the breakdown voltage V BR of the Zener diode 80 is lower is better. In this case, the breakdown voltage V BR of the Zener diode 80 may is not more than 80% of the arc voltage, preferably 70% or less, more preferably 50% or less, more preferably 30% or less.
 上記のように、アーク電圧が約13Vで、ブレークダウン電圧VBRが3Vのツェナーダイオード80を用いる場合、ブレークダウン電圧VBRは、アーク電圧の約23%程度となる。 As described above, when the Zener diode 80 having an arc voltage of about 13 V and a breakdown voltage V BR of 3 V is used, the breakdown voltage V BR is about 23% of the arc voltage.
 上記のように、本発明者らが実験を積み重ねた結果、火花開始電圧は、条件によらず、3V~4V程度であることが分かった。さらに、上記実施の形態において、隣り合う2つの整流子セグメント31の間の電圧は、2Vであった。 As described above, as a result of repeated experiments by the present inventors, it was found that the spark starting voltage is about 3V to 4V regardless of the conditions. Further, in the above embodiment, the voltage between two adjacent commutator segments 31 was 2V.
 このことを鑑みると、隣り合う2つの整流子セグメント31の間の電圧が2V未満である場合には、ツェナーダイオード80のブレークダウン電圧VBRは、2V以上3V以下であるとよい。 In view of this, when the voltage between the two commutator segments 31 adjacent is less than 2V, the breakdown voltage V BR of the Zener diode 80, may is 2V or 3V or less.
 隣り合う2つの整流子セグメント31の間の電圧とツェナーダイオード80のブレークダウン電圧VBRとをこのような範囲に設定することによって、通電ブラシ40と整流子セグメント31との間にスパークが発生することを抑制できる。つまり、スパークが発生することそのものを回避することが可能となる。 By setting a voltage between two adjacent commutator segments 31 and the breakdown voltage V BR of the Zener diode 80 in such a range, the spark is generated between the power brush 40 and commutator segments 31 Can be suppressed. That is, it is possible to avoid the occurrence of sparks.
 上記のように、通電ブラシ40が金属黒鉛質ブラシである場合、アーク電圧は、10V以上15V以下である。通電ブラシ40がレジン質ブラシである場合、アーク電圧は、13V以上20V以下である。 As described above, when the energizing brush 40 is a metallic graphite brush, the arc voltage is 10 V or more and 15 V or less. When the energizing brush 40 is a resin brush, the arc voltage is 13 V or more and 20 V or less.
 これにより、通電ブラシ40の材質に応じてツェナーダイオード80のブレークダウン電圧VBRを適切に設定することができる。したがって、スパークの発生を効果的に抑制することができる。 Thus, it is possible to appropriately set the breakdown voltage V BR of the Zener diode 80 in accordance with the material of the current brush 40. Therefore, the generation of sparks can be effectively suppressed.
 また、ブレークダウン電圧VBRを、通電ブラシ40と整流子セグメント31との間の火花開始電圧以下にすることによって、通電ブラシ40と整流子セグメント31との間にスパークが発生することを抑制できる。つまり、スパークが発生することそのものを回避することが可能になるという効果を奏することができる。 Further, by setting the breakdown voltage VBR to be equal to or lower than the spark start voltage between the energizing brush 40 and the commutator segment 31, it is possible to suppress the generation of sparks between the energizing brush 40 and the commutator segment 31. .. That is, it is possible to achieve the effect that it is possible to avoid the occurrence of sparks.
 以上のように、本実施の形態の電動機1は、シャフト21に相当する回転軸を有するロータ20と、回転軸に取り付けられた整流子30と、整流子30に接する通電ブラシ40と、整流子30に接する補助ブラシ50と、を備える。整流子30は、回転軸の周方向に沿って設けられた複数の整流子セグメント31を有する。通電ブラシ40と補助ブラシ50とは、ツェナーダイオード80に相当する非線形素子を介して電気的に接続されている。補助ブラシ50は、回転軸を中心にして複数の整流子セグメント31が回転する時、複数の整流子セグメント31のうち通電ブラシ40が離れた直後の整流子セグメント31に接するように配置されている。非線形素子の降伏電圧は、複数の整流子セグメント31における隣り合う2つの整流子セグメント間の電圧よりも高く、かつ、複数の整流子セグメント31のうち通電ブラシ40が離れた直後の整流子セグメント31と通電ブラシ40との間で発生するスパークにおけるアーク電圧以下である。 As described above, the electric motor 1 of the present embodiment includes a rotor 20 having a rotating shaft corresponding to the shaft 21, a commutator 30 attached to the rotating shaft, an energizing brush 40 in contact with the commutator 30, and a commutator. An auxiliary brush 50 in contact with 30 is provided. The commutator 30 has a plurality of commutator segments 31 provided along the circumferential direction of the rotation axis. The energizing brush 40 and the auxiliary brush 50 are electrically connected via a non-linear element corresponding to the Zener diode 80. The auxiliary brush 50 is arranged so as to be in contact with the commutator segment 31 immediately after the energizing brush 40 is separated from the plurality of commutator segments 31 when the plurality of commutator segments 31 rotate around the rotation axis. .. The breakdown voltage of the non-linear element is higher than the voltage between two adjacent commutator segments in the plurality of commutator segments 31, and the commutator segment 31 of the plurality of commutator segments 31 immediately after the energizing brush 40 is separated. It is equal to or less than the arc voltage in the spark generated between the energizing brush 40 and the energizing brush 40.
 これにより、通電ブラシと整流子セグメントとの間に発生するスパークを抑制することができる。 This makes it possible to suppress sparks generated between the energizing brush and the commutator segment.
 (変形例)
 以上、本開示に係る電動機1について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。
(Modification example)
Although the electric motor 1 according to the present disclosure has been described above based on the embodiment, the present disclosure is not limited to the above embodiment.
 例えば、上記実施の形態では、通電ブラシ40と補助ブラシ50との配線経路に挿入するスパーク抑制部品として、ツェナーダイオード80を用いたが、これに限らない。具体的には、通電ブラシ40と補助ブラシ50との配線経路には、バリスタ、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等のその他の非線形素子を挿入してもよい。つまり、通電ブラシ40と補助ブラシ50とは、バリスタ、MOSFET等の非線形素子を介して接続されていてもよい。この場合、非線形素子の降伏電圧は、複数の整流子セグメント31における隣り合う2つの整流子セグメント31の間の電圧よりも高く、かつ、複数の整流子セグメント31のうち通電ブラシ40が離れた直後の整流子セグメント31と通電ブラシ40との間で発生するスパークのアーク電圧以下に設定すればよい。 For example, in the above embodiment, the Zener diode 80 is used as a spark suppressing component to be inserted into the wiring path between the energizing brush 40 and the auxiliary brush 50, but the present invention is not limited to this. Specifically, other non-linear elements such as a varistor and a MOSFET (Metal-Oxide-Semiconductor Field-Effective Transistor) may be inserted in the wiring path between the energizing brush 40 and the auxiliary brush 50. That is, the energizing brush 40 and the auxiliary brush 50 may be connected via a non-linear element such as a varistor or a MOSFET. In this case, the breakdown voltage of the non-linear element is higher than the voltage between two adjacent commutator segments 31 in the plurality of commutator segments 31, and immediately after the energizing brush 40 of the plurality of commutator segments 31 is separated. It may be set to be equal to or lower than the arc voltage of the spark generated between the commutator segment 31 and the energizing brush 40.
 上記実施の形態において、通電ブラシ40及び補助ブラシ50は、2つとしたが、これに限らない。具体的には、通電ブラシ40及び補助ブラシ50は、1つであってもよいし、3つ以上であってもよい。 In the above embodiment, the number of the energizing brush 40 and the auxiliary brush 50 is two, but the number is not limited to this. Specifically, the energizing brush 40 and the auxiliary brush 50 may be one or three or more.
 上記実施の形態において、ステータ10は、磁石11によって構成されていたが、これに限らない。例えば、ステータ10は、ステータコアとステータコアに巻回された巻線コイルとによって構成されていてもよい。 In the above embodiment, the stator 10 is composed of the magnet 11, but the stator 10 is not limited to this. For example, the stator 10 may be composed of a stator core and a winding coil wound around the stator core.
 上記実施の形態において、ロータ20は、コアを有していたが、これに限らない。電動機1は、コアを有さないコアレスモータに適用することもできる。例えば、電動機1は、ステータ10及びロータ20の磁束がシャフト21の軸心Cの方向に発生する扁平型のフラットモータであるコアレスモータに適用することができる。 In the above embodiment, the rotor 20 has a core, but the rotor 20 is not limited to this. The electric motor 1 can also be applied to a coreless motor having no core. For example, the electric motor 1 can be applied to a coreless motor which is a flat flat motor in which the magnetic fluxes of the stator 10 and the rotor 20 are generated in the direction of the axis C of the shaft 21.
 その他、上記実施の形態に対して当業者が思い付く各種変形を施して得られる形態、及び、本開示の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, it is realized by arbitrarily combining the components and functions in the embodiment obtained by subjecting various modifications to the above embodiment to those skilled in the art, and within the range not deviating from the purpose of the present disclosure. Forms are also included in this disclosure.
 本開示は、電気掃除機又は自動車等をはじめとして、電動機が搭載される種々の製品に利用することができる。 This disclosure can be used for various products equipped with an electric motor, such as a vacuum cleaner or an automobile.
 1 電動機
 10 ステータ
 11 磁石
 20 ロータ
 21 シャフト
 21a 第1端部
 21b 第2端部
 22 巻線コイル
 23 ロータコア
 24 インシュレータ
 30 整流子
 31 整流子セグメント
 31a 第1整流子セグメント
 31b 第2整流子セグメント
 32 モールド樹脂
 40 通電ブラシ
 41 第1通電ブラシ
 42 第2通電ブラシ
 50 補助ブラシ
 51 第1補助ブラシ
 52 第2補助ブラシ
 60 フレーム
 70 電源
 80 ツェナーダイオード
 81 第1ツェナーダイオード
 82 第2ツェナーダイオード
1 Electric motor 10 Stator 11 Magnet 20 Rotor 21 Shaft 21a 1st end 21b 2nd end 22 Winding coil 23 Rotor core 24 Insulator 30 Commutator 31 Commutator segment 31a 1st commutator segment 31b 2nd commutator segment 32 Molded resin 40 Energizing brush 41 1st energizing brush 42 2nd energizing brush 50 Auxiliary brush 51 1st auxiliary brush 52 2nd auxiliary brush 60 Frame 70 Power supply 80 Zener diode 81 1st Zener diode 82 2nd Zener diode

Claims (11)

  1. 回転軸を有するロータと、
    前記回転軸に取り付けられた整流子と、
    前記整流子に接する通電ブラシと、
    前記整流子に接する補助ブラシと、を備え、
    前記整流子は、前記回転軸の周方向に沿って設けられた複数の整流子セグメントを有し、
    前記通電ブラシと前記補助ブラシとは、非線形素子を介して電気的に接続されており、
    前記補助ブラシは、前記回転軸を中心にして前記複数の整流子セグメントが回転する時、前記複数の整流子セグメントのうち前記通電ブラシが離れた直後の整流子セグメントに接するように配置され、
    前記非線形素子の降伏電圧は、前記複数の整流子セグメントにおける隣り合う2つの整流子セグメント間の電圧よりも高く、かつ、前記複数の整流子セグメントのうち前記通電ブラシが離れた直後の前記整流子セグメントと前記通電ブラシとの間で発生するスパークにおけるアーク電圧以下である、
    電動機。
    A rotor with a rotating shaft and
    With the commutator attached to the rotating shaft,
    An energizing brush in contact with the commutator and
    With an auxiliary brush in contact with the commutator,
    The commutator has a plurality of commutator segments provided along the circumferential direction of the rotation axis.
    The energizing brush and the auxiliary brush are electrically connected via a non-linear element.
    The auxiliary brush is arranged so as to be in contact with the commutator segment immediately after the energizing brush is separated from the plurality of commutator segments when the plurality of commutator segments rotate about the rotation axis.
    The breakdown voltage of the non-linear element is higher than the voltage between two adjacent commutator segments in the plurality of commutator segments, and the commutator of the plurality of commutator segments immediately after the energizing brush is separated. It is less than or equal to the arc voltage in the spark generated between the segment and the energizing brush.
    Electric motor.
  2. 前記降伏電圧は、前記通電ブラシと前記整流子セグメントとの間の火花開始電圧以下である、
    請求項1に記載の電動機。
    The yield voltage is less than or equal to the spark starting voltage between the energizing brush and the commutator segment.
    The electric motor according to claim 1.
  3. 前記非線形素子は、ツェナーダイオードであり、
    前記降伏電圧は、前記ツェナーダイオードのブレークダウン電圧である、
    請求項1又は2に記載の電動機。
    The non-linear element is a Zener diode.
    The breakdown voltage is the breakdown voltage of the Zener diode.
    The electric motor according to claim 1 or 2.
  4. 前記ブレークダウン電圧は、前記隣り合う2つの整流子セグメント間の電圧の150%以下である、
    請求項3に記載の電動機。
    The breakdown voltage is 150% or less of the voltage between the two adjacent commutator segments.
    The electric motor according to claim 3.
  5. 前記ブレークダウン電圧は、前記隣り合う2つの整流子セグメント間の電圧の125%以下である、
    請求項3に記載の電動機。
    The breakdown voltage is 125% or less of the voltage between the two adjacent commutator segments.
    The electric motor according to claim 3.
  6. 前記隣り合う2つの整流子セグメント間の電圧が3V未満であり、前記ブレークダウン電圧が2V以上3V以下である、
    請求項3~5のいずれか1項に記載の電動機。
    The voltage between the two adjacent commutator segments is less than 3V, and the breakdown voltage is 2V or more and 3V or less.
    The electric motor according to any one of claims 3 to 5.
  7. 前記ブレークダウン電圧は、前記アーク電圧の80%以下である、
    請求項3~6のいずれか1項に記載の電動機。
    The breakdown voltage is 80% or less of the arc voltage.
    The electric motor according to any one of claims 3 to 6.
  8. 前記通電ブラシが金属黒鉛質ブラシである場合、前記アーク電圧は、10V以上15V以下である、
    請求項1~7のいずれか1項に記載の電動機。
    When the energizing brush is a metallic graphite brush, the arc voltage is 10 V or more and 15 V or less.
    The electric motor according to any one of claims 1 to 7.
  9. 前記通電ブラシがレジン質ブラシである場合、前記アーク電圧は、13V以上20V以下である、
    請求項1~7のいずれか1項に記載の電動機。
    When the energizing brush is a resin brush, the arc voltage is 13 V or more and 20 V or less.
    The electric motor according to any one of claims 1 to 7.
  10. 前記通電ブラシは、直流電源の陰極側に接続された第1通電ブラシと、前記直流電源の負極側に接続された第2通電ブラシとを有し、
    前記補助ブラシは、第1補助ブラシと第2補助ブラシとを有し、
    前記非線形素子は、第1非線形素子と第2非線形素子とを有し、
    前記第1通電ブラシと前記第1補助ブラシとは、前記第1非線形素子を介して電気的に接続されており、
    前記第2通電ブラシと前記第2補助ブラシとは、前記第2非線形素子を介して電気的に接続されている、
    請求項1~9のいずれか1項に記載の電動機。
    The energizing brush has a first energizing brush connected to the cathode side of the DC power supply and a second energizing brush connected to the negative electrode side of the DC power supply.
    The auxiliary brush has a first auxiliary brush and a second auxiliary brush.
    The non-linear element includes a first non-linear element and a second non-linear element.
    The first energizing brush and the first auxiliary brush are electrically connected via the first nonlinear element.
    The second energizing brush and the second auxiliary brush are electrically connected via the second nonlinear element.
    The electric motor according to any one of claims 1 to 9.
  11. 請求項1~10のいずれか1項に記載の電動機を用いた電気機器。 An electric device using the electric motor according to any one of claims 1 to 10.
PCT/JP2020/029866 2019-10-09 2020-08-04 Electric motor and electrical apparatus WO2021070458A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080057589.2A CN114223116A (en) 2019-10-09 2020-08-04 Motor and electric apparatus
JP2021550386A JPWO2021070458A1 (en) 2019-10-09 2020-08-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019185684 2019-10-09
JP2019-185684 2019-10-09

Publications (1)

Publication Number Publication Date
WO2021070458A1 true WO2021070458A1 (en) 2021-04-15

Family

ID=75437808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029866 WO2021070458A1 (en) 2019-10-09 2020-08-04 Electric motor and electrical apparatus

Country Status (3)

Country Link
JP (1) JPWO2021070458A1 (en)
CN (1) CN114223116A (en)
WO (1) WO2021070458A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135955A1 (en) * 2022-01-17 2023-07-20 パナソニックIpマネジメント株式会社 Electric motor and electrical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254903A (en) * 1975-10-31 1977-05-04 Matsushita Electric Works Ltd Commutator device for dc motor
JP2017034741A (en) * 2015-07-29 2017-02-09 株式会社日本自動車部品総合研究所 Rectification device and rotary electric machine
JP2017192233A (en) * 2016-04-14 2017-10-19 株式会社Soken Rotary electric machine with brush

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254903A (en) * 1975-10-31 1977-05-04 Matsushita Electric Works Ltd Commutator device for dc motor
JP2017034741A (en) * 2015-07-29 2017-02-09 株式会社日本自動車部品総合研究所 Rectification device and rotary electric machine
JP2017192233A (en) * 2016-04-14 2017-10-19 株式会社Soken Rotary electric machine with brush

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135955A1 (en) * 2022-01-17 2023-07-20 パナソニックIpマネジメント株式会社 Electric motor and electrical device

Also Published As

Publication number Publication date
CN114223116A (en) 2022-03-22
JPWO2021070458A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
US8148869B2 (en) Brush holder
WO2021070458A1 (en) Electric motor and electrical apparatus
US8242659B2 (en) Mold commutator and commutator motor using the same
JPWO2021070458A5 (en)
WO2021049449A1 (en) Electric motor and electrical device
JP2017192233A (en) Rotary electric machine with brush
US20170346350A1 (en) Permanent Magnet Motor and Home Appliance Having the Same
US11670901B2 (en) Electrical contact device and rotating electric machine including the electrical contact device
WO2021049452A1 (en) Electric motor and electrical equipment
WO2021049453A1 (en) Electric motor and electrical apparatus
WO2023119924A1 (en) Electric motor and electric blower
JP2009278752A (en) Electric rotary machine for vehicle
JP2007282362A (en) Brush for rotary electric machine, and rotary electric machine using the brush
JP7446070B2 (en) rotating electric machine
WO2023135955A1 (en) Electric motor and electrical device
US334823A (en) Commutator for dynamo-electric machines
CN207588637U (en) It is integrated with the device of printed circuit motor
JP2021040468A (en) Electric motor and electric apparatus
WO2022050179A1 (en) Electric motor
US7015608B2 (en) Method and apparatus to suppress electrical noise in a rotor assembly for an electrical machine
JP2018170898A (en) DC motor with multiple brushes
CN114631251B (en) Motor with a motor housing having a motor housing with a motor housing
WO2023119801A1 (en) Electric motor and terminal
KR101958698B1 (en) Wound-Rotor Induction Motor And Method Of Driving The Same
JP2011061976A (en) Dc motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875081

Country of ref document: EP

Kind code of ref document: A1