WO2021068928A1 - 智能割草机行走的控制方法及智能割草机 - Google Patents
智能割草机行走的控制方法及智能割草机 Download PDFInfo
- Publication number
- WO2021068928A1 WO2021068928A1 PCT/CN2020/120141 CN2020120141W WO2021068928A1 WO 2021068928 A1 WO2021068928 A1 WO 2021068928A1 CN 2020120141 W CN2020120141 W CN 2020120141W WO 2021068928 A1 WO2021068928 A1 WO 2021068928A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lawn mower
- driving direction
- offset
- preset
- current driving
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims description 23
- 230000001133 acceleration Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 2
- 230000005358 geomagnetic field Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D34/00—Mowers; Mowing apparatus of harvesters
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D34/00—Mowers; Mowing apparatus of harvesters
- A01D34/006—Control or measuring arrangements
- A01D34/008—Control or measuring arrangements for automated or remotely controlled operation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
Definitions
- the invention relates to the technical field of robots, in particular to a method for controlling the walking of an intelligent lawn mower and an intelligent lawn mower.
- intelligent lawn mowing robots are used for automatic mowing operations instead of manual mowing methods to improve mowing efficiency.
- the intelligent lawn mower robot needs to keep moving in a straight line, so that the mowed grass looks neat and tidy.
- the center of gravity of the intelligent lawnmower robot may be shifted during walking, the intelligent lawnmower robot will drive toward the center of gravity, causing the lawnmower robot to gradually shift to one side, and the mowed grass has poor uniformity, which is not conducive to the intelligent lawnmower robot. Mowing operations.
- the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
- the first object of the present invention is to provide a method for controlling the walking of the intelligent lawn mower.
- the second objective of the present invention is to provide an intelligent lawn mower.
- the third purpose of the present invention is to provide another intelligent lawn mower.
- the fourth object of the present invention is to provide a computer-readable storage medium.
- an embodiment of the first aspect of the present invention proposes a method for controlling the walking of an intelligent lawn mower, including:
- the smart lawn mower moves and works in a work area
- the smart lawn mower includes: an inertial measurement unit
- the method includes:
- the inertial measurement unit detects the current driving direction of the smart lawn mower
- the current driving direction is adjusted according to the offset, so that the adjusted offset between the current driving direction and the preset driving direction is less than the preset threshold, and then Control the smart lawn mower to keep moving in a straight line.
- the preset travel direction is used to control the smart lawn mower to travel straight.
- the preset driving direction and the preset threshold are preset by the smart lawn mower itself.
- adjusting the current driving direction according to the offset includes: determining the adjusted direction and the adjustment according to the offset.
- the method further includes:
- the smart lawn mower is controlled to move along the current driving direction.
- adjusting the current driving direction according to the offset includes:
- Proportional integral derivative control is performed on the offset, so that the adjusted offset between the current traveling direction and the preset traveling direction is smaller than a preset threshold.
- detecting the current driving direction of the smart lawn mower includes:
- the inertial measurement unit includes a six-axis sensor
- the detecting the current driving direction of the smart lawn mower includes:
- the current driving direction of the smart lawn mower is detected by a six-axis sensor mounted on the smart lawn mower.
- the inertial measurement unit includes a nine-axis sensor
- the detecting the current driving direction of the smart lawn mower includes:
- the current driving direction of the smart lawn mower is detected by a nine-axis sensor mounted on the smart lawn mower.
- a method for controlling walking of a smart lawn mower is provided.
- the smart lawn mower moves and works in a work area.
- the current state of the smart lawn mower is detected.
- Driving direction detecting the offset between the current driving direction and the preset driving direction; when the offset is greater than or equal to the preset threshold, adjust the current driving direction according to the offset to make the adjusted
- the offset between the current driving direction and the preset driving direction is less than the preset threshold, so that the smart lawn mower moves linearly.
- the smart lawn mower can adjust its driving direction in real time during the walking process, and control the driving direction of the smart lawn mower to remain unchanged as much as possible, thereby ensuring that the smart lawn mower runs in a straight line, so that the mowed green space can be seen. Go up more neatly.
- an intelligent lawn mower including:
- the walking module is installed on the housing, and the walking module drives the smart lawn mower to walk and turn;
- the first detection module is configured to detect the current driving direction of the smart lawn mower when the smart lawn mower moves in the work area, and the first detection module includes an inertial measurement unit;
- the second detection module is used to detect the offset between the current driving direction and the preset driving direction
- the adjustment module is configured to adjust the current driving direction according to the offset when the offset is greater than or equal to the preset threshold, so that the offset between the adjusted current driving direction and the preset driving direction is less than
- the threshold is preset so that the smart lawn mower moves linearly.
- the adjustment module is further used for:
- the smart lawn mower is controlled to move along the current driving direction.
- the adjustment module is specifically configured to:
- Proportional integral derivative control is performed on the offset, so that the adjusted offset between the current traveling direction and the preset traveling direction is smaller than a preset threshold.
- the first detection module is specifically configured to:
- the first detection module includes a six-axis sensor or a nine-axis sensor.
- the smart lawn mower moves and works in a work area, and when the smart lawn mower moves in the work area, the current driving direction of the smart lawn mower is detected;
- the offset from the preset driving direction is less than the preset threshold, so that the smart lawn mower moves linearly. Therefore, the smart lawn mower can adjust its driving direction in real time during the walking process, and control the driving direction of the smart lawn mower to remain unchanged as much as possible, thereby ensuring that the smart lawn mower runs in a straight line, so that the mowed green space can be seen.
- an embodiment of the third aspect of the present invention proposes an intelligent lawn mower, including a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor executes the program When realizing the above-mentioned intelligent lawn mower walking control method.
- an embodiment of the fourth aspect of the present invention proposes a computer-readable storage medium.
- the instructions in the storage medium are executed by a processor, the above-mentioned intelligent lawnmower walking control method is realized.
- the fifth embodiment of the present invention proposes a method for controlling the walking of an intelligent lawn mower.
- the intelligent lawn mower moves and works in a working area.
- the intelligent lawn mower includes an inertial measurement unit.
- the inertial measurement unit includes: a six-axis sensor or a nine-axis sensor, and the method includes:
- the inertial measurement unit detects the current driving direction of the smart lawn mower
- the current driving direction is adjusted according to the offset, so that the adjusted offset between the current driving direction and the preset driving direction is less than the preset threshold, and then Controlling the smart lawn mower to keep moving in a straight line, wherein the preset driving direction and the preset threshold are preset by the smart lawn mower itself; adjusting the current driving direction according to the offset includes: The offset determines the direction and amount of adjustment;
- Detecting the current driving direction of the smart lawn mower includes: detecting the current heading angle of the smart lawn mower;
- the method further includes:
- Adjusting the current driving direction according to the offset includes:
- Proportional integral derivative control is performed on the offset, so that the adjusted offset between the current traveling direction and the preset traveling direction is smaller than a preset threshold.
- FIG. 1 is a schematic flowchart of a method for controlling walking of an intelligent lawn mower provided by an embodiment of the present invention
- FIG. 2 is a schematic structural diagram of an intelligent lawn mower provided by an embodiment of the present invention.
- Fig. 3 is a schematic structural diagram of another intelligent lawn mower provided by an embodiment of the present invention.
- FIG. 1 is a schematic flowchart of a method for controlling walking of an intelligent lawn mower provided by an embodiment of the present invention.
- the method for controlling the walking of the smart lawn mower provided in this embodiment is applied to the smart lawn mower to control the smart lawn mower to walk in a straight line.
- the walking control method of the smart lawn mower includes the following steps:
- Step 101 When the smart lawn mower moves in the work area, detect the current driving direction of the smart lawn mower.
- the execution subject of the method includes an inertial measurement unit, and the lawn mower uses the inertial measurement unit to detect its current walking direction during the walking process.
- the inertial measurement unit may include: a nine-axis sensor or a six-axis sensor.
- the smart lawn mower moves and works in the work area. Specifically, the smart lawn mower moves and performs lawn mowing operations in the work area.
- the current driving direction of the smart lawn mower is detected by a six-axis sensor mounted on the smart lawn mower.
- the six-axis sensor includes a three-axis gyroscope and a three-axis acceleration sensor.
- the three-axis gyroscope can measure the angular velocity of the intelligent lawn mower in three axes (X-axis, Y-axis, Z-axis) in three-dimensional space.
- the three-axis acceleration sensor can measure the acceleration of the intelligent lawn mower in three axes (X-axis, Y-axis, Z-axis) in three-dimensional space.
- the intelligent lawn mower performs attitude calculation on the acceleration and angular velocity of the three axial directions uploaded by the six-axis sensor to obtain the current driving direction of the intelligent lawn mower.
- the attitude calculation is based on the acceleration and angular velocity of the three axial directions to obtain the driving direction.
- the related technology please refer to the related technology.
- the detection frequency can be set according to the output frequency of the six-axis sensor.
- the output frequency of the six-axis sensor is 100HZ
- the detection frequency is set to 100HZ.
- the current driving direction of the smart lawn mower is detected by a nine-axis sensor mounted on the smart lawn mower.
- the nine-axis sensor includes a three-axis gyroscope, a three-axis acceleration sensor, and a three-axis geomagnetic sensor.
- the three-axis gyroscope can measure the angular velocity of the intelligent lawn mower in three axes (X-axis, Y-axis, Z-axis) in three-dimensional space.
- the three-axis acceleration sensor can measure the acceleration of the smart lawn mower in three axes (X-axis, Y-axis, Z-axis) in three-dimensional space.
- the three-axis geomagnetic sensor can measure the magnitude of the magnetic field in three axes.
- the smart lawn mower performs attitude calculation on the acceleration, angular velocity, and magnetic field in the three axial directions uploaded by the nine-axis sensor to obtain the current driving direction of the smart lawn mower.
- the attitude calculation is based on the acceleration, angular velocity, and magnetic field in the three axial directions to obtain the driving direction.
- the detection frequency can be set according to the output frequency of the six-axis sensor, for example, the output frequency of the nine-axis sensor is 100HZ, and the detection frequency is set to 100HZ.
- the geomagnetic signal detected by the geomagnetic sensor mounted on the smart lawn mower is acquired; the current driving direction is determined according to the geomagnetic signal and the signal detected by the nine-axis sensor.
- the geomagnetic signal detected by the nine-axis sensor may not be accurate enough.
- the smart lawn mower is specially equipped with a geomagnetic sensor with higher detection accuracy to detect the geomagnetic signal.
- the geomagnetic signal detected by the geomagnetic sensor and the acceleration and angular velocity of the three axes detected by the nine-axis sensor are used to calculate the attitude to obtain the current driving direction of the smart lawn mower.
- detecting the current driving direction of the smart lawn mower includes: detecting the current heading angle of the smart lawn mower.
- the current heading angle of the smart lawn mower obtained based on the six-axis sensor is the relative heading angle with respect to the geomagnetic field. Based on the nine-axis sensor, the current heading angle of the smart lawn mower is the absolute heading angle relative to the geomagnetic field.
- Step 102 Detect the offset between the current driving direction and the preset driving direction.
- the preset driving direction is used to control the smart lawn mower to travel in a straight line. It is understandable that when the smart lawn mower is driving in the same or almost the same direction as the preset driving direction, the smart lawn mower can be controlled to keep driving in a straight line during the driving process.
- the smart lawn mower when the smart lawn mower walks in the work area, it needs to go straight, turn, etc. to achieve full coverage of the work area. Specifically, after each turn, the smart lawn mower needs to be controlled to go straight.
- the detected driving direction after turning is determined as the preset driving direction, so that the smart lawn mower can keep driving in a straight line after turning. Specifically, the preset driving direction will be changed as needed.
- the driving direction detected by the smart lawn mower after turning again is determined as the preset driving direction.
- the preset driving direction can also be preset by the smart lawn mower itself. For example, a smart lawn mower provides an interactive interface.
- the user inputs a preset driving direction in the interactive interface, and the smart lawn mower receives the input and configures the preset driving direction locally.
- the smart lawn mower stores a boundary map of the working area, and the smart lawn mower sets a preset driving direction according to the boundary map, so that the smart lawn mower drives in a straight line along the boundary of the working area according to the boundary map.
- the number of preset driving directions can be one or more.
- the boundary map is a polygon composed of multiple boundaries, it is necessary to preset the preset when the smart lawn mower is driving on each boundary. Direction of travel.
- the smaller the offset between the current driving direction and the preset driving direction the closer the current driving direction is to the preset driving direction; conversely, the greater the offset between the current driving direction and the preset driving direction is, indicating The more the current driving direction deviates from the preset driving direction.
- a preset threshold is calibrated according to a large amount of test data, and the preset threshold is used to determine whether the current driving direction is close to the preset driving direction.
- the preset threshold is used to determine whether the current driving direction is close to the preset driving direction.
- Step 103 When the offset is greater than or equal to the preset threshold, adjust the current driving direction according to the offset, so that the adjusted offset between the current driving direction and the preset driving direction is less than the preset Threshold, and then control the smart lawn mower to keep moving in a straight line.
- the offset between the current driving direction and the preset driving direction when the offset between the current driving direction and the preset driving direction is greater than the preset threshold, it indicates that the current driving direction deviates from the preset driving direction. If the driving direction of the smart lawn mower is not corrected in time, it will not be able to mowing according to the The sensor pads complete the mowing operation.
- the current driving direction is adjusted according to the offset , So that the adjusted offset between the current driving direction and the preset driving direction is less than the preset threshold, so that the smart lawn mower moves straight, so that the cut green space looks more neat.
- adjusting the current driving direction according to the offset amount includes: determining the adjusted direction and the adjustment amount according to the offset amount.
- the adjustment direction is to the left relative to the preset direction or to the right relative to the preset direction
- the adjustment amount is a specific adjustment angle. For example, offset 5° to the left, or offset 5° to the right.
- the way of adjusting the current driving direction according to the offset is different, for example as follows:
- proportional-integral PI control is performed on the offset, so that the adjusted offset between the current driving direction and the preset driving direction is smaller than a preset threshold.
- proportional-derivative PD control is performed on the offset, so that the adjusted offset between the current driving direction and the preset driving direction is less than a preset threshold.
- proportional-integral-derivative PID control is performed on the offset so that the adjusted current driving direction is the same as the preset heading angle.
- the offset between the driving directions is less than a preset threshold.
- the first detection module includes at least one of a nine-axis sensor and a six-axis sensor, and is used to detect the current driving direction of the smart lawn mower.
- the first detection module also includes a geomagnetic sensor.
- the geomagnetic signal detected by the sensor and the signal detected by the nine-axis sensor or the six-axis sensor jointly determine the current driving direction of the smart lawn mower;
- the second detection module includes an MCU to detect and/or calculate the current driving of the smart lawn mower The offset between the direction and the preset driving direction.
- a method for controlling walking of a smart lawn mower is provided.
- the smart lawn mower moves and works in a work area.
- the current state of the smart lawn mower is detected.
- Driving direction detecting the offset between the current driving direction and the preset driving direction; when the offset is greater than or equal to the preset threshold, adjust the current driving direction according to the offset to make the adjusted
- the offset between the current driving direction and the preset driving direction is less than the preset threshold, so that the smart lawn mower moves linearly.
- the smart lawn mower can adjust its driving direction in real time during the walking process, and control the driving direction of the smart lawn mower to remain unchanged as much as possible, thereby ensuring that the smart lawn mower runs in a straight line, so that the mowed green space can be seen. Go up more neatly.
- Fig. 2 is a schematic structural diagram of an intelligent lawn mower provided by an embodiment of the present invention.
- the smart lawn mower includes a housing and a walking module, which are installed in the housing, and the walking module drives the smart lawn mower to walk and turn; as shown in FIG. 2, the smart lawn mower also includes: a first detection module 11, The second detection module 12 and the adjustment module 13;
- the first detection module 11 includes an inertial measurement unit for detecting the current driving direction of the smart lawn mower when the smart lawn mower moves in the work area;
- the second detection module 12 is configured to detect the offset between the current driving direction and the preset driving direction
- the adjustment module 13 is configured to adjust the current driving direction according to the offset when the offset is greater than or equal to a preset threshold, so that the adjusted current driving direction is offset from the preset driving direction It is less than the preset threshold, so that the smart lawn mower moves linearly.
- the adjustment module 13 is further configured to: when the offset is less than a preset threshold, control the smart lawn mower to move along the current driving direction.
- the adjustment module 13 is specifically configured to:
- the proportional-integral-derivative PID control is performed on the offset, so that the adjusted offset between the current driving direction and the preset driving direction is smaller than the preset threshold.
- the first detection module 11 is specifically configured to detect the current heading angle of the smart lawn mower.
- the smart lawn mower moves and works in a work area, and when the smart lawn mower moves in the work area, the current driving direction of the smart lawn mower is detected;
- the offset from the preset driving direction is less than the preset threshold, so that the smart lawn mower moves linearly.
- the smart lawn mower can adjust its driving direction in real time during the walking process, and control the driving direction of the smart lawn mower to remain unchanged as much as possible, so as to ensure that the smart lawn mower travels in a straight line, so that the green area is mowed. It looks more tidy.
- Fig. 3 is a schematic structural diagram of an intelligent lawn mower provided by an embodiment of the present invention.
- the smart lawn mower includes:
- the processor 1002 implements the walking control method of the smart lawn mower provided in the foregoing embodiment when the program is executed.
- the smart lawn mower also includes:
- the communication interface 1003 is used for communication between the memory 1001 and the processor 1002.
- the memory 1001 is used to store computer programs that can run on the processor 1002.
- the memory 1001 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), for example, at least one disk memory.
- the processor 1002 is configured to implement the walking control method of the smart lawn mower described in the foregoing embodiment when the program is executed.
- the bus may be an Industry Standard Architecture (ISA) bus, Peripheral Component (PCI) bus, or Extended Industry Standard Architecture (EISA) bus Wait.
- ISA Industry Standard Architecture
- PCI Peripheral Component
- EISA Extended Industry Standard Architecture
- the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 3 to represent, but it does not mean that there is only one bus or one type of bus.
- the memory 1001, the processor 1002, and the communication interface 1003 are integrated on a single chip, the memory 1001, the processor 1002, and the communication interface 1003 can communicate with each other through internal interfaces.
- the processor 1002 may be a central processing unit (Central Processing Unit, referred to as CPU), or a specific integrated circuit (Application Specific Integrated Circuit, referred to as ASIC), or configured to implement one or more of the embodiments of the present invention integrated circuit.
- CPU Central Processing Unit
- ASIC Application Specific Integrated Circuit
- This embodiment also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the above-mentioned intelligent lawnmower walking control method is realized.
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
- a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
- computer readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
- the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because it can be used, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable media if necessary. The program is processed in a way to obtain the program electronically and then stored in the computer memory.
- each part of the present invention can be implemented by hardware, software, firmware or a combination thereof.
- multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
- Discrete logic gate circuits with logic functions for data signals Logic circuit, application specific integrated circuit with suitable combinational logic gate circuit, programmable gate array (PGA), field programmable gate array (FPGA), etc.
- a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the foregoing embodiments can be implemented by a program instructing relevant hardware to complete.
- the program can be stored in a computer-readable storage medium, and the program can be stored in a computer-readable storage medium. When executed, it includes one of the steps of the method embodiment or a combination thereof.
- the functional units in the various embodiments of the present invention may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
- the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
- the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Harvester Elements (AREA)
Abstract
一种智能割草机行走的控制方法及智能割草机,其中,该方法包括:智能割草机在工作区域内移动和工作,当智能割草机在工作区域内移动时,惯性测量单元检测智能割草机的当前行驶方向(101);检测当前行驶方向与预设行驶方向之间的偏移量(102);当偏移量大于或等于预设阈值时,根据偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而控制智能割草机保持直线移动(103)。该方法实现了智能割草机在行走过程中,实时调整自身的行驶方向,控制智能割草机的行驶方向尽可能地保持不变,进而保证智能割草机的直线行驶,使得被割的绿地看上去更为齐整。
Description
本申请要求了申请日为2019年10月10日,申请号为201910960355.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及机器人技术领域,尤其涉及一种智能割草机行走的控制方法及智能割草机。
随着城市公共绿地的越来越多,采用智能割草机器人进行自动割草作业,替代人工割草方式,以提高割草效率。智能割草机器人在割草作业的过程中,需要保持直线行驶,这样,被割的草地看上去才会齐整。但是,由于行走过程中,智能割草机器人重心可能会有偏移,智能割草机器人会偏向重心方向行驶,导致割草机器人逐渐地偏向一边,被割的草地齐整性差,不利于智能割草机器人的割草作业。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的第一个目的在于提出一种智能割草机行走的控制方法。
本发明的第二个目的在于提出一种智能割草机。
本发明的第三个目的在于提出另一种智能割草机。
本发明的第四个目的在于提出一种计算机可读存储介质。
为达上述目的,本发明第一方面实施例提出了一种智能割草机行走的控制方法,包括:
所述智能割草机在工作区域内移动和工作,所述智能割草机包括:惯性测量单元,所述方法包括:
当智能割草机在工作区域内移动时,所述惯性测量单元检测所述智能割草机的当前行驶方向;
检测所述当前行驶方向与预设行驶方向之间的偏移量;
当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而控制所述智能割草机保持直线移动。
在一个实施例中,所述预设行驶方向用于控制智能割草机直线行驶。
在一个实施例中,所述预设行驶方向和所述预设阈值通过智能割草机自身预先设定。
在一个实施例中,根据所述偏移量调整当前行驶方向包括:根据所述偏移量确定调整的方向和调整量。
在一个实施例中,在检测所述当前行驶方向与预设行驶方向之间的偏移量之后,还包括:
当所述偏移量小于预设阈值时,控制所述智能割草机沿当前行驶方向移动。
在一个实施例中,根据所述偏移量调整当前行驶方向包括,包括:
对所述偏移量进行比例积分微分控制,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值。
在一个实施例中,检测所述智能割草机的当前行驶方向包括:
检测所述智能割草机的当前航向角。
在一个实施例中,所述惯性测量单元包括:六轴传感器,所述检测所述智能割草机的当前行驶方向包括:
通过所述智能割草机搭载的六轴传感器检测所述智能割草机的当前行驶方向。
在一个实施例中,所述惯性测量单元包括:九轴传感器,所述检测所述智能割草机的当前行驶方向包括:
通过所述智能割草机搭载的九轴传感器检测所述智能割草机的当前行驶方向。
本发明实施例提供的智能割草机行走的控制方法,所述智能割草机在工作区域内移动和工作,当智能割草机在工作区域内移动时,检测所述智能割草机的当前行驶方向;检测所述当前行驶方向与预设行驶方向之间的偏移量;当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而使得所述智能割草机直线移动。此,实现智能割草机在行走过程中,实时调整自身的行驶方向,控制智能割草机的行驶方向尽可能地保持不变,进而保证智能割草机的直线行驶,使得被割的绿地看上去更为齐整。
为达上述目的,本发明第二方面实施例提出了一种智能割草机,包括:
壳体;
行走模块,安装于壳体,所述行走模块带动智能割草机行走和转向;
第一检测模块,用于当智能割草机在工作区域内移动时,检测所述智能割草机的当前行驶方向,所述第一检测模块包括惯性测量单元;
第二检测模块,用于检测所述当前行驶方向与预设行驶方向之间的偏移量;
调整模块,用于当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而使得所述智能割草机直线移动。
在一个实施例中,所述调整模块还用于:
当所述偏移量小于预设阈值时,控制所述智能割草机沿当前行驶方向移动。
在一个实施例中,所述调整模块具体用于:
对所述偏移量进行比例积分微分控制,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值。
在一个实施例中,所述第一检测模块具体用于:
检测所述智能割草机的当前航向角。
在一个实施例中,所述第一检测模块包括六轴传感器或九轴传感器。
本发明实施例提供的智能割草机,所述智能割草机在工作区域内移动和工作,当智能割草机在工作区域内移动时,检测所述智能割草机的当前行驶方向;检测所述当前行驶方向与预设行驶方向之间的偏移量;当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而使得所述智能割草机直线移动。此,实现智能割草机在行走过程中,实时调整自身的行驶方向,控制智能割草机的行驶方向尽可能地保持不变,进而保证智能割草机的直线行驶,使得被割的绿地看上去更为齐整。为达上述目的,本发明第三方面实施例提出了一种智能割草机,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上所述的智能割草机行走的控制方法。
为了实现上述目的,本发明第四方面实施例提出了一种计算机可读存储介质,当所述存储介质中的指令被处理器执行时,实现如上所述的智能割草机行走的控制方法。
为了实现上述目的,本发明第五方面实施例提出了一种智能割草机行走的控制方法,所述智能割草机在工作区域内移动和工作,所述智能割草机包括:惯性测量单元,所述惯性测量单元包括:六轴传感器或九轴传感器,所述方法包括:
当智能割草机在工作区域内移动时,所述惯性测量单元检测所述智能割草机的当前行驶方向;
检测所述当前行驶方向与预设行驶方向之间的偏移量,其中,所述预设行驶方向用于控制智能割草机直线行驶;
当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而控制所述智能割草机保持直线移动,其中,所述预设行驶方向和所述预设阈值通过智能割草机自身预先设定;根据所述偏移量调整当前行驶方向包括:根据所述偏移量确定调整的方向和调整量;
检测所述智能割草机的当前行驶方向包括:检测所述智能割草机的当前航向角;
在检测所述当前行驶方向与预设行驶方向之间的偏移量之后,还包括:
当所述偏移量小于预设阈值时,控制所述智能割草机沿当前行驶方向移动;
根据所述偏移量调整当前行驶方向包括,包括:
对所述偏移量进行比例积分微分控制,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例提供的一种智能割草机行走的控制方法的流程示意图;
图2为本发明实施例提供的一种智能割草机的结构示意图;
图3为本发明实施例提供的另一种智能割草机的结构示意图。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本发明实施例的智能割草机行走的控制方法及智能割草机。
图1为本发明实施例提供的一种智能割草机行走的控制方法的流程示意图。本实施例提供的智能割草机行走的控制方法应用于智能割草机,以控制智能割草机直线行走。
如图1所示,该智能割草机行走的控制方法,包括以下步骤:
步骤101、当智能割草机在工作区域内移动时,检测所述智能割草机的当前行驶方向。
该方法的执行主体包括:惯性测量单元,割草机在行走过程中利用惯性测量单元检测其当前行走方向。具体的,惯性测量单元可以包括:九轴传感器或六轴传感器。
其中,智能割草机在工作区域内移动和工作。具体地,智能割草机在工作区域内移动和进行割草作业。
在不同的应用场景中,检测所述智能割草机的当前行驶方向的方式不限,举例如下:
作为一种示例,通过所述智能割草机搭载的六轴传感器检测所述智能割草机的当前行驶方向。
其中,六轴传感器包括三轴陀螺仪、三轴加速度传感器。三轴陀螺仪可以测量智能割草机在三维空间的三个轴向(X轴、Y轴、Z轴)的角速度。三轴加速度传感器可以测量 智能割草机在三维空间的三个轴向(X轴、Y轴、Z轴)的加速度。
具体地,智能割草机对六轴传感器上传的三个轴向的加速度和角速度进行姿态解算,得到智能割草机的当前行驶方向。其中,基于三个轴向的加速度和角速度进行姿态解算得到行驶方向的更多介绍详见相关技术。
其中,检测频率可以根据六轴传感器的输出频率进行设置,例如,六轴传感器的输出频率为100HZ,检测频率设置为100HZ。
作为另一种示例,通过所述智能割草机搭载的九轴传感器检测所述智能割草机的当前行驶方向。
其中,九轴传感器包括三轴陀螺仪、三轴加速度传感器、三轴地磁传感器。三轴陀螺仪可以测量智能割草机在三维空间的三个轴向(X轴、Y轴、Z轴)的角速度。三轴加速度传感器可以测量智能割草机在三维空间的三个轴向(X轴、Y轴、Z轴)的加速度。三轴地磁传感器可以测量三个轴向的磁场大小。
具体地,智能割草机对九轴传感器上传的三个轴向的加速度、角速度、磁场大小进行姿态解算,得到智能割草机的当前行驶方向。其中,基于三个轴向的加速度、角速度、磁场大小进行姿态解算得到行驶方向的更多介绍详见相关技术。
其中,检测频率可以根据六轴传感器的输出频率进行设置,例如,九轴传感器的输出频率为100HZ,检测频率设置为100HZ。
作为另一种示例,获取所述智能割草机搭载的地磁传感器所检测的地磁信号;根据所述地磁信号和所述九轴传感器所检测的信号确定当前行驶方向。
具体的,九轴传感器检测的地磁信号可能不够准确,为了更为准确地确定智能割草机的当前行驶方向,采用智能割草机专门搭载检测精度更高的地磁传感器检测地磁信号。在计算智能割草机的当前行驶方向时,采用地磁传感器检测的地磁信号和九轴传感器检测的三个轴向的加速度、角速度进行姿态解算得到智能割草机的当前行驶方向。
进一步地,检测智能割草机的当前行驶方向包括:检测智能割草机的当前航向角。
需要说明的是,基于六轴传感器得到智能割草机的当前航向角为相对于地磁场的相对航向角。基于九轴传感器得到智能割草机的当前航向角为相对于地磁场的绝对航向角。
步骤102、检测所述当前行驶方向与预设行驶方向之间的偏移量。
其中,预设行驶方向用于控制智能割草机直线行驶。可以理解的是,当智能割草机在行驶过程中,其行驶方向与预设行驶方向相同或几乎相同时,则可以控制智能割草机在行驶过程中保持直线行驶。
在本实施例中,智能割草机在工作区域中行走时需要直行、转弯等以实现对工作区域的全面覆盖,具体的,每次转弯后需要控制智能割草机直行,将智能割草机转弯后检测到 的行驶方向确定为预设行驶方向,以使得智能割草机转弯后能够保持直线行驶,具体的,预设行驶方向会根据需要发生变化,当智能割草机直行后需要下一次转弯时,暂不按照预设行驶方向行驶,待智能割草机再次转弯后,将智能割草机再次转弯后检测到的行驶方向确定为预设行驶方向。在其他的实施例中,预设行驶方向也可以通过智能割草机自身预先设定。例如,智能割草机提供交互界面,用户在交互界面中输入预设行驶方向,智能割草机接收输入并在本地配置预设行驶方向。又例如,智能割草机存储了工作区域的边界地图,智能割草机根据边界地图设置预设行驶方向,进而使得智能割草机根据边界地图沿着工作区域的边界直线行驶。需要指出的是预设行驶方向的数量可以为一个或多个,例如,在边界地图为多条边界组成的多边形时,这时需要预设智能割草机在每条边界上行驶时的预设行驶方向。
其中,当前行驶方向与预设行驶方向之间的偏移量越小,说明当前行驶方向越接近预设行驶方向;反之,当前行驶方向与预设行驶方向之间的偏移量越大,说明当前行驶方向越偏离预设行驶方向。
具体地,根据大量试验数据标定预设阈值,该预设阈值用于判断当前行驶方向是否接近预设行驶方向。当前行驶方向与预设行驶方向之间的偏移量小于预设阈值时,控制智能割草机沿当前行驶方向移动;当前行驶方向与预设行驶方向之间的偏移量大于预设阈值时,这时需要调整当前行驶方向,控制智能割草机按照调整后的行驶方向直行行驶。
步骤103、当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而控制所述智能割草机保持直线移动。
具体的,当前行驶方向与预设行驶方向之间的偏移量大于预设阈值时,说明当前行驶方向偏离预设行驶方向,若不及时纠正智能割草机的行驶方向,将无法按照割草传感器划完成割草作业。为了保证智能割草机在行驶过程中尽可能的直线行驶,在智能割草机出现当前行驶方向与预设行驶方向之间的偏移量大于预设阈值时,根据偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而使得智能割草机直线移动,实现被割的绿地看上去更为齐整。
具体而言,根据所偏移量调整当前行驶方向包括:根据偏移量确定调整的方向和调整量。其中,调整的方向为相对于预设方向向左,或相对于预设方向向右,调整量为具体的调整角度。例如,向左偏移5°,或者向右偏移5°。
本实施例中,在不同的应用场景中,根据偏移量调整当前行驶方向的方式不同,举例如下:
作为一种示例,对所述偏移量进行比例-积分PI控制,以使调整后的当前行驶方向与 预设行驶方向之间的偏移量小于预设阈值。
作为另一种示例,对所述偏移量进行比例-微分PD控制,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值。
作为又一种示例,为了提高控制效果,使调整后的航向角更接近预设航向角,对所述偏移量进行比例-积分-微分PID控制,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值。
在本实施例中,第一检测模块包括九轴传感器、六轴传感器中的至少一种,用于检测智能割草机的当前行驶方向,优选的,第一检测模块还包括地磁传感器,根据地磁传感器检测到的地磁信号和九轴传感器或六轴传感器检测到的信号共同确定智能割草机的当前行驶方向;第二检测模块包括MCU,用于检测和/或计算智能割草机的当前行驶方向与预设行驶方向之间的偏移量。
本发明实施例提供的智能割草机行走的控制方法,所述智能割草机在工作区域内移动和工作,当智能割草机在工作区域内移动时,检测所述智能割草机的当前行驶方向;检测所述当前行驶方向与预设行驶方向之间的偏移量;当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而使得所述智能割草机直线移动。此,实现智能割草机在行走过程中,实时调整自身的行驶方向,控制智能割草机的行驶方向尽可能地保持不变,进而保证智能割草机的直线行驶,使得被割的绿地看上去更为齐整。
图2为本发明实施例提供的一种智能割草机的结构示意图。该智能割草机包括壳体和行走模块,安装于壳体,所述行走模块带动智能割草机行走和转向;如图2所示,该智能割草机还包括:第一检测模块11、第二检测模块12、调整模块13;
其中,第一检测模块11,所述第一检测模块包括惯性测量单元,用于当智能割草机在工作区域内移动时,检测所述智能割草机的当前行驶方向;
第二检测模块12,用于检测所述当前行驶方向与预设行驶方向之间的偏移量;
调整模块13,用于当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而使得所述智能割草机直线移动。
在一个实施例中,所述调整模块13还用于:当所述偏移量小于预设阈值时,控制所述智能割草机沿当前行驶方向移动。
在一个实施例中,所述调整模块13具体用于:
对所述偏移量进行比例-积分-微分PID控制,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值。
在一个实施例中,所述第一检测模块11具体用于:检测所述智能割草机的当前航向角。
需要说明的是,前述对智能割草机行走的控制方法实施例的解释说明也适用于该实施例的智能割草机,此处不再赘述。
本发明实施例提供的智能割草机,所述智能割草机在工作区域内移动和工作,当智能割草机在工作区域内移动时,检测所述智能割草机的当前行驶方向;检测所述当前行驶方向与预设行驶方向之间的偏移量;当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而使得所述智能割草机直线移动。由此,实现智能割草机在行走过程中,实时调整自身的行驶方向,控制智能割草机的行驶方向尽可能地保持不变,进而保证智能割草机的直线行驶,使得被割的绿地看上去更为齐整。
图3为本发明实施例提供的一种智能割草机的结构示意图。该智能割草机包括:
存储器1001、处理器1002及存储在存储器1001上并可在处理器1002上运行的计算机程序。
处理器1002执行所述程序时实现上述实施例中提供的智能割草机行走的控制方法。
进一步地,智能割草机还包括:
通信接口1003,用于存储器1001和处理器1002之间的通信。
存储器1001,用于存放可在处理器1002上运行的计算机程序。
存储器1001可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
处理器1002,用于执行所述程序时实现上述实施例所述的智能割草机行走的控制方法。
如果存储器1001、处理器1002和通信接口1003独立实现,则通信接口1003、存储器1001和处理器1002可以通过总线相互连接并完成相互间的通信。所述总线可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(Peripheral Component,简称为PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称为EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果存储器1001、处理器1002及通信接口1003,集成在一块芯片上实现,则存储器1001、处理器1002及通信接口1003可以通过内部接口完成相互间的通信。
处理器1002可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上所述的智能割草机行走的控制方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,″计算机可读介质″可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实 施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (15)
- 一种智能割草机行走的控制方法,所述智能割草机在工作区域内移动和工作,其特征在于,所述智能割草机包括:惯性测量单元,所述惯性测量单元包括:六轴传感器或九轴传感器,所述方法包括:当智能割草机在工作区域内移动时,所述惯性测量单元检测所述智能割草机的当前行驶方向;检测所述当前行驶方向与预设行驶方向之间的偏移量,其中,所述预设行驶方向用于控制智能割草机直线行驶;当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而控制所述智能割草机保持直线移动,其中,所述预设行驶方向和所述预设阈值通过智能割草机自身预先设定;根据所述偏移量调整当前行驶方向包括:根据所述偏移量确定调整的方向和调整量;检测所述智能割草机的当前行驶方向包括:检测所述智能割草机的当前航向角;在检测所述当前行驶方向与预设行驶方向之间的偏移量之后,还包括:当所述偏移量小于预设阈值时,控制所述智能割草机沿当前行驶方向移动;根据所述偏移量调整当前行驶方向包括,包括:对所述偏移量进行比例积分微分控制,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值。
- 一种智能割草机行走的控制方法,所述智能割草机在工作区域内移动和工作,其特征在于,所述智能割草机包括:惯性测量单元,所述方法包括:当智能割草机在工作区域内移动时,所述惯性测量单元检测所述智能割草机的当前行驶方向;检测所述当前行驶方向与预设行驶方向之间的偏移量;当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而控制所述智能割草机保持直线移动。
- 根据权利要求2所述的方法,其特征在于,所述预设行驶方向用于控制智能割草机直线行驶。
- 根据权利要求2所述的方法,其特征在于,所述预设行驶方向和所述预设阈值通过智能割草机自身预先设定。
- 根据权利要求2所述的方法,其特征在于,根据所述偏移量调整当前行驶方向包括:根据所述偏移量确定调整的方向和调整量。
- 根据权利要求2所述的方法,其特征在于,在检测所述当前行驶方向与预设行驶方向之间的偏移量之后,还包括:当所述偏移量小于预设阈值时,控制所述智能割草机沿当前行驶方向移动。
- 根据权利要求2所述的方法,其特征在于,根据所述偏移量调整当前行驶方向包括,包括:对所述偏移量进行比例积分微分控制,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值。
- 根据权利要求2所述的方法,其特征在于,检测所述智能割草机的当前行驶方向包括:检测所述智能割草机的当前航向角。
- 根据权利要求2所述的方法,其特征在于,所述惯性测量单元包括:六轴传感器,所述检测所述智能割草机的当前行驶方向包括:通过所述智能割草机搭载的六轴传感器检测所述智能割草机的当前行驶方向。
- 根据权利要求2所述的方法,其特征在于,所述惯性测量单元包括:九轴传感器,所述检测所述智能割草机的当前行驶方向包括:通过所述智能割草机搭载的九轴传感器检测所述智能割草机的当前行驶方向。
- 一种智能割草机,在工作区域内移动并工作,其特征在于,包括:壳体;行走模块,安装于壳体,所述行走模块带动智能割草机行走和转向;第一检测模块,用于当智能割草机在工作区域内移动时,检测所述智能割草机的当前行驶方向,所述第一检测模块包括惯性测量单元;第二检测模块,用于检测所述当前行驶方向与预设行驶方向之间的偏移量;调整模块,用于当所述偏移量大于或等于预设阈值时,根据所述偏移量调整当前行驶方向,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值,进而使得所述智能割草机直线移动。
- 根据权利要求11所述的智能割草机,其特征在于,所述调整模块还用于:当所述偏移量小于预设阈值时,控制所述智能割草机沿当前行驶方向移动。
- 根据权利要求11所述的智能割草机,其特征在于,所述调整模块具体用于:对所述偏移量进行比例积分微分控制,以使调整后的当前行驶方向与预设行驶方向之间的偏移量小于预设阈值。
- 根据权利要求11所述的智能割草机,其特征在于,所述第一检测模块具体用于:检测所述智能割草机的当前航向角。
- 根据权利要求11所述的智能割草机,其特征在于,所述第一检测模块包括六轴传感器或九轴传感器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910960355.8 | 2019-10-10 | ||
CN201910960355.8A CN112650206A (zh) | 2019-10-10 | 2019-10-10 | 智能割草机行走的控制方法及智能割草机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021068928A1 true WO2021068928A1 (zh) | 2021-04-15 |
Family
ID=75343507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/120141 WO2021068928A1 (zh) | 2019-10-10 | 2020-10-10 | 智能割草机行走的控制方法及智能割草机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112650206A (zh) |
WO (1) | WO2021068928A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115428642A (zh) * | 2021-06-02 | 2022-12-06 | 苏州宝时得电动工具有限公司 | 智能割草机控制方法、装置、智能割草机和计算机设备 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114594763A (zh) * | 2022-02-11 | 2022-06-07 | 达闼机器人股份有限公司 | 移动设备控制方法、装置、电子设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060253224A1 (en) * | 2005-05-09 | 2006-11-09 | Funai Electric Co., Ltd. | Self-guided cleaning robot, self-guided robot, and program product for performing method for controlling travel of self-guided robot |
CN107065870A (zh) * | 2017-03-31 | 2017-08-18 | 深圳诺欧博智能科技有限公司 | 移动机器人自主导航系统及方法 |
CN206610167U (zh) * | 2017-03-01 | 2017-11-03 | 九阳股份有限公司 | 一种自行走机器人 |
JP2018014963A (ja) * | 2016-07-29 | 2018-02-01 | 日立工機株式会社 | 自走式作業機 |
CN108398944A (zh) * | 2016-12-15 | 2018-08-14 | 苏州宝时得电动工具有限公司 | 自移动设备的作业方法、自移动设备、存储器和服务器 |
CN110221612A (zh) * | 2019-06-12 | 2019-09-10 | 珠海格力智能装备有限公司 | 双轮机器人行走路线校正方法及双轮机器人 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105988472B (zh) * | 2015-02-16 | 2020-03-27 | 苏州宝时得电动工具有限公司 | 智能割草系统、智能割草机及其修边方法 |
CN106325287A (zh) * | 2015-06-14 | 2017-01-11 | 复旦大学 | 一种基于惯性/磁传感器marg姿态检测的智能割草机直线行走控制系统 |
CN105651286B (zh) * | 2016-02-26 | 2019-06-18 | 中国科学院宁波材料技术与工程研究所 | 一种移动机器人视觉导航方法与系统、以及仓库系统 |
US10602654B2 (en) * | 2016-05-30 | 2020-03-31 | Kubota Corporation | Auto traveling work vehicle |
US10653057B2 (en) * | 2016-09-05 | 2020-05-19 | Lg Electronics Inc. | Moving robot and control method thereof |
CN206601624U (zh) * | 2016-12-06 | 2017-10-31 | 北京臻迪科技股份有限公司 | 一种水下无人船航行控制系统 |
CN107571257B (zh) * | 2017-08-04 | 2020-05-19 | 广东美的智能机器人有限公司 | 机器人的控制方法、机器人的控制系统和机器人 |
CN109466620A (zh) * | 2017-09-08 | 2019-03-15 | 约翰迪尔(天津)有限公司 | 收割机转向控制系统及其收割机 |
CN109746909A (zh) * | 2017-11-08 | 2019-05-14 | 深圳先进技术研究院 | 一种机器人运动控制方法及设备 |
CN107992049B (zh) * | 2017-12-20 | 2021-03-16 | 上海交通大学 | 水稻直播机模块化自动驾驶控制装置及其控制方法 |
CN108287544B (zh) * | 2018-01-16 | 2020-06-09 | 中国科学院福建物质结构研究所 | 一种智能机器人路线规划及沿原路径返回的方法及系统 |
CN108507578B (zh) * | 2018-04-03 | 2021-04-30 | 珠海市一微半导体有限公司 | 一种机器人的导航方法 |
CN109269506A (zh) * | 2018-10-31 | 2019-01-25 | 北京猎户星空科技有限公司 | 移动机器人的地图创建方法、装置、机器人及系统 |
-
2019
- 2019-10-10 CN CN201910960355.8A patent/CN112650206A/zh active Pending
-
2020
- 2020-10-10 WO PCT/CN2020/120141 patent/WO2021068928A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060253224A1 (en) * | 2005-05-09 | 2006-11-09 | Funai Electric Co., Ltd. | Self-guided cleaning robot, self-guided robot, and program product for performing method for controlling travel of self-guided robot |
JP2018014963A (ja) * | 2016-07-29 | 2018-02-01 | 日立工機株式会社 | 自走式作業機 |
CN108398944A (zh) * | 2016-12-15 | 2018-08-14 | 苏州宝时得电动工具有限公司 | 自移动设备的作业方法、自移动设备、存储器和服务器 |
CN206610167U (zh) * | 2017-03-01 | 2017-11-03 | 九阳股份有限公司 | 一种自行走机器人 |
CN107065870A (zh) * | 2017-03-31 | 2017-08-18 | 深圳诺欧博智能科技有限公司 | 移动机器人自主导航系统及方法 |
CN110221612A (zh) * | 2019-06-12 | 2019-09-10 | 珠海格力智能装备有限公司 | 双轮机器人行走路线校正方法及双轮机器人 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115428642A (zh) * | 2021-06-02 | 2022-12-06 | 苏州宝时得电动工具有限公司 | 智能割草机控制方法、装置、智能割草机和计算机设备 |
Also Published As
Publication number | Publication date |
---|---|
CN112650206A (zh) | 2021-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11076529B2 (en) | Intelligent mowing system | |
WO2021068928A1 (zh) | 智能割草机行走的控制方法及智能割草机 | |
CN110673115B (zh) | 雷达与组合导航系统的联合标定方法、装置、设备及介质 | |
CN110316193B (zh) | 预瞄距离的设置方法、装置、设备及计算机可读存储介质 | |
CN104758066B (zh) | 用于手术导航的设备及手术机器人 | |
JP6599543B2 (ja) | 自動搬送車 | |
JP2020506478A (ja) | 作業領域における移動ロボットの角度補正方法および移動ロボット | |
CN108274467B (zh) | 机器人走直线的控制方法和芯片及机器人 | |
JP2018070145A (ja) | 自律走行車用のバネシステムに基づく車線変更方法 | |
CN111070205B (zh) | 对桩控制方法、装置、智能机器人及存储介质 | |
EP3864484A2 (en) | Autonomous map traversal with waypoint matching | |
US9821847B2 (en) | Method for guiding an off-road vehicle along a curved path | |
WO2022143919A1 (zh) | 转向参数检测方法及装置、计算机设备及可读存储介质 | |
US9612597B2 (en) | Apparatus for controlling autonomously navigating utility vehicle | |
CN112605987B (zh) | 机器人导航工作方法、装置及机器人 | |
CN108458712A (zh) | 无人驾驶小车导航系统及导航方法、无人驾驶小车 | |
CN112060077B (zh) | 机器人控制方法、装置、计算机可读存储介质及机器人 | |
JP7390428B2 (ja) | 視覚に基づく農機の運転方法、システム、農業機器、及び記憶媒体 | |
WO2019042018A1 (zh) | 机器人的行驶控制方法、装置、存储介质及机器人 | |
CN113867343B (zh) | 机器人移动方法、装置、机器人及存储介质 | |
CN115431980A (zh) | 一种车辆自动驾驶方法、装置、设备及介质 | |
US20230015335A1 (en) | Working map construction method and apparatus, robot, and storage medium | |
WO2021052468A1 (zh) | 自移动设备及其自动移动和工作的方法 | |
CN114153211B (zh) | 多机器人过窄通道的调度方法、装置、设备及存储介质 | |
CN107219853A (zh) | 一种基于机器人的开放式自动化导航方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20873740 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20873740 Country of ref document: EP Kind code of ref document: A1 |