WO2021068727A1 - 一种被用于无线通信的方法和设备 - Google Patents

一种被用于无线通信的方法和设备 Download PDF

Info

Publication number
WO2021068727A1
WO2021068727A1 PCT/CN2020/116246 CN2020116246W WO2021068727A1 WO 2021068727 A1 WO2021068727 A1 WO 2021068727A1 CN 2020116246 W CN2020116246 W CN 2020116246W WO 2021068727 A1 WO2021068727 A1 WO 2021068727A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless signal
offset
reception quality
node
transmission parameter
Prior art date
Application number
PCT/CN2020/116246
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021068727A1 publication Critical patent/WO2021068727A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and more particularly to a transmission method and device related to receiving quality reporting in wireless communication.
  • LTE Long Term Evolution
  • 5G NR 5th Generation NR
  • eMBB enhanced Mobile BroadBand
  • URLLC Ultra Reliable Low Latency Communication, ultra-high reliability and low time.
  • Extended communication is also an indispensable function of eMTC (enhanced Machine Type Communication, enhanced machine type communication).
  • the value range of signal quality varies greatly.
  • the signal receiving level may be higher, such as -60dBm, while in long-distance communications, such as larger cells, non-terrestrial network communications or even deep-space communications, etc., the signal level may be very low, for example, as low as -120dBm. If it is required to accurately report all these possible measurement values, a lot of bits are needed; and if the overhead of the report needs to be reduced to improve efficiency, only fewer bits can be used, and it is difficult to accurately represent various measurement results with a small number of bits.
  • this application provides a solution.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first transmission parameter is used to determine a first offset, and the first adjusted reception quality is related to the first reception quality and the first offset; the first transmission parameter is related to The distance between the first node and the sender of the second wireless signal is related.
  • the problem to be solved by this application includes: how to determine the reporting method of the measurement result according to the distance between the sender and the receiver of the signal.
  • the above method configures the transmission parameters according to the distance information, and uses the configured transmission parameters to control the reporting of the measurement results, thereby solving this problem.
  • the characteristics of the above method include: the first transmission parameter is related to the distance between the first node and the sender of the second wireless signal; the first adjusted reception quality is related to the The first reception quality is related to the first offset.
  • the advantages of the above method include: when the signal quality is reported, reporting the adjusted signal quality is beneficial to ensure the accuracy of the report result while using fewer report bits.
  • Receive first signaling where the first signaling indicates a first candidate offset set, the first candidate offset set includes multiple candidate offsets, and the first offset is the multiple One of the candidate offsets;
  • the characteristics of the above method include: configuring a plurality of different candidate offsets according to the distance between the first node and the sender of the second wireless signal, and the first candidate offset It is the optimal one in the candidate offset set, and can further optimize the accuracy of the adjusted signal quality.
  • the characteristics of the above method include: the measured RSRP (Reference Signal Receiving Power) and a distance-related offset are used to determine the adjusted RSRP.
  • the above method enables the adjusted RSRP to fall within the expected reporting range.
  • the first transmission parameter is used to determine the first offset from the first candidate offset set.
  • the second parameter is used to determine the reception quality of the first adjustment.
  • the third quantization parameter is used to determine the first adjusted reception quality.
  • the first adjusted reception quality is used to generate the fourth wireless signal.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the third wireless signal indicating the first adjusted reception quality of the second wireless signal
  • the first transmission parameter is used to determine a first offset, and the first adjusted reception quality is related to the first reception quality of the second wireless signal and the first offset; the The first transmission parameter is related to the distance between the first node and the sender of the second signal.
  • the first signaling is sent, the first signaling indicates a first candidate offset set, the first candidate offset set includes multiple candidate offsets, and the first offset is the multiple One of the candidate offsets;
  • the first transmission parameter is used to determine the first offset from the first candidate offset set.
  • the second parameter is used to determine the reception quality of the first adjustment.
  • the third quantization parameter is used to determine the first adjusted reception quality.
  • the first adjusted reception quality is used to generate the fourth wireless signal.
  • This application discloses a first node used for wireless communication, which is characterized in that it includes:
  • a first receiver receiving a first wireless signal, and determining a first transmission parameter based on the first wireless signal; receiving a second wireless signal, and determining a first reception quality based on the second wireless signal;
  • the first transmitter sends a third wireless signal, where the third wireless signal indicates the first adjusted reception quality
  • the first transmission parameter is used to determine a first offset, and the first adjusted reception quality is related to the first reception quality and the first offset; the first transmission parameter is related to The distance between the first node and the sender of the second wireless signal is related.
  • the first receiver receives first signaling, the first signaling indicates a first candidate offset set, the first candidate offset set includes a plurality of candidate offsets, and the first offset The amount is one candidate offset among the plurality of candidate offsets;
  • the first transmission parameter is used to determine the first offset from the first candidate offset set.
  • the first receiver receives second signaling, and the second signaling indicates a second parameter
  • the second parameter is used to determine the reception quality of the first adjustment.
  • the first receiver receives third signaling, and the third signaling indicates a third quantization parameter
  • the third quantization parameter is used to determine the first adjusted reception quality.
  • the first receiver receives a fourth wireless signal
  • the first adjusted reception quality is used to generate the fourth wireless signal.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • a second transmitter sending a first wireless signal, where the first wireless signal indicates a first transmission parameter
  • a second receiver receiving a third wireless signal, the third wireless signal indicating the first adjusted reception quality of the second wireless signal
  • the first transmission parameter is used to determine a first offset, and the first adjusted reception quality is related to the first reception quality of the second wireless signal and the first offset; the The first transmission parameter is related to the distance between the first node and the sender of the second signal.
  • the second transmitter sends first signaling, the first signaling indicates a first candidate offset set, the first candidate offset set includes a plurality of candidate offsets, and the first offset The amount is one candidate offset among the plurality of candidate offsets;
  • the first transmission parameter is used to determine the first offset from the first candidate offset set.
  • the second parameter is used to determine the reception quality of the first adjustment.
  • the third quantization parameter is used to determine the first adjusted reception quality.
  • the first adjusted reception quality is used to generate the fourth wireless signal.
  • this application has the following advantages:
  • the propagation loss between the user equipment and the base station is much greater than traditional terrestrial communication, and the distance-related offset proposed in this application can be
  • the signal quality measurement results under different propagation loss conditions are compensated, so that the adjusted quality measurement results are within the expected reporting range, which is conducive to the use of fewer bits and a larger measurement range.
  • Figure 1 shows a flow chart of a first wireless signal, a second wireless signal, and a third wireless signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first node and a second node according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Figure 6 shows a flow chart of transmission according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of determining the first offset by the first signaling according to an embodiment of the present application
  • Fig. 8 shows a schematic diagram of area information according to an embodiment of the present application.
  • Fig. 9 shows a schematic diagram of area information according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of area information according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of determining a first transmission parameter by a first wireless signal according to an embodiment of the present application
  • FIG. 12 shows a schematic diagram of the first transmission parameter being used to determine the first offset according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of determining the first reception quality by a second wireless signal according to an embodiment of the present application
  • FIG. 14 shows a schematic diagram of the second parameter being used to determine the reception quality of the first adjustment according to an embodiment of the present application
  • FIG. 15 shows a schematic diagram of the third quantization parameter being used to determine the first adjusted reception quality according to an embodiment of the present application
  • Fig. 16 shows a schematic diagram of the first adjusted reception quality being used to generate a fourth wireless signal according to an embodiment of the present application
  • Fig. 17 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • Fig. 18 shows a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of transmission of the first wireless signal, the second wireless signal, and the third wireless signal according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step, and it should be particularly emphasized that the order of each box in the figure does not represent the time sequence relationship between the steps shown.
  • the first node in this application receives the first wireless signal and receives the second wireless signal in step 101; sends the third wireless signal; and the first wireless signal is used for Determine the first transmission parameter; the second wireless signal is used to determine the first reception quality; in Embodiment 1, the first transmission parameter is used to determine the first offset, the The first adjusted reception quality is related to the first reception quality and the first offset; the first transmission parameter and the distance between the first node and the sender of the second wireless signal Distance is related.
  • the first wireless signal includes a timing advance (Timing Advance) command (Command), and the first transmission parameter includes a timing advance value (Timing Advance Value) indicated by the timing advance command.
  • Timing Advance Timing Advance
  • Communication Advance Value Timing Advance Value
  • the first wireless signal indicates the height of the sender of the second wireless signal
  • the first transmission parameter includes the height value of the sender of the second wireless signal
  • the first wireless signal indicates the celestial body information of the sender of the second wireless signal
  • the first transmission parameter includes the height value of the sender of the second wireless signal from the center of the earth.
  • the first wireless signal indicates the celestial body information of the sender of the second wireless signal
  • the first transmission parameter includes the distance value of the sender of the second wireless signal from the first node .
  • the first wireless signal indicates the orbit type of the sender of the second wireless signal, including low orbit, medium orbit, and geosynchronous orbit
  • the first transmission parameter includes the orbit type of the second wireless signal.
  • the first wireless signal indicates the area information of the first node, including an area identifier, and the first transmission parameter includes the area identifier of the first node.
  • the first wireless signal indicates the area information of the first node, including whether it is a shaded area, and the first transmission parameter includes an identifier of whether it is a shaded area.
  • the first wireless signal indicates the cell information of the first node, including a cell identifier
  • the first transmission parameter includes the cell identifier of the first node
  • the first wireless signal indicates beam information used by the first node
  • the first transmission parameter includes a beam identifier used by the first node
  • the first wireless signal indicates beam information used by the first node
  • the first transmission parameter includes a beam area identifier used by the first node
  • the sender of the second wireless signal and the sender of the second wireless signal are co-located.
  • the first offset is a real number.
  • the first offset is an integer.
  • the first offset is less than zero.
  • the second parameter is a non-zero real number.
  • the third quantization parameter is determined by the cell type, and the smaller the change of the wireless signal in the cell, the finer the granularity of the third quantization parameter.
  • the difference between the first signal quality and the first adjusted signal quality is equal to the absolute value of the first offset.
  • the first signal quality is linearly related to the first adjusted signal quality
  • the correlation coefficient is the second parameter
  • the difference between the value obtained by the product of the first signal quality and the second parameter and the first adjusted signal quality is equal to the absolute value of the first offset.
  • the third quantization parameter is determined by multiple sets of quantized endpoint value pairs, each set of quantized endpoint value pairs includes two quantized endpoint values, and each endpoint value is a real number and one is greater than the other.
  • the sender of the first wireless signal and the sender of the second wireless signal are in the same serving cell.
  • the first wireless signal and the second wireless signal are Quasi Co-located.
  • the sender of the first wireless signal and the sender of the second wireless signal are two different serving cells.
  • the first offset has nothing to do with the transmission power of the first signal.
  • the first offset has nothing to do with the transmission power of the second signal.
  • the second wireless signal includes a reference signal
  • the first reception quality includes the received power of the reference signal
  • the second wireless signal includes a reference signal
  • the first reception quality includes the reception quality of the reference signal
  • the second wireless signal includes a reference signal
  • the first reception quality includes a signal-to-noise ratio of the reference signal
  • the second wireless signal includes SSB (Synchronization Signal Block, synchronization signal block).
  • SSB Synchronization Signal Block, synchronization signal block
  • the second wireless signal includes CSI-RS (Channel Status Information Reference Signal, channel state information reference signal).
  • CSI-RS Channel Status Information Reference Signal, channel state information reference signal.
  • the second wireless signal includes a CRS (Cell Reference Signal, cell reference signal).
  • CRS Cell Reference Signal, cell reference signal
  • the first reception quality includes RSRP (Reference Signal Receiving Power) obtained by measuring the CSI-RS.
  • RSRP Reference Signal Receiving Power
  • the first reception quality includes RSRQ (Reference Signal Receiving Quality, reference signal reception quality) obtained by measuring the CSI-RS.
  • RSRQ Reference Signal Receiving Quality, reference signal reception quality
  • the first reception quality includes RSRQ (Reference Signal Receiving Quality, reference signal reception quality) obtained by measuring the CSI-RS.
  • RSRQ Reference Signal Receiving Quality, reference signal reception quality
  • the first reception quality includes RSRP (Reference Signal Receiving Power) obtained by measuring the SSB.
  • RSRP Reference Signal Receiving Power
  • the first reception quality includes RSRP (Reference Signal Receiving Power) obtained by measuring the CRS.
  • RSRP Reference Signal Receiving Power
  • the unit of the first reception quality is millibel (dBm), and the unit of the first offset is decibel (dB).
  • the unit of the first reception quality is milliwatt (mW)
  • the unit of the first offset is milliwatt (mW).
  • the channel occupied by the third wireless signal includes PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the channel occupied by the third wireless signal includes PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the third wireless signal is sent on a PSSCH (Physical Sidelink Shared Channel, physical secondary link shared channel).
  • PSSCH Physical Sidelink Shared Channel, physical secondary link shared channel
  • the third wireless signal is sent on a PSCCH (Physical Sidelink Control Channel, physical secondary link control channel).
  • PSCCH Physical Sidelink Control Channel, physical secondary link control channel
  • the fourth wireless signal includes resource allocation information.
  • the fourth wireless signal includes power control information.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • Figure 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System) 200.
  • EPS Evolved Packet System
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • gNB203 can also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point) or some other suitable terminology.
  • BSS basic service set
  • ESS extended service set
  • TRP transmit and receive point
  • gNB203 can be a satellite or a ground base station relayed by satellite.
  • gNB203 provides UE201 with an access point to EPC/5G-CN210.
  • UE201 examples include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • the EPC/5G-CN210 includes MME/AMF/UPF 211, other MME/AMF/UPF 214, S-GW (Service Gateway) 212, and P-GW (Packet Date Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that processes the signaling between UE201 and EPC/5G-CN210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and may specifically include the Internet, an intranet, and IMS (IP Multimedia Subsystem, IP Multimedia Subsystem).
  • the UE201 corresponds to the first node device in this application.
  • the UE 201 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 201 supports transmission in a network with a large delay difference.
  • the gNB203 corresponds to the second node device in this application.
  • the gNB203 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB203 supports transmission in a network with a large delay difference.
  • the gNB204 corresponds to the sender of the second wireless signal in this application.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first node device (UE, satellite or aircraft in gNB or NTN) and the second Two-node equipment (gNB, UE or satellite or aircraft in NTN), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first node device and the second node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-zone movement support between the second node device and the first node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for disordered reception caused by HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the communication between the second node device and the first node device. RRC signaling to configure the lower layer.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first node device and the second node device in the user plane 350 is for the physical layer 351 and the L2 layer 355.
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides The header of the upper layer data packet is compressed to reduce the radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearer (DRB, Data Radio Bearer) To support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (For example, remote UE, server, etc.) at the application layer.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the sender of the second wireless signal in this application.
  • the first wireless signal in this application is generated in the RRC306.
  • the first wireless signal in this application is generated in the MAC302 or MAC352.
  • the first wireless signal in this application is generated in the PHY301 or PHY351.
  • the second wireless signal in this application is generated in the PHY301 or PHY351.
  • the third wireless signal in this application is generated in the RRC306.
  • the third wireless signal in this application is generated in the MAC302 or MAC352.
  • the third wireless signal in this application is generated in the PHY301 or PHY351.
  • the fourth wireless signal in this application is generated in the RRC306.
  • the fourth wireless signal in this application is generated in the MAC302 or MAC352.
  • the fourth wireless signal in this application is generated in the PHY301 or PHY351.
  • the first signaling in this application is generated in the RRC306.
  • the first signaling in this application is generated in the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • the second signaling in this application is generated in the RRC306.
  • the second signaling in this application is generated in the MAC302 or MAC352.
  • the second signaling in this application is generated in the PHY301 or PHY351.
  • the third signaling in this application is generated in the RRC306.
  • the third signaling in this application is generated in the MAC302 or MAC352.
  • the third signaling in this application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first node device and a second node device according to the present application, as shown in FIG. 4.
  • the first node device (450) includes a controller/processor 490, a data source/buffer 480, a receiving processor 452, a transmitter/receiver 456, and a transmitting processor 455.
  • the transmitter/receiver 456 includes an antenna 460 .
  • the data source/buffer 480 provides upper layer packets to the controller/processor 490, and the controller/processor 490 provides header compression and decompression, encryption and decryption, packet segmentation connection and reordering, and multiplexing between logic and transmission channels. Demultiplexing is used to implement the L2 layer and above protocols for the user plane and the control plane.
  • the upper layer packets may include data or control information, such as DL-SCH or UL-SCH or SL-SCH.
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc.
  • the reception processor 452 implements various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, deprecoding, physical layer control signaling extraction, and the like.
  • the transmitter 456 is used for converting the baseband signal provided by the transmitting processor 455 into a radio frequency signal and transmitting it via the antenna 460, and the receiver 456 is used for converting the radio frequency signal received by the antenna 460 into a baseband signal and providing it to the receiving processor 452.
  • the second node device (410) may include a controller/processor 440, a data source/buffer 430, a receiving processor 412, a transmitter/receiver 416, and a transmitting processor 415.
  • the transmitter/receiver 416 includes an antenna. 420.
  • the data source/buffer 430 provides upper layer packets to the controller/processor 440, and the controller/processor 440 provides header compression and decompression, encryption and decryption, packet segmentation connection and reordering, and multiplexing between logic and transmission channels. Use demultiplexing to implement the L2 layer protocol for the user plane and the control plane.
  • the upper layer packet may include data or control information, such as DL-SCH or UL-SCH or SL-SCH.
  • the transmission processor 415 implements various signal transmission processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, power control/distribution, precoding, and physical layer signaling (including synchronization signals and reference Signal, etc.) generation, etc.
  • the reception processor 412 implements various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, deprecoding, physical layer signaling extraction, and the like.
  • the transmitter 416 is used for converting the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmitting it via the antenna 420, and the receiver 416 is used for converting the radio frequency signal received by the antenna 420 into a baseband signal and providing it to the receiving processor 412.
  • upper layer packets such as the first signaling, second signaling, and third signaling in this application, are provided to the controller/processor 440 with high-level information included.
  • the controller/processor 440 implements the functions of the L2 layer and above.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and multiplexing of the first node device 450 based on various priority measures. Resource allocation.
  • the controller/processor 440 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first node device 450, such as the first signaling, second signaling, and third signaling in this application.
  • the transmit processor 415 implements various signal processing functions for the L1 layer (ie, physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc.
  • L1 layer ie, physical layer
  • This application The generation of the first wireless signal, the second wireless signal and the fourth wireless signal in the transmission processor 415 is completed, and the generated modulation symbols are divided into parallel streams and each stream is mapped to the corresponding multi-carrier sub-carrier and/or multi-carrier symbol It is then mapped to the antenna 420 by the transmitting processor 415 via the transmitter 416 and transmitted in the form of a radio frequency signal.
  • each receiver 456 receives the radio frequency signal through its corresponding antenna 460, and each receiver 456 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receiving processor 452.
  • the reception processor 452 implements various signal reception processing functions of the L1 layer.
  • the signal reception processing function includes the reception of the first wireless signal, the second wireless signal and the fourth wireless signal in this application, etc., through the multi-carrier symbol in the multi-carrier symbol stream based on various modulation schemes (for example, binary phase shift key) Control (BPSK), quadrature phase shift keying (QPSK)), followed by descrambling, decoding and de-interleaving to recover the data or control transmitted by the second node device 410 on the physical channel, and then combine the data and control signal Provided to the controller/processor 490.
  • BPSK binary phase shift key
  • QPSK quadrature phase shift keying
  • the controller/processor 490 is responsible for the L2 layer and above.
  • the controller/processor 490 handles the first wireless signal, the second wireless signal, the fourth wireless signal, the first signaling, the second signaling, and the third wireless signal in this application.
  • the high-level information (if it includes high-level information) included in the signaling is interpreted.
  • the controller/processor may be associated with a memory 480 that stores program codes and data.
  • the memory 480 may be referred to as a computer-readable medium.
  • the data source/buffer 480 is used to provide high-level data to the controller/processor 490.
  • the data source/buffer 480 represents the L2 layer and all protocol layers above the L2 layer.
  • the controller/processor 490 is implemented for user plane and control by providing header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of the second node 410 Flat L2 layer protocol.
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second node 410.
  • the high-level data of the third wireless signal in this application is generated in the controller/processor 490.
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer), and the third wireless signal in the present application is generated by the transmission processor 455.
  • Signal transmission processing functions include coding and interleaving to facilitate forward error correction (FEC) at the UE450 and pair based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK))
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the baseband signal is modulated, the modulation symbols are divided into parallel streams and each stream is mapped to the corresponding multi-carrier sub-carrier and/or multi-carrier symbol, and then mapped to the antenna 460 by the transmit processor 455 via the transmitter 456 to transmit in the form of a radio frequency signal Get out.
  • the receivers 416 receive radio frequency signals through its corresponding antenna 420, and each receiver 416 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the receiving processor 412.
  • the receiving processor 412 implements various signal receiving and processing functions for the L1 layer (ie, the physical layer), including receiving and processing the third wireless signal in this application.
  • the signal receiving processing function includes acquiring a multi-carrier symbol stream, and then performing multi-carrier symbol streams.
  • the multi-carrier symbols in the symbol stream are demodulated based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)), and then decoded and deinterleaved to recover on the physical channel
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the data and/or control signals originally transmitted by the first node device 450.
  • the data and/or control signals are then provided to the controller/processor 440.
  • the controller/processor 440 implements the functions of the L2 layer, including the interpretation of the information carried by the third wireless signal in this application.
  • the controller/processor may be associated with a buffer 430 that stores program codes and data.
  • the buffer 430 may be a computer-readable medium.
  • the first node device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, and the first node device 450 means at least: receiving a first wireless signal, and determining a first transmission parameter according to the first wireless signal; receiving a second wireless signal, according to the second wireless signal Determine a first reception quality; wherein the first transmission parameter is used to determine a first offset, and the first adjusted reception quality is related to the first reception quality and the first offset; The first transmission parameter is related to the distance between the first node and the sender of the second wireless signal.
  • the first node device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving the first A wireless signal, determining a first transmission parameter based on the first wireless signal; receiving a first wireless signal, determining a first transmission parameter based on the first wireless signal; receiving a second wireless signal, determining based on the second wireless signal A first reception quality; wherein the first transmission parameter is used to determine a first offset, and the first adjusted reception quality is related to the first reception quality and the first offset; the The first transmission parameter is related to the distance between the first node and the sender of the second wireless signal.
  • the second node device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second node device 410 means at least: sending a first wireless signal, the first wireless signal indicating a first transmission parameter; receiving a third wireless signal, the third wireless signal indicating the first adjustment of the second wireless signal Reception quality; wherein the first transmission parameter is used to determine a first offset, and the first adjusted reception quality is related to the first reception quality of the second wireless signal and the first offset ;
  • the first transmission parameter is related to the distance between the first node and the sender of the second signal.
  • the second node device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending a first A wireless signal, the first wireless signal indicating a first transmission parameter; receiving a third wireless signal, the third wireless signal indicating the first adjusted reception quality of the second wireless signal; wherein the first transmission parameter is For determining a first offset, the first adjusted reception quality is related to the first reception quality of the second wireless signal and the first offset; the first transmission parameter is related to the first node to The distance between the senders of the second signal is related.
  • the first node device 450 is a user equipment (UE).
  • UE user equipment
  • the first node device 450 is a user equipment that supports a large delay difference.
  • the first node device 450 is a user equipment supporting NTN.
  • the first node device 450 is an aircraft device.
  • the first node device 450 is a ship device.
  • the second node device 410 is a base station device (gNB/eNB).
  • the second node device 410 is a base station device that supports a large delay difference.
  • the second node device 410 is a base station device supporting NTN.
  • the second node device 410 is a satellite device.
  • the second node device 410 is a flight platform device.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the first wireless signal.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the second wireless signal.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the fourth wireless signal.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the first signaling.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the second signaling.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the third signaling.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to transmit the third wireless signal in this application.
  • the receiving processor 452 determines the first receiving quality according to the second wireless signal, and determines the first adjusted receiving quality according to the first receiving quality.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the first wireless signal in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415 and the controller/processor 440 are used to transmit the second wireless signal in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the fourth wireless signal in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to send the first signaling in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415 and the controller/processor 440 are used to send the second signaling in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to send the third signaling in this application.
  • Embodiment 5 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the second node N01 is the serving cell base station of the first node U01. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • step S5101 transmits the first radio signal, transmitting the first signaling in step S5102, step S5103 transmits signaling in second, third signaling transmitted in step S5104, in step S5105
  • the second wireless signal is sent, the third wireless signal is received in step S5106, and the fourth wireless signal is sent in step S5107.
  • step S5201 the received first radio signal, receiving the first signaling at step S5202, at step S5203 receives the second signaling, the third signaling received in step S5204, in step S5205
  • the second wireless signal is received, the first adjusted reception quality is calculated in step S5206, the third wireless signal is sent in step S5207, and the fourth wireless signal is received in step S5208.
  • the first wireless signal in this application is used to determine the first transmission parameter; the second wireless signal is used to determine the first reception quality; wherein, the first transmission parameter is used For determining the first offset, the first adjusted reception quality is related to the first reception quality and the first offset; the first transmission parameter is related to the first node to the second The distance between the senders of the wireless signal is related; the third wireless signal indicates the first adjusted reception quality.
  • the first signaling indicates a first candidate offset set
  • the first candidate offset set includes a plurality of candidate offsets
  • the first offset is the plurality of candidate offsets.
  • the second signaling indicates a second parameter; wherein the second parameter is used to determine the received quality of the first adjustment.
  • the third signaling indicates a third quantization parameter; wherein, the third quantization parameter is used to determine the first adjusted reception quality.
  • the second node is a sender of the second wireless signal.
  • the sender of the first wireless signal and the sender of the second wireless signal are in the same serving cell.
  • the fourth wireless signal includes resource allocation information, and when the first adjusted reception quality is smaller, the more wireless resources are allocated.
  • the fourth wireless signal includes power control information, and when the first adjusted reception quality is smaller, the set transmission power is greater.
  • Embodiment 6 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 6.
  • the second node N02 is the serving cell base station of the first node U02. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and the implementation sequence in this application.
  • step S6101 transmits a first radio signal, transmitted in a first signaling step S6102, the second signaling transmitted in step S6103, transmits in step S6104 to the third signaling, at step S6106
  • the third wireless signal is received, and the fourth wireless signal is sent in step S6107.
  • step S6201 the received first radio signal, receiving the first signaling at step S6202, at step S6203 receives the second signaling, the third signaling received in step S6204, in step S6205
  • the second wireless signal is received, the first adjusted reception quality is calculated in step S6206, the third wireless signal is sent in step S6207, and the fourth wireless signal is received in step S6208.
  • the first wireless signal in this application is used to determine the first transmission parameter; the second wireless signal is used to determine the first reception quality; wherein the first transmission parameter is used For determining the first offset, the first adjusted reception quality is related to the first reception quality and the first offset; the first transmission parameter is related to the first node to the second The distance between the senders of the wireless signal is related; the third wireless signal indicates the first adjusted reception quality.
  • the first signaling indicates a first candidate offset set
  • the first candidate offset set includes a plurality of candidate offsets
  • the first offset is the plurality of candidate offsets.
  • the second signaling indicates a second parameter; wherein the second parameter is used to determine the received quality of the first adjustment.
  • the third signaling indicates a third quantization parameter; wherein, the third quantization parameter is used to determine the first adjusted reception quality.
  • the second node is not the sender of the second wireless signal.
  • the first wireless signal and the second wireless signal are Quasi Co-located.
  • the sender of the first wireless signal and the sender of the second wireless signal are two different serving cells.
  • the fourth wireless signal includes resource allocation information, and when the first adjusted reception quality is smaller, the more wireless resources are allocated.
  • the fourth wireless signal includes power control information, and when the first adjusted reception quality is smaller, the set transmission power is greater.
  • Embodiment 7 illustrates a schematic diagram of the first candidate offset set according to an embodiment of the present application, as shown in FIG. 7.
  • X represents the first transmission parameter
  • X(i) is the i-th configuration of the first transmission parameter X, where i is a positive integer
  • the first candidate offset set has a total of I candidate offsets, where I is a positive integer.
  • the first signaling indicates a first candidate offset set, the first candidate offset set includes multiple candidate offsets, and the first offset is the multiple candidate offsets. One of the candidate offsets; wherein the first transmission parameter is used to determine the first offset from the first candidate offset set.
  • any two candidate offsets in the plurality of candidate offsets are not equal.
  • the first transmission parameter is jointly determined by a cell type and an area identifier, wherein the cell type includes one of ⁇ low orbit, medium orbit, synchronous orbit ⁇ .
  • the first offset is 43 dB.
  • the first signaling is high-layer signaling.
  • the first signaling is common to the cell.
  • any candidate offset in the first candidate offset set corresponds to a first transmission parameter interval
  • the first offset is the corresponding transmission among the multiple candidate offsets.
  • the parameter interval includes the candidate offset of the first transmission parameter.
  • the first offset is the i-th candidate offset corresponding to the largest first transmission parameter in the first candidate offset set.
  • the first offset is the i-th candidate offset corresponding to the smallest first transmission parameter in the first candidate offset set.
  • the first signaling explicitly indicates the first candidate offset set.
  • the first signaling indicates a first reference offset
  • the first candidate offset set is implicitly indicated by the first reference offset
  • the first signaling includes some or all fields in ReportConfigEUTRA IE (Information Element).
  • the first signaling includes some or all fields in ReportConfigNR IE (Information Element).
  • the first signaling includes part or all of the fields in the MeasObjectEUTRA IE.
  • the first signaling includes part or all of the fields in the MeasObjectNR IE.
  • the first reference offset includes at least one of ⁇ OffsetFreq, cellIndividualOffset, csi-RS-IndividualOffset, a3-Offset, a6-Offset, c2-Offset, h1-ThresholdOffset, h2-ThresholdOffset, Hysteresis ⁇ one.
  • the first reference offset is at least one of ⁇ OffsetFreq, cellIndividualOffset, csi-RS-IndividualOffset, a3-Offset, a6-Offset, c2-Offset, h1-ThresholdOffset, h2-ThresholdOffset, Hysteresis ⁇ The two are determined together.
  • the first reference offset is the minimum path loss from the sender of the second wireless signal to the ground surface.
  • the first reference offset is the path loss from the sender of the second wireless signal to the center of the earth.
  • Embodiment 8 illustrates a schematic diagram of area identification according to an embodiment of the present application, as shown in FIG. 8.
  • the area in FIG. 8 is a rectangle, and the area identifier is an identifier of a geographic area.
  • the first node obtains the area identifier where it is located, and the area identifier is used to determine the first transmission parameter.
  • the area identifier is related to the geographic location where the second node is located.
  • the domain identifier indicates the geographic location of the sender of the second wireless signal.
  • the domain identifier indicates the geographic location where the first node is located.
  • the first node obtains the area identifier of the area where it is located through a system message of the access cell.
  • the first node obtains the area identifier in which it is located through high-layer signaling.
  • the first node obtains the identification of the area where it is located through positioning information, where the positioning information includes GPS information.
  • the position of a point in the area is used to determine the first transmission parameter.
  • the position of a vertex of the area is used to determine the first transmission parameter.
  • the location of the center point of the area is used to determine the first transmission parameter.
  • the distance from a point in the area to the second signal transmitter is used to determine the first transmission parameter.
  • Embodiment 9 illustrates a schematic diagram of area identification according to an embodiment of the present application, as shown in FIG. 9.
  • the area in FIG. 9 is a circle and a ring around the circle, and the area identifier is an identifier of a geographic area.
  • the first node obtains the area identifier where it is located, and the area identifier is used to determine the first transmission parameter.
  • the area identifier is related to the geographic location where the second node is located.
  • the domain identifier indicates the geographic location of the sender of the second wireless signal.
  • the domain identifier indicates the geographic location where the first node is located.
  • the first node obtains the area identifier of the area where it is located through a system message of the access cell.
  • the first node obtains the area identifier in which it is located through high-layer signaling.
  • the first node obtains the identification of the area where it is located through positioning information, where the positioning information includes GPS information.
  • the position of a point in the area is used to determine the first transmission parameter.
  • the position of a vertex of the area is used to determine the first transmission parameter.
  • the location of the center point of the area is used to determine the first transmission parameter.
  • the distance from a point in the area to the second signal transmitter is used to determine the first transmission parameter.
  • Embodiment 10 illustrates a schematic diagram of area identification according to an embodiment of the present application, as shown in FIG. 10.
  • the area in FIG. 10 is a polygon, and the area identifier is an identifier of a geographic area.
  • the first node obtains the area identifier where it is located, and the area identifier is used to determine the first transmission parameter.
  • the area identifier is related to the geographic location where the second node is located.
  • the domain identifier indicates the geographic location of the sender of the second wireless signal.
  • the domain identifier indicates the geographic location where the first node is located.
  • the first node obtains the area identifier of the area where it is located through a system message of the access cell.
  • the first node obtains the area identifier in which it is located through high-layer signaling.
  • the first node obtains the identification of the area where it is located through positioning information, where the positioning information includes GPS information.
  • the area identifier is a cell identifier.
  • the position of a point in the area is used to determine the first transmission parameter.
  • the position of a vertex of the area is used to determine the first transmission parameter.
  • the location of the center point of the area is used to determine the first transmission parameter.
  • the distance from a point in the area to the second signal transmitter is used to determine the first transmission parameter.
  • Embodiment 11 illustrates a schematic diagram of determining the first transmission parameter by the first wireless signal according to an embodiment of the present application, as shown in FIG. 11.
  • the first wireless signal explicitly indicates the first transmission parameter.
  • the first wireless signal includes a timing advance (Timing Advance) command (Command), and the first transmission parameter includes a timing advance value (Timing Advance Value) indicated by the timing advance command.
  • Timing Advance Timing Advance
  • Communication Advance Value Timing Advance Value
  • the first wireless signal includes a timing advance (Timing Advance) command (Command), and the first transmission parameter includes the timing advance value (Timing Advance Value) indicated by the timing advance command.
  • Timing Advance Timing Advance
  • the first wireless signal includes time information and satellite orbit information
  • the first transmission parameter includes the distance between the first node and the second wireless signal sender
  • the first wireless signal includes the height of the sender of the second wireless signal
  • the first transmission parameter includes the height value of the sender of the second wireless signal
  • the first wireless signal includes celestial body information of the sender of the second wireless signal
  • the first transmission parameter includes the height value of the sender of the second wireless signal from the center of the earth.
  • the first wireless signal includes celestial body information of the sender of the second wireless signal
  • the first transmission parameter includes the distance value of the sender of the second wireless signal from the first node.
  • the first wireless signal includes the orbit type of the sender of the second wireless signal, including low orbit, medium orbit and geosynchronous orbit
  • the first transmission parameter includes the orbit type of the second wireless signal.
  • the first wireless signal includes area information of the first node, including an area identifier, and the first transmission parameter includes the area identifier of the first node.
  • the first wireless signal includes area information of the first node, including an area identifier, and the first transmission parameter includes an area determined according to the area identifier to the second wireless signal sender the distance between.
  • the first wireless signal includes area information of the first node, including whether it is a shaded area, and the first transmission parameter includes an identifier of whether it is a shaded area.
  • the first wireless signal includes cell information of the first node, including a cell identifier, and the first transmission parameter includes the cell identifier of the first node.
  • the first wireless signal includes beam information used by the first node, and the first transmission parameter includes a beam identifier used by the first node.
  • the first wireless signal includes beam information used by the first node, and the first transmission parameter includes a beam area identifier used by the first node.
  • Embodiment 12 illustrates a schematic diagram of using the first transmission parameter to determine the first offset according to an embodiment of the present application, as shown in FIG. 12.
  • the first transmission parameter is linearly related to the first offset.
  • the first offset is determined by the distance The difference between the determined propagation loss and a reference value is determined; wherein the reference value is a predefined value or indicated explicitly by the second node.
  • Embodiment 13 illustrates a schematic diagram of determining the first reception quality by the second wireless signal according to an embodiment of the present application, as shown in FIG. 13.
  • the second wireless signal includes a reference signal
  • the first reception quality includes the received power of the reference signal
  • the second wireless signal includes a reference signal
  • the first reception quality includes the reception quality of the reference signal
  • the second wireless signal includes a reference signal
  • the first reception quality includes a signal-to-noise ratio of the reference signal
  • the second wireless signal includes SSB (Synchronization Signal Block, synchronization signal block).
  • SSB Synchronization Signal Block, synchronization signal block
  • the second wireless signal includes CSI-RS (Channel Status Information Reference Signal, channel state information reference signal).
  • CSI-RS Channel Status Information Reference Signal, channel state information reference signal.
  • the second wireless signal includes a CRS (Cell Reference Signal, cell reference signal).
  • CRS Cell Reference Signal, cell reference signal
  • the first reception quality includes RSRP (Reference Signal Receiving Power) obtained by measuring the CSI-RS.
  • RSRP Reference Signal Receiving Power
  • the first reception quality includes RSRQ (Reference Signal Receiving Quality, reference signal reception quality) obtained by measuring the CSI-RS.
  • RSRQ Reference Signal Receiving Quality, reference signal reception quality
  • the first reception quality includes RSRQ (Reference Signal Receiving Quality, reference signal reception quality) obtained by measuring the CSI-RS.
  • RSRQ Reference Signal Receiving Quality, reference signal reception quality
  • the first reception quality includes RSRP (Reference Signal Receiving Power) obtained by measuring the SSB.
  • RSRP Reference Signal Receiving Power
  • the first reception quality includes RSRP (Reference Signal Receiving Power) obtained by measuring the CRS.
  • RSRP Reference Signal Receiving Power
  • the unit of the first reception quality is millibel (dBm), and the unit of the first offset is decibel (dB).
  • the unit of the first reception quality is milliwatt (mW)
  • the unit of the first offset is milliwatt (mW).
  • the first reception quality is a weighted average of multiple measurement values of the second wireless signal in a time window.
  • Embodiment 14 illustrates a schematic diagram in which the second parameter according to an embodiment of the present application is used to determine the reception quality of the first adjustment, as shown in FIG. 14.
  • the second signaling is used to indicate the second parameter.
  • the second parameter is a non-zero real number.
  • the second parameter is related to the cell type.
  • the second parameter is related to the orbit type of the transmitter of the second wireless signal.
  • the second parameter is related to the distance between the transmitter of the second wireless signal and the first node or the area where the first node is located.
  • the first reception quality is linearly related to the first adjusted reception quality, and the correlation coefficient is equal to the second parameter.
  • the difference between the first signal quality and the first adjusted signal quality is equal to the absolute value of the first offset.
  • the difference between the value obtained by the product of the first signal quality and the second parameter and the first adjusted signal quality is equal to the absolute value of the first offset.
  • Embodiment 15 illustrates a schematic diagram of the third quantization parameter being used to determine the first adjusted reception quality according to an embodiment of the present application, as shown in FIG. 15.
  • the third signaling is used to indicate the third quantization parameter, and the third quantization parameter is used to determine the quantization parameter.
  • the first adjusted reception quality is obtained by quantizing the quantization parameter determined by the third quantization parameter.
  • the third quantization parameter is related to the cell type.
  • the third quantization parameter is related to the orbit type of the transmitter of the second wireless signal.
  • the third quantization parameter is related to the distance between the transmitter of the second wireless signal and the first node or the area where the first node is located.
  • the third quantization parameter is determined by multiple sets of quantized endpoint value pairs, each set of quantized endpoint value pairs includes two quantized endpoint values, and each endpoint value is a real number and one is greater than the other.
  • Embodiment 16 illustrates a schematic diagram in which the first adjusted reception quality is used to generate the fourth wireless signal according to an embodiment of the present application, as shown in FIG. 16.
  • the fourth wireless signal includes resource allocation information, and when the first adjusted reception quality is smaller, the more wireless resources are allocated.
  • the fourth wireless signal includes power control information, and when the first adjusted reception quality is smaller, the set transmission power is greater.
  • Embodiment 17 illustrates a structural block diagram of a processing device used in the first node according to an embodiment of the present application; as shown in FIG. 17.
  • the processing device 1700 in the first node includes a first receiver 1701 and a first transmitter 1702.
  • the first receiver 1701 receives the first wireless signal, the second wireless signal, the first signaling, the second signaling, the third signaling, and the fourth wireless signal; the first transmitter 1702 transmits the third wireless signal. wireless signal.
  • the first wireless signal is used to determine the first transmission parameter; the second wireless signal is used to determine the first reception quality; the third wireless signal indicates the first adjusted reception quality.
  • the first transmission parameter is used to determine a first offset, and the first adjusted reception quality is related to the first reception quality and the first offset; the first transmission parameter is related to The distance between the first node and the sender of the second wireless signal is related;
  • the first signaling indicates a first candidate offset set
  • the first candidate offset set includes a plurality of candidate offsets
  • the first offset is the plurality of candidate offsets.
  • the first receiver 1701 receives second signaling, the second signaling indicating a second parameter; wherein the second parameter is used to determine the reception quality of the first adjustment.
  • the first receiver 1701 receives third signaling, the third signaling indicating a third quantization parameter; wherein, the third quantization parameter is used to determine the reception of the first adjustment quality.
  • the first receiver 1701 receives a fourth wireless signal; wherein the first adjusted reception quality is used to generate the fourth wireless signal.
  • the first node device 1700 is a user equipment (UE).
  • UE user equipment
  • the first node device 1700 is a user equipment that supports a large delay difference.
  • the first node device 1700 is a user equipment supporting NTN.
  • the first node device 1700 is an aircraft device.
  • the first node device 1700 is a ship device.
  • the first node device 1700 is an industrial Internet of Things device.
  • the first node device 1700 is a device that supports low-latency and high-reliability transmission.
  • the first receiver 1701 includes the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source in the fourth embodiment. At least one of 467 ⁇ .
  • the first transmitter 1702 includes ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source in embodiment 4 At least one of 467 ⁇ .
  • Embodiment 18 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application; as shown in FIG. 18.
  • the processing device 1800 in the second node device includes a second transmitter 1801 and a second receiver 1802.
  • the second transmitter 1801 transmits the first wireless signal, the second wireless signal, the first signaling, the second signaling, the third signaling, and the fourth wireless signal; the second receiver 1802 receives the third wireless signal. wireless signal.
  • the first wireless signal is used to determine the first transmission parameter; the second wireless signal is used to determine the first reception quality; the third wireless signal indicates the first adjusted reception quality.
  • the first transmission parameter is used to determine a first offset, and the first adjusted reception quality is related to the first reception quality and the first offset; the first transmission parameter is related to The distance between the first node and the sender of the second wireless signal is related;
  • the first signaling indicates a first candidate offset set
  • the first candidate offset set includes a plurality of candidate offsets
  • the first offset is the plurality of candidate offsets.
  • the second transmitter 1802 sends second signaling, and the second signaling indicates a second parameter.
  • the second transmitter 1802 sends third signaling, the third signaling indicates a third quantization parameter; wherein, the third quantization parameter is used to determine the first adjusted reception quality .
  • the second transmitter 1802 sends a fourth wireless signal; wherein the first adjusted reception quality is used to generate the fourth wireless signal.
  • the second node device 1800 is a base station device (gNB/eNB).
  • the second node device 1800 is a base station device that supports a large delay difference.
  • the second node device 1800 is a base station device supporting NTN.
  • the second node device 1800 is a satellite device.
  • the second node device 1800 is a flight platform device.
  • the second transmitter 1801 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • the second receiver 1802 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • User equipment, terminals and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC) terminal, data card, internet card, in-vehicle communication equipment, low-cost mobile phone, low cost Cost tablet computer, satellite communication equipment, ship communication equipment, NTN user equipment and other wireless communication equipment.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point), NTN base station , Satellite equipment, flight platform equipment and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point
  • NTN base station Satellite equipment
  • flight platform equipment flight platform equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点首先接收第一无线信号,根据所述第一无线信号确定第一传输参数;然后接收第二无线信号,根据所述第二无线信号确定第一接收质量;再发送第三无线信号,所述第三无线信号指示第一调整的接收质量;其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关。本申请通过将接收质量和距离建立联系,优化了接收质量的测量结果,进而提高了效率。

Description

一种被用于无线通信的方法和设备 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中接收质量上报相关的传输方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
在通信中,无论是LTE(Long Term Evolution,长期演进)还是5G NR都会涉及到信号或信道质量的测量,这对基站或用户设备的通信质量的准确判断,对资源的合理调度,对系统干扰的有效协调都有重要的意义,可以说是高吞吐率,高频谱利用率的基石,无论是eMBB(ehanced Mobile BroadBand,增强的移动宽带),URLLC(Ultra Reliable Low Latency Communication,超高可靠低时延通信)还是eMTC(enhanced Machine Type Communication,增强的机器类型通信)都不可或缺的一项功能。同时在IIoT(Industrial Internet of Things,工业领域的物联网中,在V2X(Vehicular to X,车载通信)中,在非授权频谱的通信中,在用户通信质量监测,在网络规划优化,在NTN(Non Territerial Network,非地面网络通信)中,在无线资源管理以及多天线的码本选择中都存在广泛的应用。
随着无线信号质量测量和上报应用的增多,对上报的准确性和效率都提出了更高的要求,同时在系统设计的时候还需要考虑不同系统不同版本之间的兼容性。
发明内容
在不同的通信场景中,信号质量的数值范围差别很大,例如在近距离通信中,例如工业物联网,V2X通信甚至可见光通信中,信号的接收电平可能较高,例如在-60dBm,而在远距离通信中,例如较大的小区,非地面网络通信甚至深空通信等等,信号的电平可能很低,例如低至-120dBm。如果要求精确汇报所有这些可能的测量值,需要很多比特;而如果需要降低报告的开销提高效率就只能使用较少的比特,而较少的比特数又很难精确表示各种测量结果。另外一方面,不同的系统如果采用相同的汇报方式对简化系统设计,提高系统的兼容性非常有帮助。另一方面,不同的通信场景可能是并存的。在同一个通信应用中,信号的质量也可能有较大的变化。这些都对信号质量测量和报告的方法造成了困难。
针对上述问题,本申请提供了一种解决方案。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于包括:
接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;
发送第三无线信号,所述第三无线信号指示第一调整的接收质量;
其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关。
作为一个实施例,本申请要解决的问题包括:如何根据信号的发送者与接收者之间的距离确定测量结果的上报方式。上述方法根据所述距离信息配置传输参数,利用配置的传输参 数控制测量结果的上报,从而解决了这一问题。
作为一个实施例,上述方法的特质包括:所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关;所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关。
作为一个实施例,上述方法的好处包括:当进行信号质量上报时,报告经过调整的信号质量有利于在使用较少的上报比特的情况下保证上报结果的精度。
根据本申请的一个方面,其特征在于:
接收第一信令,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;
作为一个实施例,上述方法的特质包括:根据所述第一节点与所述第二无线信号的发送者之间的距离,配置多个不同的候选偏移量,所述第一候选偏移量是所述候选偏移量集合中最优的一个,可以进一步优化调整的信号质量的准确性。
作为一个实施例,上述方法的特质包括:测量得到的RSRP(Reference Signal Receiving Power,参考信号接收功率)和一个与距离有关的偏移量被用来确定调整的RSRP。上述方法使得经过调整的RSRP能够落在期望的上报范围内。
其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
根据本申请的一个方面,其特征在于:
接收第二信令,所述第二信令指示第二参数;
其中,所述第二参数被用于确定所述第一调整的接收质量。
根据本申请的一个方面,其特征在于:
接收第三信令,所述第三信令指示第三量化参数;
其中,所述第三量化参数被用于确定所述第一调整的接收质量。
根据本申请的一个方面,其特征在于:
接收第四无线信号;
其中所述第一调整的接收质量被用于生成所述第四无线信号。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于包括:
发送第一无线信号,所述第一无线信号指示第一传输参数;
接收第三无线信号,所述第三无线信号指示第二无线信号的第一调整的接收质量;
其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第二无线信号的第一接收质量和所述第一偏移量有关;所述第一传输参数与第一节点到所述第二信号的发送者之间的距离有关。
根据本申请的一个方面,其特征在于:
发送第一信令,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;
其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
根据本申请的一个方面,其特征在于:
发送第二信令,所述第二信令指示第二参数;
其中,所述第二参数被用于确定所述第一调整的接收质量。
根据本申请的一个方面,其特征在于:
发送第三信令,所述第三信令指示第三量化参数;
其中,所述第三量化参数被用于确定所述第一调整的接收质量。
根据本申请的一个方面,其特征在于:
发送第四无线信号;
其中所述第一调整的接收质量被用于生成所述第四无线信号。
本申请公开了一种被用于无线通信的第一节点,其特征在于包括:
第一接收机,接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;
第一发射机,发送第三无线信号,所述第三无线信号指示第一调整的接收质量;
其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关。
根据本申请的一个方面,其特征在于:
所述第一接收机接收第一信令,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;
其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
根据本申请的一个方面,其特征在于:
所述第一接收机接收第二信令,所述第二信令指示第二参数;
其中,所述第二参数被用于确定所述第一调整的接收质量。
根据本申请的一个方面,其特征在于:
所述第一接收机接收第三信令,所述第三信令指示第三量化参数;
其中,所述第三量化参数被用于确定所述第一调整的接收质量。
根据本申请的一个方面,其特征在于:
所述第一接收机接收第四无线信号;
其中所述第一调整的接收质量被用于生成所述第四无线信号。
本申请公开了一种被用于无线通信的第二节点,其特征在于包括:
第二发射机,发送第一无线信号,所述第一无线信号指示第一传输参数;
第二接收机,接收第三无线信号,所述第三无线信号指示第二无线信号的第一调整的接收质量;
其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第二无线信号的第一接收质量和所述第一偏移量有关;所述第一传输参数与第一节点到所述第二信号的发送者之间的距离有关。
根据本申请的一个方面,其特征在于:
所述第二发射机发送第一信令,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;
其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
根据本申请的一个方面,其特征在于:
所述第二发射机发送第二信令,所述第二信令指示第二参数;
其中,所述第二参数被用于确定所述第一调整的接收质量。
根据本申请的一个方面,其特征在于:
所述第二发射机发送第三信令,所述第三信令指示第三量化参数;
其中,所述第三量化参数被用于确定所述第一调整的接收质量。
根据本申请的一个方面,其特征在于:
所述第二发射机发送第四无线信号;
其中所述第一调整的接收质量被用于生成所述第四无线信号。
作为一个实施例,和传统方案相比,本申请具备如下优势:
当用户设备和基站之间的通信距离较远,尤其是涉及到卫星通信时,用户设备和基站之 间的传播损耗远远大于传统的地面通信,本申请提出的与距离相关的偏移量可以补偿不同传播损耗情况下的信号质量测量结果,使得经过调整的质量测量结果在期望的上报范围内,这有利于利用较少的比特表式较大的测量范围。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一无线信号,第二无线信号和第三无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一节点和第二节点的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的传输的流程图;
图7示出了根据本申请的一个实施例的由第一信令确定第一偏移量的示意图;
图8示出了根据本申请的一个实施例的区域信息的示意图;
图9示出了根据本申请的一个实施例的区域信息的示意图;
图10示出了根据本申请的一个实施例的区域信息的示意图;
图11示出了根据本申请的一个实施例的由第一无线信号确定第一传输参数示意图;
图12示出了根据本申请的一个实施例的第一传输参数被用于确定第一偏移量示意图;
图13示出了根据本申请的一个实施例的由第二无线信号确定第一接收质量示意图;
图14示出了根据本申请的一个实施例的第二参数被用于确定第一调整的接收质量示意图;
图15示出了根据本申请的一个实施例的第三量化参数被用于确定第一调整的接收质量示意图;
图16示出了根据本申请的一个实施例的第一调整的接收质量被用于生成第四无线信号示意图;
图17示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图18示出了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一无线信号,第二无线信号和第三无线信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中接收所述第一无线信号和接收所述第二无线信号;发送所述第三无线信号;所述第一无线信号被用于确定所述第一传输参数;所述第二无线信号被用于确定所述第一接收质量;实施例1中,所述第一传输参数被用于确定所述第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的所送发送者之间的距离有关。
作为一个实施例,所述第一无线信号包括定时提前(Timing Advance)命令(Command),所述第一传输参数包括所述定时提前命令指示的定时提前值(Timing Advance Value)。
作为一个实施例,所述第一无线信号指示所述第二无线信号的发送者的高度,所述第一传输参数包括所述第二无线信号的发送者的高度值。
作为一个实施例,所述第一无线信号指示所述第二无线信号的发送者的天体信息,所述第一传输参数包括所述第二无线信号的发送者距离地心的高度值。
作为一个实施例,所述第一无线信号指示所述第二无线信号的发送者的天体信息,所述第一传输参数包括所述第二无线信号的发送者距离所述第一节点的距离值。
作为一个实施例,所述第一无线信号指示所述第二无线信号的发送者的轨道类型,包括低轨道,中轨道和地球同步轨道,所述第一传输参数包括所述第二无线信号的发送者的轨道类型值。
作为一个实施例,所述第一无线信号指示所述第一节点的区域信息,包括区域标识,所述第一传输参数包括所述第一节点的所述区域标识。
作为一个实施例,所述第一无线信号指示所述第一节点的区域信息,包括是否为阴影区域,所述第一传输参数包括是否为阴影区域的标识。
作为一个实施例,所述第一无线信号指示所述第一节点的小区信息,包括小区标识,所述第一传输参数包括所述第一节点的所述小区标识。
作为一个实施例,所述第一无线信号指示所述第一节点所使用的波束信息,所述第一传输参数包括所述第一节点所使用的波束标识。
作为一个实施例,所述第一无线信号指示所述第一节点所使用的波束信息,所述第一传输参数包括所述第一节点所使用的波束区域标识。
作为一个实施例,所述第二无线信号的发送者和所述第二无线信号的发送者是共址的。
作为一个实施例,所述第一节点到所述第二无线信号的所述发送者之间的所述距离越大,所述第一传输参数越大。
作为一个实施例,所述第一节点到所述第二无线信号的所述发送者之间的所述距离越大,所述第一偏移量越小。
作为一个实施例,所述第一偏移量是实数。
作为一个实施例,所述第一偏移量是整数。
作为一个实施例,所述第一偏移量小于0。
作为一个实施例,所述第二参数是非零实数。
作为一个实施例,所述第三量化参数由小区类型确定,当小区内无线信号变化越小时,所述第三量化参数的颗粒度越细。
作为一个实施例,所述第一信号质量与所述第一调整的信号质量的差值等于所述第一偏移量的绝对值。
作为一个实施例,所述第一信号质量与所述第一调整的信号质量线性相关,且相关系数为所述第二参数。
作为一个实施例,所述第一信号质量与第二参数的乘积所得的数值与所述第一调整的信号质量的差值等于所述第一偏移量的绝对值。
作为一个实施例,作为一个实施例,所述第二参数,所述第三量化参数,所述第一接收质量,所述第一偏移量,第一调整的接收质量满足以下关系:Q(Ax-b)=c,其中A为所述第二参数,x为所述第一接收质量,b为所述第一偏移量,c为所述第一调整的接收质量,Q()为量化函数其参数由所述第三量化参数给出。作为一个实施例,所述第三量化参数由多组量化端点值对确定,每一组量化端点值对包括两个量化端点数值,每个端点数值为实数且一个大于另一个。
作为一个实施例,所述第一无线信号的发送者和所述第二无线信号的发送者是同一个服务小区。
作为一个实施例,所述第一无线信号和所述第二无线信号是半共址的(Quasi Co-located)。
作为一个实施例,所述第一无线信号的发送者和所述第二无线信号的发送者是两个不同的服务小区。
作为一个实施例,所述第一偏移量与第一信号的发送功率无关。
作为一个实施例,所述第一偏移量与第二信号的发送功率无关。
作为一个实施例,所述第二无线信号包括参考信号,所述第一接收质量包括所述参考信号的接收功率。
作为一个实施例,所述第二无线信号包括参考信号,所述第一接收质量包括所述参考信号的接收质量。
作为一个实施例,所述第二无线信号包括参考信号,所述第一接收质量包括所述参考信号的信噪比。
作为一个实施例,所述第二无线信号包括SSB(Synchronization Signal Block,同步信号块)。
作为一个实施例,所述第二无线信号包括CSI-RS(Channel Status Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第二无线信号包括CRS(Cell Reference Signal,小区参考信号)。
作为一个实施例,所述第一接收质量包括测量所述CSI-RS得到的RSRP(Reference Signal Receiving Power,参考信号接收功率)。
作为一个实施例,所述第一接收质量包括测量所述CSI-RS得到的RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
作为一个实施例,所述第一接收质量包括测量所述CSI-RS得到的RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
作为一个实施例,所述第一接收质量包括测量所述SSB得到的RSRP(Reference Signal Receiving Power,参考信号接收功率)。
作为一个实施例,所述第一接收质量包括测量所述CRS得到的RSRP(Reference Signal Receiving Power,参考信号接收功率)。
作为一个实施例,所述第一接收质量的单位是毫分贝(dBm),所述第一偏移量的单位是分贝(dB)。
作为一个实施例,所述第一接收质量的单位是毫瓦(mW),所述第一偏移量的单位是毫瓦(mW)。
作为一个实施例,所述第三无线信号所占用的信道包括PUCCH(Physical Uplink Control CHannel,物理上行控制信道)。
作为一个实施例,所述第三无线信号所占用的信道包括PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为一个实施例,所述第三无线信号在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上被发送。
作为一个实施例,所述第三无线信号在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上被发送。
作为一个实施例,所述第四无线信号包含资源分配信息。
作为一个实施例,所述第四无线信号包含功率控制信息。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分 组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语,在NTN网络中,gNB203可以是卫星或通过卫星中继的地面基站。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocol,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)。
作为一个实施例,所述UE201对应本申请中的所述第一节点设备。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE201支持大时延差网络中的传输。
作为一个实施例,所述gNB203对应本申请中的所述第二节点设备。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203支持在大时延差网络中的传输。
作为一个实施例,所述gNB204对应本申请中的所述第二无线信号的发送者。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE,gNB或NTN中的卫星或飞行器)和第二节点设备(gNB,UE或NTN中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点设备之间的对第一节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造 成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二无线信号的发送者。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第三无线信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第四无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第四无线信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第四无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信令生成于所述RRC306。
作为一个实施例,本申请中的所述第三信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信令生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的一个第一节点设备和第二节点设备的示意图,如附图4所示。
在第一节点设备(450)中包括控制器/处理器490,数据源/缓存器480,接收处理器452,发射器/接收器456和发射处理器455,发射器/接收器456包括天线460。数据源/缓存器480提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层及以上层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH或 SL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在第二节点设备(410)中可以包括控制器/处理器440,数据源/缓存器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。数据源/缓存器430提供上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH或SL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层信令(包括同步信号和参考信号等)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包,比如本申请中的第一信令,第二信令和第三信令所包括的高层信息提供到控制器/处理器440。控制器/处理器440实施L2层及以上层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对第一节点设备450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到第一节点设备450的信令,比如本申请中的第一信令,第二信令和第三信令均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,本申请中的第一无线信号,第二无线信号和第四无线信号的生成在发射处理器415完成,生成的调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括对本申请中的第一无线信号,第二无线信号第四无线信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第二节点设备410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490负责L2层及以上层,控制器/处理器490对本申请中的第一无线信号,第二无线信号,第四无线信号,第一信令,第二信令和第三信令中所包括的高层信息(如果包括高层信息的话)进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,数据源/缓存器480用来提供高层数据到控制器/处理器490。数据源/缓存器480表示L2层和L2层之上的所有协议层。控制器/处理器490通过基于第二节点410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到第二节点410的信令。本申请中的第三无线信号的高层数据在控制器/处理器490生成。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,本申请中的第三无线信号在发射处理器455生成。信号发射处理功能包括编码和交织以促进UE450处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流 映射到相应的多载波子载波和/或多载波符号,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括接收处理本申请中的第三无线信号,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由第一节点设备450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。在控制器/处理器440实施L2层的功能,包括对本申请中的第三无线信号所携带的信息的解读。控制器/处理器可与存储程序代码和数据的缓存器430相关联。缓存器430可以为计算机可读媒体。
作为一个实施例,所述第一节点设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一节点设备450装置至少:接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关。
作为一个实施例,所述第一节点设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关。
作为一个实施例,所述第二节点设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二节点设备410装置至少:发送第一无线信号,所述第一无线信号指示第一传输参数;接收第三无线信号,所述第三无线信号指示第二无线信号的第一调整的接收质量;其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第二无线信号的第一接收质量和所述第一偏移量有关;所述第一传输参数与第一节点到所述第二信号的发送者之间的距离有关。
作为一个实施例,所述第二节点设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一无线信号,所述第一无线信号指示第一传输参数;接收第三无线信号,所述第三无线信号指示第二无线信号的第一调整的接收质量;其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第二无线信号的第一接收质量和所述第一偏移量有关;所述第一传输参数与第一节点到所述第二信号的发送者之间的距离有关。
作为一个实施例,所述第一节点设备450是一个用户设备(UE)。
作为一个实施例,所述第一节点设备450是一个支持大时延差的用户设备。
作为一个实施例,所述第一节点设备450是一个支持NTN的用户设备。
作为一个实施例,所述第一节点设备450是一个飞行器设备。
作为一个实施例,所述第一节点设备450是一个船只设备。
作为一个实施例,所述第二节点设备410是一个基站设备(gNB/eNB)。
作为一个实施例,所述第二节点设备410是一个支持大时延差的基站设备。
作为一个实施例,所述第二节点设备410是一个支持NTN的基站设备。
作为一个实施例,所述第二节点设备410是一个卫星设备。
作为一个实施例,所述第二节点设备410是一个飞行平台设备。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一无线信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二无线信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第四无线信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收第一信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收第二信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收第三信令。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送第三无线信号。
作为一个实施例,接收处理器452,根据第二无线信号确定第一接收质量,根据第一接收质量确定第一调整的接收质量。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第一无线信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第二无线信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第四无线信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第二信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第三信令。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,第二节点N01是第一节点U01的服务小区基站,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二节点N01,在步骤S5101中发送第一无线信号,在步骤S5102中发送第一信令,在步骤S5103中发送第二信令,在步骤S5104中发送第三信令,在步骤S5105中发送第二无线信号,在步骤S5106中接收第三无线信号,在步骤S5107中发送第四无线信号。
对于 第一节点U01,在步骤S5201中接收第一无线信号,在步骤S5202中接收第一信令,在步骤S5203中接收第二信令,在步骤S5204中接收第三信令,在步骤S5205中接收第二无线信号,在步骤S5206中计算第一调整的接收质量,在步骤S5207中发送第三无线信号,在步骤S5208中接收第四无线信号。
在实施例5中,本申请中的所述第一无线信号被用于确定第一传输参数;所述第二无线信号被用于确定第一接收质量;其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关;所述第三无线信号指示第一调整的接收质量。
作为一个实施例,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
作为一个实施例,所述第二信令指示第二参数;其中,所述第二参数被用于确定所述第一调整的接收质量。
作为一个实施例,所述第三信令指示第三量化参数;其中,所述第三量化参数被用于确定所述第一调整的接收质量。
作为一个实施例,所述第二节点是所述第二无线信号的发送者。
作为一个实施例,所述第一无线信号的发送者和所述第二无线信号的发送者是同一个服务小区。
作为一个实施例,第四无线信号包含资源分配信息,当所述第一调整的接收质量越小时,分配的无线资源越多。
作为一个实施例,第四无线信号包含功率控制信息,当所述第一调整的接收质量越小时,被设置的发射功率越大。
实施例6
实施例6示例了根据本申请的一个实施例的无线信号传输流程图,如附图6所示。附图6中,第二节点N02是第一节点U02的服务小区基站,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二节点N02,在步骤S6101中发送第一无线信号,在步骤S6102中发送第一信令,在步骤S6103中发送第二信令,在步骤S6104中发送第三信令,在步骤S6106中接收第三无线信号,在步骤S6107中发送第四无线信号。
对于 第三节点N22,在步骤S6105中发送第二无线信号。
对于 第一节点U02,在步骤S6201中接收第一无线信号,在步骤S6202中接收第一信令,在步骤S6203中接收第二信令,在步骤S6204中接收第三信令,在步骤S6205中接收第二无线信号,在步骤S6206中计算第一调整的接收质量,在步骤S6207中发送第三无线信号,在步骤S6208中接收第四无线信号。
在实施例6中,本申请中的所述第一无线信号被用于确定第一传输参数;所述第二无线信号被用于确定第一接收质量;其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关;所述第三无线信号指示第一调整的接收质量。
作为一个实施例,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
作为一个实施例,所述第二信令指示第二参数;其中,所述第二参数被用于确定所述第一调整的接收质量。
作为一个实施例,所述第三信令指示第三量化参数;其中,所述第三量化参数被用于确定所述第一调整的接收质量。
作为一个实施例,所述第二节点不是所述第二无线信号的发送者。
作为一个实施例,所述第一无线信号和所述第二无线信号是半共址的(Quasi Co-located)。
作为一个实施例,所述第一无线信号的发送者和所述第二无线信号的发送者是两个不同的服务小区。
作为一个实施例,第四无线信号包含资源分配信息,当所述第一调整的接收质量越小时,分配的无线资源越多。
作为一个实施例,第四无线信号包含功率控制信息,当所述第一调整的接收质量越小时,被设置的发射功率越大。
实施例7
实施例7示例了根据本申请的一个实施例的第一候选偏移量集合的示意图,如附图7所示。
附图7中X代表第一传输参数,X(i)为所述第一传输参数X的第i种配置,其中i为正整数;所述第一传输参数共有I种可能的配置,其中I为正整数,所述第一候选偏移量集合共有I个候选偏移量,其中I为正整数。
在实施例7中,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
作为一个实施例,所述多个候选偏移量中的任意两个候选偏移量不相等。
作为一个实施例,所述第一节点到所述第一无线信号的所述发送者之间的所述距离越大,所述第一偏移量越大。
作为一个实施例,所述第一传输参数由小区类型和区域标识共同确定,其中所述小区类型包括{低轨道,中轨道,同步轨道}其中之一。
作为一个实施例,所述第一传输参数越大,所述第一偏移量越小。
作为一个实施例,当所述第一传输参数为150公里时,所述第一偏移量为43dB。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一信令是小区公共的。
作为一个实施例,所述第一候选偏移量集合中的任一候选偏移量对应一个第一传输参数区间,所述第一偏移量是所述多个候选偏移量中对应的传输参数区间包括所述第一传输参数的候选偏移量。
作为一个实施例,所述第一偏移量是所述第一候选偏移量集合中最大的所述第一传输参数对应的第i个候选偏移量。
作为一个实施例,所述第一偏移量是所述第一候选偏移量集合中最小的所述第一传输参数对应的第i个候选偏移量。
作为一个实施例,所述第一信令显式的指示所述第一候选偏移量集合。
作为一个实施例,所述第一信令指示第一参考偏移量,所述第一候选偏移量集合由所述第一参考偏移量隐式指示。
作为一个实施例,所述第一信令包括ReportConfigEUTRA IE(Information Element,信息单元)中的部分或者所有域(field)。
作为一个实施例,所述第一信令包括ReportConfigNR IE(Information Element,信息单元)中的部分或者所有域(field)。
作为一个实施例,所述第一信令包括MeasObjectEUTRA IE中的部分或者所有域。
作为一个实施例,所述第一信令包括MeasObjectNR IE中的部分或者所有域。
作为一个实施例,所述第一参考偏移量包括{OffsetFreq,cellIndividualOffset,csi-RS-IndividualOffset,a3-Offset,a6-Offset,c2-Offset,h1-ThresholdOffset,h2-ThresholdOffset,Hysteresis}中的至少之一。
作为一个实施例,所述第一参考偏移量由{OffsetFreq,cellIndividualOffset,csi-RS-IndividualOffset,a3-Offset,a6-Offset,c2-Offset,h1-ThresholdOffset,h2-ThresholdOffset,Hysteresis}中的至少两个共同确定。
作为一个实施例,所述第一参考偏移量为第二无线信号的发送者到地表的最小路径损耗。
作为一个实施例,所述第一参考偏移量为第二无线信号的发送者到地心的路径损耗。
实施例8
实施例8示例了根据本申请的一个实施例的区域标识的示意图,如附图8所示。
附图8中的区域为矩形,所述区域标识是一个地理区域的标识。
作为一个实施例,所述第一节点获取其所在的所述区域标识,所述区域标识被用于确定第一传输参数。
作为一个实施例,所述区域标识和所述第二节点所在的地理位置有关。
作为一个实施例,所述域标识指示所述第二无线信号的发送者所在的地理位置。
作为一个实施例,所述域标识指示所述第一节点所在的地理位置。
作为一个实施例,所述第一节点通过接入小区的系统消息获取其所在区域的所述区域标识。
作为一个实施例,所述第一节点通过高层信令获取其所在的所述区域标识。
作为一个实施例,所述第一节点通过定位信息获取其所在的所述区域标识,其中定位信息包括GPS信息。
作为一个实施例,所述区域的一个点的位置被用于确定所述第一传输参数。
作为一个实施例,所述区域的一个顶点的位置被用于确定所述第一传输参数。
作为一个实施例,所述区域的中心点的位置被用于确定所述第一传输参数。
作为一个实施例,所述区域的一个点到第二信号发射者的距离被用于确定所述第一传输参数。
实施例9
实施例9示例了根据本申请的一个实施例的区域标识的示意图,如附图9所示。
附图9中的区域为圆形和围绕圆形的环形,所述区域标识是一个地理区域的标识。
作为一个实施例,所述第一节点获取其所在的所述区域标识,所述区域标识被用于确定第一传输参数。
作为一个实施例,所述区域标识和所述第二节点所在的地理位置有关。
作为一个实施例,所述域标识指示所述第二无线信号的发送者所在的地理位置。
作为一个实施例,所述域标识指示所述第一节点所在的地理位置。
作为一个实施例,所述第一节点通过接入小区的系统消息获取其所在区域的所述区域标识。
作为一个实施例,所述第一节点通过高层信令获取其所在的所述区域标识。
作为一个实施例,所述第一节点通过定位信息获取其所在的所述区域标识,其中定位信息包括GPS信息。
作为一个实施例,所述区域的一个点的位置被用于确定所述第一传输参数。
作为一个实施例,所述区域的一个顶点的位置被用于确定所述第一传输参数。
作为一个实施例,所述区域的中心点的位置被用于确定所述第一传输参数。
作为一个实施例,所述区域的一个点到第二信号发射者的距离被用于确定所述第一传输参数。
实施例10
实施例10示例了根据本申请的一个实施例的区域标识的示意图,如附图10所示。
附图10中的区域为多边形,所述区域标识是一个地理区域的标识。
作为一个实施例,所述第一节点获取其所在的所述区域标识,所述区域标识被用于确定第一传输参数。
作为一个实施例,所述区域标识和所述第二节点所在的地理位置有关。
作为一个实施例,所述域标识指示所述第二无线信号的发送者所在的地理位置。
作为一个实施例,所述域标识指示所述第一节点所在的地理位置。
作为一个实施例,所述第一节点通过接入小区的系统消息获取其所在区域的所述区域标识。
作为一个实施例,所述第一节点通过高层信令获取其所在的所述区域标识。
作为一个实施例,所述第一节点通过定位信息获取其所在的所述区域标识,其中定位信息包括GPS信息。
作为一个实施例,所述区域标识是小区标识。
作为一个实施例,所述区域的一个点的位置被用于确定所述第一传输参数。
作为一个实施例,所述区域的一个顶点的位置被用于确定所述第一传输参数。
作为一个实施例,所述区域的中心点的位置被用于确定所述第一传输参数。
作为一个实施例,所述区域的一个点到第二信号发射者的距离被用于确定所述第一传输参数。
实施例11
实施例11示例了根据本申请的一个实施例的第一无线信号确定第一传输参数的示意图,如附图11所示。
作为一个实施例,所述第一无线信号显示地指示第一传输参数。
作为一个实施例,所述第一无线信号包括定时提前(Timing Advance)命令(Command),所述第一传输参数包括所述定时提前命令指示的定时提前值(Timing Advance Value)。
作为一个实施例,所述第一无线信号包括定时提前(Timing Advance)命令(Command),所述第一传输参数包括所述定时提前命令指示的定时提前值(Timing Advance Value)所确定的所述第一节点与第二无线信号发送者之间的距离。
作为一个实施例,所述第一无线信号包括时间信息和卫星的轨道信息,所述第一传输参数包括所述第一节点与第二无线信号发送者之间的距离。
作为一个实施例,所述第一无线信号包括所述第二无线信号的发送者的高度,所述第一传输参数包括所述第二无线信号的发送者的高度值。
作为一个实施例,所述第一无线信号包括所述第二无线信号的发送者的天体信息,所述第一传输参数包括所述第二无线信号的发送者距离地心的高度值。
作为一个实施例,所述第一无线信号包括所述第二无线信号的发送者的天体信息,所述第一传输参数包括所述第二无线信号的发送者距离所述第一节点的距离值。
作为一个实施例,所述第一无线信号包括所述第二无线信号的发送者的轨道类型,包括低轨道,中轨道和地球同步轨道,所述第一传输参数包括所述第二无线信号的发送者的轨道类型值。
作为一个实施例,所述第一无线信号包括所述第一节点的区域信息,包括区域标识,所述第一传输参数包括所述第一节点的所述区域标识。
作为一个实施例,所述第一无线信号包括所述第一节点的区域信息,包括区域标识,所述第一传输参数包括根据所述区域标识所确定的区域到所述第二无线信号发送者之间的距离。
作为一个实施例,所述第一无线信号包括所述第一节点的区域信息,包括是否为阴影区域,所述第一传输参数包括是否为阴影区域的标识。
作为一个实施例,所述第一无线信号包括所述第一节点的小区信息,包括小区标识,所述第一传输参数包括所述第一节点的所述小区标识。
作为一个实施例,所述第一无线信号包括所述第一节点所使用的波束信息,所述第一传输参数包括所述第一节点所使用的波束标识。
作为一个实施例,所述第一无线信号包括所述第一节点所使用的波束信息,所述第一传输参数包括所述第一节点所使用的波束区域标识。
实施例12
实施例12示例了根据本申请的一个实施例的第一传输参数被用于确定第一偏移量的示意图,如附图12所示。
作为一个实施例,所述第一传输参数与所述第一偏移量存在一一对应关系。
作为一个实施例,所述第一传输参数与所述第一偏移量线性相关。
作为一个实施例,当第一传输参数为所述第二信号的发射者与所述第一节点或所述第一节点所在的区域的距离时,所述第一偏移量由根据所述距离所确定的传播损耗与一参考值之间的差值确定;其中所述参考值为预定义值或由第二节点显示地指示。
实施例13
实施例13示例了根据本申请的一个实施例的第二无线信号确定第一接收质量的示意图,如附图13所示。
作为一个实施例,所述第二无线信号包括参考信号,所述第一接收质量包括所述参考信号的接收功率。
作为一个实施例,所述第二无线信号包括参考信号,所述第一接收质量包括所述参考信号的接收质量。
作为一个实施例,所述第二无线信号包括参考信号,所述第一接收质量包括所述参考信号的信噪比。
作为一个实施例,所述第二无线信号包括SSB(Synchronization Signal Block,同步信号块)。
作为一个实施例,所述第二无线信号包括CSI-RS(Channel Status Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第二无线信号包括CRS(Cell Reference Signal,小区参考信号)。
作为一个实施例,所述第一接收质量包括测量所述CSI-RS得到的RSRP(Reference Signal Receiving Power,参考信号接收功率)。
作为一个实施例,所述第一接收质量包括测量所述CSI-RS得到的RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
作为一个实施例,所述第一接收质量包括测量所述CSI-RS得到的RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
作为一个实施例,所述第一接收质量包括测量所述SSB得到的RSRP(Reference Signal Receiving Power,参考信号接收功率)。
作为一个实施例,所述第一接收质量包括测量所述CRS得到的RSRP(Reference Signal Receiving Power,参考信号接收功率)。
作为一个实施例,所述第一接收质量的单位是毫分贝(dBm),所述第一偏移量的单位是分贝(dB)。
作为一个实施例,所述第一接收质量的单位是毫瓦(mW),所述第一偏移量的单位是毫瓦(mW)。
作为一个实施例,所述第一接收质量为所述第二无线信号在一个时间窗口内的多个测量值的加权平均。
实施例14
实施例14示例了根据本申请的一个实施例的第二参数被用于确定第一调整的接收质量的示意图,如附图14所示。其中所述第二信令被用于指示所述第二参数。
作为一个实施例,所述第二参数是非零实数。
作为一个实施例,所述第二参数与小区类型有关。
作为一个实施例,所述第二参数与第二无线信号的发射者的轨道类型有关。
作为一个实施例,所述第二参数与第二无线信号的发射者与第一节点或第一节点所在的区域之间的距离有关。
作为一个实施例,所述第一接收质量与所述的第一调整的接收质量线性相关,其相关系数等于第二参数。
作为一个实施例,当小区内无线信号变化越小时,所述第二参数的绝对值越大。
作为一个实施例,所述第一信号质量与所述第一调整的信号质量的差值等于所述第一偏移量的绝对值。
作为一个实施例,所述第一信号质量与第二参数的乘积所得的数值与所述第一调整的信号质量的差值等于所述第一偏移量的绝对值。
实施例15
实施例15示例了根据本申请的一个实施例的第三量化参数被用于确定第一调整的接收质量的示意图,如附图15所示。其中所述第三信令被用于指示所述第三量化参数,第三量化参数被用于确定量化参数。
作为一个实施例,所述第一调整的接收质量由所述第三量化参数所确定的量化参数经过量化所得。
作为一个实施例,所述第三量化参数与小区类型有关。
作为一个实施例,所述第三量化参数与第二无线信号的发射者的轨道类型有关。
作为一个实施例,所述第三量化参数与第二无线信号的发射者与第一节点或第一节点所在的区域之间的距离有关。
作为一个实施例,作为一个实施例,所述第二参数,所述第三量化参数,所述第一接收质量,所述第一偏移量,第一调整的接收质量满足以下关系:Q(Ax-b)=c,其中A为所述第二参数,x为所述第一接收质量,b为所述第一偏移量,c为所述第一调整的接收质量,Q()为量化函数其参数由所述第三量化参数给出。
作为一个实施例,所述第三量化参数由多组量化端点值对确定,每一组量化端点值对包括两个量化端点数值,每个端点数值为实数且一个大于另一个。
实施例16
实施例16示例了根据本申请的一个实施例的第一调整的接收质量被用于生成第四无线信号的示意图,如附图16所示。
作为一个实施例,第四无线信号包含资源分配信息,当所述第一调整的接收质量越小时,分配的无线资源越多。
作为一个实施例,第四无线信号包含功率控制信息,当所述第一调整的接收质量越小时,被设置的发射功率越大。
实施例17
实施例17示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图17所示。在附图17中,第一节点中的处理装置1700包括第一接收机1701,第一发送机1702。
在实施例17中,第一接收机1701接收第一无线信号,第二无线信号,第一信令,第二信令,第三信令和第四无线信号;第一发送机1702发送第三无线信号。
在实施例17中,所述第一无线信号被用于确定第一传输参数;所述第二无线信号被用于确定第一接收质量;所述第三无线信号指示第一调整的接收质量。其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关;
作为一个实施例,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
作为一个实施例,所述第一接收机1701接收第二信令,所述第二信令指示第二参数;其中,所述第二参数被用于确定所述第一调整的接收质量。
作为一个是实施例,所述第一接收机1701接收第三信令,所述第三信令指示第三量化参数;其中,所述第三量化参数被用于确定所述第一调整的接收质量。
作为一个实施例,所述第一接收机1701接收第四无线信号;其中所述第一调整的接收质量被用于生成所述第四无线信号。
作为一个实施例,所述第一节点设备1700是一个用户设备(UE)。
作为一个实施例,所述第一节点设备1700是一个支持大时延差的用户设备。
作为一个实施例,所述第一节点设备1700是一个支持NTN的用户设备。
作为一个实施例,所述第一节点设备1700是一个飞行器设备。
作为一个实施例,所述第一节点设备1700是一个船只设备。
作为一个实施例,所述第一节点设备1700是一个工业物联网设备。
作为一个实施例,所述第一节点设备1700是一个支持低时延高可靠传输的设备。
作为一个实施例,所述第一接收机1701包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发送机1702包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例18
实施例18示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图18所示。在附图18中,第二节点设备中的处理装置1800包括第二发送机1801和第二接收机1802。
在实施例18中,第二发送机1801发送第一无线信号、第二无线信号、第一信令、第二信令、第三信令和第四无线信号;第二接收机1802接收第三无线信号。
在实施例18中,所述第一无线信号被用于确定第一传输参数;所述第二无线信号被用于确定第一接收质量;所述第三无线信号指示第一调整的接收质量。其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关;
作为一个实施例,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
作为一个实施例,所述第二发射机1802发送第二信令,所述第二信令指示第二参数。
作为一个实施例,所述第二发射机1802发送第三信令,所述第三信令指示第三量化参数;其中,所述第三量化参数被用于确定所述第一调整的接收质量。
作为一个实施例,所述第二发射机1802发送第四无线信号;其中所述第一调整的接收质量被用于生成所述第四无线信号。
作为一个实施例,所述第二节点设备1800是一个基站设备(gNB/eNB)。
作为一个实施例,所述第二节点设备1800是一个支持大时延差的基站设备。
作为一个实施例,所述第二节点设备1800是一个支持NTN的基站设备。
作为一个实施例,所述第二节点设备1800是一个卫星设备。
作为一个实施例,所述第二节点设备1800是一个飞行平台设备。
作为一个实施例,所述第二发送机1801包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1802包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑,卫星通信设备,船只通信设备,NTN用户设备等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点),NTN基站,卫星设备,飞行平台设备等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (8)

  1. 一种被用于无线通信的第一节点,其特征在于包括:
    第一接收机,接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;
    第一发射机,发送第三无线信号,所述第三无线信号指示第一调整的接收质量;
    其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关。
  2. 根据权利要求1所述的第一节点,其特征在于:
    所述第一接收机接收第一信令,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;
    其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
  3. 根据权利要求1或2所述的第一节点,其特征在于:
    所述第一接收机接收第二信令,所述第二信令指示第二参数;
    其中,所述第二参数被用于确定所述第一调整的接收质量。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于:
    所述第一接收机接收第三信令,所述第三信令指示第三量化参数;
    其中,所述第三量化参数被用于确定所述第一调整的接收质量。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于:
    所述第一接收机接收第四无线信号;
    其中所述第一调整的接收质量被用于生成所述第四无线信号。
  6. 一种被用于无线通信的第二节点,其特征在于包括:
    第二发射机,发送第一无线信号,所述第一无线信号指示第一传输参数;
    第二接收机,接收第三无线信号,所述第三无线信号指示第二无线信号的第一调整的接收质量;
    其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第二无线信号的第一接收质量和所述第一偏移量有关;所述第一传输参数与第一节点到所述第二信号的发送者之间的距离有关。
  7. 一种被用于无线通信的第一节点中的方法,其特征在于包括:
    接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;
    发送第三无线信号,所述第三无线信号指示第一调整的接收质量;
    其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第一接收质量和所述第一偏移量有关;所述第一传输参数与所述第一节点到所述第二无线信号的发送者之间的距离有关。
  8. 一种被用于无线通信的第二节点中的方法,其特征在于包括:
    发送第一无线信号,所述第一无线信号指示第一传输参数;
    接收第三无线信号,所述第三无线信号指示第二无线信号的第一调整的接收质量;
    其中,所述第一传输参数被用于确定第一偏移量,所述第一调整的接收质量与所述第二无线信号的第一接收质量和所述第一偏移量有关;所述第一传输参数与第一节点到所述第二信号的发送者之间的距离有关。
PCT/CN2020/116246 2019-10-08 2020-09-18 一种被用于无线通信的方法和设备 WO2021068727A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910950499.5 2019-10-08
CN201910950499.5A CN112636850B (zh) 2019-10-08 2019-10-08 一种被用于无线通信的方法和设备

Publications (1)

Publication Number Publication Date
WO2021068727A1 true WO2021068727A1 (zh) 2021-04-15

Family

ID=75283038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116246 WO2021068727A1 (zh) 2019-10-08 2020-09-18 一种被用于无线通信的方法和设备

Country Status (2)

Country Link
CN (1) CN112636850B (zh)
WO (1) WO2021068727A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297176A (zh) * 2012-02-24 2013-09-11 株式会社Ntt都科摩 信道状态信息的反馈、处理方法和装置及用户设备及基站
US20130258919A1 (en) * 2007-02-05 2013-10-03 Qualcomm Incorporated Flexible dtx and drx in a wireless communication system
CN107690148A (zh) * 2016-08-04 2018-02-13 中兴通讯股份有限公司 一种小区信号的干扰处理方法及装置
CN108809484A (zh) * 2017-04-28 2018-11-13 华为技术有限公司 一种信道状态的指示方法、装置及网络设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8457079B2 (en) * 2009-10-05 2013-06-04 Motorola Mobility Llc Method and apparatus for mitigating downlink control channel interference
CN108289325B (zh) * 2017-01-09 2022-03-01 中兴通讯股份有限公司 上行和下行传输对齐的方法及装置
CN110113122B (zh) * 2018-02-01 2021-06-22 华为技术有限公司 一种定时的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130258919A1 (en) * 2007-02-05 2013-10-03 Qualcomm Incorporated Flexible dtx and drx in a wireless communication system
CN103297176A (zh) * 2012-02-24 2013-09-11 株式会社Ntt都科摩 信道状态信息的反馈、处理方法和装置及用户设备及基站
CN107690148A (zh) * 2016-08-04 2018-02-13 中兴通讯股份有限公司 一种小区信号的干扰处理方法及装置
CN108809484A (zh) * 2017-04-28 2018-11-13 华为技术有限公司 一种信道状态的指示方法、装置及网络设备

Also Published As

Publication number Publication date
CN112636850A (zh) 2021-04-09
CN112636850B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
US11626904B2 (en) Method and device for multi-antenna transmission in user equipment (UE) and base station
US10568113B2 (en) Method and device in UE and base station used for wireless communication
US10568095B2 (en) Method and device in UE and base station used for wireless communication
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN111586826B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088618A1 (zh) 一种被用于无线通信的方法和装置
US11963153B2 (en) Method and device in UE and base station used for dynamic scheduling
US20230007696A1 (en) Method and device for wireless communication
WO2021088609A1 (zh) 一种被用于无线通信的方法和设备
WO2021031950A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021068727A1 (zh) 一种被用于无线通信的方法和设备
CN112399581B (zh) 一种被用于无线通信的节点中的方法和装置
CN116017442B (zh) 一种被用于无线通信的方法和设备
WO2021057621A1 (zh) 一种被用于无线通信的方法和设备
WO2024120140A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114640723B (zh) 一种被用于无线通信的方法和设备
CN112839361B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2023088128A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024140297A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023083236A1 (zh) 用于无线通信的方法和装置
WO2023284519A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN116017442A (zh) 一种被用于无线通信的方法和设备
CN117675135A (zh) 用于无线通信的方法和装置
CN116938297A (zh) 一种被用于无线通信的节点中的方法和装置
CN115412983A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874117

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20874117

Country of ref document: EP

Kind code of ref document: A1