WO2021057621A1 - 一种被用于无线通信的方法和设备 - Google Patents

一种被用于无线通信的方法和设备 Download PDF

Info

Publication number
WO2021057621A1
WO2021057621A1 PCT/CN2020/116230 CN2020116230W WO2021057621A1 WO 2021057621 A1 WO2021057621 A1 WO 2021057621A1 CN 2020116230 W CN2020116230 W CN 2020116230W WO 2021057621 A1 WO2021057621 A1 WO 2021057621A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless signal
node
reception quality
offset
sender
Prior art date
Application number
PCT/CN2020/116230
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021057621A1 publication Critical patent/WO2021057621A1/zh
Priority to US17/700,513 priority Critical patent/US20220225179A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/326Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by proximity to another entity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device related to cell handover in wireless communication.
  • the UE In traditional macro cell handover, the UE (User Equipment) measures the information of the target cell and selects RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality) to be the best Access to the cell.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • LTE LongTerm Evolution
  • Heterogeous Network Heterogeous Network
  • micro cells Picocell
  • 3GPP has introduced an offset for cell handover.
  • the RSRP of the micro cell plus the RSRP of the macro cell (Macrocell) the UE will preferentially access the micro cell. Area. Using this method, when more micro cells are deployed in a macro cell, a larger cell splitting gain can be obtained and the network spectrum efficiency can be improved.
  • the current 3GPP standards are mainly aimed at terrestrial networks (Terrestrial Network, TN).
  • the defined offset types mainly include cell-specific offsets and frequency-specific offsets.
  • offse RRC (RadioResurceControl, Radio Resource Control) IE (Information Element) related to offset includes OffsetFreq, cellIndividualOffset, csi-RS-IndividualOffset, a3-Offset, a6-Offset, c2-Offset, h1- ThresholdOffset, h2-ThresholdOffset, etc.
  • the transmission distance between the satellite and the user equipment is much greater than the distance between the ground base station and the user equipment, which will cause the transmission delay between the satellite and the user equipment to be much longer than the ground
  • cell-specific offset and frequency-dedicated offset are difficult to guarantee the quality of service when the user equipment is handed over in the NTN environment.
  • this application provides a solution.
  • the NTN scenario is used as an example; this application is also applicable to, for example, terrestrial transmission scenarios, and achieves similar technical effects in the NTN scenario.
  • the use of a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first transmission parameter is used to determine a first offset, and the sum of the first offset and the first reception quality is equal to the first adjusted reception quality; the first transmission The parameter is related to the distance between the first node and the sender of the first wireless signal.
  • the problem to be solved in this application includes: when the user equipment selects a cell, how to switch to a cell with a larger time delay as late as possible.
  • the above method determines the first offset according to the first transmission parameter related to the distance between the first node and the sender of the first wireless signal, thereby solving this problem.
  • the characteristics of the above method include: the first transmission parameter is related to the distance between the first node and the sender of the first wireless signal; and the first offset is related to the distance between the first node and the sender of the first wireless signal; The sum of the first reception quality is equal to the first adjusted reception quality.
  • the benefits of the above method include: when the user equipment selects a cell, it avoids premature handover to a cell with a longer delay, thereby ensuring the quality of service of the user equipment during handover.
  • Receive first signaling where the first signaling indicates a first candidate offset set, the first candidate offset set includes multiple candidate offsets, and the first offset is the multiple One of the candidate offsets;
  • the first transmission parameter is used to determine the first offset from the first candidate offset set.
  • the characteristics of the above method include: according to the first transmission parameter and the distance between the first node and the sender of the first wireless signal, a plurality of different candidate biases may be configured.
  • the offset, the first candidate offset is the optimal one in the set of candidate offsets, which can further optimize the handover performance.
  • an access request signal is sent; wherein the sender of the first wireless signal is a target recipient of the access request signal.
  • the present application is characterized in that when the first adjusted reception quality continuously exceeds a first reference first threshold for a first length of time, it is determined to establish a connection with the sender of the first wireless signal.
  • the present application is characterized in that: when the first adjusted reception quality exceeds a first reference second threshold, it is determined to establish a connection with the sender of the first wireless signal.
  • the characteristics of the above method include: only when the first adjusted reception quality satisfies a certain condition, the first node determines to establish a connection with the sender of the first wireless signal; otherwise, it does not establish a connection with the first wireless signal sender.
  • the sender of a wireless signal establishes a connection; the first threshold is less than the second threshold; the first threshold is configurable; the second threshold is configurable; the first time length is configurable The first time length is configured by RRC; the sender of the first wireless signal is a serving cell other than the current serving cell of the first node.
  • K first type wireless signals are received, K transmission parameters are determined respectively according to the K first type wireless signals, and K transmission parameters are respectively determined;
  • K second type wireless signals are received , According to the first-class reception quality of the K second-class wireless signals; the K is a positive integer;
  • the K transmission parameters are respectively used to determine K offsets; the K offsets correspond to the K first-type reception qualities in a one-to-one correspondence, and the K offsets correspond to the corresponding
  • the sum of the reception quality of the first type is respectively equal to the reception quality of the K first type adjustments; the reception quality of the first adjustment is higher than the highest one of the K first type adjustments.
  • Reception quality is also used to determine K offsets; the K offsets correspond to the K first-type reception qualities in a one-to-one correspondence, and the K offsets correspond to the corresponding
  • the sum of the reception quality of the first type is respectively equal to the reception quality of the K first type adjustments; the reception quality of the first adjustment is higher than the highest one of the K first type adjustments.
  • the characteristics of the above method include: the first node can measure K+1 wireless signals of the first type at the same time, and select one of the K+1 wireless signals of the first type.
  • the first adjusted reception quality, the first adjusted reception quality is higher than the highest one of the K first-type adjusted reception quality, so as to ensure that the first node selects the second node To switch.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first adjusted reception quality is used to determine the establishment of a connection with the second node; the first transmission parameter is used to determine a first offset, and the first offset is compared with the first offset.
  • a sum of reception quality is equal to the first adjusted reception quality; the first transmission parameter is related to the distance between the first node and the sender of the first wireless signal.
  • the first signaling is sent, the first signaling indicates a first candidate offset set, the first candidate offset set includes multiple candidate offsets, and the first offset is the multiple One of the candidate offsets;
  • the first transmission parameter is used to determine the first offset from the first candidate offset set.
  • an access request signal is received; wherein the first adjusted reception quality is used by the sender of the access request signal to determine whether to establish a connection with the second node.
  • the first adjusted reception quality when the first adjusted reception quality continuously exceeds a first reference first threshold for a first length of time, the first adjusted reception quality is used to determine the reception and The second node establishes a connection.
  • the first adjusted reception quality exceeds a first reference second threshold, the first adjusted reception quality is used to determine whether to establish a connection with the second node.
  • This application discloses a first node used for wireless communication, which is characterized in that it includes:
  • a first receiver configured to receive a first wireless signal, and determine a first transmission parameter based on the first wireless signal; receive a second wireless signal, and determine a first reception quality based on the second wireless signal;
  • the first processor is configured to determine whether to establish a connection with the sender of the first wireless signal according to the first adjusted reception quality
  • the first transmission parameter is used to determine a first offset, and the sum of the first offset and the first reception quality is equal to the first adjusted reception quality; the first transmission The parameter is related to the distance between the first node and the sender of the first wireless signal.
  • the first receiver receives first signaling, the first signaling indicates a first candidate offset set, and the first candidate offset set includes a plurality of A candidate offset, where the first offset is one candidate offset among the multiple candidate offsets; wherein, the first transmission parameter is used to collect from the first candidate offset Determine the first offset in.
  • a first transmitter transmits an access request signal; wherein the sender of the first wireless signal is a target receiver of the access request signal.
  • the first processor determines the difference between the first wireless signal and the first wireless signal.
  • the sender establishes a connection.
  • the first processor determines to establish a connection with the sender of the first wireless signal.
  • the first receiver receives K wireless signals of the first type, respectively determines K transmission parameters based on the K wireless signals of the first type; and receives K wireless signals of the second type Signals, respectively determining K first-class reception qualities according to the K second-class wireless signals; said K is a positive integer;
  • the K transmission parameters are respectively used to determine K offsets; the K offsets correspond to the K first-type reception qualities in a one-to-one correspondence, and the K offsets correspond to the corresponding
  • the sum of the reception quality of the first type is respectively equal to the reception quality of the K first type adjustments; the reception quality of the first adjustment is higher than the highest one of the K first type adjustments.
  • Reception quality is also used to determine K offsets; the K offsets correspond to the K first-type reception qualities in a one-to-one correspondence, and the K offsets correspond to the corresponding
  • the sum of the reception quality of the first type is respectively equal to the reception quality of the K first type adjustments; the reception quality of the first adjustment is higher than the highest one of the K first type adjustments.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • a second transmitter configured to send a first wireless signal, and determine a first transmission parameter according to the first wireless signal; send a second wireless signal, and determine a first reception quality according to the second wireless signal;
  • the first adjusted reception quality is used to determine whether to establish a connection with the second node; the first transmission parameter is used to determine a first offset, and the first offset is the same as the first The sum of the reception quality is equal to the first adjusted reception quality; the first transmission parameter is related to the distance between the first node and the second node.
  • the third transmitter sends first signaling, the first signaling indicates a first candidate offset set, and the first candidate offset set includes a plurality of candidates Offset, where the first offset is one candidate offset among the multiple candidate offsets; wherein, the first transmission parameter is used to select from the first candidate offset set Determine the first offset.
  • a second receiver receives an access request signal; wherein the first adjusted reception quality is used by the sender of the access request signal to determine whether to match the first The two nodes establish a connection.
  • the first adjusted reception quality when the first adjusted reception quality continuously exceeds a first reference first threshold for a first length of time, the first adjusted reception quality is used to determine The second node establishes a connection.
  • the first adjusted reception quality exceeds a first reference second threshold, the first adjusted reception quality is used to determine the establishment of a connection with the second node.
  • this application has the following advantages:
  • the propagation delay between the user equipment and the base station is much greater than the traditional terrestrial communication.
  • the distance-related offset proposed in this application It can be ensured that the user equipment maintains the connection with the base station with a smaller delay as much as possible in the NTN environment, and accesses the base station with a larger delay later, thereby ensuring the quality of service when the user equipment is switched in the NTN environment.
  • Fig. 1 shows a flow chart of the first wireless signal, the second wireless signal and the first adjusted reception quality according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first node and a second node according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of the first threshold and the second threshold according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of a first candidate offset set according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of a handover flow according to an embodiment of the present application.
  • Fig. 9 shows a transmission flow chart of the first signaling according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the first adjusted reception quality being used to determine whether to establish a connection with the sender of the first wireless signal according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram of K candidate offsets respectively used to determine K offsets according to an embodiment of the present application
  • Fig. 12 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the transmission of the first wireless signal, the second wireless signal and the first adjusted reception quality according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step, and it should be particularly emphasized that the order of each box in the figure does not represent the time sequence relationship between the steps shown.
  • the first node in this application receives the first wireless signal and receives the second wireless signal in step 101; in step 102, it is determined whether it is the same as the second wireless signal according to the first adjusted reception quality.
  • the sender of a wireless signal establishes a connection; the first wireless signal is used to determine the first transmission parameter; the second wireless signal is used to determine the first reception quality; in Embodiment 1, the first transmission parameter Is used to determine a first offset, and the sum of the first offset and the first reception quality is equal to the first adjusted reception quality; the first transmission parameter is the same as the first node to The distance between the senders of the first wireless signal is related.
  • the first wireless signal includes a timing advance (Timing Advance) command (Command), and the first transmission parameter includes a timing advance value (Timing Advance Value) indicated by the timing advance command.
  • Timing Advance Timing Advance
  • Communication Advance Value Timing Advance Value
  • the first wireless signal indicates the transmission power of the second wireless signal, and the first transmission parameter and the difference between the transmission power of the second wireless signal and the first reception quality equal.
  • the first wireless signal indicates the transmission power of the second wireless signal
  • the first transmission parameter is the path loss (PathLoss) from the sender of the first wireless signal to the first node .
  • the first wireless signal is transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first radio signal includes RRC (Radio Resource Control, radio resource control) signaling
  • RRC Radio Resource Control, radio resource control
  • the unit of the transmission power of the second wireless signal is dBm.
  • the sender of the first wireless signal and the sender of the second wireless signal are co-located.
  • the first offset is an integer.
  • the first offset is less than zero.
  • the sender of the first wireless signal and the sender of the second wireless signal are in the same serving cell.
  • the first wireless signal and the second wireless signal are Quasi Co-located.
  • the phrase establishing a connection with the sender of the first wireless signal includes: establishing an RRC (Radio Resource Control, radio resource control) connection with the sender of the first wireless signal.
  • RRC Radio Resource Control, radio resource control
  • the phrase establishing a connection with the sender of the first wireless signal includes: switching from the current serving cell to the sender of the first wireless signal, and the sender of the first wireless signal is A service area.
  • the phrase establishing a connection with the sender of the first wireless signal includes: sending a handover request for switching to the sender of the first wireless signal to the current serving cell, and the first wireless signal The sender of is a serving cell.
  • the second wireless signal includes a reference signal
  • the first reception quality includes the received power of the reference signal
  • the second wireless signal includes PTRS (Phase Tracking Reference Signal).
  • PTRS Phase Tracking Reference Signal
  • the second wireless signal includes SS/PBCH Block (Synchronization Signal Physical Broadcasting Channel Block, synchronization signal/physical broadcast channel block).
  • SS/PBCH Block Synchronization Signal Physical Broadcasting Channel Block, synchronization signal/physical broadcast channel block.
  • the second wireless signal includes CSI-RS (Channel Status Information Reference Signal, channel state information reference signal).
  • CSI-RS Channel Status Information Reference Signal, channel state information reference signal.
  • the first reception quality includes RSRP (Reference Signal Receiving Power) obtained by measuring the CSI-RS.
  • RSRP Reference Signal Receiving Power
  • the first reception quality includes RSRQ (Reference Signal Receiving Quality, reference signal reception quality) obtained by measuring the CSI-RS.
  • RSRQ Reference Signal Receiving Quality, reference signal reception quality
  • the unit of the first reception quality is millibel (dBm), and the unit of the first offset is decibel (dB).
  • the unit of the first reception quality is milliwatt (mW)
  • the unit of the first offset is milliwatt (mW).
  • the first node is a UE.
  • the first reception quality includes a measured RSRP for the second wireless signal.
  • the first reception quality includes the measured RSRQ for the second wireless signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 is a diagram illustrating a system network architecture 200 of NR 5G, LTE (Long-Term Evolution), and LTE-A (Long-Term Evolution Advanced).
  • the NR 5G or LTE network architecture 200 may be referred to as EPS (Evolved Packet System) 200.
  • EPS 200 may include one or more user equipment 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network, 5G Core Network) 210 , HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • 5G-CN 5G-Core Network, 5G Core Network
  • HSS Home Subscriber Server
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • gNB203 can also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point) or some other suitable terminology.
  • BSS basic service set
  • ESS extended service set
  • TRP transmit and receive point
  • gNB203 can be a satellite or a ground base station relayed by satellite.
  • gNB203 provides UE201 with an access point to EPC/5G-CN210.
  • UE201 examples include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • the EPC/5G-CN210 includes MME/AMF/UPF 211, other MME/AMF/UPF 214, S-GW (Service Gateway) 212, and P-GW (Packet Date Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that processes the signaling between UE201 and EPC/5G-CN210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and may specifically include the Internet, an intranet, and IMS (IP Multimedia Subsystem, IP Multimedia Subsystem).
  • the UE201 corresponds to the first node in this application.
  • the UE 201 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 201 supports transmission in a network with a large delay difference.
  • the gNB203 corresponds to the second node in this application.
  • the gNB203 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB203 supports transmission in a network with a large delay difference.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first node (UE, satellite or aircraft in gNB or NTN) and the second Node (gNB, UE or satellite or aircraft in NTN), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first node and the second node and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second node.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides support for handover between the second node and the first node.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first nodes.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the RRC information between the second node and the first node. Let to configure the lower layer.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture used for the first node and the second node in the user plane 350 is for the physical layer 351 and the L2 layer 355.
  • the PDCP sublayer 354, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides for the upper part
  • the header of the layer data packet is compressed to reduce the radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first node may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection ( For example, the application layer at the remote UE, server, etc.).
  • a network layer e.g., IP layer
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first wireless signal in this application is generated in the RRC306.
  • the first wireless signal in this application is generated in the MAC302 or MAC352.
  • the first wireless signal in this application is generated in the PHY301 or PHY351.
  • the second wireless signal in this application is generated in the PHY301 or PHY351.
  • the first signaling in this application is generated in the RRC306.
  • the first signaling in this application is generated in the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • the access request signal in this application is generated in the RRC306.
  • the access request signal in this application is generated in the MAC302 or MAC352.
  • the access request signal in this application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first node and a second node according to the present application, as shown in FIG. 4.
  • the first node (450) includes a controller/processor 490, a data source/buffer 480, a receiving processor 452, a transmitter/receiver 456, and a transmitting processor 455.
  • the transmitter/receiver 456 includes an antenna 460.
  • the data source/buffer 480 provides upper layer packets to the controller/processor 490, and the controller/processor 490 provides header compression and decompression, encryption and decryption, packet segmentation connection and reordering, and multiplexing between logic and transmission channels. Demultiplexing is used to implement the L2 layer and above protocols for the user plane and the control plane.
  • the upper layer packets may include data or control information, such as DL-SCH or UL-SCH or SL-SCH.
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc.
  • the reception processor 452 implements various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, deprecoding, physical layer control signaling extraction, and the like.
  • the transmitter 456 is used for converting the baseband signal provided by the transmitting processor 455 into a radio frequency signal and transmitting it via the antenna 460, and the receiver 456 is used for converting the radio frequency signal received by the antenna 460 into a baseband signal and providing it to the receiving processor 452.
  • the second node (410) may include a controller/processor 440, a data source/buffer 430, a receiving processor 412, a transmitter/receiver 416, and a transmitting processor 415.
  • the transmitter/receiver 416 includes an antenna 420 .
  • the data source/buffer 430 provides upper-layer packets to the controller/processor 440, and the controller/processor 440 provides header compression and decompression, encryption and decryption, packet segmentation connection and reordering, and multiplexing between logic and transmission channels. Use demultiplexing to implement the L2 layer protocol for the user plane and the control plane.
  • the upper layer packet may include data or control information, such as DL-SCH or UL-SCH or SL-SCH.
  • the transmission processor 415 implements various signal transmission processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, power control/distribution, precoding, and physical layer signaling (including synchronization signals and reference Signal, etc.) generation, etc.
  • the reception processor 412 implements various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, deprecoding, physical layer signaling extraction, and the like.
  • the transmitter 416 is used for converting the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmitting it via the antenna 420, and the receiver 416 is used for converting the radio frequency signal received by the antenna 420 into a baseband signal and providing it to the receiving processor 412.
  • upper layer packets such as the upper layer information included in the first signaling and the access request signal in this application, are provided to the controller/processor 440.
  • the controller/processor 440 implements the functions of the L2 layer and above.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and radio resources of the first node 450 based on various priority measures. distribution.
  • the controller/processor 440 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first node 450, such as the first wireless signal, second wireless signal, first signaling and access request in this application
  • the high-level information (if included) included in the signal is all generated in the controller/processor 440.
  • the transmit processor 415 implements various signal processing functions for the L1 layer (ie, physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc.
  • each receiver 456 receives the radio frequency signal through its corresponding antenna 460, and each receiver 456 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receiving processor 452.
  • the reception processor 452 implements various signal reception processing functions of the L1 layer.
  • the signal reception processing function includes the reception of corresponding physical layer signals such as the first wireless signal, the second wireless signal, the first signaling and the access request signal in this application, etc., based on the multi-carrier symbols in the multi-carrier symbol stream.
  • Demodulation of various modulation schemes e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the controller/processor 490 is responsible for the L2 layer and above, and the controller/processor 490 interprets the high-level information (if it includes high-level information) included in the first signaling and the access request signal in this application.
  • the controller/processor may be associated with a memory 480 that stores program codes and data.
  • the memory 480 may be referred to as a computer-readable medium.
  • the data source/buffer 480 is used to provide high-level data to the controller/processor 490.
  • the data source/buffer 480 represents the L2 layer and all protocol layers above the L2 layer.
  • the controller/processor 490 is implemented for user plane and control by providing header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of the second node 410 Flat L2 layer protocol.
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second node 410.
  • the access request signal in this application is generated in the controller/processor 490.
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer), and the physical layer signal of the access request signal in the present application is generated by the transmission processor 455.
  • Signal transmission processing functions include coding and interleaving to facilitate forward error correction (FEC) at the UE450 and pair based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK))
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the baseband signal is modulated, the modulation symbols are divided into parallel streams and each stream is mapped to the corresponding multi-carrier sub-carrier and/or multi-carrier symbol, and then mapped to the antenna 460 by the transmit processor 455 via the transmitter 456 to transmit in the form of a radio frequency signal Get out.
  • the receivers 416 receive radio frequency signals through its corresponding antenna 420, and each receiver 416 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the receiving processor 412.
  • the receiving processor 412 implements various signal receiving and processing functions for the L1 layer (ie, physical layer), including receiving and processing the physical layer signal of the access request signal in this application, and the signal receiving processing function includes obtaining multi-carrier symbol streams, Then the multi-carrier symbols in the multi-carrier symbol stream are demodulated based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)), and then decoded and de-interleaved to recover The data and/or control signal originally transmitted by the first node 450 on the physical channel.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the data and/or control signals are then provided to the controller/processor 440.
  • the controller/processor 440 implements the functions of the L2 layer, including the interpretation of the information carried in the access request signal in this application.
  • the controller/processor may be associated with a buffer 430 that stores program codes and data.
  • the buffer 430 may be a computer-readable medium.
  • the first node 450 device includes: at least one processor and at least one memory, where the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together, and the first node 450 device at least: receives a first wireless signal, and determines a first transmission parameter based on the first wireless signal; receives a second wireless signal, and determines a first transmission parameter based on the second wireless signal.
  • a reception quality determining whether to establish a connection with the sender of the first wireless signal according to the first adjusted reception quality; wherein the first transmission parameter is used to determine a first offset, and the first offset
  • the sum of the quantity and the first reception quality is equal to the first adjusted reception quality; the first transmission parameter is related to the distance between the first node and the sender of the first wireless signal .
  • the first node 450 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving the first A wireless signal determines the first transmission parameter according to the first wireless signal; receives a second wireless signal and determines the first reception quality according to the second wireless signal; determines whether the first transmission parameter is the same according to the first adjusted reception quality.
  • the sender of the wireless signal establishes a connection; wherein the first transmission parameter is used to determine a first offset, and the sum of the first offset and the first reception quality and the first adjusted reception The quality is equal; the first transmission parameter is related to the distance between the first node and the sender of the first wireless signal.
  • the second node 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second node 410 device at least: sends a first wireless signal, and determines a first transmission parameter according to the first wireless signal; sends a second wireless signal, and determines a first reception quality according to the second wireless signal; wherein, according to The first adjusted reception quality determines whether to establish a connection with the sender of the first wireless signal; the first transmission parameter is used to determine a first offset, and the first offset is the same as the first receiver.
  • the sum of the quality is equal to the first adjusted reception quality; the first transmission parameter is related to the distance between the first node and the sender of the first wireless signal.
  • the second node 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending a first Wireless signal, determine the first transmission parameter according to the first wireless signal; send a second wireless signal, determine the first reception quality according to the second wireless signal; wherein, according to the first adjusted reception quality, it is determined whether it is the same as the first transmission parameter.
  • the sender of a wireless signal establishes a connection; the first transmission parameter is used to determine a first offset, the sum of the first offset and the first reception quality and the first adjusted reception quality Equal; the first transmission parameter is related to the distance between the first node and the sender of the first wireless signal.
  • the first node 450 is a user equipment.
  • the first node 450 is a user equipment that supports a large delay difference.
  • the first node 450 is a user equipment supporting NTN.
  • the first node 450 is an aircraft device.
  • the second node 410 is a base station device (gNB/eNB).
  • the second node 410 is a base station device supporting a large delay difference.
  • the second node 410 is a base station device supporting NTN.
  • the second node 410 is a satellite device.
  • the second node 410 is a flight platform device.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the first wireless signal.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the second wireless signal.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to send the first signaling in this application.
  • the receiving processor 452 determines whether to establish a connection with the second node according to the first adjusted reception quality.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the access request signal in this application.
  • Embodiment 5 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the second node N01 is the serving cell base station of the first node U01. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • the first transmitted in a step S5101 signaling transmits a first radio signal and the second wireless signal in step S5102, the access request signal received in step S5103 in.
  • the first wireless signal in this application is used to determine the first transmission parameter; the second wireless signal is used to determine the first reception quality; wherein the reception quality according to the first adjustment is Is used to determine whether to establish a connection with the second node; the first transmission parameter is used to determine a first offset, and the sum of the first offset and the first reception quality is the same as the first The adjusted reception quality is equal; the first transmission parameter is related to the distance between the first node and the sender of the first wireless signal.
  • the first signaling indicates a first candidate offset set
  • the first candidate offset set includes a plurality of candidate offsets
  • the first offset is the plurality of candidate offsets.
  • the phrase establishing a connection with the sender of the first wireless signal includes: establishing an RRC (Radio Resource Control, radio resource control) connection with the sender of the first wireless signal.
  • RRC Radio Resource Control, radio resource control
  • the phrase establishing a connection with the sender of the first wireless signal includes: switching from the current serving cell to the sender of the first wireless signal, and the sender of the first wireless signal is A service area.
  • a basis for establishing a connection between the first node U01 and the second node N01 is that the first adjusted reception quality continuously exceeds a first reference first threshold for a first length of time.
  • the basis for establishing a connection between the first node U01 and the second node N01 is when the first adjusted reception quality exceeds a first reference second threshold.
  • the first reference is the base station to which the UE is currently connected.
  • the first reference is the source base station.
  • the first wireless signal includes a timing advance (Timing Advance) command (Command), and the first transmission parameter includes a timing advance value (Timing Advance Value) indicated by the timing advance command.
  • Timing Advance Timing Advance
  • Communication Advance Value Timing Advance Value
  • the first wireless signal indicates the transmission power of the second wireless signal, and the first transmission parameter and the difference between the transmission power of the second wireless signal and the first reception quality equal.
  • the first wireless signal indicates the transmission power of the second wireless signal
  • the first transmission parameter is the path loss (PathLoss) from the sender of the first wireless signal to the first node .
  • the sender of the first wireless signal and the sender of the second wireless signal are co-located.
  • the sender of the first wireless signal and the sender of the second wireless signal are in the same serving cell.
  • the first wireless signal and the second wireless signal are Quasi Co-located.
  • the second wireless signal includes a reference signal
  • the first reception quality includes the received power of the reference signal
  • the second wireless signal includes CSI-RS (Channel Status Information Reference Signal, channel state information reference signal).
  • CSI-RS Channel Status Information Reference Signal, channel state information reference signal.
  • the first signaling is higher layer signaling.
  • the first signaling is common to the cell.
  • the first signaling explicitly indicates the first candidate offset set.
  • the first signaling indicates a first reference offset
  • the first candidate offset set is implicitly indicated by the first reference offset
  • the first signaling is a measurement control (Measurement Control) command.
  • the first signaling includes some or all fields in ReportConfigEUTRA IE (Information Element).
  • the first signaling includes part or all of the fields in the MeasObjectEUTRA IE.
  • the channel occupied by the access request signal includes PRACH (Physical Random Access Channel); the reception synchronization timing of the first wireless signal is used to determine the access request signal The sending timing.
  • PRACH Physical Random Access Channel
  • the access request signal includes an RRCconnectionRequest information element.
  • the channel occupied by the access request signal includes PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the access request signal is a measurement report (MeasurementReport) message.
  • the second node N01 is the target recipient of the access request signal.
  • the identity (Identifier) of the sender of the first wireless signal is used to generate the access request signal.
  • Embodiment 6 illustrates a schematic diagram of the first threshold and the second threshold according to an embodiment of the present application, as shown in FIG. 6.
  • the abscissa is time
  • the ordinate is the adjusted reception quality.
  • the difference between the third time and the second time is equal to the first target time length; the difference between the fourth time and the third time is equal to the second target time length; A target time length is less than the first time length; the second target time length is equal to the first time length.
  • the first time, the second time, the third time, the fourth time, and the fifth time gradually increase in order.
  • the adjusted value of the reception quality received from the sender of the first wireless signal is the first adjusted reception quality.
  • the measurement of the reference signal sent by the current serving cell of the first node is used to determine the first threshold, and the sender of the first wireless signal is the all of the first node. Serving cells other than the current serving cell.
  • the measurement of the reference signal sent by the current serving cell of the first node and the distance from the current serving cell of the first node to the first node are jointly used to determine the first threshold.
  • the first threshold is configurable.
  • the second threshold is configurable.
  • the first time length is configurable.
  • the first time length is configured by RRC layer signaling.
  • the sender of the first wireless signal is a serving cell other than the current serving cell of the first node, and the first reference is that the first adjusted reception quality is in the first node.
  • the sender of the first wireless signal is a serving cell other than the current serving cell of the first node
  • the first reference second threshold is when the first adjusted reception quality is The peer in the current serving cell of the first node.
  • the second threshold is greater than the first threshold.
  • the first adjusted reception quality is lower than a first reference first threshold, and the first processor determines not to establish a connection with the sender of the first wireless signal.
  • the first adjusted reception quality begins to exceed the first reference first threshold
  • the first adjusted reception quality continues to exceed the first reference first threshold.
  • the first processor determines not to establish a connection with the sender of the first wireless signal.
  • the first adjusted reception quality begins to exceed the first reference first threshold
  • the first adjusted reception quality continues to exceed the first reference first threshold.
  • the first processor determines to establish a connection with the sender of the first wireless signal.
  • the first adjusted reception quality exceeds a first reference second threshold, and the first processor determines to establish a connection with the sender of the first wireless signal.
  • Embodiment 7 illustrates a schematic diagram of the first candidate offset set according to an embodiment of the present application, as shown in FIG. 7.
  • the first signaling indicates the first candidate offset set
  • the first candidate offset set includes multiple candidate offsets
  • the first offset is the multiple candidate offsets.
  • the candidate offset set includes I candidate offsets, where I is a positive integer.
  • the first transmission parameter is related to the distance between the first node and the sender of the first wireless signal.
  • the first transmission parameter X(j) is the path loss (PathLoss) from the sender of the first wireless signal to the first node.
  • the first transmission parameter X(j) is a timing advance value (Timing Advance Value) indicated by a timing advance command.
  • the first offset is the i-th candidate offset corresponding to the largest first transmission parameter X(i) in the first candidate offset set.
  • the first offset is the i-th candidate offset corresponding to the smallest first transmission parameter X(i) in the first candidate offset set.
  • any two candidate offsets in the plurality of candidate offsets are not equal.
  • the first signaling is higher layer signaling.
  • the first signaling is common to the cell.
  • any candidate offset in the first candidate offset set corresponds to a first transmission parameter interval
  • the first offset is the corresponding transmission among the multiple candidate offsets.
  • the parameter interval includes the candidate offset of the first transmission parameter.
  • the first signaling explicitly indicates the first candidate offset set.
  • the first signaling indicates a first reference offset
  • the first candidate offset set is implicitly indicated by the first reference offset
  • the first signaling includes some or all fields in ReportConfigEUTRA IE (Information Element).
  • the first signaling includes part or all of the fields in the MeasObjectEUTRA IE.
  • the first reference offset includes at least one of ⁇ OffsetFreq, cellIndividualOffset, csi-RS-IndividualOffset, a3-Offset, a6-Offset, c2-Offset, h1-ThresholdOffset, h2-ThresholdOffset, Hysteresis ⁇ one.
  • the first reference offset is at least one of ⁇ OffsetFreq, cellIndividualOffset, csi-RS-IndividualOffset, a3-Offset, a6-Offset, c2-Offset, h1-ThresholdOffset, h2-ThresholdOffset, Hysteresis ⁇ The two are determined together.
  • Embodiment 8 illustrates a schematic diagram of a handover process according to an embodiment of the present application, as shown in FIG. 8.
  • step S801 receives the source first signaling message sent by N03 cell; receiving a first radio signal and second wireless signals a first serving cell N02 transmitted in step S802; serving cell received in step S803
  • the first type of wireless signal and the second type of wireless signal sent by the group N04; in step S804, the first serving cell is selected as the handover target; in step S805, the first access request message is sent to the source cell N03 Signal; in step S810, the user equipment U02 and the first serving cell N02 jointly perform a handover related procedure; in step S811, the user equipment U02 sends an access request to the first serving cell N02 Cancel the number; in step S812, the user equipment U02, the source cell N03 and the first serving cell N02 jointly perform a handover related process.
  • step S801 to the user device U02 sends a first signaling message; receiving a first user device U02 transmits the access request message number in the step S805; step S806 in accordance with the first A handover decision is made by canceling an access request; in step S807, a handover request message is sent to the first serving cell; in step S809, a handover request confirmation message sent by the first serving cell is received; in step S8010
  • the user equipment U02, the source cell N03, and the first serving cell N02 jointly perform handover related procedures; in step S812, the user equipment U02, the source cell N03, and the first serving cell N02 jointly perform handover completion.
  • the handover source cell For a first serving cell N02, at step S802, transmitting a first radio signal and the second radio signal; and in step S807, the handover source cell receives the request message sent by N03; in step S808, the admission control; in In step S809, send a handover request confirmation message to the source cell N03; in step S811, receive the access request cancellation number sent by the user equipment U02; in step S812, the user equipment U02, the first The serving cell N02 and the source cell N03 jointly perform handover related procedures.
  • the first wireless signal belongs to the first type of wireless signal, and the first wireless signal
  • the K transmission parameters are respectively used to determine K offsets; the K offsets correspond to the K first-type reception qualities in a one-to-one correspondence, and the K offsets correspond to the corresponding first
  • the sum of the class reception quality is respectively equal to the K reception quality of the first type adjustment; the reception quality of the first adjustment is higher than the highest one of the K reception quality of the first type adjustment. .
  • the F1 module in Fig. 8 is optional.
  • the handover decision is a HO decision message in the 3GPP protocol.
  • the handover request message is a HANDOVER REQUEST message in the 3GPP protocol.
  • the admission control is Admission Control in the 3GPP protocol.
  • the handover request confirmation is a HANDOVER REQUEST ACKNOWLEDGE message in the 3GPP protocol.
  • the user equipment is the first node.
  • the source cell is the second node.
  • the first serving cell is the second node.
  • the serving cell group is the second node.
  • the first signaling explicitly indicates the first candidate offset set.
  • the first signaling indicates a first reference offset
  • the first candidate offset set is implicitly indicated by the first reference offset
  • the first signaling is a measurement control (Measurement Control) command.
  • the first signaling includes some or all fields in ReportConfigEUTRA IE (Information Element).
  • the first signaling includes part or all of the fields in the MeasObjectEUTRA IE.
  • the first wireless signal includes a timing advance (Timing Advance) command (Command), and the first transmission parameter includes a timing advance value (Timing Advance Value) indicated by the timing advance command.
  • Timing Advance Timing Advance
  • Communication Advance Value Timing Advance Value
  • the first wireless signal indicates the transmission power of the second wireless signal
  • the first transmission parameter is the path loss (PathLoss) from the sender of the first wireless signal to the first node .
  • the second wireless signal includes a reference signal
  • the first reception quality includes the received power of the reference signal
  • the second wireless signal includes CSI-RS (Channel Status Information Reference Signal, channel state information reference signal).
  • CSI-RS Channel Status Information Reference Signal, channel state information reference signal.
  • the first access request cancellation number is a measurement report (Measurement Report).
  • the first access request cancellation number is the access request cancellation number.
  • the trigger event is one of ⁇ eventA1, eventA2, eventA3, eventA4, eventA5, eventA6, eventB1, eventB2, eventC1, eventC2 ⁇ in the 3GPP protocol.
  • the trigger event is that the received quality of the first adjustment in this application continuously exceeds the first reference first threshold for a first length of time.
  • the trigger event is that the received quality of the first adjustment in this application exceeds the first reference second threshold.
  • the trigger event is related to the first adjusted reception quality.
  • the access request cancellation signal is a measurement report (Measurement Report) sent by the user equipment to the original base station.
  • the channel occupied by the access request signal includes PRACH (Physical Random Access Channel); the reception synchronization timing of the first wireless signal is used to determine the access request signal The sending timing.
  • PRACH Physical Random Access Channel
  • the access request signal includes an RRCconnectionRequest information element.
  • the channel occupied by the access request signal includes PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the identity (Identifier) of the sender of the first wireless signal is used to generate the access request signal.
  • Embodiment 9 illustrates a transmission flowchart of the first signaling according to an embodiment of the present application, as shown in FIG. 7.
  • the second node is the serving cell base station of the first node.
  • the first signaling in this application indicates a first candidate offset set, the first candidate offset set includes a plurality of candidate offsets, and the first offset is One of the candidate offsets; wherein the first transmission parameter is used to determine the first offset from the first candidate offset set.
  • any two candidate offsets in the plurality of candidate offsets are not equal.
  • the first signaling is higher layer signaling.
  • the first signaling is common to the cell.
  • any candidate offset in the first candidate offset set corresponds to a transmission parameter interval
  • the first offset is a corresponding transmission parameter interval in the plurality of candidate offsets Including the candidate offset of the first transmission parameter.
  • the first signaling explicitly indicates the first candidate offset set.
  • the first signaling indicates a first reference offset
  • the first candidate offset set is implicitly indicated by the first reference offset
  • the first signaling includes some or all fields in ReportConfigEUTRA IE (Information Element).
  • the first signaling includes part or all of the fields in the MeasObjectEUTRA IE.
  • the first reference offset includes at least one of ⁇ OffsetFreq, cellIndividualOffset, csi-RS-IndividualOffset, a3-Offset, a6-Offset, c2-Offset, h1-ThresholdOffset, h2-ThresholdOffset, Hysteresis ⁇ one.
  • the first reference offset is at least one of ⁇ OffsetFreq, cellIndividualOffset, csi-RS-IndividualOffset, a3-Offset, a6-Offset, c2-Offset, h1-ThresholdOffset, h2-ThresholdOffset, Hysteresis ⁇ The two are determined together.
  • Embodiment 10 illustrates a schematic diagram in which the first adjusted reception quality is used to determine whether to establish a connection with the sender of the first wireless signal according to an embodiment of the present application; as shown in FIG. 10.
  • the first processor determines that the The sender of the first wireless signal establishes a connection.
  • the sender of the first wireless signal is a serving cell other than the current serving cell of the first node, and the second threshold is that the first adjusted reception quality is within the first node.
  • the sender of the first wireless signal is a serving cell other than the current serving cell of the first node, and the second threshold is greater than the first threshold.
  • the first processor determines not to establish a connection with the sender of the first wireless signal.
  • the first processor determines that it is not related to the first wireless signal.
  • the sender establishes a connection.
  • the first threshold is configurable.
  • the second threshold is configurable.
  • the first time length is configurable.
  • the first time length is configured by RRC layer signaling.
  • the measurement of the reference signal sent by the current serving cell of the first node is used to determine the first threshold, and the sender of the first wireless signal is the all of the first node. Serving cells other than the current serving cell.
  • the measurement of the reference signal sent by the current serving cell of the first node and the distance from the current serving cell of the first node to the first node are jointly used to determine the first threshold
  • the sender of the first wireless signal is a serving cell other than the current serving cell of the first node.
  • the sender of the first wireless signal is a serving cell other than the current serving cell of the first node, and the first threshold is that the first adjusted reception quality is in the first node.
  • Embodiment 11 illustrates a schematic diagram of K transmission parameters respectively used to determine K offsets according to an embodiment of the present application; as shown in FIG. 11.
  • the K first-type wireless signals are respectively used to determine K transmission parameters; K second-type wireless signals are respectively used to determine K first-type reception qualities; and the K is a positive integer;
  • the K transmission parameters are respectively used to determine K offsets; the K offsets correspond to the K first-type reception qualities in a one-to-one correspondence, and the K offsets correspond to the corresponding
  • the sum of the reception quality of the first type is respectively equal to the reception quality of the K first type adjustments; the reception quality of the first adjustment is higher than the highest one of the K first type adjustments.
  • Reception quality is respectively used to determine K transmission parameters
  • K second-type wireless signals are respectively used to determine K first-type reception qualities
  • the K is a positive integer
  • the K transmission parameters are respectively used to determine K offsets
  • the K offsets correspond to the K first-type reception qualities in a one-to-one correspondence
  • the K offsets correspond to the corresponding
  • the sum of the reception quality of the first type is respectively equal to the reception quality of the K first type adjustments; the
  • the K transmission parameters are respectively used to determine K offsets
  • the K transmission parameters are respectively determined by the K first-type wireless signals
  • the K offsets correspond to the K reception qualities of the first type in a one-to-one correspondence
  • the sum of the K offsets and the corresponding first-type reception quality is respectively equal to the K first-type adjusted reception quality
  • the received quality of the first adjustment is higher than the received quality of the first type of adjustment that is the highest among the K received quality of the first type of adjustment.
  • the K first-type wireless signals are respectively sent by K serving cells, and the sender of the first wireless signal is a serving cell other than the K serving cells.
  • the K second type wireless signals are respectively sent by the K serving cells.
  • the K first-type wireless signals are respectively sent by K serving cells, and the sender of the first wireless signal is a serving cell other than the K serving cells.
  • the K transmission parameters are respectively the equivalents of the first transmission parameter in the K serving cells.
  • the K reception qualities of the first type are respectively the equivalents of the first transmission parameter in the K serving cells.
  • Embodiment 12 illustrates a structural block diagram of a processing device used in the first node according to an embodiment of the present application; as shown in FIG. 12.
  • the processing device 1200 in the first node includes a first receiver 1201, a first processor 1202, and a first transmitter 1203.
  • the first receiver 1201 receives the first wireless signal, the second wireless signal and the first signaling; the first processor determines whether to communicate with the sender of the first wireless signal according to the first adjusted reception quality. The connection is established; the first transmitter 1202 sends an access request signal.
  • the first wireless signal is used to determine the first transmission parameter; the second wireless signal is used to determine the first reception quality; the first adjusted reception quality is used to determine whether it is the same as the first transmission parameter.
  • the sender of the wireless signal establishes a connection; wherein the first transmission parameter is used to determine a first offset, and the sum of the first offset and the first reception quality and the first adjusted reception The quality is equal; the first transmission parameter is related to the distance between the first node and the sender of the first wireless signal.
  • the first signaling indicates a first candidate offset set
  • the first candidate offset set includes a plurality of candidate offsets
  • the first offset is the plurality of candidate offsets.
  • the sender of the first wireless signal is a target receiver of the access request signal.
  • the first adjusted reception quality continuously exceeds the first reference first threshold for a first length of time, it is determined to send a message to establish a connection with the sender of the first wireless signal.
  • the first adjusted reception quality exceeds the first reference second threshold, it is determined to send a message to establish a connection with the sender of the first wireless signal.
  • the first receiver 1201 receives K wireless signals of the first type, determines K transmissions respectively according to the K wireless signals of the first type, determines K transmission parameters respectively; receives K wireless signals of the second type, According to the first type reception quality of the K second type wireless signals; the K is a positive integer; wherein the K transmission parameters are used to determine K offsets; the K offsets are The K first-type reception qualities are in one-to-one correspondence, and the sum of the K offsets and the corresponding first-type reception qualities is respectively equal to the K first-class adjusted reception qualities; the first adjusted reception quality The reception quality of the first type adjustment is higher than the highest one among the K first type adjustments.
  • the first node 1400 is a user equipment.
  • the first node 1400 is a user equipment that supports a large delay difference.
  • the first node 1400 is a user equipment supporting NTN.
  • the first node 1400 is an aircraft device.
  • the first receiver 1201 includes the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source in the fourth embodiment. At least one of 467 ⁇ .
  • the first processor 1202 includes at least one of ⁇ receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460 ⁇ in embodiment 4 .
  • the first transmitter 1203 includes ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source in the fourth embodiment At least one of 467 ⁇ .
  • Embodiment 13 illustrates a structural block diagram of a processing device used in the second node according to an embodiment of the present application; as shown in FIG. 13.
  • the processing device 1300 in the second node includes a second transmitter 1301, a second receiver 1302, and a third transmitter 1303.
  • the second transmitter 1301 transmits the first wireless signal and the second wireless signal; the second receiver 1302 receives the access request signal; and the third transmitter 1303 transmits the first signaling.
  • the first wireless signal is used to determine the first transmission parameter; the second wireless signal is used to determine the first reception quality; wherein the first adjusted reception quality is used to determine Whether to establish a connection with the second node; the first transmission parameter is used to determine a first offset, and the sum of the first offset and the first reception quality and the first adjusted reception The quality is equal; the first transmission parameter is related to the distance between the first node and the sender of the first wireless signal.
  • the first signaling indicates a first candidate offset set
  • the first candidate offset set includes a plurality of candidate offsets
  • the first offset is the plurality of candidate offsets.
  • the sender of the first wireless signal is a target receiver of the access request signal.
  • the first adjusted reception quality continuously exceeds the first reference first threshold for a first length of time, it is determined to send a message to establish a connection with the sender of the first wireless signal.
  • the first adjusted reception quality exceeds the first reference second threshold, it is determined to send a message to establish a connection with the sender of the first wireless signal.
  • the second node 1300 is a base station device (gNB/eNB).
  • the second node 1300 is a base station device supporting a large delay difference.
  • the second node 1300 is a base station device supporting NTN.
  • the second node 1300 is a satellite device.
  • the second node 1300 is a flight platform device.
  • the second transmitter 1301 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • the second receiver 1302 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • the third transmitter 1303 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • User equipment, terminals and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones, low-cost Cost of wireless communication equipment such as tablets.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones, low-cost Cost of wireless communication equipment such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B), NR Node B, TRP (Transmitter Receiver Point) and other wireless communications equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的通信节点中的方法和装置。第一节点接收第一无线信号和第二无线信号;所述第一无线信号被用于确定第一传输参数;所述第二无线信号被用于确定第一接收质量;第一调整的接收质量被用于确定是否与所述第一无线信号的发送者建立连接;所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。本申请可以提高用户设备在切换过程中的服务质量。

Description

一种被用于无线通信的方法和设备 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中和小区切换相关的传输方法和装置。
背景技术
面对越来越高的通信需求,3GPP(3rd GenerationPartner Project,第三代合作伙伴项目)开始研究非地面通信(Non-Terrestrial Network,NTN),3GPPRAN#80次会议决定开展“NR支持非地面网络的解决方案”研究项目,它是对前期“NR支持非地面网络”研究项目的延续(RP-171450),其中切换(Handover)是一个重要的研究目标。
传统的宏蜂窝切换中,UE(UserEquipment,用户设备)对目标小区的信息进行测量,并选择RSRP(Reference Signal Received Power,参考信号接收质量)或者RSRQ(Reference SignalReceived Quality,参考信号接收质量)最好的小区进行接入。为解决热点地区的流量井喷和覆盖盲区问题,LTE(LongTermEvolution,长期演进)引入了异构网(Heterogeous Network),在宏蜂窝中增加微小区(Picocell)的部署,为使微小区接纳更多的用户设备以获取更高的小区分裂增益,3GPP为小区切换引入了偏移量(Offset),当微小区的RSRP加上偏移量大于宏小区(Macrocell)的RSRP时,UE将优先接入微小区。使用这种方法,在宏小区中部署较多微小区时,可以获得较大的小区分裂增益,提升网络频谱效率。
发明内容
当前的3GPP标准主要针对地面网络(Terrestrial Network,TN),在切换相关的测量报告中,定义的偏移量类型主要包括小区专用偏移量(cell specific offsets)和频率专用偏移量(frequency specific offse),与偏移量相关的RRC(RadioResurceControl,无线资源控制)IE(Information Element,信息元素)包括OffsetFreq、cellIndividualOffset、csi-RS-IndividualOffset、a3-Offset、a6-Offset、c2-Offset、h1-ThresholdOffset、h2-ThresholdOffset等。由于NTN环境中,卫星与用户设备(User Equipment,UE)之间的传输距离远远大于地面基站与用户设备之间的距离,从而会导致卫星与用户设备之间的传输时延远远大于地面通信,小区专用偏移量和频率专用偏移量难以保证用户设备在NTN环境中切换时的服务质量。
针对上述问题,本申请提供了一种解决方案。针对上述问题描述中,采用NTN场景作为一个例子;本申请也同样适用于例如地面传输的场景,取得类似NTN场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;
根据第一调整的接收质量确定是否与所述第一无线信号的发送者建立连接;
其中,所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
作为一个实施例,本申请要解决的问题包括:当用户设备进行小区选择时,如何尽可能较晚地切换到时延较大的小区。上述方法根据与所述第一节点到所述第一无线信号的所述发送者之间的距离有关的所述第一传输参数确定所述第一偏移量,从而解决了这一问题。
作为一个实施例,上述方法的特质包括:所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关;所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等。
作为一个实施例,上述方法的好处包括:当用户设备进行小区选择时,避免过早切换到时延较大的小区,从而保证用户设备在切换时的服务质量。
根据本申请的一个方面,其特征在于:
接收第一信令,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;
其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
作为一个实施例,上述方法的特质包括:根据所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离不同,可以配置多个不同的候选偏移量,所述第一候选偏移量是所述候选偏移量集合中的最优的一个,可以进一步优化切换性能。
根据本申请的一个方面,其特征在于:发送接入请求信号;其中,所述第一无线信号的所述发送者是所述接入请求信号的目标接收者。
根据本申请的一个方面,其特征在于:当所述第一调整的接收质量持续超过第一参考第一阈值达第一时间长度时,确定与所述第一无线信号的发送者建立连接。
根据本申请的一个方面,其特征在于:当所述第一调整的接收质量超过第一参考第二阈值时,确定与所述第一无线信号的发送者建立连接。
作为一个实施例,上述方法的特质包括:只有当所述第一调整的接收质量满足一定条件时,第一节点才确定与所述第一无线信号的发送者建立连接,否则不与所述第一无线信号的发送者建立连接;所述第一阈值小于所述第二阈值;所述第一阈值是可配置的;所述第二阈值是可配置的;所述第一时间长度是可配置的;所述第一时间长度是RRC配置的;所述第一无线信号的所述发送者是所述第一节点的所述当前服务小区之外的服务小区。
根据本申请的一个方面,其特征在于:接收K个第一类无线信号,根据所述K个第一类无线信号分别确定K个传分别确定K个输参数;接收K个第二类无线信号,根据所述K个第二类无线信号第一类接收质量;所述K是正整数;
其中,所述K个传输参数分别被用于确定K个偏移量;所述K个偏移量与所述K个第一类接收质量一一对应,所述K个偏移量与对应的第一类接收质量的和分别与K个第一类调整的接收质量相等;所述第一调整的接收质量高于所述K个第一类调整的接收质量中最高的一个第一类调整的接收质量。
作为一个实施例,上述方法的特质包括:第一节点可以同时对K+1个所述第一类无线信号进行测量,并从所述K+1个所述第一类无线信号中选择一个所述第一调整的接收质量,所述第一调整的接收质量高于所述K个第一类调整的接收质量中最高的一个第一类调整的接收质量,从而保证第一节点选择第二节点进行切换。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一无线信号,根据所述第一无线信号确定第一传输参数;发送第二无线信号,根据所述第二无线信号确定第一接收质量;
其中,所述第一调整的接收质量被用于确定与所述第二节点建立连接;所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
根据本申请的一个方面,其特征在于:
发送第一信令,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;
其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
根据本申请的一个方面,其特征在于:接收接入请求信号;其中,所述第一调整的接收 质量被所述接入请求信号的发送者用于确定是否与所述第二节点建立连接。
根据本申请的一个方面,其特征在于:当所述第一调整的接收质量持续超过第一参考第一阈值达第一时间长度时,所述第一调整的接收质量被用于确定接收与所述第二节点建立连接。
根据本申请的一个方面,其特征在于:当所述第一调整的接收质量超过第一参考第二阈值时,所述第一调整的接收质量被用于确定接收与所述第二节点建立连接。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,用于接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;
第一处理机,用于根据第一调整的接收质量确定是否与所述第一无线信号的发送者建立连接;
其中,所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
根据本申请的一个方面,其特征在于:所述第一接收机接收第一信令,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
根据本申请的一个方面,其特征在于:第一发送机,发送接入请求信号;其中,所述第一无线信号的所述发送者是所述接入请求信号的目标接收者。
根据本申请的一个方面,其特征在于:当所述第一调整的接收质量持续超过第一参考第一阈值达第一时间长度时,所述第一处理机确定与所述第一无线信号的发送者建立连接。
根据本申请的一个方面,其特征在于:当所述第一调整的接收质量超过第一参考第二阈值时,所述第一处理机确定与所述第一无线信号的发送者建立连接。
根据本申请的一个方面,其特征在于:所述第一接收机接收K个第一类无线信号,根据所述K个第一类无线信号分别确定K个传输参数;接收K个第二类无线信号,根据所述K个第二类无线信号分别确定K个第一类接收质量;所述K是正整数;
其中,所述K个传输参数分别被用于确定K个偏移量;所述K个偏移量与所述K个第一类接收质量一一对应,所述K个偏移量与对应的第一类接收质量的和分别与K个第一类调整的接收质量相等;所述第一调整的接收质量高于所述K个第一类调整的接收质量中最高的一个第一类调整的接收质量。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发送机,用于发送第一无线信号,根据所述第一无线信号确定第一传输参数;发送第二无线信号,根据所述第二无线信号确定第一接收质量;
其中,第一调整的接收质量被用于确定是否与所述第二节点建立连接;所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第二节点之间的距离有关。
根据本申请的一个方面,其特征在于:第三发送机,发送第一信令,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
根据本申请的一个方面,其特征在于:第二接收机,接收接入请求信号;其中,所述第一调整的接收质量被所述接入请求信号的发送者用于确定是否与所述第二节点建立连接。
根据本申请的一个方面,其特征在于:当所述第一调整的接收质量持续超过第一参考第一阈值达第一时间长度时,所述第一调整的接收质量被用于确定与所述第二节点建立连接。
根据本申请的一个方面,其特征在于:当所述第一调整的接收质量超过第一参考第二阈 值时,所述第一调整的接收质量被用于确定与所述第二节点建立连接。
作为一个实施例,和传统方案相比,本申请具备如下优势:
当用户设备和基站之间的通信距离较远,尤其是涉及到卫星通信时,用户设备和基站之间的传播时延远远大于传统的地面通信,本申请提出的与距离相关的偏移量可以保证用户设备在NTN环境中尽可能地保持与时延较小的基站的连接,较晚接入时延较大的基站,从而保证用户设备在NTN环境中切换时的服务质量。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一无线信号,第二无线信号和第一调整的接收质量的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一节点和第二节点的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的第一阈值和第二阈值的示意图;
图7示出了根据本申请的一个实施例的第一候选偏移量集合的示意图;
图8示出了根据本申请的一个实施例的切换流程示意图;
图9示出了根据本申请的一个实施例的第一信令的传输流程图;
图10示出了根据本申请的一个实施例的第一调整的接收质量被用于确定是否与第一无线信号的发送者建立连接的示意图;
图11示出了根据本申请的一个实施例的K个候选偏移量分别被用于确定K个偏移量的示意图;
图12示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一无线信号,第二无线信号和第一调整的接收质量的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中接收所述第一无线信号和接收所述第二无线信号;在步骤102中根据第一调整的接收质量确定是否与所述第一无线信号的发送者建立连接;所述第一无线信号被用于确定第一传输参数;所述第二无线信号被用于确定第一接收质量;实施例1中,所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
作为一个实施例,所述第一无线信号包括定时提前(Timing Advance)命令(Command),所述第一传输参数包括所述定时提前命令指示的定时提前值(Timing Advance Value)。
作为一个实施例,所述第一无线信号指示所述第二无线信号的发送功率,所述第一传输 参数与所述第二无线信号的所述发送功率与所述第一接收质量的差值相等。
作为一个实施例,所述第一无线信号指示所述第二无线信号的发送功率,所述第一传输参数是所述第一无线信号的发送者到所述第一节点的路径损耗(PathLoss)。
作为上述实施例的一个子实施例,所述第一无线信号在PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)上被发送。
作为上述实施例的一个子实施例,所述第一无线信号包括RRC(Radio Resource Control,无线资源控制)信令,所述RRC信令指示所述第二无线信号的所述发送功率。
作为上述实施例的一个子实施例,所述第二无线信号的所述发送功率的单位是dBm。
作为一个实施例,所述第一无线信号的发送者和所述第二无线信号的发送者是共址的。
作为一个实施例,所述第一节点到所述第一无线信号的所述发送者之间的所述距离越大,所述第一传输参数越大。
作为一个实施例,所述第一节点到所述第一无线信号的所述发送者之间的所述距离越大,所述第一偏移量越小。
作为一个实施例,所述第一偏移量是整数。
作为一个实施例,所述第一偏移量小于0。
作为一个实施例,所述第一无线信号的发送者和所述第二无线信号的发送者是同一个服务小区。
作为一个实施例,所述第一无线信号和所述第二无线信号是半共址的(Quasi Co-located)。
作为一个实施例,所述短语与所述第一无线信号的发送者建立连接包括:与所述第一无线信号的发送者建立RRC(Radio Resource Control,无线资源控制)连接。
作为一个实施例,所述短语与所述第一无线信号的发送者建立连接包括:从当前服务小区切换至所述第一无线信号的发送者,所述第一无线信号的所述发送者是一个服务小区。
作为一个实施例,所述短语与所述第一无线信号的发送者建立连接包括:向当前服务小区发送切换至所述第一无线信号的所述发送者的切换请求,所述第一无线信号的所述发送者是一个服务小区。
作为一个实施例,所述第二无线信号包括参考信号,所述第一接收质量包括所述参考信号的接收功率。
作为一个实施例,所述第二无线信号包括PTRS(Phase Tracking Reference Signal,相位跟踪参考信号)。
作为一个实施例,所述第二无线信号包括SS/PBCH Block(Synchronization Signal Physical Broadcasting CHannel Block,同步信号/物理广播信道块)。
作为一个实施例,所述第二无线信号包括CSI-RS(Channel Status Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一接收质量包括测量所述CSI-RS得到的RSRP(Reference Signal Receiving Power,参考信号接收功率)。
作为一个实施例,所述第一接收质量包括测量所述CSI-RS得到的RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
作为一个实施例,所述第一接收质量的单位是毫分贝(dBm),所述第一偏移量的单位是分贝(dB)。
作为一个实施例,所述第一接收质量的单位是毫瓦(mW),所述第一偏移量的单位是毫瓦(mW)。
作为一个实施例,所述第一节点是UE。
作为一个实施例,所述第一接收质量包括针对所述第二无线信号的测量到的RSRP。
作为一个实施例,所述第一接收质量包括针对所述第二无线信号的测量到的RSRQ。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上用户设备201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语,在NTN网络中,gNB203可以是卫星或通过卫星中继的地面基站。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocol,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE201支持大时延差网络中的传输。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203支持在大时延差网络中的传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点(UE,gNB或NTN中的卫星或飞行器)和第二节点(gNB,UE或NTN中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点与第二节点以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制 协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点之间的对第一节点的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点与第一节点之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点和第二节点的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述接入请求信号生成于所述RRC306。
作为一个实施例,本申请中的所述接入请求信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述接入请求信号生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的一个第一节点和第二节点的示意图,如附图4所示。
在第一节点(450)中包括控制器/处理器490,数据源/缓存器480,接收处理器452,发射器/接收器456和发射处理器455,发射器/接收器456包括天线460。数据源/缓存器480提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层及以上层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH或SL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在第二节点(410)中可以包括控制器/处理器440,数据源/缓存器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。数据源/缓存器430 提供上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH或SL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层信令(包括同步信号和参考信号等)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包,比如本申请中的第一信令和接入请求信号中所包括的高层信息提供到控制器/处理器440。控制器/处理器440实施L2层及以上层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对第一节点450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到第一节点450的信令,比如本申请中的第一无线信号,第二无线信号,第一信令和接入请求信号中所包括的高层信息(如果包括的话)均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,本申请中的第一信令,接入请求信号的物理层信号的生成在发射处理器415完成,生成的调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括对本申请中的第一无线信号,第二无线信号,第一信令和接入请求信号等对应的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第二节点410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490负责L2层及以上层,控制器/处理器490对本申请中的第一信令和接入请求信号中所包括的高层信息(如果包括高层信息的话)进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,数据源/缓存器480用来提供高层数据到控制器/处理器490。数据源/缓存器480表示L2层和L2层之上的所有协议层。控制器/处理器490通过基于第二节点410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到第二节点410的信令。本申请中的接入请求信号在控制器/处理器490生成。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,本申请中的接入请求信号的物理层信号在发射处理器455生成。信号发射处理功能包括编码和交织以促进UE450处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括接收处理本申请中的接入请求信号的物理层信号,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由第一节点450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。在控制器/处理器440 实施L2层的功能,包括对本申请中的接入请求信号所携带的信息的解读。控制器/处理器可与存储程序代码和数据的缓存器430相关联。缓存器430可以为计算机可读媒体。
作为一个实施例,所述第一节点450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一节点450装置至少:接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;根据第一调整的接收质量确定是否与所述第一无线信号的发送者建立连接;其中,所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
作为一个实施例,所述第一节点450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;根据第一调整的接收质量确定是否与所述第一无线信号的发送者建立连接;其中,所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
作为一个实施例,所述第二节点410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二节点410装置至少:发送第一无线信号,根据所述第一无线信号确定第一传输参数;发送第二无线信号,根据所述第二无线信号确定第一接收质量;其中,根据第一调整的接收质量确定是否与所述第一无线信号的发送者建立连接;所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
作为一个实施例,所述第二节点410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一无线信号,根据所述第一无线信号确定第一传输参数;发送第二无线信号,根据所述第二无线信号确定第一接收质量;其中,根据第一调整的接收质量确定是否与所述第一无线信号的发送者建立连接;所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
作为一个实施例,所述第一节点450是一个用户设备。
作为一个实施例,所述第一节点450是一个支持大时延差的用户设备。
作为一个实施例,所述第一节点450是一个支持NTN的用户设备。
作为一个实施例,所述第一节点450是一个飞行器设备。
作为一个实施例,所述第二节点410是一个基站设备(gNB/eNB)。
作为一个实施例,所述第二节点410是一个支持大时延差的基站设备。
作为一个实施例,所述第二节点410是一个支持NTN的基站设备。
作为一个实施例,所述第二节点410是一个卫星设备。
作为一个实施例,所述第二节点410是一个飞行平台设备。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一无线信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二无线信号。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490 被用于本申请中发送所述第一信令。
作为一个实施例,接收处理器452,根据第一调整的接收质量确定是否与所述第二节点建立连接。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述接入请求信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,第二节点N01是第一节点U01的服务小区基站,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二节点N01,在步骤S5101中发送第一信令,在步骤S5102中发送第一无线信号和第二无线信号,在步骤S5103中接收接入请求信号。
对于 第一节点U01,在步骤S5201中接收第一信令,在步骤S5202中接收第一无线信号和第二无线信号,在步骤S5203中计算第一调整的接收质量,在步骤S5204中判断是否与第二节点建立连接,如果是,在步骤S5205中发送接入请求信号,如果否,不发送接入请求信号。
在实施例5中,本申请中的所述第一无线信号被用于确定第一传输参数;所述第二无线信号被用于确定第一接收质量;其中,根据第一调整的接收质量被用于确定是否与所述第二节点建立连接;所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
作为一个实施例,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
作为一个实施例,所述短语与所述第一无线信号的发送者建立连接包括:与所述第一无线信号的发送者建立RRC(Radio Resource Control,无线资源控制)连接。
作为一个实施例,所述短语与所述第一无线信号的发送者建立连接包括:从当前服务小区切换至所述第一无线信号的发送者,所述第一无线信号的所述发送者是一个服务小区。
作为一个实施例,所述第一节点U01与所述第二节点N01建立连接的依据是,所述第一调整的接收质量持续超过第一参考第一阈值达第一时间长度。
作为一个实施例,所述第一节点U01与所述第二节点N01建立连接的依据是,所述第一调整的接收质量超过第一参考第二阈值时。
所述第一参考是UE当前连接的基站。
所述第一参考是源基站。
作为一个实施例,所述第一无线信号包括定时提前(Timing Advance)命令(Command),所述第一传输参数包括所述定时提前命令指示的定时提前值(Timing Advance Value)。
作为一个实施例,所述第一无线信号指示所述第二无线信号的发送功率,所述第一传输参数与所述第二无线信号的所述发送功率与所述第一接收质量的差值相等。
作为一个实施例,所述第一无线信号指示所述第二无线信号的发送功率,所述第一传输参数是所述第一无线信号的发送者到所述第一节点的路径损耗(PathLoss)。
作为一个实施例,所述第一无线信号的发送者和所述第二无线信号的发送者是共址的。
作为一个实施例,所述第一无线信号的发送者和所述第二无线信号的发送者是同一个服务小区。
作为一个实施例,所述第一无线信号和所述第二无线信号是半共址的(Quasi Co-located)。
作为一个实施例,所述第二无线信号包括参考信号,所述第一接收质量包括所述参考信 号的接收功率。
作为一个实施例,所述第二无线信号包括CSI-RS(Channel Status Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一信令是更高层信令。
作为一个实施例,所述第一信令是小区公共的。
作为一个实施例,所述第一信令显式的指示所述第一候选偏移量集合。
作为一个实施例,所述第一信令指示第一参考偏移量,所述第一候选偏移量集合由所述第一参考偏移量隐式指示。
作为一个实施例,所述第一信令是测量控制(Measurement Control)命令。
作为一个实施例,所述第一信令包括ReportConfigEUTRA IE(Information Element,信息单元)中的部分或者所有域(field)。
作为一个实施例,所述第一信令包括MeasObjectEUTRA IE中的部分或者所有域。
作为一个实施例,所述接入请求信号所占用的信道包括PRACH(Physical Random Access CHannel,物理随机接入信道);所述第一无线信号的接收同步定时被用于确定所述接入请求信号的发送定时。
作为一个实施例,所述接入请求信号包括RRCconnectionRequest信息单元。
作为一个实施例,所述接入请求信号所占用的信道包括PUSCH(Physical Uplink SharedCHannel,物理上行共享信道)。
作为一个实施例,所述接入请求信号是测量报告(MeasurementReport)消息。
作为一个实施例,所述第二节点N01是所述接入请求信号的目标接收者。
作为一个实施例,所述第一无线信号的所述发送者的身份(Identifier)被用于生成所述接入请求信号。
实施例6
实施例6示例了根据本申请的一个实施例的第一阈值和第二阈值的示意图,如附图6所示。附图6中,横坐标是时间,纵坐标是调整的接收质量。
在实施例6中,如附图6所示,第三时刻与第二时刻的差值等于第一目标时间长度;第四时刻与第三时刻的差值等于第二目标时间长度;所述第一目标时间长度小于第一时间长度;所述第二目标时间长度等于第一时间长度。第一时刻、所述第二时刻、所述第三时刻、所述第四时刻、第五时刻按顺序逐渐增大。
作为一个实施例,从所述第一无线信号的发送者接收到的接收质量的调整值,是所述第一调整的接收质量。
作为一个实施例,针对所述第一节点的当前服务小区发送的参考信号的测量被用于确定所述第一阈值,所述第一无线信号的所述发送者是所述第一节点的所述当前服务小区之外的服务小区。
作为一个实施例,针对所述第一节点的当前服务小区发送的参考信号的测量以及所述第一节点的当前服务小区到所述第一节点的距离被共同用于确定所述第一阈值。
作为一个实施例,所述第一阈值是可配置的。
作为一个实施例,所述第二阈值是可配置的。
作为一个实施例,所述第一时间长度是可配置的。
作为一个实施例,所述第一时间长度是由RRC层信令配置的。
作为一个实施例,所述第一无线信号的所述发送者是所述第一节点的当前服务小区之外的服务小区,所述第一参考是所述第一调整的接收质量在所述第一节点的所述当前服务小区中的对等物。
作为一个实施例,所述第一无线信号的所述发送者是所述第一节点的当前服务小区之外的服务小区,所述第一参考第二阈值是所述第一调整的接收质量在所述第一节点的所述当前 服务小区中的对等物。
作为一个实施例,所述第二阈值大于所述第一阈值。
作为一个实施例,在所述第一时刻,所述第一调整的接收质量低于第一参考第一阈值,所述第一处理机确定不与所述第一无线信号的发送者建立连接。
作为一个实施例,在所述第二时刻,所述第一调整的接收质量开始超过第一参考第一阈值,在所述第三时刻,所述第一调整的接收质量持续超过第一参考第一阈值且持续时间不到所述第一时间长度时,所述第一处理机确定不与所述第一无线信号的发送者建立连接。
作为一个实施例,在所述第二时刻,所述第一调整的接收质量开始超过第一参考第一阈值,在所述第四时刻,所述第一调整的接收质量持续超过第一参考第一阈值达第一时间长度时,所述第一处理机确定与所述第一无线信号的发送者建立连接。作为一个实施例,在所述第五时刻,所述第一调整的接收质量超过第一参考第二阈值,所述第一处理机确定与所述第一无线信号的发送者建立连接。
实施例7
实施例7示例了根据本申请的一个实施例的第一候选偏移量集合的示意图,如附图7所示。在实施例7中,第一信令指示所述第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
作为一个实施例,所述候选偏移量集合包括I个所述候选偏移量,其中I是正整数。
作为一个实施例,第j(j=1,2,…,I-1,I)个所述候选偏移量由第j个所述第一传输参数X(j)确定。
作为一个实施例,所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
作为一个实施例,所述第一传输参数X(j)是所述第一无线信号的发送者到所述第一节点的路径损耗(PathLoss)。
作为一个实施例,所述第一传输参数X(j)是定时提前命令指示的定时提前值(Timing Advance Value)。
作为一个实施例,所述第一节点到所述第一无线信号的所述发送者之间的所述距离越大,所述第一传输参数X(j)越大。
作为一个实施例,所述第一偏移量是所述第一候选偏移量集合中最大的所述第一传输参数X(i)对应的第i个候选偏移量。
作为一个实施例,所述第一偏移量是所述第一候选偏移量集合中最小的所述第一传输参数X(i)对应的第i个候选偏移量。
作为一个实施例,所述多个候选偏移量中的任意两个候选偏移量不相等。
作为一个实施例,所述第一节点到所述第一无线信号的所述发送者之间的所述距离越大,所述第一偏移量越大。
作为一个实施例,所述第一传输参数越大,所述第一偏移量越小。
作为一个实施例,所述第一信令是更高层信令。
作为一个实施例,所述第一信令是小区公共的。
作为一个实施例,所述第一候选偏移量集合中的任一候选偏移量对应一个第一传输参数区间,所述第一偏移量是所述多个候选偏移量中对应的传输参数区间包括所述第一传输参数的候选偏移量。
作为一个实施例,所述第一信令显式的指示所述第一候选偏移量集合。
作为一个实施例,所述第一信令指示第一参考偏移量,所述第一候选偏移量集合由所述第一参考偏移量隐式指示。
作为一个实施例,所述第一信令包括ReportConfigEUTRA IE(Information Element,信 息单元)中的部分或者所有域(field)。
作为一个实施例,所述第一信令包括MeasObjectEUTRA IE中的部分或者所有域。
作为一个实施例,所述第一参考偏移量包括{OffsetFreq,cellIndividualOffset,csi-RS-IndividualOffset,a3-Offset,a6-Offset,c2-Offset,h1-ThresholdOffset,h2-ThresholdOffset,Hysteresis}中的至少之一。
作为一个实施例,所述第一参考偏移量由{OffsetFreq,cellIndividualOffset,csi-RS-IndividualOffset,a3-Offset,a6-Offset,c2-Offset,h1-ThresholdOffset,h2-ThresholdOffset,Hysteresis}中的至少两个共同确定。
实施例8
实施例8示例了根据本申请的一个实施例的切换流程示意图,如附图8所示。
对于 用户设备U02,在步骤S801中接收源小区N03发送的第一信令消息;在步骤S802中接收第一服务小区N02发送的第一无线信号和第二无线信号;在步骤S803中接收服务小区组N04发送的第一类无线信号和第二类无线信号;在步骤S804中,选择所述第一服务小区作为切换目标;在步骤S805中,给所述源小区N03发送第一接入请求消号信号;在步骤S810中,所述用户设备U02和所述第一服务小区N02共同执行发起切换相关流程;在步骤S811中,所述用户设备U02给所述第一服务小区N02发送接入请求消号;在步骤S812中,所述用户设备U02、所述源小区N03和所述第一服务小区N02共同执行完成切换相关流程。
对于 源小区N03,在步骤S801中给所述用户设备U02发送第一信令消息;在步骤S805中接收所述用户设备U02发送的第一接入请求消号;在步骤S806中根据所述第一接入请求消号做出切换决定;在步骤S807中,给所述第一服务小区发送切换请求消息;在步骤S809中,接收所述第一服务小区发送的切换请求确认消息;在步骤S8010中,所述用户设备U02和所述第一服务小区N02共同执行发起切换相关流程;在步骤S812中,所述用户设备U02、所述源小区N03和所述第一服务小区N02共同执行完成切换相关流程。
对于 第一服务小区N02,在步骤S802中,发送第一无线信号和第二无线信号;在步骤S807中,接收所述源小区N03发送的切换请求消息;在步骤S808中,进行接纳控制;在步骤S809中,给所述源小区N03发送切换请求确认消息;在步骤S811中,接收所述用户设备U02发送的接入请求消号;在步骤S812中,所述用户设备U02、所述第一服务小区N02和所述源小区N03共同执行完成切换相关流程。
对于 服务小区组N04,在步骤S803中发送K个第一类无线信号和K个第二类无线信号。
作为一个实施例,所述第一无线信号属于第一类无线信号,且所述第一无线信号
所述K个传输参数分别被用于确定K个偏移量;所述K个偏移量与所述K个第一类接收质量一一对应,所述K个偏移量与对应的第一类接收质量的和分别与K个第一类调整的接收质量相等;所述第一调整的接收质量高于所述K个第一类调整的接收质量中最高的一个第一类调整的接收质量。
作为一个实施例,附图8中的F1模块是可选的。
作为一个实施例,所述切换决定是3GPP协议中的HO decision消息。
作为一个实施例,所述切换请求消息是3GPP协议中的HANDOVER REQUEST消息。
作为一个实施例,所述接纳控制是3GPP协议中的Admission Control。
作为一个实施例,所述切换请求确认是3GPP协议中的HANDOVER REQUEST ACKNOWLEDGE消息。作为一个实施例,所述用户设备是所述第一节点。
作为一个实施例,所述源小区是所述第二节点。
作为一个实施例,所述第一服务小区是所述第二节点。
作为一个实施例,所述服务小区组是所述第二节点。
作为一个实施例,所述第一信令显式的指示所述第一候选偏移量集合。
作为一个实施例,所述第一信令指示第一参考偏移量,所述第一候选偏移量集合由所述 第一参考偏移量隐式指示。
作为一个实施例,所述第一信令是测量控制(Measurement Control)命令。
作为一个实施例,所述第一信令包括ReportConfigEUTRA IE(Information Element,信息单元)中的部分或者所有域(field)。
作为一个实施例,所述第一信令包括MeasObjectEUTRA IE中的部分或者所有域。
作为一个实施例,所述第一无线信号包括定时提前(Timing Advance)命令(Command),所述第一传输参数包括所述定时提前命令指示的定时提前值(Timing Advance Value)。
作为一个实施例,所述第一无线信号指示所述第二无线信号的发送功率,所述第一传输参数是所述第一无线信号的发送者到所述第一节点的路径损耗(PathLoss)。
作为一个实施例,所述第二无线信号包括参考信号,所述第一接收质量包括所述参考信号的接收功率。
作为一个实施例,所述第二无线信号包括CSI-RS(Channel Status Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一接入请求消号是测量报告(Measurement Report)。
作为一个实施例,所述第一接入请求消号是所述接入请求消号。
作为一个实施例,所述触发事件是3GPP协议中的{eventA1,eventA2,eventA3,eventA4,eventA5,eventA6,eventB1,eventB2,eventC1,eventC2}中的一个。
作为一个实施例,所述触发事件是本申请中所述第一调整的接收质量持续超过第一参考第一阈值达第一时间长度。
作为一个实施例,所述触发事件是本申请中所述第一调整的接收质量超过第一参考第二阈值。
作为一个实施例,所述触发事件与所述第一调整的接收质量有关。
作为一个实施例,所述接入请求消号信号是所述用户设备发送给所述原基站的测量报告(Measurement Report)。
作为一个实施例,所述接入请求信号所占用的信道包括PRACH(Physical Random Access CHannel,物理随机接入信道);所述第一无线信号的接收同步定时被用于确定所述接入请求信号的发送定时。
作为一个实施例,所述接入请求信号包括RRCconnectionRequest信息单元。
作为一个实施例,所述接入请求信号所占用的信道包括PUSCH(Physical Uplink SharedCHannel,物理上行共享信道)。
作为一个实施例,所述第一无线信号的所述发送者的身份(Identifier)被用于生成所述接入请求信号。
实施例9
实施例9示例了根据本申请的一个实施例的第一信令的传输流程图,如附图7所示。附图7中,第二节点是第一节点的服务小区基站。
对于 第二节点U01,在步骤S9101中发送第一信令。
对于 第一节点N01,在步骤S9201中接收第一信令。
在实施例7中,本申请中的所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
作为一个实施例,所述多个候选偏移量中的任意两个候选偏移量不相等。
作为一个实施例,所述第一节点到所述第一无线信号的所述发送者之间的所述距离越大,所述第一偏移量越大。
作为一个实施例,所述第一传输参数越大,所述第一偏移量越小。
作为一个实施例,所述第一信令是更高层信令。
作为一个实施例,所述第一信令是小区公共的。
作为一个实施例,所述第一候选偏移量集合中的任一候选偏移量对应一个传输参数区间,所述第一偏移量是所述多个候选偏移量中对应的传输参数区间包括所述第一传输参数的候选偏移量。
作为一个实施例,所述第一信令显式的指示所述第一候选偏移量集合。
作为一个实施例,所述第一信令指示第一参考偏移量,所述第一候选偏移量集合由所述第一参考偏移量隐式指示。
作为一个实施例,所述第一信令包括ReportConfigEUTRA IE(Information Element,信息单元)中的部分或者所有域(field)。
作为一个实施例,所述第一信令包括MeasObjectEUTRA IE中的部分或者所有域。
作为一个实施例,所述第一参考偏移量包括{OffsetFreq,cellIndividualOffset,csi-RS-IndividualOffset,a3-Offset,a6-Offset,c2-Offset,h1-ThresholdOffset,h2-ThresholdOffset,Hysteresis}中的至少之一。
作为一个实施例,所述第一参考偏移量由{OffsetFreq,cellIndividualOffset,csi-RS-IndividualOffset,a3-Offset,a6-Offset,c2-Offset,h1-ThresholdOffset,h2-ThresholdOffset,Hysteresis}中的至少两个共同确定。
实施例10
实施例10示例了根据本申请的一个实施例的第一调整的接收质量被用于确定是否与第一无线信号的发送者建立连接的示意图;如附图10所示。
作为一个实施例,当第一调整的接收质量超过第一参考第一阈值且不超过第一参考第二阈值且持续时间不到所述第一时间长度时,所述第一处理机确定不与所述第一无线信号的发送者建立连接。
作为一个实施例,所述第一无线信号的所述发送者是所述第一节点的当前服务小区之外的服务小区,所述第二阈值是所述第一调整的接收质量在所述第一节点的所述当前服务小区中的对等物。
作为一个实施例,所述第一无线信号的所述发送者是所述第一节点的当前服务小区之外的服务小区,所述第二阈值大于所述第一阈值。
作为一个实施例,当所述第一调整的接收质量低于第一参考第一阈值时,所述第一处理机确定不与所述第一无线信号的发送者建立连接。
作为一个实施例,当所述第一调整的接收质量超过第一参考第一阈值且持续时间不到所述第一时间长度时,所述第一处理机确定不与所述第一无线信号的发送者建立连接。
作为一个实施例,所述第一阈值是可配置的。
作为一个实施例,所述第二阈值是可配置的。
作为一个实施例,所述第一时间长度是可配置的。
作为一个实施例,所述第一时间长度是由RRC层信令配置的。
作为一个实施例,针对所述第一节点的当前服务小区发送的参考信号的测量被用于确定所述第一阈值,所述第一无线信号的所述发送者是所述第一节点的所述当前服务小区之外的服务小区。
作为一个实施例,针对所述第一节点的当前服务小区发送的参考信号的测量以及所述第一节点的当前服务小区到所述第一节点的距离被共同用于确定所述第一阈值,所述第一无线信号的所述发送者是所述第一节点的所述当前服务小区之外的服务小区。
作为一个实施例,所述第一无线信号的所述发送者是所述第一节点的当前服务小区之外的服务小区,所述第一阈值是所述第一调整的接收质量在所述第一节点的所述当前服务小区中的对等物。
实施例11
实施例11示例了根据本申请的一个实施例的K个传输参数分别被用于确定K个偏移量的示意图;如附图11所示。
实施例11中,所述K个第一类无线信号分别被用于确定K个传输参数;K个第二类无线信号分别被用于确定K个第一类接收质量;所述K是正整数;其中,所述K个传输参数分别被用于确定K个偏移量;所述K个偏移量与所述K个第一类接收质量一一对应,所述K个偏移量与对应的第一类接收质量的和分别与K个第一类调整的接收质量相等;所述第一调整的接收质量高于所述K个第一类调整的接收质量中最高的一个第一类调整的接收质量。
作为一个实施例,所述K个传输参数分别被用于确定K个偏移量;
作为一个实施例,所述K个输参数分别由所述K个第一类无线信号确定;
作为一个实施例,所述K个偏移量与所述K个第一类接收质量一一对应;
作为一个实施例,所述K个偏移量与对应的第一类接收质量的和分别与K个第一类调整的接收质量相等;
作为一个实施例,所述第一调整的接收质量高于所述K个第一类调整的接收质量中最高的一个第一类调整的接收质量。
作为一个实施例,所述K个第一类无线信号分别由K个服务小区发送,所述第一无线信号的发送者是所述K个服务小区之外的服务小区。
作为一个实施例,所述K个第二类无线信号分别由所述K个服务小区发送。
作为一个实施例,所述K个第一类无线信号分别由K个服务小区发送,所述第一无线信号的发送者是所述K个服务小区之外的服务小区。
作为一个实施例,所述K个传输参数分别是第一传输参数在所述K个服务小区中的对等物。
作为一个实施例,所述K个第一类接收质量分别是第一传输参数在所述K个服务小区中的对等物。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图12所示。在附图12中,第一节点中的处理装置1200包括第一接收机1201,第一处理机1202和第一发送机1203。
在实施例12中,第一接收机1201接收第一无线信号,第二无线信号和第一信令;第一处理机根据第一调整的接收质量确定是否与所述第一无线信号的发送者建立连接;第一发送机1202发送接入请求信号。
在实施例12中,所述第一无线信号被用于确定第一传输参数;所述第二无线信号被用于确定第一接收质量;根据第一调整的接收质量确定是否与所述第一无线信号的发送者建立连接;其中,所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
作为一个实施例,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
作为一个实施例,所述第一无线信号的所述发送者是所述接入请求信号的目标接收者。
作为一个实施例,当所述第一调整的接收质量持续超过第一参考第一阈值达第一时间长度时,确定发送与所述第一无线信号的发送者建立连接的消息。
作为一个实施例,当所述第一调整的接收质量超过第一参考第二阈值时,确定发送与所述第一无线信号的发送者建立连接的消息。
作为一个实施例,第一接收机1201接收K个第一类无线信号,根据所述K个第一类无 线信号分别确定K个传分别确定K个输参数;接收K个第二类无线信号,根据所述K个第二类无线信号第一类接收质量;所述K是正整数;其中,所述K个传输参数分别被用于确定K个偏移量;所述K个偏移量与所述K个第一类接收质量一一对应,所述K个偏移量与对应的第一类接收质量的和分别与K个第一类调整的接收质量相等;所述第一调整的接收质量高于所述K个第一类调整的接收质量中最高的一个第一类调整的接收质量。
作为一个实施例,所述第一节点1400是一个用户设备。
作为一个实施例,所述第一节点1400是一个支持大时延差的用户设备。
作为一个实施例,所述第一节点1400是一个支持NTN的用户设备。
作为一个实施例,所述第一节点1400是一个飞行器设备。
作为一个实施例,所述第一接收机1201包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一处理机1202包括实施例4中的{接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460}中的至少之一。
作为一个实施例,所述第一发送机1203包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图13所示。在附图13中,第二节点中的处理装置1300包括第二发送机1301、第二接收机1302和第三发送机1303。
在实施例13中,第二发送机1301发送第一无线信号、第二无线信号;第二接收机1302接收接入请求信号;第三发送机1303发送第一信令。
在实施例13中,所述第一无线信号被用于确定第一传输参数;所述第二无线信号被用于确定第一接收质量;其中,所述第一调整的接收质量被用于确定是否与所述第二节点建立连接;所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
作为一个实施例,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
作为一个实施例,所述第一无线信号的所述发送者是所述接入请求信号的目标接收者。
作为一个实施例,当所述第一调整的接收质量持续超过第一参考第一阈值达第一时间长度时,确定发送与所述第一无线信号的发送者建立连接的消息。
作为一个实施例,当所述第一调整的接收质量超过第一参考第二阈值时,确定发送与所述第一无线信号的发送者建立连接的消息。
作为一个实施例,所述第二节点1300是一个基站设备(gNB/eNB)。
作为一个实施例,所述第二节点1300是一个支持大时延差的基站设备。
作为一个实施例,所述第二节点1300是一个支持NTN的基站设备。
作为一个实施例,所述第二节点1300是一个卫星设备。
作为一个实施例,所述第二节点1300是一个飞行平台设备。
作为一个实施例,所述第二发送机1301包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1302包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第三发送机1303包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (9)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,用于接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;
    第一处理机,用于根据第一调整的接收质量确定是否与所述第一无线信号的发送者建立连接;
    其中,所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
  2. 根据权利要求1所述的第一节点,其特征在于:
    所述第一接收机接收第一信令,所述第一信令指示第一候选偏移量集合,所述第一候选偏移量集合包括多个候选偏移量,所述第一偏移量是所述多个候选偏移量中的一个候选偏移量;
    其中,所述第一传输参数被用于从所述第一候选偏移量集合中确定所述第一偏移量。
  3. 根据权利要求1或2所述的第一节点,其特征在于:
    第一发送机,发送接入请求信号;
    其中,所述第一无线信号的所述发送者是所述接入请求信号的目标接收者。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于:
    当所述第一调整的接收质量持续超过第一参考第一阈值达第一时间长度时,所述第一处理机确定与所述第一无线信号的发送者建立连接。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于:
    当所述第一调整的接收质量超过第一参考第二阈值时,所述第一处理机确定与所述第一无线信号的发送者建立连接。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于:
    所述第一接收机接收K个第一类无线信号,根据所述K个第一类无线信号分别确定K个传输参数;接收K个第二类无线信号,根据所述K个第二类无线信号分别确定K个第一类接收质量;所述K是正整数;
    其中,所述K个传输参数分别被用于确定K个偏移量;所述K个偏移量与所述K个第一类接收质量一一对应,所述K个偏移量与对应的第一类接收质量的和分别与K个第一类调整的接收质量相等;所述第一调整的接收质量高于所述K个第一类调整的接收质量中最高的一个第一类调整的接收质量。
  7. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发送机,用于发送第一无线信号,根据所述第一无线信号确定第一传输参数;发送第二无线信号,根据所述第二无线信号确定第一接收质量;
    其中,第一调整的接收质量被用于确定是否与所述第二节点建立连接;所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第二节点之间的距离有关。
  8. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一无线信号,根据所述第一无线信号确定第一传输参数;接收第二无线信号,根据所述第二无线信号确定第一接收质量;
    根据第一调整的接收质量确定是否与所述第一无线信号的发送者建立连接;
    其中,所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
  9. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一无线信号,根据所述第一无线信号确定第一传输参数;发送第二无线信号,根据所述第二无线信号确定第一接收质量;
    其中,所述第一调整的接收质量被用于确定是否与所述第二节点建立连接;所述第一传输参数被用于确定第一偏移量,所述第一偏移量与所述第一接收质量的和与所述第一调整的接收质量相等;所述第一传输参数与所述第一节点到所述第一无线信号的所述发送者之间的距离有关。
PCT/CN2020/116230 2019-09-27 2020-09-18 一种被用于无线通信的方法和设备 WO2021057621A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/700,513 US20220225179A1 (en) 2019-09-27 2022-03-22 Method and device for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910921934.1 2019-09-27
CN201910921934.1A CN112584444B (zh) 2019-09-27 2019-09-27 一种被用于无线通信的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/700,513 Continuation US20220225179A1 (en) 2019-09-27 2022-03-22 Method and device for wireless communication

Publications (1)

Publication Number Publication Date
WO2021057621A1 true WO2021057621A1 (zh) 2021-04-01

Family

ID=75109717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116230 WO2021057621A1 (zh) 2019-09-27 2020-09-18 一种被用于无线通信的方法和设备

Country Status (3)

Country Link
US (1) US20220225179A1 (zh)
CN (2) CN112584444B (zh)
WO (1) WO2021057621A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105306178A (zh) * 2014-07-31 2016-02-03 索尼公司 无线通信设备和无线通信方法
US20180220399A1 (en) * 2015-07-31 2018-08-02 Intel Corporation Channel quality index (cqi) reporting for superposition transmissions schemes
CN109327893A (zh) * 2011-11-04 2019-02-12 交互数字专利控股公司 用于在与多个定时提前关联的多个分量载波上无线传输的功率控制的方法和装置
CN110072274A (zh) * 2018-01-23 2019-07-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9253713B2 (en) * 2011-09-26 2016-02-02 Blackberry Limited Method and system for small cell discovery in heterogeneous cellular networks
EP3123626B1 (en) * 2014-03-24 2019-05-01 LG Electronics Inc. Method of performing a hybrid beamforming in a wireless communication system and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327893A (zh) * 2011-11-04 2019-02-12 交互数字专利控股公司 用于在与多个定时提前关联的多个分量载波上无线传输的功率控制的方法和装置
CN105306178A (zh) * 2014-07-31 2016-02-03 索尼公司 无线通信设备和无线通信方法
US20180220399A1 (en) * 2015-07-31 2018-08-02 Intel Corporation Channel quality index (cqi) reporting for superposition transmissions schemes
CN110072274A (zh) * 2018-01-23 2019-07-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Also Published As

Publication number Publication date
CN112584444A (zh) 2021-03-30
CN112584444B (zh) 2021-09-24
CN113692024A (zh) 2021-11-23
US20220225179A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2021212730A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20210051643A1 (en) Method and device used in wireless communication node
CN111586826B (zh) 一种被用于无线通信的节点中的方法和装置
US11638182B2 (en) Method and device in UE and base station used for wireless communication
US20230007696A1 (en) Method and device for wireless communication
US20230300936A1 (en) Method and device for wireless communication
WO2021057598A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021057621A1 (zh) 一种被用于无线通信的方法和设备
CN114698042A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN113543369A (zh) 一种被用于无线通信的方法和设备
CN113727343A (zh) 一种被用于无线通信的方法和设备
CN113766501A (zh) 一种被用于无线通信的方法和设备
WO2024120191A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024104208A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024067538A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20240179611A1 (en) Method and device for wireless communication
WO2024125244A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114158040B (zh) 一种被用于无线通信的方法和设备
WO2024067799A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20230232485A1 (en) Method and device for wireless communication
WO2024093875A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2021068727A1 (zh) 一种被用于无线通信的方法和设备
WO2024032478A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20220279417A1 (en) Method and device in communication node used for wireless communication
WO2024120139A1 (zh) 一种被用于无线通信的通信节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867354

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20867354

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20867354

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2022)