WO2021068639A1 - 带宽请求的发送方法及装置、存储介质、电子装置 - Google Patents

带宽请求的发送方法及装置、存储介质、电子装置 Download PDF

Info

Publication number
WO2021068639A1
WO2021068639A1 PCT/CN2020/108224 CN2020108224W WO2021068639A1 WO 2021068639 A1 WO2021068639 A1 WO 2021068639A1 CN 2020108224 W CN2020108224 W CN 2020108224W WO 2021068639 A1 WO2021068639 A1 WO 2021068639A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
bandwidth request
bandwidth
load
amount
Prior art date
Application number
PCT/CN2020/108224
Other languages
English (en)
French (fr)
Inventor
张伟良
袁立权
郭勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/642,743 priority Critical patent/US20220329395A1/en
Priority to EP20875444.0A priority patent/EP4044617A4/en
Publication of WO2021068639A1 publication Critical patent/WO2021068639A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method and device for sending a bandwidth request, a storage medium, and an electronic device.
  • the Passive Optical Network (PON) architecture is wrong! The reference source was not found. As shown, it is a point-to-multipoint network architecture, consisting of an optical line terminal (Optical Line Terminal, referred to as OLT), an optical distribution network (Optical Distribution Network, referred to as ODN), and an optical network unit (Optical Network Unit, referred to as ONU), OLT is connected to multiple optical network units through ODN.
  • OLT optical line terminal
  • ODN optical distribution network
  • ONU optical network unit
  • the upstream transmission of ONUs requires the OLT to coordinate through bandwidth allocation to avoid conflicts between signals sent by different ONUs.
  • Passive optical network systems generally calculate the upstream bandwidth of each ONU through Dynamic Bandwidth Assignment (DBA).
  • DBA Dynamic Bandwidth Assignment
  • the traditional DBA algorithm is that the ONU reports the local data to be sent to the OLT, and the OLT allocates bandwidth to the ONU based on the ONU report.
  • the local data to be sent is indicated by the Dynamic Bandwidth Request upstream (DBRu for short).
  • DBRu Dynamic Bandwidth Request upstream
  • a bandwidth allocation (Allocation) includes DBRu and load payload. In a bandwidth allocation cycle, DBRu is sent first, followed by The data carried in the payload will be sent again, and the buffer data requested for bandwidth allocation in DBRu contains the data carried in the payload subsequently sent. Therefore, when the OLT receives the DBRu, the data to be sent by the ONU indicated in the DBRu has been Does not include the data carried in the payload.
  • the status of the data to be sent in the ONU acquired by the OLT is inconsistent with the actual status of the data to be sent. That is, the status of the data to be sent in the ONU acquired by the OLT is inaccurate, which in turn leads to inaccurate DBA allocation.
  • the embodiments of the present disclosure provide a method and device for sending a bandwidth request, a storage medium, and an electronic device to at least solve the problem of inaccurate data to be sent in the ONU obtained by the OLT in the related art, which in turn leads to inaccurate DBA allocation.
  • a method for sending a bandwidth request including: in the bandwidth allocation obtained by a transmission container, sending a load and a bandwidth request to an optical line terminal in sequence, wherein the load carries the first data
  • the data amount of the second data is carried in the bandwidth request, and the data amount of the second data is: the amount of data buffered in the transmission container when the bandwidth request is generated.
  • a method for sending a bandwidth request including: in the bandwidth allocation obtained by the transmission container, sequentially sending the bandwidth request and the load to the optical line terminal, wherein the load carries the first Data, the data amount of the second data carried in the bandwidth request, the data amount of the second data is obtained by subtracting the data amount of the first data from the data amount buffered in the transmission container when the bandwidth request is generated .
  • a method for sending a bandwidth request including: in the bandwidth allocation obtained by the transmission container, sequentially sending the bandwidth request and the load to the optical line terminal, wherein the load carries the first Data, the data amount of the second data carried in the bandwidth request, and the data amount of the second data is: the amount of data buffered in the transmission container when the bandwidth request is generated; the optical line terminal uses the first The data amount of the second data is subtracted from the data amount of the first data to obtain the data amount of the third data, and bandwidth is allocated according to the data amount of the third data.
  • a method for sending a bandwidth request including: an agreement for sending a bandwidth request between an optical network unit and an optical line terminal, wherein the optical network unit includes one or more transmissions
  • the method for sending the bandwidth request includes at least one of the following: in the bandwidth allocation obtained by the transmission container, a first load and a first bandwidth request are sequentially sent to the optical line terminal, wherein the first load carries First data, the data amount of second data carried in the first bandwidth request, and the data amount of the second data is: the amount of data buffered in the transmission container when the first bandwidth request is generated;
  • a second bandwidth request and a second load are sequentially sent to the optical line terminal, wherein the second load carries the third data, and the second bandwidth request carries the data amount of the fourth data ,
  • the data amount of the fourth data is obtained by subtracting the data amount of the third data from the data amount of the third data buffered in the transmission container when the second bandwidth request is generated;
  • the optical line terminal sends
  • a bandwidth request sending device including: a first sending module configured to send load and bandwidth request to the optical line terminal in sequence in the bandwidth allocation obtained by the transmission container, wherein, The load carries first data, the bandwidth request carries a data amount of second data, and the data amount of the second data is: the amount of data buffered in the transmission container when the bandwidth request is generated.
  • a device for sending a bandwidth request including: a second sending module configured to send the bandwidth request and load to the optical line terminal in sequence in the bandwidth allocation obtained by the transmission container, wherein: The load carries the first data, the bandwidth request carries the data amount of the second data, and the data amount of the second data is the data amount buffered in the transmission container when the bandwidth request is generated minus the data amount The data volume of the first data is obtained.
  • a device for sending a bandwidth request including: a third sending module configured to send the bandwidth request and load to the optical line terminal in sequence in the bandwidth allocation obtained by the transmission container, wherein: The load carries first data, the bandwidth request carries a data amount of second data, and the data amount of the second data is: the amount of data buffered in the transmission container when the bandwidth request is generated; an allocation module , Set to use the data amount of the second data minus the data amount of the first data to obtain the data amount of the third data, and allocate bandwidth according to the data amount of the third data.
  • an apparatus for sending a bandwidth request including: an appointment module configured to agree on a sending mode of the bandwidth request between the optical network unit and the optical line terminal, wherein the optical network unit It includes one or more transmission containers, and the sending mode of the bandwidth request includes at least one of the following: in the bandwidth allocation obtained by the transmission container, the first load and the first bandwidth request are sequentially sent to the optical line terminal, wherein, The first load carries the first data, the first bandwidth request carries the data amount of the second data, and the data amount of the second data is: the data buffered in the transmission container when the first bandwidth request is generated Data volume; in the bandwidth allocation obtained by the transmission container, a second bandwidth request and a second load are sequentially sent to the optical line terminal, wherein the second load carries the third data, and the second bandwidth request carries The data amount of the fourth data, the data amount of the fourth data is obtained by subtracting the data amount of the third data from the data amount buffered in the transmission container when the second bandwidth request is
  • a computer-readable storage medium in which a computer program is stored, wherein the computer program is configured to execute the above-mentioned bandwidth request sending method when running.
  • an electronic device including a memory, a processor, and a computer program stored in the memory and running on the processor, wherein the processor executes the above-mentioned computer program through the computer program.
  • the sending method of the bandwidth request including a memory, a processor, and a computer program stored in the memory and running on the processor, wherein the processor executes the above-mentioned computer program through the computer program.
  • the load and the bandwidth request are sent to the optical line terminal in turn, where the load carries the first data, the bandwidth request carries the data amount of the second data, and the second data
  • the amount of data is: the amount of data cached in the transmission container when the first bandwidth request is generated.
  • Figure 1 is a schematic diagram of a passive optical network architecture in related technologies
  • Fig. 2 is a flowchart of an optional bandwidth request sending method according to an embodiment of the present application
  • Fig. 3 is a flowchart (1) of another optional bandwidth request sending method in an embodiment of the present application.
  • Fig. 4 is a flowchart (2) of yet another optional bandwidth request sending method in an embodiment of the present application.
  • Fig. 5 is a flowchart (3) of yet another optional bandwidth request sending method in an embodiment of the present application.
  • Fig. 6 is a structural block diagram (1) of an optional bandwidth request sending device according to an embodiment of the present application.
  • FIG. 7 is a structural block diagram (2) of an optional bandwidth request sending apparatus according to an embodiment of the present application.
  • Fig. 8 is a structural block diagram (3) of an optional bandwidth request sending apparatus according to an embodiment of the present application.
  • Fig. 9 is a structural block diagram (4) of an optional bandwidth request sending device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram (1) of an optional bandwidth allocation structure according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram (2) of an optional bandwidth allocation structure according to an embodiment of the present disclosure.
  • Fig. 12 is a block diagram of an optional device structure according to an embodiment of the present application.
  • Fig. 2 is a flowchart of an optional bandwidth request sending method in an embodiment of the present application. As shown in Fig. 2, the method includes:
  • Step S102 In the bandwidth allocation obtained by the transmission container, the load and bandwidth request are sent to the optical line terminal in sequence, where the load carries the first data, the bandwidth request carries the data amount of the second data, and the data amount of the second data is : The amount of data cached in the transfer container when the bandwidth request is generated.
  • the load and bandwidth request are sent to the optical line terminal in turn, where the load carries the first data, the bandwidth request carries the data volume of the second data, and the data volume of the second data It is: when the bandwidth request is generated, the amount of data cached in the container is transmitted.
  • the bandwidth request By adjusting the load and the sending order of the bandwidth request, when the bandwidth request is sent, the first data carried in the load no longer exists in the current bandwidth allocation, and the bandwidth request carries The data volume of the second data is closer to the actual data volume that needs to be sent in the current bandwidth allocation, which solves the inaccuracy of the data to be sent in the ONU obtained by the OLT in the related technology, which in turn leads to the problem of inaccurate DBA allocation, which improves the OLT.
  • the accuracy of bandwidth allocation is achieved.
  • the transmission container can be represented by T-CONT.
  • An ONU includes one or more T-CONTs.
  • the bandwidth request is sent in units of ONUs. Each time the ONU sends a load or bandwidth request to the OLT, Each ONU contains one or more T-CONT bandwidth allocations.
  • sending the load and bandwidth request to the optical line terminal in sequence includes: sending the load to the optical line terminal in the bandwidth allocation obtained by the transmission container; after sending the load to the optical line terminal, The bandwidth request is sent at the end of the bandwidth allocation, where the difference between the time when the bandwidth request is generated and the time when the bandwidth request is sent is less than or equal to the preset difference.
  • the difference between the time when the bandwidth request is generated and the time when the bandwidth request is sent is less than or equal to the preset difference, which can be understood as the smaller the difference between the time when the bandwidth request is generated and the time when the bandwidth request is sent, indicating the generation of the bandwidth request.
  • the shorter the time, the faster the generation speed, and the data amount of the second data is closer to the data amount actually cached in the bandwidth allocation.
  • the method before sending the bandwidth request to the optical line terminal, the method further includes at least one of the following: sending first indication information to the optical line terminal, where the first indication information is used to indicate the load and bandwidth request in the bandwidth allocation The order of sending; receiving the second indication information sent by the optical line terminal, where the second indication information is used to indicate the sending order of the load and bandwidth request in the bandwidth allocation.
  • the ONU can send report information to the OLT, or the OLT can instruct the ONU.
  • the OLT knows that the load bandwidth request is sent first and then the bandwidth request is sent, and it can be used directly.
  • the bandwidth is allocated by the data amount of the second to-be-sent data carried in the bandwidth request.
  • a method for sending a bandwidth request is also provided.
  • Fig. 3 is a flowchart (1) of yet another optional bandwidth request sending method in an embodiment of the present application. As shown in Fig. 3, the method includes:
  • Step S202 In the bandwidth allocation obtained by the transmission container, the bandwidth request and the load are sent to the optical line terminal in sequence, where the load carries the first data, the bandwidth request carries the data amount of the second data, and the data amount of the second data is determined by When the bandwidth request is generated, it is obtained by subtracting the data amount of the first data from the data amount cached in the transmission container.
  • the above calculation method can be used to obtain the amount of data in the bandwidth request.
  • the first data carried in the load can basically obtain the bandwidth actually required by the current bandwidth request.
  • the method before sending the bandwidth request and load to the optical line terminal in sequence, the method further includes at least one of the following: sending first indication information to the optical line terminal, where the first indication information is used to indicate the bandwidth allocation The sending sequence of the load and bandwidth request, and/or the calculation method of the data amount of the second data; receiving the second indication information sent by the optical line terminal, where the second indication information is used to indicate the load in the bandwidth allocation The order of sending the bandwidth request, and/or the calculation method of the data amount of the second data.
  • FIG. 4 is a flowchart (2) of another optional method for sending a bandwidth request in an embodiment of the present application, as shown in FIG. 4 , The method includes:
  • Step S302 in the bandwidth allocation obtained by the transmission container, the bandwidth request and the load are sent to the optical line terminal in sequence, where the load carries the first data, the bandwidth request carries the data amount of the second data, and the data amount of the second data is : The amount of data cached in the transfer container when the bandwidth request is generated;
  • Step S304 The optical line terminal uses the data amount of the second data minus the data amount of the first data to obtain the data amount of the third data, and allocates bandwidth according to the data amount of the third data.
  • the optical line terminal can be instructed to use the data amount of the second data minus the data amount of the first data to obtain the data amount of the third data, and the bandwidth can be allocated according to the data amount of the third data.
  • the bandwidth request instruction may not be used.
  • the ONU may instruct the OLT through other report information or instruction information, or it may be an agreement between the OLT and the ONU in advance, or an instruction sent by the OLT to the ONU. No restrictions.
  • the sending order of load and bandwidth request in bandwidth allocation is to send bandwidth request first, then load, you can use the amount of data carried in the bandwidth request minus the buffered data carried in the load when sending the bandwidth request on the ONU side Data volume, and then send the reduced data volume to the OLT side to request bandwidth allocation, which is a calculation action performed on the ONU side. It can also be executed on the OLT side, that is, the OMU directly sends the bandwidth request and load to the OLT side, and then the OLT uses the amount of data carried in the bandwidth request minus the amount of cached data carried in the load, and then reduces the amount of data carried in the load. The data volume obtained later allocates bandwidth for the ONU.
  • the bandwidth request does not include the part of the buffer data carried in the load.
  • the bandwidth can be allocated directly according to the amount of data carried in the load.
  • the method further includes: sending first indication information to the optical line terminal, where the first indication information is used to indicate The sending order of the load and bandwidth request in the bandwidth allocation, and/or the calculation method of the data amount of the third data; receiving the second indication information sent by the optical line terminal, where the second indication information is used to indicate the load in the bandwidth allocation The order of sending the bandwidth request, and/or the calculation method of the data amount of the third data.
  • Fig. 5 is a flowchart (3) of another optional bandwidth request sending method in an embodiment of the present application. As shown in Fig. 5, the method includes:
  • Step S402 The optical network unit and the optical line terminal agree on a sending mode of the bandwidth request, wherein the optical network unit includes one or more transmission containers, and the sending mode of the bandwidth request includes at least one of the following:
  • the first load and the first bandwidth request are sequentially sent to the optical line terminal, where the first load carries the first data, the first bandwidth request carries the data amount of the second data, and the second
  • the data volume of the data is: the data volume cached in the transmission container when the first bandwidth request is generated;
  • the second bandwidth request and the second load are sequentially sent to the optical line terminal, where the second load carries the third data, the second bandwidth request carries the data amount of the fourth data, and the fourth The data amount of the data is obtained by subtracting the data amount of the third data from the data amount cached in the transmission container when the second bandwidth request is generated;
  • a third bandwidth request and a third load are sequentially sent to the optical line terminal, wherein the third load carries fifth data, and the third bandwidth request carries sixth data
  • the data amount of the sixth data is: the data amount buffered in the transmission container when the third bandwidth request is generated, and the optical line terminal uses the data amount of the sixth data minus the data amount of the sixth data
  • the data amount of the fifth data obtains the data amount of the seventh data, and bandwidth is allocated according to the data amount of the seventh data;
  • a fourth bandwidth request and a fourth load are sequentially sent to the optical line terminal, wherein the fourth load carries eighth data, and the fourth bandwidth request carries the ninth data.
  • the data volume of the data, the data volume of the ninth data is: the data volume buffered in the transmission container when the fourth bandwidth request is generated.
  • the sending manner of the agreed bandwidth request between the optical network unit and the optical line terminal includes: the optical network unit sends first indication information to the optical line terminal, where the first indication information is used to indicate The sending mode of the bandwidth request; the optical network unit receives the second indication information sent by the optical line terminal, where the second indication information is used to indicate the sending mode of the bandwidth request.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to enable a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the method described in each embodiment of the present application.
  • a device for sending a bandwidth request is also provided, which is used to implement the above-mentioned embodiments and preferred implementations, and those that have been described will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 6 is a structural block diagram (1) of an optional bandwidth request sending device according to an embodiment of the present application. As shown in Fig. 6, the device includes:
  • the first sending module 502 is configured to sequentially send load and bandwidth request to the optical line terminal in the bandwidth allocation obtained by the transmission container, wherein the load carries the first data, and the bandwidth request carries the data of the second data
  • the amount of data of the second data is: the amount of data cached in the transmission container when the bandwidth request is generated.
  • the first sending module 502 includes: a first sending unit configured to send the load to the optical line terminal in the bandwidth allocation obtained by the transmission container; and a second sending unit configured to send the load to the optical line terminal.
  • the line terminal After sending the load, the line terminal sends the bandwidth request at the end of the bandwidth allocation, wherein the difference between the time when the bandwidth request is generated and the time when the bandwidth request is sent is less than or equal to a preset difference value.
  • the device further includes: a first indication information sending module configured to send first indication information to the optical line terminal, where the first indication information is used to indicate that the Load and the sending sequence of the bandwidth request; the first receiving module is configured to receive the second indication information sent by the optical line terminal, where the second indication information is used to indicate the load in the bandwidth allocation And the sending order of the bandwidth request.
  • a first indication information sending module configured to send first indication information to the optical line terminal, where the first indication information is used to indicate that the Load and the sending sequence of the bandwidth request
  • the first receiving module is configured to receive the second indication information sent by the optical line terminal, where the second indication information is used to indicate the load in the bandwidth allocation And the sending order of the bandwidth request.
  • Fig. 7 is a structural block diagram (2) of an optional bandwidth request sending device according to an embodiment of the present application. As shown in Fig. 7, the device includes:
  • the second sending module 602 is configured to sequentially send a bandwidth request and a load to the optical line terminal in the bandwidth allocation obtained by the transmission container, wherein the load carries the first data, and the bandwidth request carries the data of the second data
  • the data amount of the second data is obtained by subtracting the data amount of the first data from the data amount buffered in the transmission container when the bandwidth request is generated.
  • the device further includes: a second indication information sending module configured to send first indication information to the optical line terminal, wherein the first indication information is used to indicate that the The load and the sending order of the bandwidth request, and/or the calculation method of the data amount of the second data to be sent; the second receiving module is configured to receive the second indication information sent by the optical line terminal, where all The second indication information is used to indicate the sending order of the load and the bandwidth request in the bandwidth allocation, and/or the calculation method of the data amount of the second data to be sent.
  • a second indication information sending module configured to send first indication information to the optical line terminal, wherein the first indication information is used to indicate that the The load and the sending order of the bandwidth request, and/or the calculation method of the data amount of the second data to be sent
  • the second receiving module is configured to receive the second indication information sent by the optical line terminal, where all The second indication information is used to indicate the sending order of the load and the bandwidth request in the bandwidth allocation, and/or the calculation method of the data amount of the second data to be sent.
  • Fig. 8 is a structural block diagram (3) of an optional bandwidth request sending device according to an embodiment of the present application. As shown in Fig. 8, the device includes:
  • the third sending module 702 is configured to send a bandwidth request and a load to the optical line terminal in sequence in the bandwidth allocation obtained by the transmission container, where the load carries the first data, the bandwidth request carries the data amount of the second data, and the second The amount of data is: the amount of data cached in the transmission container when the bandwidth request is generated;
  • the allocation module 704 is configured to use the data amount of the second data minus the data amount of the first data to obtain the data amount of the third data, and allocate bandwidth according to the data amount of the third data.
  • the device further includes: a third indication information sending module configured to send first indication information to the optical line terminal, where the first indication information is used to indicate that the Load and the sending order of the bandwidth request, and/or the calculation method of the data amount of the third data; the third receiving module is configured to receive the second indication information sent by the optical line terminal, wherein the first The second indication information is used to indicate the sending order of the load and the bandwidth request in the bandwidth allocation, and/or the calculation method of the data amount of the third data.
  • a third indication information sending module configured to send first indication information to the optical line terminal, where the first indication information is used to indicate that the Load and the sending order of the bandwidth request, and/or the calculation method of the data amount of the third data
  • the third receiving module is configured to receive the second indication information sent by the optical line terminal, wherein the first The second indication information is used to indicate the sending order of the load and the bandwidth request in the bandwidth allocation, and/or the calculation method of the data amount of the third data.
  • Fig. 9 is a structural block diagram (4) of an optional bandwidth request sending device according to an embodiment of the present application. As shown in Fig. 9, the device includes:
  • the appointment module 802 is configured to agree on the sending mode of the bandwidth request between the optical network unit and the optical line terminal, wherein the optical network unit includes one or more transmission containers, and the sending mode of the bandwidth request includes at least one of the following :
  • a first load and a first bandwidth request are sent to the optical line terminal in sequence, wherein the first load carries the first data, and the first bandwidth request carries the second
  • the data volume of the data, the data volume of the second data is: the data volume buffered in the transmission container when the first bandwidth request is generated; in the bandwidth allocation obtained by the transmission container, it is sent to the optical line terminal in turn
  • a second bandwidth request and a second load wherein the second load carries third data, the second bandwidth request carries a data amount of fourth data, and the data amount of the fourth data is determined by the second
  • the bandwidth request is generated, it is obtained by subtracting the data amount of the third data from the amount of data buffered in the transmission container; in the bandwidth allocation obtained by the transmission container, the third bandwidth
  • the appointment module 802 includes: a sending unit configured to send first indication information to the optical line terminal, where the first indication information is used to indicate a sending mode of the bandwidth request; a receiving unit, Configured to receive second indication information sent by the optical line terminal, where the second indication information is used to indicate a sending mode of the bandwidth request.
  • the foregoing bandwidth request sending device includes a processor and a memory.
  • the foregoing first sending module 502, second sending module 602, third sending module 702, allocation module 704, appointment module 802, etc. are all stored in the memory as program units, and are processed by The processor executes the above-mentioned program units stored in the memory to realize the corresponding functions.
  • the processor contains the kernel, and the kernel calls the corresponding program unit from the memory.
  • the kernel can set one or more to obtain the corresponding bandwidth allocation by adjusting the sending order of the load and bandwidth request, or subtracting the amount of data carried in the load from the amount of data carried in the bandwidth request, which solves the problem of OLT acquisition in related technologies.
  • the data to be sent in the ONU is inaccurate, which in turn leads to the problem of inaccurate DBA allocation, which improves the accuracy of OLT bandwidth allocation.
  • the memory may include non-permanent memory in computer-readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM), and the memory includes at least one Memory chip.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash random access memory
  • DBRu Downlink dynamic bandwidth request
  • a bandwidth allocation (Allocation) is sent first, followed by data (the data is carried in the XGTC payload).
  • DBRu contains the data to be sent subsequently (that is, the data carried in the XGTC payload).
  • This kind of DBRu report contains the data that has been sent, and DBRu is sent before the bandwidth allocation, and the obtained data to be sent is not the latest.
  • This DBRu method will report inaccurate local data to be sent to the OLT side, which will Lead to inaccurate DBA allocation.
  • FIG. 10 is a schematic diagram of an optional bandwidth allocation structure according to an embodiment of the present disclosure.
  • the improved DBA report method In bandwidth allocation, data is sent first, and then DBRu is sent, where the generation time of DBRu Try to be close to or equal to the DBRu sending time, so that the DBRu carries the latest data to be sent.
  • DBRu is placed at the end of the bandwidth allocation Allocation, that is, after the XGTC payload, where the XGTC payload carries the sent data.
  • three bytes are used to represent BufOcc, that is, the amount of data buffered, and one byte is used to represent the check code CRC.
  • the ONU After the ONU obtains the corresponding bandwidth of the T-CONT, it reserves the bandwidth corresponding to the DBRu and sends the data.
  • the data is carried in the XGTC payload to prepare the DBRu.
  • the time to prepare the DBRu is before the end of the T-CONT bandwidth and as far as possible to get the latest data to be sent in the cache as much as possible.
  • FIG. 11 is a schematic diagram of an optional bandwidth allocation structure according to an embodiment of the present disclosure.
  • ONU still uses the old DBRu reporting method, but on the OLT side, the situation of receiving buffered data in DBRu and subsequent XGTC After the amount of data in the payload, the two are subtracted as the buffered data reported by the ONU.
  • ONU still uses the old DBRu report method, but before the ONU report, after the obtained cached data and the amount of data sent in the subsequent XGTC payload, the two are subtracted as the cached data reported by the ONU , Send in the DBRu area.
  • the sending structure diagram shown in FIG. 11 is compatible with the existing DBRu reporting mode.
  • the ONU selects the reporting mode and indicates which reporting mode is adopted in the uplink frame.
  • data load
  • DBRu is sent, where the generation time of DBRu is as close as possible or equal to the sending time of DBRu, so that DBRu carries the latest data to be sent. Such as an error!
  • the reference source was not found.
  • DBRu is placed at the end of the bandwidth allocation Allocation, that is, after the XGTC payload, where the XGTC payload carries the sent data.
  • the ONU After the ONU obtains the corresponding bandwidth of the T-CONT, it reserves the bandwidth corresponding to the DBRu and sends the data.
  • the data is carried in the XGTC payload to prepare the DBRu.
  • the time to prepare the DBRu is before the end of the T-CONT bandwidth and as far as possible to get the latest data to be sent in the cache as much as possible.
  • the improved Ind is defined as:
  • the OLT may also instruct the ONU to use which DBRu reporting method.
  • the improved DBA report method in bandwidth allocation, data is sent first, and then DBRu is sent, where the generation time of DBRu is as close as possible or equal to the sending time of DBRu, so that DBRu carries the latest data to be sent.
  • DBRu is placed at the end of the bandwidth allocation Allocation, that is, after the XGTC payload, where the XGTC payload carries the sent data.
  • the improved Ind is defined as:
  • the OLT instructs the ONU to use which DBRu report method on the downstream frame. This can be achieved by modifying the existing PLOAM message Profile. See the definition of bits 34-35 in the table.
  • the embodiment of the present application provides a storage medium on which a program is stored, and the method for sending the bandwidth request is realized when the program is executed by a processor.
  • An embodiment of the present application provides a processor configured to run a program, wherein the method for sending the bandwidth request is executed when the program is running.
  • Fig. 12 is a structural block diagram of an optional electronic device (equipment) according to an embodiment of the present application.
  • the embodiment of the present application provides a device.
  • the device includes at least one processor 1101 and at least one memory 1102 and a bus 1103 connected to the processor; wherein, the processor and the memory communicate with each other through the bus; the processor is set to Call the program instructions in the memory to execute the aforementioned bandwidth request sending method.
  • the devices in this article can be servers, PCs, PADs, mobile phones, etc.
  • This application also provides a computer program product, which when executed on a data processing device, is suitable for executing a program that initializes the following method steps:
  • a load and a bandwidth request are sequentially sent to the optical line terminal, where the load carries the first data, the bandwidth request carries the data amount of the second data, and the second The amount of data is: the amount of data cached in the transmission container when the bandwidth request is generated.
  • the computer program product provided in this application is also suitable for executing a program with the following method steps:
  • a bandwidth request and a load are sequentially sent to the optical line terminal, where the load carries the first data, the bandwidth request carries the data amount of the second data, and the second The data amount of data is obtained by subtracting the data amount of the first data from the data amount buffered in the transmission container when the bandwidth request is generated.
  • the computer program product provided in this application is also suitable for executing a program with the following method steps:
  • a bandwidth request and a load are sequentially sent to the optical line terminal, where the load carries the first data, the bandwidth request carries the data amount of the second data, and the second The amount of data is: the amount of data cached in the transmission container when the bandwidth request is generated;
  • the optical line terminal uses the data amount of the second data minus the data amount of the first data to obtain the data amount of the third data, and allocates bandwidth according to the data amount of the third data.
  • the computer program product provided in this application is also suitable for executing a program with the following method steps:
  • the optical network unit and the optical line terminal agree on the sending mode of the bandwidth request, where the optical network unit includes one or more transmission containers, and the sending mode of the bandwidth request includes at least one of the following:
  • a first load and a first bandwidth request are sequentially sent to the optical line terminal, wherein the first load carries first data, and the first bandwidth request carries second data
  • the data volume of the second data is: the data volume buffered in the transmission container when the first bandwidth request is generated; in the bandwidth allocation obtained by the transmission container, the first data volume is sent to the optical line terminal in turn 2.
  • a bandwidth request and a second load wherein the second load carries third data, the second bandwidth request carries the data amount of fourth data, and the data amount of the fourth data is determined by the second bandwidth
  • the data amount buffered in the transmission container minus the data amount of the third data is obtained; in the bandwidth allocation obtained by the transmission container, a third bandwidth request and a third load are sequentially sent to the optical line terminal,
  • the third load carries fifth data
  • the third bandwidth request carries the data amount of sixth data
  • the data amount of the sixth data is: the transmission container when the third bandwidth request is generated
  • the optical line terminal uses the data amount of the sixth data minus the data amount of the fifth data to obtain the data amount of the seventh data, and allocates bandwidth according to the data amount of the seventh data
  • a fourth bandwidth request and a fourth load are sent to the optical line terminal in sequence, wherein the fourth load carries eighth data, and the fourth bandwidth request carries the first
  • the device includes one or more processors (CPUs), memory, and buses.
  • the device may also include input/output interfaces, network interfaces, and so on.
  • the memory may include non-permanent memory in computer-readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM), and the memory includes at least one Memory chip.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • the memory is an example of a computer-readable medium.
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • this application can be provided as a method, a system, or a computer program product. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本公开实施例提供了一种带宽请求的发送方法及装置、存储介质、电子装置,所述方法包括:在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求,其中,负载中携带第一数据,带宽请求中携带第二数据的数据量,第二数据的数据量为:带宽请求生成时传输容器中缓存的数据量。

Description

带宽请求的发送方法及装置、存储介质、电子装置 技术领域
本公开涉及通信技术领域,具体而言,涉及一种带宽请求的发送方法及装置、存储介质、电子装置。
背景技术
无源光网络(Passive Optical Network,简称为PON)架构如错误!未找到引用源。所示,是一种点到多点的网络架构,由光线路终端(Optical Line Terminal,简称为OLT)、光分配网络(Optical Distribute Network,简称为ODN)和光网络单元(Optical Network Unit,简称为ONU)组成,OLT通过ODN与多个光网络单元连接。
ONU的上行发送需要OLT通过带宽分配进行协调,以免不同ONU发送的信号发生冲突,无源光网络系统一般通过动态带宽分配(Dynamic Bandwidth Assignment,简称为DBA)计算各ONU的上行带宽。
传统的DBA算法是ONU向OLT报告本地待发送数据情况,OLT根据ONU报告情况对ONU分配带宽。本地待发送数据情况通过上行动态带宽请求(Dynamic Bandwidth Request upstream,简称为DBRu)表示,在一个带宽分配(Allocation)中包括DBRu和负载payload,在一个带宽分配周期中,先发送DBRu,后面紧接着会再发送携带在payload中的数据,而DBRu中请求带宽分配的缓存数据中包含后续发送的携带在payload中的数据,因此,当OLT接收到DBRu时,DBRu中指示的ONU待发送数据情况已经不包括payload中携带的数据了。此时OLT获取的ONU中的待发送数据情况与实际的待发送数据情况是不一致的。即,OLT获取的ONU中的待发送数据情况是不准确的,进而导致DBA分配不准确。
针对相关技术中,OLT获取的ONU中的待发送数据情况不准确,进而导致DBA分配不准确的问题,目前尚未提出有效的解决办法。
发明内容
本公开实施例提供了一种带宽请求的发送方法及装置、存储介质、电子装置,以至少解决相关技术中OLT获取的ONU中的待发送数据情况不准确,进而导致DBA分配不准确的问题。
根据本公开的一个实施例,提供了一种带宽请求的发送方法,包括:在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述带宽请求生成时所述传输容器中缓存的数据量。
根据本公开的一个实施例,还提供了一种带宽请求的发送方法,包括:在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量由所述带宽请求生成时所述传输容器中缓存的数据量减去所述第一数据的数据量获得。
根据本公开的一个实施例,还提供了一种带宽请求的发送方法,包括:在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述带宽请求生成时所述传输容器中缓存的数据量;所述光线路终端使用所述第二数据的数据量减去所述第一数据的数据量得到第三数据的数据量,并根据所述第三数据的数据量分配带宽。
根据本公开的一个实施例,还提供了一种带宽请求的发送方法,包括:光网络单元和光线路终端之间约定带宽请求的发送方式,其中,所述光网络单元中包括一个或多个传输容器,所述带宽请求的发送方式包括以下至少之一:在传输容器获得的带宽分配中,依次向所述光线路终端发送第一负载和第一带宽请求,其中,所述第一负载中携带第一数据,所述第一带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述第一带宽请求生成时所述传输容器中缓存的数据量;在传输容器获得的带宽分配 中,依次向所述光线路终端发送第二带宽请求和第二负载,其中,所述第二负载中携带第三数据,所述第二带宽请求中携带第四数据的数据量,所述第四数据的数据量由所述第二带宽请求生成时所述传输容器中缓存的数据量减去所述第三数据的数据量获得;在传输容器获得的带宽分配中,依次向所述光线路终端发送第三带宽请求和第三负载,其中,所述第三负载中携带第五数据,所述第三带宽请求中携带第六数据的数据量,所述第六数据的数据量为:所述第三带宽请求生成时所述传输容器中缓存的数据量,所述光线路终端使用所述第六数据的数据量减去所述第五数据的数据量得到第七数据的数据量,并根据所述第七数据的数据量分配带宽;在传输容器获得的带宽分配中,依次向所述光线路终端发送第四带宽请求和第四负载,其中,所述第四负载中携带第八数据,所述第四带宽请求中携带的第九数据的数据量,所述第九数据的数据量为:所述第四带宽请求生成时所述传输容器中缓存的数据量。
根据本公开的一个实施例,还提供了一种带宽请求的发送装置,包括:第一发送模块,设置为在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述带宽请求生成时所述传输容器中缓存的数据量。
根据本公开的一个实施例,还提供了一种带宽请求的发送装置,包括:第二发送模块,设置为在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量由所述带宽请求生成时所述传输容器中缓存的数据量减去所述第一数据的数据量获得。
根据本公开的一个实施例,还提供了一种带宽请求的发送装置,包括:第三发送模块,设置为在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述带宽请求生成时所述传输容器中缓存的数据量;分配模块,设置为使用所述第二数据的数 据量减去所述第一数据的数据量得到第三数据的数据量,并根据所述第三数据的数据量分配带宽。
根据本公开的一个实施例,还提供了一种带宽请求的发送装置,包括:约定模块,设置为在光网络单元和光线路终端之间约定带宽请求的发送方式,其中,所述光网络单元中包括一个或多个传输容器,所述带宽请求的发送方式包括以下至少之一:在传输容器获得的带宽分配中,依次向所述光线路终端发送第一负载和第一带宽请求,其中,所述第一负载中携带第一数据,所述第一带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述第一带宽请求生成时所述传输容器中缓存的数据量;在传输容器获得的带宽分配中,依次向所述光线路终端发送第二带宽请求和第二负载,其中,所述第二负载中携带第三数据,所述第二带宽请求中携带第四数据的数据量,所述第四数据的数据量由所述第二带宽请求生成时所述传输容器中缓存的数据量减去所述第三数据的数据量获得;在传输容器获得的带宽分配中,依次向所述光线路终端发送第三带宽请求和第三负载,其中,所述第三负载中携带第五数据,所述第三带宽请求中携带第六数据的数据量,所述第六数据的数据量为:所述第三带宽请求生成时所述传输容器中缓存的数据量,所述光线路终端使用所述第六数据的数据量减去所述第五数据的数据量得到第七数据的数据量,并根据所述第七数据的数据量分配带宽;在传输容器获得的带宽分配中,依次向所述光线路终端发送第四带宽请求和第四负载,其中,所述第四负载中携带第八数据,所述第四带宽请求中携带的第九数据的数据量,所述第九数据的数据量为:所述第四带宽请求生成时所述传输容器中缓存的数据量。
根据本发明实施例的又一方面,还提供了一种计算机可读的存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述带宽请求的发送方法。
根据本发明实施例的又一方面,还提供了一种电子装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,上述 处理器通过计算机程序执行上述的带宽请求的发送方法。
通过本申请实施例,在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求,其中,负载中携带第一数据,带宽请求中携带第二数据的数据量,第二数据的数据量为:第一带宽请求生成时传输容器中缓存的数据量,通过调整负载和带宽请求的发送顺序,当发送带宽请求时,负载中携带的第一数据已经不存在于当前带宽分配中,带宽请求中携带的第二数据的数据量更接近当前带宽分配中实际需要发送的数据量,解决了相关技术中OLT获取的ONU中的待发送数据情况不准确,进而导致DBA分配不准确的问题,提高了OLT带宽分配的准确率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是相关技术中无源光网络的架构示意图;
图2是根据本申请实施例的一种可选的带宽请求的发送方法的流程图;
图3是本申请实施例中又一种可选的带宽请求的发送方法的流程图(一);
图4是本申请实施例中又一种可选的带宽请求的发送方法的流程图(二);
图5是本申请实施例中又一种可选的带宽请求的发送方法的流程图(三);
图6是本申请实施例的一种可选的带宽请求的发送装置的结构框图(一);
图7是本申请实施例的一种可选的带宽请求的发送装置的结构框图(二);
图8是本申请实施例的一种可选的带宽请求的发送装置的结构框图(三);
图9是本申请实施例的一种可选的带宽请求的发送装置的结构框图(四);
图10是根据本公开实施例的一种可选的带宽分配结构示意图(一);
图11是根据本公开实施例的一种可选的带宽分配结构示意图(二);
图12是根据本申请实施例的一种可选的设备结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例提供了一种带宽请求的发送方法。图2是本申请实施例中一种可选的带宽请求的发送方法的流程图,如图2所示,该方法包括:
步骤S102,在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求,其中,负载中携带第一数据,带宽请求中携带第二数据的数据量,第二数据的数据量为:带宽请求生成时传输容器中缓存的数据量。
通过上述方法,在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求,其中,负载中携带第一数据,带宽请求中携带第二数据的数据量,第二数据的数据量为:带宽请求生成时传输容器中缓存的数据量,通过调整负载和带宽请求的发送顺序,当发送带宽请求时,负载中携带的第一数据已经不存在于当前带宽分配中,带宽请求中携带的第二数据的数据量更接近当前带宽分配中实际需要发送的数据量,解决了相关技术中OLT获取的ONU中的待发送数据情况不准确,进而导致DBA分配不准确的问题,提高了OLT带宽分配的准确率。
需要说明的是,传输容器可以用T-CONT来表示,一个ONU内包括一个或多个T-CONT,带宽请求的发送是以ONU为单位的,ONU每次向OLT发送负载或带宽请求时,每个ONU内包含了一个或多个T-CONT的带宽分配。
可选地,在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求包括:在传输容器获得的带宽分配中,向光线路终端发送负载;在向光线路终端发送负载之后,在带宽分配的末尾位置发送带宽请求,其中,带宽请求的生成时刻与带宽请求的发送时刻之间的差值小于或等于预设差值。
越靠近带宽分配的末尾位置,带宽请求中携带的第二数据的数据量越接近带宽分配中缓存的数据量,OLT根据带宽请求中的数据量来分配资源的准确度越高。带宽请求的生成时刻与带宽请求的发送时刻之间的差值小于或等于预设差值可以理解为带宽请求的生成时刻与带宽请求的发送时刻之间的差值越小,表示带宽请求的生成时间越短,生成速度越快,第二数据的数据量越接近带宽分配中实际缓存的数据量。
可选地,向光线路终端发送带宽请求之前,所述方法还包括以下至少之一:向光线路终端发送第一指示信息,其中,第一指示信息用于指示在带宽分配中负载与带宽请求的发送顺序;接收光线路终端发送的第二指示信息,其中,第二指示信息用于指示在带宽分配中所述负载与带宽请求的发送顺序。
ONU和OLT之间需要约定好,可以是ONU向OLT发送报告信息,也可以是OLT对ONU进行指示,OLT知道负载的带宽请求的发送顺序为先发负载后发带宽请求之后,就可以直接使用带宽请求中携带的第二待发送数据的数据量来分配带宽。
根据本公开的一个实施例,还提供了一种带宽请求的发送方法。图3是本申请实施例中又一种可选的带宽请求的发送方法的流程图(一),如图3所示,该方法包括:包括:
步骤S202,在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,负载中携带第一数据,带宽请求中携带第二数据的数据量,第二数据的数据量由带宽请求生成时传输容器中缓存的数据量减去第一数据的数据量获得。
需要说明的是,不改变负载和带宽请求的发送顺序时,可以通过上述计算方法来获取带宽请求中的数据量,当发送带宽请求时,使用当前带宽分配中缓存的数据总量减去后续发送的负载中携带的第一数据,基本上可以获取当前带宽请求真实需要的带宽。
可选地,依次向光线路终端发送带宽请求和负载之前,所述方法还包括以下至少之一:向光线路终端发送第一指示信息,其中,第一指示信息用于指示在带宽分配中所述负载与带宽请求的发送顺序,和/或所第二数据的数据量的计算方式;接收光线路终端发送的第二指示信息,其中,第二指示信息用于指示在带宽分配中所述负载与带宽请求的发送顺序,和/或第二数据的数据量的计算方式。
根据本公开的一个实施例,还提供了一种带宽请求的发送方法,图4是本申请实施例中又一种可选的带宽请求的发送方法的流程图(二),如图4所示,该方法包括:
步骤S302,在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,负载中携带第一数据,带宽请求中携带第二数据的数据量,第二数据的数据量为:带宽请求生成时传输容器中缓存的数据量;
步骤S304,光线路终端使用第二数据的数据量减去第一数据的数据量得到第三数据的数据量,并根据第三数据的数据量分配带宽。
需要说明的是,可以在发送带宽请求的同时指示光线路终端使用第二数据的数据量减去第一数据的数据量得到第三数据的数据量,并根据第三数据的数据量分配带宽,也可以不通过带宽请求指示,可以是ONU通过其他的报告信息或者指示信息来指示OLT,也可以是OLT提前与ONU约定好的,也可以是OLT向ONU发送的指示,本公开实施例对此不作限 制。
当带宽分配中负载和带宽请求的发送顺序是先发送带宽请求,后发送负载时,可以在ONU侧,发送带宽请求的时候,使用带宽请求中携带的数据量减去负载中携带的缓存数据的数据量,然后将减后得到的数据量发送到OLT侧来请求分配带宽,这是在ONU侧执行的计算动作。也可以是在OLT侧来执行,即,OMU直接将带宽请求和负载发送到OLT侧,然后由OLT使用带宽请求中携带的数据量减去负载中携带的缓存数据的数据量,然后根据将减后得到的数据量为ONU分配带宽。如果是先发送负载后发送带宽请求的顺序,则不用执行相减这一步骤,负载中携带部分缓存数据发送后,带宽请求中的数据量已经是不包含负载中携带的那部分缓存数据了,可以直接根据负载中携带的数据量分配带宽。
可选地,在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载之前,所述方法还包括:向光线路终端发送第一指示信息,其中,第一指示信息用于指示在带宽分配中负载与带宽请求的发送顺序,和/或第三数据的数据量的计算方式;接收光线路终端发送的第二指示信息,其中,第二指示信息用于指示在带宽分配中负载与带宽请求的发送顺序,和/或第三数据的数据量的计算方式。
ONU发送带宽请求的方式至少包括四种,而发送方式需要在ONU和OLT之间进行约定或协商,或是由其中一方报告或指示发送方式,另一方才能配合完整计算过程。图5是本申请实施例中又一种可选的带宽请求的发送方法的流程图(三),如图5所示,该方法包括:
步骤S402,光网络单元和光线路终端之间约定带宽请求的发送方式,其中,光网络单元中包括一个或多个传输容器,带宽请求的发送方式包括以下至少之一:
在传输容器获得的带宽分配中,依次向光线路终端发送第一负载和第一带宽请求,其中,第一负载中携带第一数据,第一带宽请求中携带第二数据的数据量,第二数据的数据量为:第一带宽请求生成时传输容器中缓 存的数据量;
在传输容器获得的带宽分配中,依次向光线路终端发送第二带宽请求和第二负载,其中,第二负载中携带第三数据,第二带宽请求中携带第四数据的数据量,第四数据的数据量由所述第二带宽请求生成时传输容器中缓存的数据量减去所述第三数据的数据量获得;
在传输容器获得的带宽分配中,依次向所述光线路终端发送第三带宽请求和第三负载,其中,所述第三负载中携带第五数据,所述第三带宽请求中携带第六数据的数据量,所述第六数据的数据量为:所述第三带宽请求生成时所述传输容器中缓存的数据量,所述光线路终端使用所述第六数据的数据量减去所述第五数据的数据量得到第七数据的数据量,并根据所述第七数据的数据量分配带宽;
在传输容器获得的带宽分配中,依次向所述光线路终端发送第四带宽请求和第四负载,其中,所述第四负载中携带第八数据,所述第四带宽请求中携带的第九数据的数据量,所述第九数据的数据量为:所述第四带宽请求生成时所述传输容器中缓存的数据量。
可选地,所述光网络单元和光线路终端之间约定带宽请求的发送方式包括:所述光网络单元向所述光线路终端发送第一指示信息,其中,所述第一指示信息用于指示所述带宽请求的发送方式;所述光网络单元接收所述光线路终端发送的第二指示信息,其中,所述第二指示信息用于指示所述带宽请求的发送方式。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根 据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在本实施例中还提供了一种带宽请求的发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本申请实施例的一种可选的带宽请求的发送装置的结构框图(一),如图6所示,该装置包括:
第一发送模块502,设置为在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述带宽请求生成时所述传输容器中缓存的数据量。
可选地,第一发送模块502包括:第一发送单元,设置为在传输容器获得的带宽分配中,向所述光线路终端发送所述负载;第二发送单元,设置为在向所述光线路终端发送所述负载之后,在所述带宽分配的末尾位置发送所述带宽请求,其中,所述带宽请求的生成时刻与所述带宽请求的发送时刻之间的差值小于或等于预设差值。
可选地,所述装置还包括:第一指示信息发送模块,设置为向所述光线路终端发送第一指示信息,其中,所述第一指示信息用于指示在所述带宽分配中所述负载与所述带宽请求的发送顺序;第一接收模块,设置为接收所述光线路终端发送的第二指示信息,其中,所述第二指示信息用于指 示在所述带宽分配中所述负载与所述带宽请求的发送顺序。
图7是根据本申请实施例的一种可选的带宽请求的发送装置的结构框图(二),如图7所示,该装置包括:
第二发送模块602,设置为在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量由所述带宽请求生成时所述传输容器中缓存的数据量减去所述第一数据的数据量获得。
可选地,所述装置还包括:第二指示信息发送模块,设置为向所述光线路终端发送第一指示信息,其中,所述第一指示信息用于指示在所述带宽分配中所述负载与所述带宽请求的发送顺序,和/或所述第二待发送数据的数据量的计算方式;第二接收模块,设置为接收所述光线路终端发送的第二指示信息,其中,所述第二指示信息用于指示在所述带宽分配中所述负载与所述带宽请求的发送顺序,和/或所述第二待发送数据的数据量的计算方式。
图8是根据本申请实施例的一种可选的带宽请求的发送装置的结构框图(三),如图8所示,该装置包括:
第三发送模块702,设置为在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,负载中携带第一数据,带宽请求中携带第二数据的数据量,第二数据的数据量为:带宽请求生成时所述传输容器中缓存的数据量;
分配模块704,设置为使用所述第二数据的数据量减去所述第一数据的数据量得到第三数据的数据量,并根据所述第三数据的数据量分配带宽。
可选地,所述装置还包括:第三指示信息发送模块,设置为向所述光线路终端发送第一指示信息,其中,所述第一指示信息用于指示在所述带宽分配中所述负载与所述带宽请求的发送顺序,和/或所述第三数据的数据量的计算方式;第三接收模块,设置为接收所述光线路终端发送的第二 指示信息,其中,所述第二指示信息用于指示在所述带宽分配中所述负载与所述带宽请求的发送顺序,和/或所述第三数据的数据量的计算方式。
图9是根据本申请实施例的一种可选的带宽请求的发送装置的结构框图(四),如图9所示,该装置包括:
约定模块802,设置为在光网络单元和光线路终端之间约定带宽请求的发送方式,其中,所述光网络单元中包括一个或多个传输容器,所述带宽请求的发送方式包括以下至少之一:在传输容器获得的带宽分配中,依次向所述光线路终端发送第一负载和第一带宽请求,其中,所述第一负载中携带第一数据,所述第一带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述第一带宽请求生成时所述传输容器中缓存的数据量;在传输容器获得的带宽分配中,依次向所述光线路终端发送第二带宽请求和第二负载,其中,所述第二负载中携带第三数据,所述第二带宽请求中携带第四数据的数据量,所述第四数据的数据量由所述第二带宽请求生成时所述传输容器中缓存的数据量减去所述第三数据的数据量获得;在传输容器获得的带宽分配中,依次向所述光线路终端发送第三带宽请求和第三负载,其中,所述第三负载中携带第五数据,所述第三带宽请求中携带第六数据的数据量,所述第六数据的数据量为:所述第三带宽请求生成时所述传输容器中缓存的数据量,所述光线路终端使用所述第六数据的数据量减去所述第五数据的数据量得到第七数据的数据量,并根据所述第七数据的数据量分配带宽;在传输容器获得的带宽分配中,依次向所述光线路终端发送第四带宽请求和第四负载,其中,所述第四负载中携带第八数据,所述第四带宽请求中携带的第九数据的数据量,所述第九数据的数据量为:所述第四带宽请求生成时所述传输容器中缓存的数据量。
可选地,所述约定模块802包括:发送单元,设置为向所述光线路终端发送第一指示信息,其中,所述第一指示信息用于指示所述带宽请求的发送方式;接收单元,设置为接收所述光线路终端发送的第二指示信息,其中,所述第二指示信息用于指示所述带宽请求的发送方式。
上述带宽请求的发送装置包括处理器和存储器,上述第一发送模块502,第二发送模块602,第三发送模块702,分配模块704,约定模块802等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序单元来实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整负载和带宽请求的发送顺序,或是,将带宽请求中携带的数据量减去负载中携带的数据量来获取对应的带宽分配,解决了相关技术中OLT获取的ONU中的待发送数据情况不准确,进而导致DBA分配不准确的问题,提高了OLT带宽分配的准确率。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
为了更好地理解本公开实施例中记载的方案,下面结合附图进行具体说明。
以吉比特无源光网络技术(X Gigabit-Capable Passive Optical Networks,简称为XG-PON)为例,本地待发送数据情况通过上行动态带宽请求(Dynamic Bandwidth Request upstream,简称为DBRu)表示,DBRu在一个带宽分配(Allocation)中先发送,紧接着再发送数据(数据携带在负载XGTC payload中),根据XG-PON标准,DBRu中包含随后发送的数据(即携带在XGTC payload中的数据),这种DBRu报告中包含了已经发送的数据,而且DBRu在带宽分配前部发送,获取的待发送数据情况不是最新的,这种DBRu方法会给OLT侧汇报不准确的本地待发送数据信息,从而会导致DBA分配不准确。
为了解决上述问题,本公开实施例提供了一种带宽请求的发送方法。图10是根据本公开实施例的一种可选的带宽分配结构示意图,如图10所示,改进后的DBA报告方式,在带宽分配中,先发送数据,再发送DBRu,其中DBRu的生成时间尽量接近或者等于DBRu发送时间,使得DBRu 中携带最新的待发送数据情况。如图10所示,在上行帧格式中,将DBRu放置在带宽分配Allocation中的最后,即在XGTC payload之后,其中XGTC payload中携带发送的数据。DBRu中用三个字节表示BufOcc,即缓存数据的数据量,用一个字节表示校验码CRC。
数据发送:ONU获得T-CONT相应带宽后,预留DBRu对应的带宽,发送数据,数据携带在XGTC payload中,准备DBRu。准备DBRu的时间在该T-CONT带宽结束之前,并尽量靠后,以尽量获得缓存中最新的待发送数据情况。
图11是根据本公开实施例的一种可选的带宽分配结构示意图,如图11示,ONU仍然采用旧的DBRu报告方式,但是在OLT侧,收到DBRu中的缓存数据情况,以及后续XGTC payload中的数据量后,两者相减作为ONU报告的缓存数据情况。
如图11所示,ONU仍然采用旧的DBRu报告方式,但是在ONU报告之前,将获取的缓存数据情况,以及后续XGTC payload中发送的数据量后,两者相减作为ONU报告的缓存数据情况,在DBRu区域进行发送。
图11所示的发送结构图兼容现有的DBRu报告方式,ONU选择报告方式,并且在上行帧中指示采用哪种报告方式。改进后的DBA报告方式,在带宽分配中,先发送数据(负载),再发送DBRu,其中DBRu的生成时间尽量接近或者等于DBRu发送时间,使得DBRu中携带最新的待发送数据情况。如错误!未找到引用源。所示,在上行帧格式中,将DBRu放置在带宽分配Allocation中的最后,即在XGTC payload之后,其中XGTC payload中携带发送的数据。
数据发送:ONU获得T-CONT相应带宽后,预留DBRu对应的带宽,发送数据,数据携带在XGTC payload中,准备DBRu。准备DBRu的时间在该T-CONT带宽结束之前,并尽量靠后,以尽量获得缓存中最新的待发送数据情况。
上行帧的XGTC header中有一个9bits的Ind域,用于指示部分上行发 送的选项。原来的定义如下表所示:
Bits 含义
8 PLOAM queue status,用于报告PLOAM消息队列的情况
7-1 Reserved
0 Dying Gasp
改进后的Ind定义为:
Figure PCTCN2020108224-appb-000001
当Ind域的bits7-6为10时,表示原来DBRu报告方式的改进:ONU仍然按照原来的方式报告DBRu,在OLT接收侧,需要将DBRu减去后面紧跟发送的数据量作为待传输数据情况。
上述图11所示的发送结构图中,也可以是OLT指示ONU采用哪种DBRu报告方式。改进后的DBA报告方式,在带宽分配中,先发送数据,再发送DBRu,其中DBRu的生成时间尽量接近或者等于DBRu发送时间, 使得DBRu中携带最新的待发送数据情况。在上行帧格式中,将DBRu放置在带宽分配Allocation中的最后,即在XGTC payload之后,其中XGTC payload中携带发送的数据。数据发送:ONU获得T-CONT相应带宽后,预留DBRu对应的带宽,发送数据,数据携带在XGTC payload中,准备DBRu。准备DBRu的时间在该T-CONT带宽结束之前,并尽量靠后,以尽量获得缓存中最新的待发送数据情况。
上行帧的XGTC header中有一个9bits的Ind域,用于指示部分上行发送的选项。原来的定义为:
Bits 含义
8 PLOAM queue status,用于报告PLOAM消息队列的情况
7-1 Reserved
0 Dying Gasp
改进后的Ind定义为:
Figure PCTCN2020108224-appb-000002
Figure PCTCN2020108224-appb-000003
当Ind域的bits7-6为10时,表示原来DBRu报告方式的改进:ONU仍然按照原来的方式报告DBRu,在OLT接收侧,需要将DBRu减去后面紧跟发送的数据量作为待传输数据情况。
OLT在下行帧上指示ONU采用哪种DBRu报告方式,可以通过修改已有PLOAM消息Profile来实现,见表中的34-35比特的定义。
Figure PCTCN2020108224-appb-000004
Figure PCTCN2020108224-appb-000005
Figure PCTCN2020108224-appb-000006
本申请实施例提供了一种存储介质,其上存储有程序,该程序被处理器执行时实现所述带宽请求的发送方法。
本申请实施例提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行所述带宽请求的发送方法。
图12是根据本申请实施例的一种可选的电子装置(设备)结构框图。本申请实施例提供了一种设备,设备包括至少一个处理器1101、以及与处理器连接的至少一个存储器1102、总线1103;其中,处理器、存储器通过总线完成相互间的通信;处理器设置为调用存储器中的程序指令,以执行上述的带宽请求的发送方法。本文中的设备可以是服务器、PC、PAD、手机等。
本申请还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有如下方法步骤的程序:
S1,在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述带宽请求生成时所述传输容器中缓存的数据量。
可选地,本申请提供的计算机程序产品还适于执行有如下方法步骤的程序:
S1,在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量由所述带宽请求生成时所述传输容器中缓存的数据量减去所述第一数据的数据量获得。
可选地,本申请提供的计算机程序产品还适于执行有如下方法步骤的程序:
S1,在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述带宽请求生成时所述传输容器中缓存的数据量;
S2,所述光线路终端使用所述第二数据的数据量减去所述第一数据的数据量得到第三数据的数据量,并根据所述第三数据的数据量分配带宽。
可选地,本申请提供的计算机程序产品还适于执行有如下方法步骤的程序:
S1,光网络单元和光线路终端之间约定带宽请求的发送方式,其中,光网络单元中包括一个或多个传输容器,带宽请求的发送方式包括以下至少之一:
在传输容器获得的带宽分配中,依次向所述光线路终端发送第一负载和第一带宽请求,其中,所述第一负载中携带第一数据,所述第一带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述第一带宽请求生成时所述传输容器中缓存的数据量;在传输容器获得的带宽分配中,依次向所述光线路终端发送第二带宽请求和第二负载,其中,所述第二负载中携带第三数据,所述第二带宽请求中携带第四数据的数据量,所述第四数据的数据量由所述第二带宽请求生成时所述传输容器中缓存的数据量减去所述第三数据的数据量获得;在传输容器获得的带宽分配中,依次向所述光线路终端发送第三带宽请求和第三负载,其中,所述第三负载中携带第五数据,所述第三带宽请求中携带第六数据的数据量,所述第六数据的数据量为:所述第三带宽请求生成时所述传输容器中缓存的数据量,所述光线路终端使用所述第六数据的数据量减去所述第五数据的数据量得到第七数据的数据量,并根据所述第七数据的数据量分配带宽;在传输容器获得的带宽分配中,依次向所述光线路终端发送第四带宽请求和第四 负载,其中,所述第四负载中携带第八数据,所述第四带宽请求中携带的第九数据的数据量,所述第九数据的数据量为:所述第四带宽请求生成时所述传输容器中缓存的数据量。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在一个典型的配置中,设备包括一个或多个处理器(CPU)、存储器和总线。设备还可以包括输入/输出接口、网络接口等。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 一种带宽请求的发送方法,包括:
    在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述带宽请求生成时所述传输容器中缓存的数据量。
  2. 根据权利要求1所述的方法,其中,所述在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求包括:
    在传输容器获得的带宽分配中,向所述光线路终端发送所述负载;
    在向所述光线路终端发送所述负载之后,在所述带宽分配的末尾位置发送所述带宽请求,其中,所述带宽请求的生成时刻与所述带宽请求的发送时刻之间的差值小于或等于预设差值。
  3. 根据权利要求1所述的方法,其中,在向所述光线路终端发送带宽请求之前,所述方法还包括以下至少之一:
    向所述光线路终端发送第一指示信息,其中,所述第一指示信息用于指示在所述带宽分配中所述负载与所述带宽请求的发送顺序;
    接收所述光线路终端发送的第二指示信息,其中,所述第二指示信息用于指示在所述带宽分配中所述负载与所述带宽请求的发送顺序。
  4. 一种带宽请求的发送方法,包括:
    在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量由所述带宽请求生成时所述传 输容器中缓存的数据量减去所述第一数据的数据量获得。
  5. 根据权利要求4所述的方法,其中,所述依次向光线路终端发送所述带宽请求和所述负载之前,所述方法还包括以下至少之一:
    向所述光线路终端发送第一指示信息,其中,所述第一指示信息用于指示在所述带宽分配中所述负载与所述带宽请求的发送顺序,和/或所述第二数据的数据量的计算方式;
    接收所述光线路终端发送的第二指示信息,其中,所述第二指示信息用于指示在所述带宽分配中所述负载与所述带宽请求的发送顺序,和/或所述第二数据的数据量的计算方式。
  6. 一种带宽请求的发送方法,包括:
    在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述带宽请求生成时所述传输容器中缓存的数据量;
    所述光线路终端使用所述第二数据的数据量减去所述第一数据的数据量得到第三数据的数据量,并根据所述第三数据的数据量分配带宽。
  7. 根据权利要求6所述的方法,其中,所述在传输容器获得的带宽分配中,依次向所述光线路终端发送所述带宽请求和所述负载之前,所述方法还包括:
    向所述光线路终端发送第一指示信息,其中,所述第一指示信息用于指示在所述带宽分配中所述负载与所述带宽请求的发送顺序,和/或所述第三数据的数据量的计算方式;
    接收所述光线路终端发送的第二指示信息,其中,所述第二指示信息用于指示在所述带宽分配中所述负载与所述带宽请求的发送顺序,和/或所述第三数据的数据量的计算方式。
  8. 一种带宽请求的发送方法,包括:光网络单元和光线路终端之间约定带宽请求的发送方式,其中,所述光网络单元中包括一个或多个传输容器,所述带宽请求的发送方式包括以下至少之一:
    在传输容器获得的带宽分配中,依次向所述光线路终端发送第一负载和第一带宽请求,其中,所述第一负载中携带第一数据,所述第一带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述第一带宽请求生成时所述传输容器中缓存的数据量;
    在传输容器获得的带宽分配中,依次向所述光线路终端发送第二带宽请求和第二负载,其中,所述第二负载中携带第三数据,所述第二带宽请求中携带第四数据的数据量,所述第四数据的数据量由所述第二带宽请求生成时所述传输容器中缓存的数据量减去所述第三数据的数据量获得;
    在传输容器获得的带宽分配中,依次向所述光线路终端发送第三带宽请求和第三负载,其中,所述第三负载中携带第五数据,所述第三带宽请求中携带第六数据的数据量,所述第六数据的数据量为:所述第三带宽请求生成时所述传输容器中缓存的数据量,所述光线路终端使用所述第六数据的数据量减去所述第五数据的数据量得到第七数据的数据量,并根据所述第七数据的数据量分配带宽;
    在传输容器获得的带宽分配中,依次向所述光线路终端发送第四带宽请求和第四负载,其中,所述第四负载中携带第八数据,所述第四带宽请求中携带的第九数据的数据量,所述第九数据的数据量为:所述第四带宽请求生成时所述传输容器中缓存的数据量。
  9. 根据权利要求8所述的方法,其中,所述光网络单元和光线路终端之间约定带宽请求的发送方式包括:
    所述光网络单元向所述光线路终端发送第一指示信息,其中,所述第一指示信息用于指示所述带宽请求的发送方式;
    所述光网络单元接收所述光线路终端发送的第二指示信息,其中,所述第二指示信息用于指示所述带宽请求的发送方式。
  10. 一种带宽请求的发送装置,包括:
    第一发送模块,设置为在传输容器获得的带宽分配中,依次向光线路终端发送负载和带宽请求,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述带宽请求生成时所述传输容器中缓存的数据量。
  11. 一种带宽请求的发送装置,包括:
    第二发送模块,设置为在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量由所述带宽请求生成时所述传输容器中缓存的数据量减去所述第一数据的数据量获得。
  12. 一种带宽请求的发送装置,包括:
    第三发送模块,设置为在传输容器获得的带宽分配中,依次向光线路终端发送带宽请求和负载,其中,所述负载中携带第一数据,所述带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述带宽请求生成时所述传输容器中缓存的数据量;
    分配模块,设置为使用所述第二数据的数据量减去所述第一数据 的数据量得到第三数据的数据量,并根据所述第三数据的数据量分配带宽。
  13. 一种带宽请求的发送装置,包括:约定模块,设置为在光网络单元和光线路终端之间约定带宽请求的发送方式,其中,所述光网络单元中包括一个或多个传输容器,所述带宽请求的发送方式包括以下至少之一:
    在传输容器获得的带宽分配中,依次向所述光线路终端发送第一负载和第一带宽请求,其中,所述第一负载中携带第一数据,所述第一带宽请求中携带第二数据的数据量,所述第二数据的数据量为:所述第一带宽请求生成时所述传输容器中缓存的数据量;
    在传输容器获得的带宽分配中,依次向所述光线路终端发送第二带宽请求和第二负载,其中,所述第二负载中携带第三数据,所述第二带宽请求中携带第四数据的数据量,所述第四数据的数据量由所述第二带宽请求生成时所述传输容器中缓存的数据量减去所述第三数据的数据量获得;
    在传输容器获得的带宽分配中,依次向所述光线路终端发送第三带宽请求和第三负载,其中,所述第三负载中携带第五数据,所述第三带宽请求中携带第六数据的数据量,所述第六数据的数据量为:所述第三带宽请求生成时所述传输容器中缓存的数据量,所述光线路终端使用所述第六数据的数据量减去所述第五数据的数据量得到第七数据的数据量,并根据所述第七数据的数据量分配带宽;
    在传输容器获得的带宽分配中,依次向所述光线路终端发送第四带宽请求和第四负载,其中,所述第四负载中携带第八数据,所述第四带宽请求中携带的第九数据的数据量,所述第九数据的数据量为:所述第四带宽请求生成时所述传输容器中缓存的数据量。
  14. 一种计算机可读的存储介质,所述计算机可读的存储介质包括存储的程序,其中,所述程序运行时执行上述权利要求1至9任一项中所述的方法。
  15. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为通过所述计算机程序执行所述权利要求1至9任一项中所述的方法。
PCT/CN2020/108224 2019-10-12 2020-08-10 带宽请求的发送方法及装置、存储介质、电子装置 WO2021068639A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/642,743 US20220329395A1 (en) 2019-10-12 2020-08-10 Method and Device for Sending Bandwidth Request, and Storage Medium and Electronic Device
EP20875444.0A EP4044617A4 (en) 2019-10-12 2020-08-10 METHOD AND DEVICE FOR SENDING A BANDWIDTH REQUEST, STORAGE MEDIA AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910975843.6 2019-10-12
CN201910975843.6A CN112653938A (zh) 2019-10-12 2019-10-12 带宽请求的发送方法及装置、存储介质、电子装置

Publications (1)

Publication Number Publication Date
WO2021068639A1 true WO2021068639A1 (zh) 2021-04-15

Family

ID=75343163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108224 WO2021068639A1 (zh) 2019-10-12 2020-08-10 带宽请求的发送方法及装置、存储介质、电子装置

Country Status (4)

Country Link
US (1) US20220329395A1 (zh)
EP (1) EP4044617A4 (zh)
CN (1) CN112653938A (zh)
WO (1) WO2021068639A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118212A (zh) * 2009-12-30 2011-07-06 中兴通讯股份有限公司 一种进行光网络单元带宽分配的方法及光线路终端
WO2015085543A1 (zh) * 2013-12-12 2015-06-18 华为技术有限公司 无源光网络中的动态带宽分配方法及装置
US20150373430A1 (en) * 2014-06-18 2015-12-24 Electronics And Telecommunications Research Institute Frame conversion-based mid-span extender, and method of frame conversion-based mid-span extender for supporting g-pon service in xg-pon link
CN105530201A (zh) * 2014-09-29 2016-04-27 深圳市中兴微电子技术有限公司 一种无源光网络中上行带宽分配的方法、设备及系统
CN110234041A (zh) * 2019-02-13 2019-09-13 孙武 一种光网络单元带宽需求的精确上报机制

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320803C (zh) * 2003-11-06 2007-06-06 北京邮电大学 无源光网络上行带宽的动态分配控制方法
JP5094247B2 (ja) * 2007-07-06 2012-12-12 株式会社日立製作所 受動光網システムおよびその通信方法
CN101374284B (zh) * 2007-08-20 2011-12-07 中兴通讯股份有限公司 一种基站为中继站分配带宽的方法
EP2111055A1 (en) * 2008-04-17 2009-10-21 Nokia Siemens Networks Oy Extended queue polling mechanism for ITU G.984 GPON system
CN101656894B (zh) * 2008-08-20 2012-11-21 华为技术有限公司 包分插复用设备及包分插复用设备的数据传输方法
CN101686177B (zh) * 2008-09-26 2012-05-23 华为技术有限公司 多业务传送网的动态带宽分配方法、设备及系统
JP5094664B2 (ja) * 2008-09-26 2012-12-12 株式会社日立製作所 受動光網システムおよびその運用方法
JP5210959B2 (ja) * 2009-04-27 2013-06-12 株式会社日立製作所 光受動網システム、および、その運用方法
CN101583056B (zh) * 2009-06-12 2012-10-03 华为技术有限公司 带宽处理方法、网络装置及网络系统
CN101997761B (zh) * 2009-08-13 2012-12-19 中兴通讯股份有限公司 带宽分配方法及光纤线路终端
CN102158770B (zh) * 2010-02-12 2016-08-03 中兴通讯股份有限公司 一种无源光网络中上行带宽分配的方法和系统
JP5315282B2 (ja) * 2010-04-01 2013-10-16 株式会社日立製作所 受動光網システム
JP5564393B2 (ja) * 2010-10-06 2014-07-30 株式会社日立製作所 受動光網システム
CN102594682B (zh) * 2012-02-16 2015-04-15 华北电力大学 一种基于流量预测的gpon动态带宽分配方法
CN103297866B (zh) * 2012-02-29 2016-03-09 华为技术有限公司 上、下行带宽分配方法、设备和嵌套系统
WO2013189017A1 (zh) * 2012-06-18 2013-12-27 中兴通讯股份有限公司 一种动态带宽分配方法及装置、系统
KR20140099764A (ko) * 2013-02-04 2014-08-13 한국전자통신연구원 직교 주파수 분할 다중접속 수동형 광가입자망에서의 상향 대역폭 자원 할당방법 및 데이터 상향 전송방법
CN104053076B (zh) * 2013-03-11 2019-04-05 中兴通讯股份有限公司 一种提高带宽分配效率的方法及系统
CN103281218B (zh) * 2013-05-30 2016-08-24 烽火通信科技股份有限公司 Xg-pon系统中上行流量的估计方法及估计装置
CN108667752A (zh) * 2017-03-31 2018-10-16 深圳市中兴微电子技术有限公司 一种动态带宽分配方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118212A (zh) * 2009-12-30 2011-07-06 中兴通讯股份有限公司 一种进行光网络单元带宽分配的方法及光线路终端
WO2015085543A1 (zh) * 2013-12-12 2015-06-18 华为技术有限公司 无源光网络中的动态带宽分配方法及装置
US20150373430A1 (en) * 2014-06-18 2015-12-24 Electronics And Telecommunications Research Institute Frame conversion-based mid-span extender, and method of frame conversion-based mid-span extender for supporting g-pon service in xg-pon link
CN105530201A (zh) * 2014-09-29 2016-04-27 深圳市中兴微电子技术有限公司 一种无源光网络中上行带宽分配的方法、设备及系统
CN110234041A (zh) * 2019-02-13 2019-09-13 孙武 一种光网络单元带宽需求的精确上报机制

Also Published As

Publication number Publication date
EP4044617A4 (en) 2023-01-11
US20220329395A1 (en) 2022-10-13
EP4044617A1 (en) 2022-08-17
CN112653938A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
US20210160597A1 (en) Integrated dynamic bandwidth allocation method and apparatus in passive optical networks
EP2975810A1 (en) Method and system for improving bandwidth allocation efficiency
KR20200017589A (ko) 무선 통신 시스템에서 모바일 노드의 태스크를 오프로딩하기 위한 클라우드 서버 및 그의 동작 방법
MX2015016012A (es) Metodos y sistemas para contexto y gestion de datos mediante un controlador de espectro dinamico y un controlador de politica de espectro dinamico.
CN113329276B (zh) 数据传输方法、装置、网关、芯片及存储介质
CN110768913A (zh) 流量控制方法及装置
WO2023098550A1 (zh) 一种数据的传输方法,光发送设备以及光接收设备
WO2024077988A1 (zh) 配置信息的发送方法、装置、存储介质及电子装置
EP3985991A1 (en) Bandwidth assignment method and apparatus, and bandwidth check method and apparatus
WO2021068639A1 (zh) 带宽请求的发送方法及装置、存储介质、电子装置
WO2020238247A1 (zh) 一种带宽分配方法以及相关设备
JP2003087283A (ja) 動的帯域割当回路、動的帯域割当方法、動的帯域割当プログラムおよび記録媒体
JP3768422B2 (ja) 動的帯域割当回路、加入者終端装置、ponシステム、動的帯域割当方法、動的帯域割当プログラムおよび記録媒体
CN113453285B (zh) 一种资源调整方法、装置及存储介质
CN111711971B (zh) 数据发送方法及装置、存储介质及电子设备
CN109471574B (zh) 用于配置资源的方法及装置
JP5900375B2 (ja) 通信システムおよび通信装置、通信帯域制御方法
CN118368293B (zh) 一种数据传输方法、计算机设备及介质
CN103559155A (zh) 一种数据传输方法、相关装置及数据传输系统
WO2021129687A1 (zh) 流量预测方法及装置、带宽分配方法及装置
CN111314923B (zh) 一种实现动态带宽的方法及装置
CN115550452B (zh) 数据处理方法、算力设备及通信系统
CN115391042B (zh) 一种资源分配方法、装置、电子设备及存储介质
CN111314189B (zh) 一种业务消息的发送方法及装置
CN106936734B (zh) 信息上报方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020875444

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020875444

Country of ref document: EP

Effective date: 20220512