WO2021068155A1 - 雾化装置 - Google Patents

雾化装置 Download PDF

Info

Publication number
WO2021068155A1
WO2021068155A1 PCT/CN2019/110327 CN2019110327W WO2021068155A1 WO 2021068155 A1 WO2021068155 A1 WO 2021068155A1 CN 2019110327 W CN2019110327 W CN 2019110327W WO 2021068155 A1 WO2021068155 A1 WO 2021068155A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
component
top cover
section
opening
Prior art date
Application number
PCT/CN2019/110327
Other languages
English (en)
French (fr)
Inventor
王慧
徐升阳
Original Assignee
深圳雾芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳雾芯科技有限公司 filed Critical 深圳雾芯科技有限公司
Priority to PCT/CN2019/110327 priority Critical patent/WO2021068155A1/zh
Publication of WO2021068155A1 publication Critical patent/WO2021068155A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present disclosure generally relates to a vaporization device, and in particular, to an electronic device that provides an aerosol.
  • an electronic cigarette is an electronic product that heats and atomizes an atomizable solution and generates an aerosol for users to inhale.
  • an electronic cigarette product includes a housing, an oil storage chamber, an atomization chamber, a heating component, an air inlet, an air flow channel, an air outlet, a power supply device, a sensing device, and a control device.
  • the oil storage chamber is used for storing vaporizable solution
  • the heating component is used for heating and atomizing the atomizable solution and generating aerosol.
  • the air inlet and the atomizing chamber communicate with each other, and provide air to the heating assembly when the user inhales.
  • the aerosol generated by the heating element is first generated in the atomization chamber, and then inhaled by the user through the air flow channel and the air outlet.
  • the power supply device provides the power required by the heating element, and the control device controls the heating time of the heating element according to the user's inhalation action detected by the sensing device.
  • the outer shell covers the above-mentioned components.
  • the proposed atomization device includes: a housing with a storage compartment, a top cover arranged in the housing and communicating with the storage compartment, and a heating assembly arranged in the housing and matched with the top cover and communicated with each other .
  • the top cover further includes a first top cover component and a second top cover component that are matched and communicated with each other, wherein the first top cover component can be connected to the storage compartment, and the second top cover component can be connected to the heating assembly.
  • the first top cover component may have a first through hole, a second through hole, and a third through hole, and the first top cover component can communicate with the storage through the first through hole, the second through hole, and the third through hole.
  • the compartments communicate with each other, and the second top cover assembly has a fourth through hole and a fifth through hole, and the second top cover assembly communicates with the heating assembly through the fourth through hole and the fifth through hole.
  • the sizes of the inner diameters of the first through hole, the second through hole, and the third through hole are not uniform.
  • FIG. 1A and FIG. 1B are schematic diagrams of the exploded structure of cigarette cartridges according to some embodiments of the application.
  • FIG. 2A is a three-dimensional schematic diagram of a top cover assembly of some embodiments of the application.
  • FIG. 2B is a schematic top view of the top cover assembly of some embodiments of the application.
  • 2C is a schematic cross-sectional structure diagram of the top cover assembly of some embodiments of the application.
  • FIG. 3A is a three-dimensional schematic diagram of the top cover assembly of some embodiments of the application.
  • FIG. 3B is a schematic top view of the top cover assembly of some embodiments of the application.
  • FIG. 3C is a schematic cross-sectional structure diagram of the top cover assembly of some embodiments of the application.
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a cartridge according to some embodiments of the application.
  • FIG. 5A is a perspective view of the top cover assembly of some embodiments of the application.
  • FIG. 5B is a schematic diagram of a side wall of a top cover assembly according to some embodiments of the application.
  • Fig. 5C is a partial cross-sectional view of the cartridge according to some embodiments of the application.
  • FIG. 5D is a schematic diagram of the side wall of the top cover of some embodiments of the application.
  • FIG. 6A is a three-dimensional schematic diagram of the heating base of some embodiments of the application.
  • FIG. 6B is a schematic cross-sectional structure diagram of the heating base of some embodiments of the application.
  • FIG. 7A and FIG. 7B are schematic diagrams of exploded structures of cigarette cartridges according to some embodiments of the application.
  • FIG. 8A is a three-dimensional schematic diagram of the top cover assembly of some embodiments of the application.
  • FIG. 8B is a schematic top view of the top cover assembly of some embodiments of the application.
  • FIG. 8C is a schematic cross-sectional structure diagram of the top cover assembly of some embodiments of the application.
  • FIG. 9A is a three-dimensional schematic diagram of the top cover assembly of some embodiments of the application.
  • FIG. 9B is a schematic top view of the top cover assembly of some embodiments of the application.
  • FIG. 9C is a schematic cross-sectional structure diagram of the top cover assembly of some embodiments of the application.
  • FIG. 10 is a schematic diagram of a cross-sectional structure of a cartridge according to some embodiments of the application.
  • Figure 11A is a perspective view of a top cover assembly of some embodiments of the application.
  • FIG. 11B is a schematic diagram of a side wall of a top cover assembly according to some embodiments of the application.
  • FIG. 11C is a partial cross-sectional view of the cartridge according to some embodiments of the application.
  • FIG. 11D is a schematic diagram of the side wall of the top cover of some embodiments of the application.
  • FIG. 12A is a three-dimensional schematic diagram of the heating base of some embodiments of the application.
  • FIG. 12B is a schematic cross-sectional structure diagram of the heating base of some embodiments of the application.
  • FIG. 13A and FIG. 13B are schematic diagrams of the exploded structure of cigarette cartridges according to some embodiments of the application.
  • FIG. 14A is a three-dimensional schematic diagram of the top cover assembly of some embodiments of the application.
  • FIG. 14B is a schematic top view of the top cover assembly of some embodiments of the application.
  • 14C is a schematic cross-sectional structure diagram of the top cover assembly of some embodiments of the application.
  • FIG. 15A is a three-dimensional schematic diagram of the top cover assembly of some embodiments of the application.
  • FIG. 15B is a schematic top view of the top cover assembly of some embodiments of the application.
  • 15C is a schematic cross-sectional structure diagram of the top cover assembly of some embodiments of the application.
  • FIG. 16 is a schematic diagram of a cross-sectional structure of a cartridge according to some embodiments of the application.
  • Figure 17A is a perspective view of a top cover assembly of some embodiments of the application.
  • FIG. 17B is a schematic diagram of the side wall of the top cover assembly according to some embodiments of the application.
  • FIG. 17C is a partial cross-sectional view of the cartridge according to some embodiments of the application.
  • FIG. 17D is a schematic diagram of the side wall of the top cover of some embodiments of the application.
  • FIG. 18A is a three-dimensional schematic diagram of the heating base of some embodiments of the application.
  • FIG. 18B is a schematic cross-sectional structure diagram of the heating base of some embodiments of the application.
  • first feature on or on the second feature may include embodiments in which the first feature and the second feature are formed in direct contact, and may also include additional features that may be formed on An embodiment between the first feature and the second feature so that the first feature and the second feature may not be in direct contact.
  • present disclosure may repeat reference numerals and/or letters in each example. This repetition is for the purpose of simplification and clarity, and does not in itself indicate the relationship between the various embodiments and/or configurations discussed.
  • the electronic atomizer device may also be called an electronic cigarette, and the electronic atomizer device includes an electronic atomizer device main body and an electronic atomizer, and the electronic atomizer device main body is also called a cigarette.
  • Rods (not shown), electronic atomizers are also called smoke bombs.
  • the cartridge and the cigarette rod are separate and separate structural parts, and the cartridge can be plugged and connected to the cigarette rod. The cartridge and the cigarette rod are combined to form an electronic cigarette.
  • the cartridge and the cigarette rod may be integrally formed structural members.
  • FIG. 1A and FIG. 1B are schematic diagrams of the exploded structure of the cartridge 1 according to some embodiments of the application.
  • the cartridge 1 includes a mouthpiece 11, a cap 12, a housing 13, a top cover 14, a heating component 15, a heating base 16, a tube 17, a thimble 18, and a PCB (Printed Circuit Board) module 19 and bottom cover 10.
  • the heating assembly 15 and the heating base 16 can form a heating assembly in some embodiments of the present application.
  • the heating assembly 15, the thimble 18 and the PCB module 19 constitute a heating circuit in some embodiments of the present application.
  • the PCB module 19 is provided with a resistor (not labeled in the figure) that characterizes the flavor information of the cartridge 1.
  • an encryption chip (not marked in the figure) is also provided on the PCB module 19.
  • the cartridge 1 further includes an oil absorbing pad 151 located under the heating assembly 15.
  • the oil absorbing pad 151 may be used to absorb the e-liquid that may leak.
  • the material of the oil absorbing pad 151 is polymer cotton, but it can be selected according to the actual situation and is not limited to this. Both sides of the oil absorbing pad 151 are provided with through holes or openings, and the through holes or openings can cover the outer wall of the upper half of the thimble 151.
  • the heating base 16 includes a hole 161, two holes 162 and a plurality of holes 163.
  • the hole 161 is used to accommodate the tube 17.
  • the PCB module 19 is separated from the tube 17 and the PCB module 19 does not directly contact the tube 17.
  • the two holes 162 are used for accommodating a thimble 18 respectively.
  • the tube 17 can be fluidly connected to the lower surface of the heating element 15, the oil absorbing pad 151 and the space where the thimble 18 is located.
  • the nozzle cover 11 has a hole 111
  • the cap 12 has a hole 121
  • the housing 13 has a hole 131.
  • the hole 111, the hole 121, and the hole 131 are in fluid communication.
  • the user can inhale gas containing atomized substance (such as e-liquid) from the hole 111 of the mouthpiece cover 11.
  • the top cover 14 has a component 141, a component 142, and a component 143, wherein the component 143 may be a heating seal.
  • the component 141, the component 142, and the component 143 are made of different materials.
  • the component 141 and the component 143 can be made of the same material.
  • the component 142 is made of a different material from the component 141 and the component 143.
  • the component 141 can be made of silica gel.
  • the component 143 can be made of silica gel.
  • the component 142 can be made of plastic.
  • the material hardness of the component 142 can be higher than the material hardness of the component 141.
  • the material hardness of the component 142 can be higher than the material hardness of the component 143.
  • the material hardness of the component 142 can be in the range of 65A to 75A in Shore A type.
  • the material hardness of the component 142 can be in the range of 75A to 85A for the Shore A type.
  • the material hardness of the component 142 can be in the range of 85A to 90A of Shore A hardness.
  • the material hardness of the component 141 can be in the range of 20A to 40A in the Shore A type.
  • the material hardness of the component 141 can be in the range of 40A to 60A in Shore A hardness.
  • the material hardness of the component 141 can be in the range of 60A to 75A in Shore A hardness.
  • the material hardness of the component 143 can be in the range of 20A to 40A in Shore A hardness.
  • the material hardness of the component 143 can be in the range of 40A to 60A in Shore A hardness.
  • the material hardness of the component 143 can be in the range of 60A to 75A in Shore A hardness.
  • the components 141, 142, and 143 of the top cover 14 can be assembled together by later assembly. Therefore, there may be assembly offset and part tolerance issues among the components 141, 142, and 143, which may lead to the risk of liquid leakage (such as e-liquid leakage).
  • the binding force between the component 141 and the component 142 tends to be 0N (that is, 0 Newton).
  • the bonding force between the component 143 and the component 142 tends to be ON.
  • the combined component 141 and component 142 can be easily separated.
  • the combined component 142 and component 143 can be easily separated.
  • the component 141 When the component 141 is engaged with the component 142, the component 141 surrounds a part of the component 142. When the component 142 is engaged with the component 143, a part of the component 142 surrounds the component 143.
  • the inner surface of the housing 13 surrounds the component 141.
  • the assembly 143 surrounds the heating assembly 15.
  • the upper surface of the heating element 15 includes a groove.
  • the lower surface of the heating element 15 has two pins, and the two pins of the heating element 15 can be respectively coupled to the corresponding thimble 18.
  • the thimble 18 can be coupled with the PCB module 19.
  • FIG. 2A is a three-dimensional schematic view of the top cover assembly 141 of some embodiments of the application
  • FIG. 2B is a top view schematic view of the top cover assembly 141 of some embodiments of the application
  • FIG. 2C is a top view assembly of some embodiments of the application 141 is a schematic cross-sectional structure diagram.
  • the assembly 141 has three through holes 1411, 1412, and 1413 penetrating the body of the assembly 141.
  • FIG. 2C is a cross-sectional view of FIG.
  • the assembly 141 has two plates 1415, 1417, the plates 1415, 1417 are formed in the inner cavity of the assembly 141, so as to roughly area the inner cavity of the assembly 141 It is divided into three through holes 1411, 1412, and 1413. Due to the configuration of the plates 1415 and 1417, the inner diameters of the formed through holes 1411, 1412, 1413 are not uniform, the inner diameter of the through hole 1411 gradually shrinks from bottom to top, and the inner diameter of the through hole 1412 gradually shrinks from top to bottom.
  • the inner diameter of the through hole 1413 gradually decreases from bottom to top; therefore, the cross-sectional area of the lower opening 14112 of the through hole 1411 is larger than that of the upper opening 14111 of the through hole 1411, and the cross-sectional area of the upper opening 14121 of the through hole 1412 is larger than that of the through hole 1412.
  • the cross-sectional area of the lower opening 14121 and the lower opening 14132 of the through hole 1413 is larger than the upper opening 14131 of the through hole 1413.
  • the through holes 1411, 1412, 1413 are not completely isolated from each other, and the through holes 1411, 1412, 1413 are at least partially in fluid communication. As shown in FIG.
  • the holes 1411, 1412, 1413 are in fluid communication.
  • FIG. 3A is a perspective schematic view of the top cover assembly 142 of some embodiments of the application
  • FIG. 3B is a top view schematic view of the top cover assembly 142 of some embodiments of the application
  • FIG. 3C is a top view assembly of some embodiments of the application 142 is a schematic cross-sectional structure diagram.
  • the assembly 142 has two through holes 1421 and 1422, and the through holes 1421 and 1422 respectively penetrate the body of the assembly 142.
  • Fig. 3C is a cross-sectional view taken along the line B-B of Fig. 3B.
  • the through hole 1421 has an upper opening 14211 and a lower opening 14212
  • the through hole 1422 has an upper opening 14221 and a lower opening 14222.
  • the through holes 1411 and 1413 of the component 141 roughly correspond to the through holes 1421 and 1422 of the component 142, respectively; further, the lower opening 14112 of the through hole 1411 of the component 141 is roughly aligned with the through hole 1411 of the component 142.
  • the upper opening 14211 of the hole 1421 and the lower opening 14132 of the through hole 1413 of the component 141 are substantially aligned with the upper opening 14221 of the through hole 1422 of the component 142.
  • FIG. 4 is a schematic cross-sectional structure diagram of the cartridge 1 according to some embodiments of the application.
  • the housing 13 includes a storage compartment 132.
  • the storage compartment 132 is used to store the fluid substance to be atomized, such as e-liquid.
  • the top cover 14 (including the component 141, the component 142 and the component 143) is joined to the housing 13.
  • the housing 13 and the top cover 14 define a storage compartment 132.
  • the inner surface of the casing 13 surrounds the assembly 141 of the top cover 14.
  • the housing 13 defines a storage compartment 132.
  • the top cover 14 is joined to the housing 13, the inner surface of the storage compartment 132 surrounds the assembly 141 of the top cover 14.
  • the top cover 14 (including the component 141, the component 142 and the component 143) is joined to the heating component 15.
  • the component 143 of the top cover 14 surrounds the heating component 15.
  • the component 141 of the top cover 14 has through holes 1411, 1412, 1413, and the component 142 has through holes 1421, 1422.
  • the upper surface of the heating element 15 has a groove.
  • the component 142 and the groove on the upper surface of the heating component 15 define a cavity 155.
  • the storage compartment 132 is in fluid communication with the through holes 1411, 1412, 1413.
  • the through holes 1411, 1412, and 1413 are in fluid communication with the through holes 1421 and 1422.
  • the through holes 1411, 1412, 1413 and the cavity 155 are in fluid communication via the through holes 1421, 1422. Therefore, the storage compartment 132, the through holes 1411, 1412, 1413, and the through holes 1421, 1422 are in fluid communication with the cavity 155.
  • the ratio of the cross-sectional area of the through hole 1421 or 1422 to the cross-sectional area of the storage compartment 132 is approximately 1:15 to 1:20, and the cross-sectional diameter of the through hole 1421 or 1422 is approximately 1.7 mm.
  • the heating assembly 15 includes two pins 152.
  • the pin 152 is coupled to the thimble 18.
  • the tube 17 extends from the bottom cover 10 toward the heating assembly 15.
  • the tube 17 includes two ends. Both ends of the tube 17 have openings 171 and 172 respectively.
  • the tube 17 extends and partially penetrates the heating base 16.
  • the hole 161 of the heating base 16 (as shown in FIG. 1A) contains the tube 17.
  • the opening 171 of the tube 17 defines an opening on the bottom surface of the heating base 16.
  • the opening 171 of the tube 17 is exposed to the bottom surface of the heating base 16.
  • the heating base 16 includes an opening 171 of the tube 17.
  • the through hole 101 of the bottom cover 10 exposes the opening 171.
  • the opening 171 and the opening 172 of the tube 17 are in fluid communication with the outside.
  • the inner diameter of the through hole 1411 of the component 141 gradually decreases from bottom to top
  • the inner diameter of the through hole 1412 gradually decreases from top to bottom
  • the inner diameter of the through hole 1413 gradually decreases from bottom to top; therefore, the through hole 1411
  • the cross-sectional area of the lower opening 14112 is larger than the upper opening 14111 of the through hole 1411
  • the cross-sectional area of the upper opening 14121 of the through hole 1412 is larger than the lower opening 14121 of the through hole 1412
  • the cross-sectional area of the lower opening 14132 of the through hole 1413 is larger than that of the through hole 1413.
  • the upper opening 14131 of the hole 1413 is larger than that of the through hole 1413.
  • the through holes 1411 and 1413 of the component 141 roughly correspond to the through holes 1421 and 1422 of the component 142 respectively. Therefore, the lower opening 14112 of the through hole 1411 of the component 141 is roughly aligned with the upper opening 14211 of the through hole 1421 of the component 142. The lower opening 14132 of the through hole 1413 of 141 is substantially aligned with the upper opening 14221 of the through hole 1422 of the component 142.
  • the dotted arrow in FIG. 4 shows the air outlet channel P1 of the cartridge 1.
  • External fluid such as air flows in from the opening 171 of the tube 17, passes through the tube 17, and flows out of the opening 172 of the tube 17.
  • the air flowing out of the opening 172 of the tube 17 flows to the atomization chamber 153 through the plurality of holes 163 of the heating base 16 (as shown in FIG. 1B ).
  • the atomization chamber 153 is defined by the lower part of the heating element 15, the pins 152 and the thimble 18.
  • the lower part of the heating assembly 15 is exposed in the atomizing chamber 153.
  • the aerosol generated by heating by the heating element 15 is mixed with air, and then flows through the passage 133 of the housing 13 to the hole 131 of the housing 13 (as shown in FIG. 1A) and the hole 121 of the cap 12 (as shown in FIG. 1A) , And then flow to the hole 111 of the nozzle cover 11 to be sucked by the user.
  • the e-liquid stored in the storage compartment 132 can first flow into the cavity 155 through the through holes 1411, 1412, or 1413 of the assembly 141 and the through holes 1421 or 1422 of the assembly 142. Subsequently, the heating assembly 15 can start to heat the e-liquid flowing into the cavity 155; when the e-liquid in the cavity 155 is heated, aerosol will be generated, and a part of the aerosol will enter the channel of the housing 13 with the air entering from the outside. 133, to further enter the hole 121 of the cap 12 and the hole 111 of the nozzle cover 11 for the user to suck.
  • some embodiments of the present application provide the through holes 1411, 1412, and 1413 of the assembly 141 and the through holes 1421, 1422 of the assembly 142, which are configured to inhibit the flow of e-liquid from the storage compartment 132 into the cavity 155. Therefore, the above technical problems can be solved by preventing excessive e-liquid from flowing into the cavity 155.
  • the heating element 15 can start to heat the e-liquid flowing into the cavity 155, a part of the smoke generated by it will enter the passage 133 of the housing 13 with the air entering from the outside, and the other part of the smoke will become bubbles.
  • the through holes 1421, 1422 of the component 142 flow into the through holes 1411, 1413 of the component 141 (see arrow f1); when the part of the smoke forming bubbles flows into the through holes 1411, 1413, due to the inner diameter of the through holes 1411, 1413 It is gradually reduced from bottom to top, and the pressure exerted by the remaining e-liquid in the storage compartment 132, so the bubbles will initially block the opening 14111 of the through hole 1411 and the opening 14131 of the through hole 1413, and The e-liquid in the storage compartment 132 will not continue to flow into the cavity 155 because the opening 14111 of the through hole 1411 and the opening 14131 of the through hole 1413 are blocked by air bubbles.
  • the heated e-liquid will produce more and more bubbles flowing into the through holes 1411, 1413; when more and more bubbles are blocked and accumulate in the through holes 1411
  • the opening 14131 continues upwards into the storage compartment 132 (see arrow f2); once the bubbles flow upwards into the storage compartment 132 through the opening 14111 of the through hole 1411 and the opening 14131 of the through hole 1413, the remaining e-liquid in the storage compartment 132 goes down It flows into the through hole 1412 of the assembly 141 (see arrow f3), and further flows into the cavity 155 through the through holes 1421 and 1422 of the assembly 142 to be heated by the heating assembly 15 to continuously generate smoke
  • the flow rate of the e-liquid in the storage compartment 132 into the cavity 155 can be effectively suppressed, so as to prevent excessive e-liquid from flowing into the cavity 155.
  • FIG. 5A is a perspective view of the top cover assembly of some embodiments of the application.
  • FIG. 5B is a schematic diagram of the side wall of the top cover assembly according to some embodiments of the application.
  • Fig. 5C is a partial cross-sectional view of the cartridge according to some embodiments of the application.
  • FIG. 5D is a schematic diagram of the side wall of the top cover assembly according to some embodiments of the application.
  • the component 143 can be a seal. As shown in FIG. 5A, FIG. 5B, and FIG. 5C, the component 143 has a top portion 1431, a bottom portion 1433, and a side wall 1435 extending between the top portion 1431 and the bottom portion 1433.
  • the side wall 1435 has a groove 14351.
  • the top 1431 of the component 143 has a groove 14311.
  • the bottom 1433 of the component 143 has a groove 14331.
  • the side wall 1435 includes a partition 1432.
  • the partition 1432 includes a section 14321 and a section 14322, and one end of the section 14321 is directly connected to one end of the section 14322.
  • the other end of the section 14321 and one side 14353 of the groove 14351 form a gap 14355.
  • the other end of the section 14322 and the other side 14354 of the groove 14351 form a gap 14356.
  • the angle ⁇ 1 between the section 14321 and the section 14322 is between 90 and 180 degrees. In some embodiments, the angle ⁇ 1 between the section 14321 and the section 14322 is between 90 and 120 degrees.
  • the angle ⁇ 1 between the section 14321 and the section 14322 is between 120 and 150 degrees. In some embodiments, the angle ⁇ 1 between the section 14321 and the section 14322 is between 150 and 180 degrees. In some embodiments, the section 14321 and the section 14322 form a V-shape with an opening facing upward (for example, the vertical upward direction shown in FIG. 5B).
  • the side wall 1435 of the assembly 143 further includes a partition 1434.
  • the second partition 1434 includes a section 14341 and a section 14342.
  • a gap 14358 is formed between the section 14341 and the section 14342.
  • the angle between the sections 14341 and 14342 an angle [theta] between section 2 and section 14321 and section 14322 ⁇ 1 may be different.
  • the angle between the segments 14342 and section 14341 14321 [theta] an angle between the segment and the segment 143 222 ⁇ 1 may be the same.
  • the section 14341 and the section 14342 form an inverted V shape with an opening facing downward (for example, the vertical downward direction shown in FIG. 5B).
  • the component 143 covers the heating component 15, at least one cavity (or called a gas-permeable channel) is defined between the partition 1432, the partition 1434, the groove 14351 and the heating component 15.
  • the groove 14331, the gap 14358, the gap 14355, and the groove 14311 can define the air-permeable channel 14301 (as shown in FIG. 5D).
  • the atomization chamber 153 can be in fluid communication with the storage compartment (the storage compartment 132 shown in FIG. 4) through the air-permeable passage 14301.
  • the groove 14331, the gap 14358, the gap 14356, and the groove 14311 can define the air-permeable channel 14302 (as shown in FIG. 5D).
  • the atomization chamber 153 can be in fluid communication with the storage compartment (the storage compartment 132 shown in FIG. 4) through the air-permeable passage 14302.
  • the atomizable material in the storage compartment 132 is continuously consumed and reduced, so that the pressure in the storage compartment 132 gradually decreases.
  • negative pressure may be generated.
  • the decrease of the pressure in the storage compartment 132 may make it difficult for atomizable materials (such as e-liquid) to flow to the cavity 155 of the heating element 15 through the channels 1421 and 1422.
  • the high-temperature heating element 15 may dry out and produce a burnt smell.
  • the above-mentioned problem can be improved by arranging the ventilation channel in the side wall of the component 143.
  • the air-permeable passage formed in the side wall of the component 143 (the flow direction shown by the arrow in FIG. 5D) can balance the pressure in the storage compartment 132.
  • the cartridge 1 also includes an oil absorbing pad 151 located under the heating element 15.
  • the oil absorbing pad 151 can be used to absorb e-liquid that may leak (refer to FIG. 1A). However, when the user inhales, the air will pass through the channel P1 as shown in Figure 3. When the air passes through the atomizing chamber 153, the atomized e-liquid is mixed with cold air, which may condense the atomized e-liquid. The e-liquid that has not been completely absorbed by the oil absorbing pad 151 may spill out of the cartridge 1.
  • the heating base 16 of some embodiments of the present application further includes an oil absorbing pad 165 (see FIG. 6A).
  • the oil absorbing pad 165 is arranged at the opposite end of the end opposite to the position of the hole 161 (refer to FIG. 6B).
  • the material of the oil absorbing pad 165 is polymer cotton, but it can be selected according to the actual situation and is not limited to this.
  • the cartridge 2 includes a mouthpiece 21, a cap 22, a housing 23, a top cover 24, a heating component 25, a heating base 26, a tube 27, a thimble 28, and a PCB (Printed Circuit Board) module 29 and bottom cover 20.
  • the heating assembly 25 and the heating base 26 can form a heating assembly in some embodiments of the present application.
  • the heating assembly 25, the thimble 28 and the PCB module 29 constitute a heating circuit in some embodiments of the present application.
  • the PCB module 29 is provided with a resistor (not labeled in the figure) that characterizes the flavor information of the cartridge 2.
  • an encryption chip (not shown in the figure) is also provided on the PCB module 29.
  • the cartridge 2 further includes an oil absorbing pad 251 located under the heating assembly 25.
  • the oil absorbing pad 251 may be used to absorb the e-liquid that may leak.
  • the material of the oil absorbing pad 251 is polymer cotton, but it can be selected according to the actual situation and is not limited to this. Both sides of the oil absorbing pad 251 are provided with through holes or openings, and the through holes or openings can cover the outer wall of the upper half of the thimble 251.
  • the heating base 26 includes a hole 261, two holes 262 and a plurality of holes 263.
  • the hole 261 is used to accommodate the tube 27.
  • the PCB module 29 is separated from the tube 27, and the PCB module 29 does not directly contact the tube 27.
  • the two holes 262 are used for accommodating a thimble 28 respectively.
  • the tube 27 can be fluidly connected to the lower surface of the heating element 25, the oil absorbing pad 251 and the space where the thimble 28 is located.
  • the nozzle cover 21 has a hole 211
  • the cap 22 has a hole 221
  • the housing 23 has a hole 231.
  • the hole 211, the hole 221, and the hole 231 are in fluid communication.
  • the user can inhale the gas containing the atomized substance (such as e-liquid) from the hole 211 of the mouthpiece cover 21.
  • the top cover 24 has a component 241, a component 242, and a component 243, where the component 243 may be a heating seal.
  • the component 241, the component 242, and the component 243 are made of different materials.
  • the component 241 and the component 243 can be made of the same material.
  • the component 242 is made of a different material from the component 241 and the component 243.
  • the component 241 can be made of silica gel.
  • the component 243 can be made of silica gel.
  • the component 242 can be made of plastic.
  • the material hardness of the component 242 can be higher than the material hardness of the component 241.
  • the material hardness of the component 242 can be higher than the material hardness of the component 243.
  • the material hardness of the component 242 can be in the range of 65A to 75A in Shore A type.
  • the material hardness of the component 242 can be in the range of 75A to 85A in Shore A hardness.
  • the material hardness of the component 242 can be in the range of 85A to 90A of Shore A hardness.
  • the material hardness of the component 241 may be in the range of 20A to 40A in Shore A hardness.
  • the material hardness of the component 241 can be in the range of 40A to 60A in Shore A hardness.
  • the material hardness of the component 241 can be in the range of 60A to 75A of Shore A hardness.
  • the material hardness of the component 243 can be in the range of 20A to 40A in Shore A hardness.
  • the material hardness of the component 243 can be in the range of 40A to 60A in Shore A hardness.
  • the material hardness of the component 243 can be in the range of 60A to 75A in Shore A hardness.
  • the components 241, 242, and 243 of the top cover 24 can be assembled together by later assembly. Therefore, there may be assembly deviation and part tolerance issues among the components 241, 242, and 243, which may lead to liquid leakage risks (such as e-liquid leakage).
  • the binding force between the component 241 and the component 242 tends to be 0N (that is, 0 Newton).
  • the bonding force between the component 243 and the component 242 tends to be ON.
  • the combined component 241 and component 242 can be easily separated.
  • the combined component 242 and component 243 can be easily separated.
  • the component 241 When the component 241 is engaged with the component 242, the component 241 surrounds a part of the component 242. When the component 242 is engaged with the component 243, a part of the component 242 surrounds the component 243.
  • the inner surface of the housing 23 surrounds the component 241.
  • the assembly 243 surrounds the heating assembly 25.
  • the upper surface of the heating element 25 includes a groove.
  • the lower surface of the heating element 25 has two pins, and the two pins of the heating element 25 can be respectively coupled to the corresponding thimble 28.
  • the thimble 28 can be coupled with the PCB module 29.
  • FIG. 8A is a perspective schematic view of the top cover assembly 241 of some embodiments of the application
  • FIG. 8B is a top view schematic view of the top cover assembly 241 of some embodiments of the application
  • FIG. 8C is a top view assembly of some embodiments of the application 241 is a schematic cross-sectional structure diagram.
  • the assembly 241 has a through hole 2411 penetrating the body of the assembly 241.
  • Figs. 8A, 8B and 8C the assembly 241 has a through hole 2411 penetrating the body of the assembly 241.
  • FIG 8C is a cross-sectional view of Figure 8B along the line AA, the through hole 2411 has two opposite inner walls 2412, 2413; the baffle plate 2415 extends substantially horizontally from the inner wall 2412 at the upper edge of the inner wall 2412, and the baffle plate 2417 The lower edge of the inner wall 2413 extends substantially horizontally from the inner wall 2413; further, the baffle plate 2415 is substantially horizontally disposed at the opening 24111 of the through hole 2411, and extends from the inner wall 2412, while the baffle plate 2417 is disposed substantially horizontally It is located at the opening 24112 of the through hole 2411 and extends from the inner wall 2413. In this way, the baffle plates 2415 and 2417 are configured to form a zigzag channel in the through hole 2411. Wherein, the vertical projection of the baffle 2415 and the baffle 2417 do not overlap with each other.
  • FIG. 9A is a perspective schematic view of the top cover assembly 242 of some embodiments of the application
  • FIG. 3B is a top schematic view of the top cover assembly 242 of some embodiments of the application
  • FIG. 3C is a top view assembly of some embodiments of the application 242 is a schematic cross-sectional structure diagram.
  • the assembly 242 has two through holes 2421, 2422, and the through holes 2421, 2422 penetrate the body of the assembly 242, respectively.
  • FIG. 9C is a cross-sectional view of FIG. 9B along the line B-B.
  • the through hole 2421 has an upper opening 24211 and a lower opening 24212
  • the through hole 2422 has an upper opening 24221 and a lower opening 24222.
  • FIG. 10 is a schematic cross-sectional structure diagram of the cartridge 2 according to some embodiments of the application.
  • the housing 23 includes a storage compartment 232.
  • the storage compartment 232 is used to store the fluid substance to be atomized, such as e-liquid.
  • the top cover 24 (including the component 241, the component 242 and the component 243) is joined to the housing 23.
  • the housing 23 and the top cover 24 define a storage compartment 232.
  • the inner surface of the casing 23 surrounds the assembly 241 of the top cover 24.
  • the housing 23 defines a storage compartment 232.
  • the inner surface of the storage compartment 232 surrounds the assembly 241 of the top cover 24.
  • the top cover 24 (including the component 241, the component 242 and the component 243) is joined to the heating component 25.
  • the assembly 243 of the top cover 24 surrounds the heating assembly 25.
  • the component 241 of the top cover 24 has a through hole 2411, and the component 242 has a through hole 2421, 2422.
  • the upper surface of the heating element 25 has a groove.
  • the component 242 and the groove on the upper surface of the heating component 25 define a cavity 255.
  • the storage compartment 232 is in fluid communication with the through hole 2411.
  • the through hole 2411 is in fluid communication with the through hole 2421 and the through hole 2422.
  • the through hole 2411 and the cavity 255 are in fluid communication via the through holes 2421, 2422. Therefore, the storage compartment 232, the through holes 2411, the through holes 2421, and 2422 are in fluid communication with the cavity 255.
  • the ratio of the cross-sectional area of the through hole 2421 or 2422 to the cross-sectional area of the storage compartment 232 is approximately 1:15 to 1:20, and the cross-sectional diameter of the through hole 2421 or 2422 is approximately 1.7 mm.
  • the heating assembly 25 includes two pins 252.
  • the pin 252 is coupled to the thimble 28.
  • the tube 27 extends from the bottom cover 20 toward the heating assembly 25.
  • the tube 27 includes two ends. Both ends of the tube 27 have openings 271 and 272 respectively.
  • the tube 27 extends and partially penetrates the heating base 26.
  • the hole 261 of the heating base 26 (as shown in FIG. 7A) contains the tube 27.
  • the opening 271 of the tube 27 defines an opening on the bottom surface of the heating base 26.
  • the opening 271 of the tube 27 is exposed to the bottom surface of the heating base 26.
  • the heating base 26 includes an opening 271 of the tube 27.
  • the through hole 201 of the bottom cover 20 exposes the opening 271.
  • the opening 271 and the opening 272 of the tube 27 are in fluid communication with the outside.
  • the dotted arrow in FIG. 10 shows the air outlet channel P2 of the cartridge 2.
  • the external fluid such as air
  • the air flowing out from the opening 272 of the tube 27 flows to the atomization chamber 253 through the plurality of holes 263 of the heating base 26 (as shown in FIG. 7B).
  • the atomization chamber 253 is defined by the lower part of the heating element 25, the pins 252 and the thimble 28.
  • the lower part of the heating assembly 25 is exposed in the atomizing chamber 253.
  • the aerosol generated by heating by the heating element 25 is mixed with air, and then flows through the passage 233 of the housing 23 to the hole 231 of the housing 23 (as shown in FIG. 7A) and the hole 221 of the cap 22 (as shown in FIG. 7A) , And then flow to the hole 211 of the nozzle cover 21 to be sucked by the user.
  • the e-liquid stored in the storage compartment 232 can first flow into the cavity 255 through the through hole 2411 of the assembly 241 and the through hole 2421 or 2422 of the assembly 242. Subsequently, the heating assembly 25 can start to heat the e-liquid flowing into the cavity 255; when the e-liquid in the cavity 255 is heated, aerosol will be generated, and a part of the aerosol will enter the passage of the housing 23 with the air entering from the outside. 233 to further enter the hole 221 of the cap 22 and the hole 211 of the nozzle cover 21 for the user to suck.
  • some embodiments of the present application provide the through holes 2411 of the assembly 241 and the through holes 2421, 2422 of the assembly 242, which are configured to suppress the flow rate of e-liquid from the storage compartment 232 into the cavity 255, and avoid excessive If the e-liquid flows into the cavity 255, the above technical problem can be solved.
  • the heating element 25 can start to heat the e-liquid flowing into the cavity 255, a part of the smoke generated by it will enter the passage 233 of the housing 23 with the air entering from the outside, and the other part of the smoke will become bubbles.
  • the through holes 2421, 2422 of the component 242 flow into the through hole 2411 of the component 241 (see arrow f4); when the part of the smoke forming bubbles flows into the through hole 2411, the baffles 2415 and 2417 of the through hole 2411 are configured Shape to form a zigzag circuitous path in the through hole 2411; because of the zigzag circuitous path formed in the through hole 2411, the air bubbles must pass a longer path to pass through the through hole 2411 and further enter the storage compartment 232 (Refer to arrow f5).
  • the bubbles will spend more time staying in the through hole 2411.
  • the e-liquid flowing into the cavity from the storage compartment 232 must also pass through the Z-shaped circuitous path of the through hole 2411, so that the e-liquid can pass through the through hole 2411 and further flow into the through hole 2421 of the assembly 242 through a longer path.
  • the baffles 2415 and 2417 of the through hole 2411 can effectively slow down the flow rate of e-liquid from the storage compartment 232 through the components 241 and 242 into the cavity 255.
  • the flow rate of the e-liquid in the storage compartment 232 into the cavity 255 can be effectively suppressed, so as to prevent excessive e-liquid from flowing into the cavity 255.
  • Figure 11A is a perspective view of a top cover assembly of some embodiments of the application.
  • FIG. 11B is a schematic diagram of the side wall of the top cover assembly according to some embodiments of the application.
  • FIG. 11C is a partial cross-sectional view of the cartridge according to some embodiments of the application.
  • FIG. 11D is a schematic diagram of a side wall of a top cover assembly according to some embodiments of the application.
  • the component 243 can be a seal. As shown in FIGS. 11A, 11B, and 11C, the assembly 243 has a top 2431, a bottom 2433, and a side wall 2435 extending between the top 2431 and the bottom 2433.
  • the side wall 2435 has a groove 24351.
  • the top 2431 of the component 243 has a groove 24311.
  • the bottom 2433 of the component 243 has a groove 24331.
  • the side wall 2435 includes a partition 2432.
  • the partition 2432 includes a section 24321 and a section 24322, and one end of the section 24321 is directly connected to one end of the section 24322.
  • the other end of the section 24321 and one side 24353 of the groove 24351 form a gap 24355.
  • the other end of the section 24322 and the other side 24354 of the groove 24351 form a gap 24356.
  • the angle ⁇ 1 between the section 24321 and the section 24322 is between 90 and 180 degrees. In some embodiments, the angle ⁇ 1 between the section 24321 and the section 24322 is between 90 and 120 degrees.
  • the angle ⁇ 1 between the section 23421 and the section 24322 is between 120 and 150 degrees. In some embodiments, the angle ⁇ 1 between the section 24321 and the section 24322 is between 150 and 180 degrees. In some embodiments, the section 24321 and the section 24322 form a V-shape with an opening facing upward (for example, the vertical upward direction shown in FIG. 11B).
  • the side wall 2435 of the assembly 243 further includes a partition 2434.
  • the second partition 2434 includes a section 24341 and a section 24342.
  • a gap 24358 is formed between the section 24341 and the section 24342.
  • the angle between the sections 24341 and 24342 an angle [theta] between section 2 and section 24321 and section 24322 ⁇ 1 may be different.
  • the angle between the sections 24341 and 24342 ⁇ the angle ⁇ between section 2 and section 24321 and section 243,221 may be identical.
  • the section 24341 and the section 24342 form an inverted V shape with an opening facing downward (for example, the vertical downward direction shown in FIG. 11B).
  • the component 243 covers the heating component 25, the partition 2432, the partition 2434, the groove 24351 and the heating component 25 define at least one cavity (or called a gas-permeable channel).
  • the groove 24331, the gap 24358, the gap 24355, and the groove 24311 can define the air-permeable passage 24301 (as shown in FIG. 11D).
  • the atomization chamber 253 may be in fluid communication with the storage compartment (the storage compartment 232 as shown in FIG. 10) through the air-permeable passage 24301.
  • the groove 24331, the gap 24358, the gap 24356, and the groove 24311 may define the air-permeable passage 24302 (as shown in FIG. 11D).
  • the atomization chamber 253 may be in fluid communication with the storage compartment (the storage compartment 232 as shown in FIG. 10) through the air-permeable passage 24302.
  • the atomizable material in the storage compartment 232 is continuously consumed and reduced, so that the pressure in the storage compartment 232 gradually decreases.
  • negative pressure may be generated.
  • the reduced pressure in the storage compartment 232 may make it difficult for atomizable materials (such as e-liquid) to flow to the cavity 255 of the heating assembly 25 through the channels 2421 and 2422.
  • the high-temperature heating element 25 may dry out and produce a burnt smell.
  • the above-mentioned problem can be improved by arranging a ventilation channel in the side wall of the component 243.
  • the air-permeable passage formed in the side wall of the component 243 (the flow direction shown by the arrow in FIG. 11D) can balance the pressure in the storage compartment 232.
  • the cartridge 2 also includes an oil absorbing pad 251 located under the heating element 25.
  • the oil absorbing pad 251 can be used to absorb e-liquid that may leak (refer to FIG. 7A). However, when the user inhales, the air will pass through the passage P2 as shown in Fig. 10. When the air passes through the atomizing chamber 253, the atomized e-liquid is mixed with cold air, which may condense the atomized e-liquid. The e-liquid that has not been completely absorbed by the oil absorbing pad 251 may spill out of the cartridge 2.
  • the heating base 26 of some embodiments of the present application further includes an oil absorbing pad 265 (see FIG. 12A).
  • the oil absorbing pad 265 is arranged at the opposite end of the end opposite to the position where the hole 261 is located (refer to FIG. 12B).
  • the material of the oil absorbing pad 265 is polymer cotton, but it can be selected according to the actual situation and is not limited to this.
  • FIGS. 13A and 13B are schematic diagrams of the exploded structure of the cartridge 3 according to some embodiments of the application.
  • the cartridge 3 includes a mouthpiece 31, a cap 32, a housing 33, a top cover 34, a heating component 35, a heating base 36, a tube 37, a thimble 38, and a PCB (Printed Circuit Board) module 39 and the bottom cover 30.
  • the heating assembly 35 and the heating base 36 can form a heating assembly in some embodiments of the present application.
  • the heating assembly 35, the thimble 38 and the PCB module 39 constitute a heating circuit in some embodiments of the present application.
  • the PCB module 39 is provided with a resistor (not labeled in the figure) that characterizes the flavor information of the cartridge 3.
  • an encryption chip (not shown in the figure) is also provided on the PCB module 39.
  • the cartridge 3 further includes an oil absorbing pad 351 located under the heating assembly 35.
  • the oil absorbing pad 351 can be used to absorb the e-liquid that may leak.
  • the material of the oil absorbing pad 351 is polymer cotton, but it can be selected according to the actual situation and is not limited to this. Both sides of the oil absorbing pad 351 are provided with through holes or openings, and the through holes or openings can cover the outer wall of the upper half of the thimble 351.
  • the heating base 36 includes a hole 361, two holes 362 and a plurality of holes 363.
  • the hole 361 is used to accommodate the tube 37.
  • the PCB module 39 is separated from the tube 37, and the PCB module 39 does not directly contact the tube 37.
  • the two holes 362 are used for accommodating a thimble 38 respectively.
  • the tube 37 can be fluidly connected to the lower surface of the heating element 35, the oil absorbing pad 351 and the space where the thimble 38 is located.
  • the nozzle cover 31 has a hole 311, the cap 32 has a hole 321, and the housing 33 has a hole 331.
  • the hole 311, the hole 321, and the hole 331 are in fluid communication.
  • the user can inhale the gas containing the atomized substance (such as e-liquid) from the hole 311 of the mouthpiece cover 31.
  • the top cover 34 has a component 341, a component 342, and a component 343, where the component 343 may be a heating seal.
  • the component 341, the component 342, and the component 343 are made of different materials.
  • the component 341 and the component 343 can be made of the same material.
  • the component 342 is made of a different material from the component 341 and the component 343.
  • the component 341 can be made of silica gel.
  • the component 343 can be made of silica gel.
  • the component 342 can be made of plastic.
  • the material hardness of the component 342 may be higher than the material hardness of the component 341.
  • the material hardness of the component 342 may be higher than the material hardness of the component 343.
  • the material hardness of the component 342 can be in the range of 65A to 75A in Shore A type.
  • the material hardness of the component 342 can be in the range of 75A to 85A in Shore A hardness.
  • the material hardness of the component 342 can be in the range of 85A to 90A of Shore A hardness.
  • the material hardness of the component 341 can be in the range of 20A to 40A in Shore A hardness.
  • the material hardness of the component 341 can be in the range of 40A to 60A in Shore A hardness.
  • the material hardness of the component 341 can be in the range of 60A to 75A in Shore A hardness.
  • the material hardness of the component 343 can be in the range of 20A to 40A in Shore A hardness.
  • the material hardness of the component 343 can be in the range of 40A to 60A in Shore A hardness.
  • the material hardness of the component 343 can be in the range of 60A to 75A in Shore A hardness.
  • the components 341, 342, and 343 of the top cover 34 can be assembled together by later assembly. Therefore, there may be assembly deviation and part tolerance issues among the components 341, 342, and 343, which may lead to liquid leakage risks (such as e-liquid leakage).
  • the binding force between the component 341 and the component 342 tends to be 0N (that is, 0 Newton).
  • the bonding force between the component 343 and the component 342 tends to be ON.
  • the combined component 341 and component 342 can be easily separated.
  • the combined component 342 and component 343 can be easily separated.
  • the component 341 When the component 341 is engaged with the component 342, the component 341 surrounds a part of the component 342. When the component 342 is engaged with the component 343, a part of the component 342 surrounds the component 343.
  • the inner surface of the housing 33 surrounds the component 341.
  • the assembly 343 surrounds the heating assembly 35.
  • the upper surface of the heating element 35 includes a groove.
  • the lower surface of the heating element 35 has two pins, and the two pins of the heating element 35 can be respectively coupled to the corresponding thimble 38.
  • the thimble 38 can be coupled with the PCB module 39.
  • FIG. 14A is a perspective schematic view of the top cover assembly 341 of some embodiments of the application
  • FIG. 14B is a top schematic view of the top cover assembly 341 of some embodiments of the application
  • FIG. 14C is a top view assembly of some embodiments of the application 341 is a schematic cross-sectional structure diagram.
  • the assembly 341 has a through hole 3411 penetrating the body of the assembly 341.
  • FIG. 14C is a cross-sectional view of FIG.
  • the through hole 3411 has two opposite inner walls 3412, 3413; the baffle plate 3415 is approximately horizontally extended from the inner wall 3412 at the upper edge of the inner wall 3412, the baffle plate 3417 The lower edge of the inner wall 3413 extends substantially horizontally from the inner wall 3413; to further illustrate, the baffle plate 3415 is disposed substantially horizontally at the opening 34111 of the through hole 3411, and extends and protrudes from the inner wall 3412, and the baffle plate 3417 is disposed substantially horizontally It is located at the opening 34112 of the through hole 3411 and extends from the inner wall 3413. In this way, the baffle plates 3415 and 3417 are configured to form a zigzag-shaped channel in the through hole 3411. Wherein, the vertical projection of the baffle plate 3415 and the baffle plate 3417 at least partially overlap each other.
  • FIG. 15A is a perspective schematic view of the top cover assembly 342 of some embodiments of the application
  • FIG. 15B is a top view schematic view of the top cover assembly 342 of some embodiments of the application
  • FIG. 15C is a top view assembly of some embodiments of the application 342 is a schematic cross-sectional structure diagram.
  • the assembly 342 has two through holes 3421, 3422, and the through holes 3421, 3422 penetrate the body of the assembly 342, respectively.
  • FIG. 15C is a cross-sectional view of FIG. 15B along the line B-B.
  • the through hole 3421 has an upper opening 34211 and a lower opening 34212
  • the through hole 3422 has an upper opening 34221 and a lower opening 34222.
  • FIG. 16 is a schematic cross-sectional structure diagram of the cartridge 3 according to some embodiments of the application.
  • the housing 33 includes a storage compartment 332.
  • the storage compartment 332 is used to store the fluid substance to be atomized, such as e-liquid.
  • the top cover 34 (including the component 341, the component 342 and the component 343) is joined to the housing 33.
  • the housing 33 and the top cover 34 define a storage compartment 332.
  • the inner surface of the housing 33 surrounds the assembly 341 of the top cover 34.
  • the housing 33 defines a storage compartment 332.
  • the inner surface of the storage compartment 332 surrounds the assembly 341 of the top cover 34.
  • the top cover 34 (including the component 341, the component 342 and the component 343) is joined to the heating component 35.
  • the component 343 of the top cover 34 surrounds the heating component 35.
  • the component 341 of the top cover 34 has a through hole 3411, and the component 342 has a through hole 3421, 3422.
  • the upper surface of the heating element 35 has a groove.
  • the groove on the upper surface of the component 342 and the heating component 35 define a cavity 355.
  • the storage compartment 332 is in fluid communication with the through hole 3411.
  • the through hole 3411 is in fluid communication with the through hole 3421 and the through hole 3422.
  • the through hole 3411 and the cavity 355 are in fluid communication via the through holes 3421 and 3422. Therefore, the storage compartment 332, the through holes 3411, the through holes 3421 and 3422 are in fluid communication with the cavity 355.
  • the ratio of the cross-sectional area of the through hole 3421 or 3422 to the cross-sectional area of the storage compartment 332 is approximately 1:15 to 1:20, and the cross-sectional diameter of the through hole 3421 or 3422 is approximately 1.7 mm.
  • the heating element 35 includes two pins 352.
  • the pin 352 is coupled with the thimble 38.
  • the tube 37 extends from the bottom cover 30 toward the heating assembly 35.
  • the tube 37 includes two ends. Both ends of the tube 37 have an opening 371 and an opening 372 respectively.
  • the tube 37 extends and partially penetrates the heating base 36.
  • the hole 361 (as shown in FIG. 13A) of the heating base 36 accommodates the tube 37.
  • the opening 371 of the tube 37 defines an opening on the bottom surface of the heating base 36.
  • the opening 371 of the tube 37 is exposed to the bottom surface of the heating base 36.
  • the heating base 36 includes an opening 371 of the tube 37.
  • the through hole 301 of the bottom cover 30 exposes the opening 371.
  • the opening 371 and the opening 372 of the tube 37 are in fluid communication with the outside.
  • the dotted arrow in FIG. 16 shows the air outlet channel P3 of the cartridge 3.
  • External fluid such as air
  • the air flowing out from the opening 372 of the tube 37 flows to the atomization chamber 353 through the plurality of holes 363 of the heating base 36 (as shown in FIG. 13B).
  • the atomization chamber 353 is defined by the lower part of the heating element 35, the pins 352 and the thimble 38.
  • the lower part of the heating assembly 35 is exposed in the atomizing chamber 353.
  • the aerosol generated by heating by the heating element 35 is mixed with air, and then flows through the passage 333 of the housing 33 to the hole 331 of the housing 33 (as shown in FIG. 13A) and the hole 321 of the cap 32 (as shown in FIG. 13A) , And then flow to the hole 311 of the nozzle cover 31 to be sucked by the user.
  • the e-liquid stored in the storage compartment 332 can first flow into the cavity 355 through the through hole 3411 of the assembly 241 and the through hole 3421 or 3422 of the assembly 342. Subsequently, the heating element 35 can begin to heat the e-liquid flowing into the cavity 355; when the e-liquid in the cavity 355 is heated, an aerosol will be generated, and a part of the aerosol will enter the passage of the housing 33 with the air entering from the outside. 333, to further enter the hole 321 of the cap 32 and the hole 311 of the nozzle cover 31 for the user to suck.
  • some embodiments of the present application provide the through holes 3411 of the assembly 341 and the through holes 3421, 3422 of the assembly 342, which are configured to suppress the flow rate of e-liquid from the storage compartment 332 into the cavity 355, and avoid excessive The e-liquid flowing into the cavity 355 can solve the above-mentioned technical problems.
  • the heating element 35 can start to heat the e-liquid flowing into the cavity 355, a part of the smoke generated by it will enter the passage 333 of the housing 33 with the air entering from the outside, and the other part of the smoke will become bubbles.
  • the through holes 3421 and 3422 of the component 342 flow into the through hole 3411 of the component 341 (see arrow f7); when the part of the smoke forming bubbles flows into the through hole 3411, the baffles 3415 and 3417 of the through hole 3411 are configured Shape to form a zigzag circuitous path in the through hole 3411; due to the zigzag circuitous path formed in the through hole 3411, the air bubbles must pass a longer path to pass through the through hole 3411 and further enter the storage compartment 332 (Refer to arrow f8).
  • the bubbles will spend more time staying in the through hole 3411.
  • the e-liquid flowing into the cavity from the storage compartment 332 must also pass through the Z-shaped circuitous path of the through hole 3411, so that the e-liquid can pass through the through hole 3411 and further flow into the through hole 3421 of the assembly 342 through a longer path.
  • the baffles 3415 and 3417 of the through hole 3411 can effectively slow down the flow rate of e-liquid from the storage compartment 332 through the components 341 and 342 into the cavity 355.
  • the flow rate of the e-liquid in the storage compartment 332 into the cavity 355 can be effectively suppressed, so as to prevent excessive e-liquid from flowing into the cavity 355.
  • Figure 17A is a perspective view of a top cover assembly of some embodiments of the application.
  • FIG. 17B is a schematic diagram of the side wall of the top cover assembly according to some embodiments of the application.
  • FIG. 17C is a partial cross-sectional view of the cartridge according to some embodiments of the application.
  • FIG. 17D is a schematic diagram of the side wall of the top cover assembly according to some embodiments of the application.
  • the component 343 can be a seal. As shown in FIGS. 17A, 17B, and 17C, the component 343 has a top 3431, a bottom 3433, and a side wall 3435 extending between the top 3431 and the bottom 3433.
  • the side wall 3435 has a groove 34351.
  • the top 3431 of the component 343 has a groove 34311.
  • the bottom 3433 of the component 343 has a groove 34331.
  • the side wall 3435 includes a partition 3432.
  • the partition 3432 includes a section 34321 and a section 34322, and one end of the section 34321 is directly connected to one end of the section 34322.
  • the other end of the section 34321 and one side 34353 of the groove 34351 form a gap 34355.
  • the other end of the section 34322 and the other side 34354 of the groove 34351 form a gap 34356.
  • the angle ⁇ 1 between the section 34321 and the section 34322 is between 90 and 180 degrees. In some embodiments, the angle ⁇ 1 between the section 34321 and the section 34322 is between 90 and 120 degrees.
  • the angle ⁇ 1 between the section 33421 and the section 34322 is between 120 and 150 degrees. In some embodiments, the angle ⁇ 1 between the section 34321 and the section 34322 is between 150 and 180 degrees. In some embodiments, the section 34321 and the section 34322 form a V-shape with an opening facing upward (for example, the vertical upward direction shown in FIG. 17B).
  • the side wall 3435 of the component 343 further includes a partition 3434.
  • the second partition 3434 includes a section 34341 and a section 34342.
  • a gap 34358 is formed between the section 34341 and the section 34342.
  • the angle ⁇ 2 between the section 34341 and the section 34342 and the angle ⁇ 1 between the section 34321 and the section 34322 may be different.
  • the angle ⁇ 2 between the section 34341 and the section 34342 and the angle ⁇ 1 between the section 34321 and the section 34322 may be the same.
  • the section 34341 and the section 34342 form an inverted V shape with an opening facing downward (for example, the vertical downward direction shown in FIG. 17B).
  • the component 343 covers the heating component 35, at least one cavity (or called a gas-permeable channel) is defined between the partition 3432, the partition 3434, the groove 34351, and the heating component 35.
  • the groove 34331, the gap 34358, the gap 34355, and the groove 34311 can define the air-permeable channel 34301 (as shown in FIG. 17D).
  • the atomization chamber 353 may be in fluid communication with the storage compartment (the storage compartment 332 shown in FIG. 16) through the air-permeable passage 34301.
  • the groove 34331, the gap 34358, the gap 34356, and the groove 34311 can define the air-permeable passage 34302 (as shown in FIG. 17D).
  • the atomization chamber 353 may be in fluid communication with the storage compartment (the storage compartment 332 shown in FIG. 16) through the air-permeable passage 34302.
  • the atomizable material in the storage compartment 332 is continuously consumed and reduced, so that the pressure in the storage compartment 332 gradually decreases.
  • negative pressure may be generated.
  • the decrease in the pressure in the storage compartment 332 may make it difficult for atomizable materials (such as e-liquid) to flow to the cavity 355 of the heating assembly 35 through the channels 3421 and 3422.
  • the high-temperature heating element 35 may dry out and produce a burnt smell.
  • the above-mentioned problem can be improved by arranging the ventilation channel in the side wall of the component 343.
  • the ventilation channel formed in the side wall of the component 343 (the flow direction shown by the arrow in FIG. 17D) can balance the pressure in the storage compartment 332.
  • the cartridge 3 also includes an oil absorbing pad 351 located under the heating assembly 35.
  • the oil absorbing pad 351 can be used to absorb the e-liquid that may leak (refer to FIG. 13A). However, when the user inhales, the air will pass through the passage P3 as shown in Figure 16. When the air passes through the atomizing chamber 353, the atomized e-liquid is mixed with cold air, which may condense the atomized e-liquid. The e-liquid that has not been completely absorbed by the absorbing pad 351 may spill out of the cartridge 3.
  • the heating base 36 of some embodiments of the present application further includes an oil absorbing pad 365 (refer to FIG. 18A).
  • the oil absorbing pad 365 is arranged at the opposite end of the end opposite to the position of the hole 361 (refer to FIG. 18B).
  • the material of the oil absorbing pad 365 is polymer cotton, but it can be selected according to the actual situation and is not limited to this.
  • references to “some embodiments”, “partial embodiments”, “one embodiment”, “another example”, “examples”, “specific examples” or “partial examples” throughout the specification mean At least one embodiment or example in this application includes the specific feature, structure, or characteristic described in the embodiment or example. Therefore, descriptions appearing in various places throughout the specification, such as: “in some embodiments”, “in embodiments”, “in one embodiment”, “in another example”, “in an example “In”, “in a specific example” or “exemplary”, which are not necessarily quoting the same embodiment or example in this application.
  • spatially relative terms for example, “below”, “below”, “lower”, “above”, “upper”, “lower”, “left”, “right” and the like can be The simplicity of description is used herein to describe the relationship between one component or feature and another component or feature as illustrated in the figure.
  • the spatial relative terms are intended to cover different orientations of the device in use or operation.
  • the device can be oriented in other ways (rotated by 90 degrees or in other orientations), and the spatial relative descriptors used herein can also be interpreted accordingly. It should be understood that when a component is referred to as being “connected to” or “coupled to” another component, it can be directly connected or coupled to the other component, or intervening components may be present.
  • the terms “approximately”, “substantially”, “substantially” and “about” are used to describe and consider small variations. When used in conjunction with an event or situation, the term may refer to an example in which the event or situation occurs precisely and an example in which the event or situation occurs in close proximity. As used herein with respect to a given value or range, the term “about” generally means within ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.5% of the given value or range. Ranges can be expressed herein as from one end point to another end point or between two end points. Unless otherwise specified, all ranges disclosed herein include endpoints.
  • substantially coplanar may refer to two surfaces located within a few micrometers ( ⁇ m) along the same plane, for example, within 10 ⁇ m, within 5 ⁇ m, within 1 ⁇ m, or within 0.5 ⁇ m located along the same plane.
  • ⁇ m micrometers
  • the term may refer to a value within ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.5% of the average value of the stated value.
  • the terms “approximately”, “substantially”, “substantially” and “about” are used to describe and explain small changes.
  • the term may refer to an example in which the event or situation occurs precisely and an example in which the event or situation occurs in close proximity.
  • the term when used in combination with a value, can refer to a range of variation less than or equal to ⁇ 10% of the stated value, for example, less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3% , Less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • the difference between two values is less than or equal to ⁇ 10% of the average value of the value (for example, less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than Or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%), then the two values can be considered “substantially” or " About” is the same.
  • substantially parallel can refer to a range of angular variation less than or equal to ⁇ 10° relative to 0°, for example, less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 3°, Less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • substantially perpendicular may refer to an angular variation range of less than or equal to ⁇ 10° relative to 90°, for example, less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 3°, Less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • a/an and “said” may include plural indicators.
  • a component provided “on” or “above” another component may cover the case where the former component is directly on the latter component (for example, in physical contact with the latter component), and one or more A situation where an intermediate component is located between the previous component and the next component.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种雾化装置,包括:壳体(13)、顶盖(14)和加热总成(15)。壳体(13)进一步具有储存舱(132)及通道(P1,P2,P3),顶盖(14)进一步具有第一顶盖组件(141)与第二顶盖组件(142);第一顶盖组件(141)具有至少一通孔(1411,1412,1413),其中通孔(1411,1412,1413)经构形以抑制由储存舱(132)流入加热总成(15)的油烟油的流率。

Description

雾化装置 技术领域
本揭露大体上涉及一种雾化装置(vaporization device),具体而言涉及一种提供可吸入气雾(aerosol)之电子装置。
背景技术
电子烟系一种电子产品,其将可雾化溶液加热雾化并产生气雾以供用户吸食。近年来,各大厂商开始生产各式各样的电子烟产品。一般而言,一电子烟产品包括外壳、储油室、雾化室、加热组件、进气口、气流通道、出气口、电源装置、感测装置及控制装置。储油室用于储存可雾化(vaporizable)溶液,加热组件用于将可雾化溶液加热雾化并产生气雾。进气口与雾化室彼此连通,当使用者吸气时提供空气给加热组件。由加热组件产生之气雾首先产生于雾化室内,随后经由气流通道及出气口被使用者吸入。电源装置提供加热组件所需之电力,控制装置根据感测装置侦测到的用户吸气动作,控制加热组件的加热时间。外壳则包覆上述各个组件。
市面现有的电子烟产品存在有最大的问题不外乎有烟弹漏油、糊味或者不出烟等情形,大多数的解决方案系采用进行两侧进出气口出货堵住或者是教育用户甩掉漏液,但这些方案并无法从根本上解决问题,且对用户体验是一个非常大的减分项。
因此,提出一种可解决上述问题之雾化装置。
发明内容
本申请的一些实施例提供了一种雾化装置。所提出的雾化装置包含:具有储存舱的壳体,设置于壳体中并与储存舱相互连通的顶盖,及设置于壳体中并与顶盖相互配合设置且相互连通的加热总成。顶盖进一步包含相互配合且相互连通的第一顶盖组件与第二顶盖组件,其中第一顶盖组件可与储存舱连接,第二顶盖组件可与加热总成连接。又,第一顶盖组件可具有第一通孔、第二通孔及第三通孔,且第一顶盖组件通过第一通孔、第二通孔及第三通孔可与所述储存舱相互连通,而第二顶盖组件具有第四通孔及第五通孔,且第二顶盖组件通过第四通孔及第五通孔与加热总成相互连通。其中第一通孔、第二通孔及第三通孔各个的内径的尺寸并非均一。
亦预期本揭露之其他态样及实施例。前述发明内容及以下实施方式并不意欲将本揭露限于任何特定实施例,而是仅意欲描述本揭露之一些实施例。
附图说明
为了更好地理解本揭露之一些实施例的本质及目标,将参考结合随附图式而采取之以下实施方式。在图式中,除非上下文另有明确规定,否则类似参考编号表示类似组件。
图1A及图1B为本申请的一些实施例的烟弹的分解结构示意图。
图2A为本申请的一些实施例的顶盖组件的立体示意图。
图2B为本申请的一些实施例的顶盖组件的上视示意图。
图2C为本申请的一些实施例的顶盖组件的剖面结构示意图。
图3A为本申请的一些实施例的顶盖组件的立体示意图。
图3B为本申请的一些实施例的顶盖组件的上视示意图。
图3C为本申请的一些实施例的顶盖组件的剖面结构示意图。
图4为本申请的一些实施例的烟弹的剖面结构示意图。
图5A为本申请的一些实施例的顶盖组件的立体图。
图5B为本申请的一些实施例的顶盖组件的侧壁示意图。
图5C为本申请的一些实施例的烟弹的部分截面图。
图5D为本申请的一些实施例的顶盖的侧壁示意图。
图6A为本申请的一些实施例的加热底座的立体示意图。
图6B为本申请的一些实施例的加热底座的剖面结构示意图。
图7A及图7B为本申请的一些实施例的烟弹的分解结构示意图。
图8A为本申请的一些实施例的顶盖组件的立体示意图。
图8B为本申请的一些实施例的顶盖组件的上视示意图。
图8C为本申请的一些实施例的顶盖组件的剖面结构示意图。
图9A为本申请的一些实施例的顶盖组件的立体示意图。
图9B为本申请的一些实施例的顶盖组件的上视示意图。
图9C为本申请的一些实施例的顶盖组件的剖面结构示意图。
图10为本申请的一些实施例的烟弹的剖面结构示意图。
图11A为本申请的一些实施例的顶盖组件的立体图。
图11B为本申请的一些实施例的顶盖组件的侧壁示意图。
图11C为本申请的一些实施例的烟弹的部分截面图。
图11D为本申请的一些实施例的顶盖的侧壁示意图。
图12A为本申请的一些实施例的加热底座立体示意图。
图12B为本申请的一些实施例的加热底座的剖面结构示意图。
图13A及图13B为本申请的一些实施例的烟弹的分解结构示意图。
图14A为本申请的一些实施例的顶盖组件的立体示意图。
图14B为本申请的一些实施例的顶盖组件的上视示意图。
图14C为本申请的一些实施例的顶盖组件的剖面结构示意图。
图15A为本申请的一些实施例的顶盖组件的立体示意图。
图15B为本申请的一些实施例的顶盖组件的上视示意图。
图15C为本申请的一些实施例的顶盖组件的剖面结构示意图。
图16为本申请的一些实施例的烟弹的剖面结构示意图。
图17A为本申请的一些实施例的顶盖组件的立体图。
图17B为本申请的一些实施例的顶盖组件的侧壁示意图。
图17C为本申请的一些实施例的烟弹的部分截面图。
图17D为本申请的一些实施例的顶盖的侧壁示意图。
图18A为本申请的一些实施例的加热底座立体示意图。
图18B为本申请的一些实施例的加热底座的剖面结构示意图。
具体实施方式
以下公开内容提供用于实施所提供的目标物的不同特征的许多不同实施例或实例。下文描述组件和布置的特定实例。当然,这些仅是实例且并不意图为限制性的。在本揭露中,在以下描述中对第一特征在第二特征之上或上的形成的参考可包含第一特征与第二特征直接接触形成的实施例,并且还可包含额外特征可形成于第一特征与第二特征之间从而使得第一特征与第二特征可不直接接触的实施例。另外,本揭露可能在各个实例中重复参考标号和/或字母。此重复是出于简化和清楚的目的,且本身并不指示所论述的各种实施例和/或配置之间的关系。
下文详细论述本揭露的实施例。然而,应了解,本揭露提供了可在多种多样的特定情境中实施的许多适用的概念。所论述的特定实施例仅仅是说明性的且并不限制本揭露的范围。
在本申请的一些实施例中,电子雾化器装置也可称为电子烟,电子雾化器装置包括电子雾化器装置主体和电子雾化器,电子雾化器装置主体也被称为烟杆(未图标),电子雾化器也被称为烟弹。在本申请的一些实施例中,烟弹和烟杆为分离的单独结构件,烟弹可插拔连接于烟杆。烟弹和烟杆结合后以形成电子烟。在本申请的一些实施例中, 烟弹和烟杆可为一体成型的结构件。
图1A及图1B为本申请的一些实施例的烟弹1的分解结构示意图。烟弹1包括吸嘴盖(mouthpiece)11、帽盖12、壳体13、顶盖14、加热组件15、加热底座16、管17、顶针18、PCB(Printed Circuit Board,印制电路板)模块19以及底盖10。在一些实施例中,加热组件15与加热底座16可组成本申请的一些实施例中的加热总成。在一些实施例中,加热组件15、顶针18和PCB模块19组成本申请的一些实施例中的加热电路。在一些实施例中,PCB模块19上设置有表征烟弹1的口味信息的电阻(图中未标示)。在一些实施例中PCB模块19上还设置有加密芯片(图中未标示)。
在本申请的一些实施例中,烟弹1还包括位于加热组件15下方的吸油垫151。吸油垫151可以用于吸收可能泄露的烟油。吸油垫151的材质为高分子棉,但可以根据实际情况进行选择,并不限定于此。吸油垫151两侧设有通孔或开口,该通孔或开口可以包覆顶针151的上半部的外壁。
加热底座16包含孔161、二个孔162以及复数个孔163。孔161用以容纳管17。当烟弹1组合时,PCB模块19与管17分离,且PCB模块19不与管17直接接触。二个孔162用以分别容纳一个顶针18。经由复数个孔163,管17可流体连通至加热组件15之下表面、吸油垫151及顶针18所在之空间。
在一些实施例中,吸嘴盖11具有孔111,帽盖12具有孔121,壳体13具有孔131。当吸嘴盖11、帽盖12以及壳体13接合时,孔111、孔121以及孔131为流体连通。使用者可自吸嘴盖11之孔111吸入包含经雾化物质(如烟油)之气体。
参考图1A及图1B,在一些实施例中,顶盖14具有组件141、组件142以及组件143,其中组件143可为加热密封件。在一些实施例中,组件141、组件142及组件143由不同材料所制成。在一些实施例中,组件141与组件143可由相同材料所制成。在一些实施例中,组件142是由与组件141及组件143不同之材料所制成。
组件141可由硅胶所制成。组件143可由硅胶所制成。组件142可由塑料所制成。组件142之材料硬度可高于组件141之材料硬度。组件142之材料硬度可高于组件143之材料硬度。
组件142之材料硬度可在邵氏硬度A型65A至75A之范围内。组件142之材料硬度可在邵氏硬度A型75A至85A之范围内。组件142之材料硬度可在邵氏硬度A型85A至90A之范围内。组件141之材料硬度可在邵氏硬度A型20A至40A之范围内。组件141之材料硬度可在邵氏硬度A型40A至60A之范围内。组件141之材料硬度可在邵氏硬度A型60A至75A之范围内。组件143之材料硬度可在邵氏硬度A型20A至40A之 范围内。组件143之材料硬度可在邵氏硬度A型40A至60A之范围内。组件143之材料硬度可在邵氏硬度A型60A至75A之范围内。
顶盖14之组件141、组件142及组件143可藉由后期组装而组合在一起。因此,组件141、组件142及组件143之间可能存在组装偏位元、零件公差问题,进而导致漏液风险(例如烟油泄漏)。组件141与组件142之间的结合力趋向0N(即0牛顿)。组件143与组件142之间的结合力趋向0N。举例言之,互相结合的组件141与组件142可轻易的分离。互相结合的组件142与组件143可轻易的分离。
当组件141与组件142接合时,组件141环绕组件142之一部分。当组件142与组件143接合时,组件142之一部分环绕组件143。
当顶盖14与壳体13接合时,壳体13之内表面环绕组件141。当顶盖14与加热组件15接合时,组件143环绕加热组件15。
在一些实施例中,加热组件15的上表面包含一凹槽。在一些实施例中,加热组件15之下表面具有二针脚,加热组件15之二针脚各别可与对应之顶针18耦接。顶针18可与PCB模块19耦接。
图2A为本申请的一些实施例的顶盖组件141的立体示意图,图2B为本申请的一些实施例的顶盖组件141的上视示意图,图2C为本申请的一些实施例的顶盖组件141的剖面结构示意图。如图2A、图2B和图2C所示,组件141具有三个贯穿组件141本体的通孔1411、1412、1413。参考图2C,图2C为图2B沿A-A线的剖面图,组件141具有二个板件1415、1417,板件1415、1417形成于组件141的内腔中,以将组件141的内腔大致区隔成三个通孔1411、1412、1413。因板件1415、1417的构形,所形成的通孔1411、1412、1413的内径并非均一,通孔1411的内径自下向上逐渐渐缩,通孔1412的内径自上向下逐渐渐缩,通孔1413的内径自下向上逐渐渐缩;因此,通孔1411的下开口14112的横截面积大于通孔1411的上开口14111,通孔1412的上开口14121的横截面积大于通孔1412的下开口14121,通孔1413的下开口14132的横截面积大于通孔1413的上开口14131。再者,通孔1411、1412、1413并非完全相互隔离,通孔1411、1412、1413至少部分地流体连通,如图2C所示,板件1415、1417的下端尚具有一空隙,其可使得通孔1411、1412、1413流体连通。
图3A为本申请的一些实施例的顶盖组件142的立体示意图,图3B为本申请的一些实施例的顶盖组件142的上视示意图,图3C为本申请的一些实施例的顶盖组件142的剖面结构示意图。如图3A、图3B和图3C所示,组件142具有二个通孔1421、1422,通孔1421、1422系分别贯穿组件142的本体。参考图3C,图3C为图3B沿B-B线的剖 面图,通孔1421具有上开口14211和下开口14212,通孔1422具有上开口14221和下开口14222。当组件141与142相互组装设置时,组件141的通孔1411与1413分别大致对应组件142的通孔1421和1422;进一步说,组件141的通孔1411的下开口14112大致对准组件142的通孔1421的上开口14211,组件141的通孔1413的下开口14132大致对准组件142的通孔1422的上开口14221。
图4为本申请的一些实施例的烟弹1的剖面结构示意图。壳体13中包含储存舱132。储存舱132用以储存待雾化之流体物质,如烟油。顶盖14(包含组件141、组件142及组件143)接合至壳体13。在一些实施例中,壳体13及顶盖14界定储存舱132。当顶盖14接合至壳体13,壳体13之内表面环绕顶盖14之组件141。一些实施例中,壳体13界定储存舱132。当顶盖14接合至壳体13,储存舱132之内表面环绕顶盖14之组件141。顶盖14(包含组件141、组件142及组件143)接合至加热组件15。当顶盖14接合至加热组件15,顶盖14之组件143环绕加热组件15。
顶盖14的组件141具有通孔1411、1412、1413,而组件142具有通孔1421、1422。加热组件15之上表面具有凹槽。组件142与加热组件15上表面的凹槽界定一空腔155。
储存舱132与通孔1411、1412、1413流体连通。通孔1411、1412、1413与通孔1421及通孔1422流体连通。通孔1411、1412、1413与空腔155经由通孔1421、1422流体连通。因此,储存舱132、通孔1411、1412、1413、通孔1421、1422与空腔155流体连通。通孔1421或1422的横截面面积与储存舱132的横截面面积的比例大致为1∶15至1∶20,又,通孔1421或1422的横截面直径大约为1.7mm。
加热组件15包含二针脚152。针脚152与顶针18耦接。管17自底盖10朝向加热组件15延伸。管17包含两端。管17之两端各别具有开口171及开口172。管17延伸并部分穿过加热底座16。加热底座16之孔161(如图1A所示)容纳管17。管17之开口171于加热底座16底面界定一开口。管17之开口171暴露于加热底座16之底面。加热底座16包含管17之开口171。底盖10之通孔101暴露开口171。管17之开口171及开口172与外部流体连通。
再参考图4,组件141的通孔1411的内径自下向上逐渐渐缩,通孔1412的内径自上向下逐渐渐缩,通孔1413的内径自下向上逐渐渐缩;因此,通孔1411的下开口14112的横截面积大于通孔1411的上开口14111,通孔1412的上开口14121的横截面积大于通孔1412的下开口14121,通孔1413的下开口14132的横截面积大于通孔1413的上开口14131。再者,组件141的通孔1411与1413分别大致对应组件142的通孔1421和1422,故,组件141的通孔1411的下开口14112大致对准组件142的通孔1421的上开 口14211,组件141的通孔1413的下开口14132大致对准组件142的通孔1422的上开口14221。
图4中之虚线箭头显示烟弹1之出气通道P1。外部之流体(如空气)自管17之开口171流入,经过管17,于管17之开口172流出。自管17之开口172流出之空气,经由加热底座16之复数个孔163(如图1B所示)流至雾化室153。雾化室153由加热组件15之下部、针脚152及顶针18所界定。加热组件15之下部暴露于雾化室153中。由加热组件15加热产生的气雾与空气混合,接着经由壳体13的通道133流至壳体13之孔131(如图1A所示)以及帽盖12之孔121(如图1A所示),再流至吸嘴盖11之孔111被使用者吸食。
当使用烟弹1时,储存舱132所储存的烟油可先经由组件141的通孔1411、1412或1413及组件142的通孔1421或1422流入空腔155中。随后,加热组件15可开始加热流入空腔155内的烟油;当空腔155内的烟油被加热后,即会产生气雾,一部分的气雾随由外部进入之空气进入壳体13的通道133,以进一步进入帽盖12的孔121及吸嘴盖11的孔111供使用者吸食。然,若烟油自储存舱132流入空腔155的流率过快,则会有过量的烟油流入空腔155中,如此一来,则容易产生烟弹漏油、糊味或者不出烟等情形。为此,本申请的一些实施例提供了组件141的通孔1411、1412及1413与组件142的通孔1421、1422,其经构形以可抑制烟油自储存舱132流入空腔155的流率,避免过量的烟油流入空腔155中,则可解决上述之技术问题。
承上,当加热组件15可开始加热流入空腔155内的烟油,其所产生的烟雾的一部分会随由外部进入之空气进入壳体13的通道133,而另一部分的烟雾则会成为气泡而通过组件142的通孔1421、1422流入组件141的通孔1411、1413(参箭头f1);在所述部分之烟雾形成气泡流入通孔1411、1413中时,因通孔1411、1413的内径系成自下向上逐渐渐缩,及位于储存舱132内剩余的烟油所施予的压力,故所述气泡一开始会堵塞于通孔1411的开口14111及通孔1413的开口14131处,而不会继续向上流入储存舱132中;又,因通孔1411的开口14111及通孔1413的开口14131被气泡所堵塞,储存舱132内的烟油便不会持续流入空腔155中。在加热组件15持续加热空腔155内的烟油,被加热的烟油则会产生越来越多的气泡流入通孔1411、1413;当越来越多的气泡堵塞且累积于通孔1411的开口14111及通孔1413的开口14131处;当累积的气泡所形成的压力大于储存舱132内剩余的烟油所施予的压力,所述气泡则会通过通孔1411的开口14111及通孔1413的开口14131而持续向上流入储存舱132内(参箭头f2);一旦气泡通过通孔1411的开口14111及通孔1413的开口14131向上流入储存舱132,储存舱132内剩余 的烟油则向下流入组件141的通孔1412(参箭头f3),且进一步通过组件142的通孔1421、1422而流入空腔155中,以供加热组件15加热,以持续产生可供使用者吸入的烟雾。
利用上述的方式,可有效的抑制储存舱132内的烟油流入空腔155的流率,以可避免过量的烟油流入空腔155中。
图5A为本申请的一些实施例的顶盖组件的立体图。图5B为本申请的一些实施例的顶盖组件的侧壁的示意图。图5C为本申请的一些实施例的烟弹的部分截面图。图5D为本申请的一些实施例的顶盖组件的侧壁示意图。
如先前所述,组件143可为一密封件。如图5A、图5B及图5C所示,组件143具有顶部1431、底部1433及位于顶部1431及底部1433之间延伸的侧壁1435。所述侧壁1435具有凹槽14351。组件143的顶部1431具有凹槽14311。组件143的底部1433具有凹槽14331。
侧壁1435包括分隔件1432,所述分隔件1432包括区段14321及区段14322,且区段14321的一端与区段14322的一端系直接连接。所述区段14321的另一端与凹槽14351的一边14353形成间隙14355。区段14322的另一端与凹槽14351的另一边14354形成间隙14356。在某些实施例中,区段14321与区段14322之间的角度θ 1介于90至180度之间。在某些实施例中,区段14321与区段14322之间的角度θ 1介于90至120度之间。在某些实施例中,区段14321与区段14322之间的角度θ 1介于120至150度之间。在某些实施例中,区段14321与区段14322之间的角度θ 1介于150至180度之间。在某些实施例中,区段14321与区段14322形成一开口朝上(例如图5B所示的垂直向上方向)的V型形状。
组件143的侧壁1435进一步包含分隔件1434。所述第二分隔件1434包括区段14341及区段14342。区段14341与区段14342之间形成间隙14358。区段14341与区段14342之间具有一角度θ 2。在某些实施例中,区段14341与区段14342之间的角度θ 2与区段14321与区段14322之间的角度θ 1可为不同。在某些实施例中,区段14341与区段14342之间的角度θ 2与区段14321与区段14322之间的角度θ 1可为相同。在某些实施例中,区段14341与区段14342形成一开口朝下(例如图5B所示的垂直向下方向)的倒V型形状。
当组件143覆盖于加热组件15上时,分隔件1432、分隔件1434、凹槽14351与加热组件15之间界定至少一空腔(或称为透气通道)。详细而言,凹槽14331、间隙14358、间隙14355及凹槽14311可界定透气通道14301(如图5D所示)。雾化室153可经由透气通道14301而与储存舱(如图4所示之储存舱132)流体连通。凹槽14331、 间隙14358、间隙14356及凹槽14311可界定透气通道14302(如图5D所示)。雾化室153可经由透气通道14302而与储存舱(如图4所示之储存舱132)流体连通。
随着使用者持续使用雾化装置,储存舱132内的可雾化材料不断消耗并减少,使储存舱132内压力逐渐变小。储存舱132内压力变小可能产生负压。储存舱132内压力变小可能使可雾化材料(例如烟油)不易经由通道1421及1422流至加热组件15的空腔155。当空腔155未完全吸附可雾化材料时,高温的加热组件15可能干烧并产生焦味。
藉由在组件143的侧壁中设置透气通道可以改善上述问题。形成于组件143的侧壁中的透气通道(如图5D之箭头所示之流动方向)可以平衡储存舱132内的压力。
如前述,烟弹1还包括位于加热组件15下方的吸油垫151。吸油垫151可以用于吸收可能泄露的烟油(参图1A)。然,当使用者吸气时,空气会通过如图3所示之通道P1,在空气经过雾化室153时,经雾化之烟油与冷空气混合,可能使雾化之烟油冷凝,而未被吸油垫151完全吸收的烟油可能外溢于烟弹1之外。为避免未被吸油垫151完全吸收的烟油外溢,本申请的一些实施例的加热底座16进一步包含有吸油垫165(参图6A)。吸油垫165系设置于相对孔161所在位置的一端的相对端(参图6B)。吸油垫165的材质为高分子棉,但可以根据实际情况进行选择,并不限定于此。
图7A及图7B为本申请的一些实施例的烟弹2的分解结构示意图。烟弹2包括吸嘴盖(mouthpiece)21、帽盖22、壳体23、顶盖24、加热组件25、加热底座26、管27、顶针28、PCB(Printed Circuit Board,印制电路板)模块29以及底盖20。在一些实施例中,加热组件25与加热底座26可组成本申请的一些实施例中的加热总成。在一些实施例中,加热组件25、顶针28和PCB模块29组成本申请的一些实施例中的加热电路。在一些实施例中,PCB模块29上设置有表征烟弹2的口味信息的电阻(图中未标示)。在一些实施例中PCB模块29上还设置有加密芯片(图中未标示)。
在本申请的一些实施例中,烟弹2还包括位于加热组件25下方的吸油垫251。吸油垫251可以用于吸收可能泄露的烟油。吸油垫251的材质为高分子棉,但可以根据实际情况进行选择,并不限定于此。吸油垫251两侧设有通孔或开口,该通孔或开口可以包覆顶针251的上半部的外壁。
加热底座26包含孔261、二个孔262以及复数个孔263。孔261用以容纳管27。当烟弹2组合时,PCB模块29与管27分离,且PCB模块29不与管27直接接触。二个孔262用以分别容纳一个顶针28。经由复数个孔263,管27可流体连通至加热组件25之下表面、吸油垫251及顶针28所在之空间。
在一些实施例中,吸嘴盖21具有孔211,帽盖22具有孔221,壳体23具有孔231。 当吸嘴盖21、帽盖22以及壳体23接合时,孔211、孔221以及孔231为流体连通。使用者可自吸嘴盖21之孔211吸入包含经雾化物质(如烟油)之气体。
参考图7A及图7B,在一些实施例中,顶盖24具有组件241、组件242以及组件243,其中组件243可为加热密封件。在一些实施例中,组件241、组件242及组件243由不同材料所制成。在一些实施例中,组件241与组件243可由相同材料所制成。在一些实施例中,组件242是由与组件241及组件243不同之材料所制成。
组件241可由硅胶所制成。组件243可由硅胶所制成。组件242可由塑料所制成。组件242之材料硬度可高于组件241之材料硬度。组件242之材料硬度可高于组件243之材料硬度。
组件242之材料硬度可在邵氏硬度A型65A至75A之范围内。组件242之材料硬度可在邵氏硬度A型75A至85A之范围内。组件242之材料硬度可在邵氏硬度A型85A至90A之范围内。组件241之材料硬度可在邵氏硬度A型20A至40A之范围内。组件241之材料硬度可在邵氏硬度A型40A至60A之范围内。组件241之材料硬度可在邵氏硬度A型60A至75A之范围内。组件243之材料硬度可在邵氏硬度A型20A至40A之范围内。组件243之材料硬度可在邵氏硬度A型40A至60A之范围内。组件243之材料硬度可在邵氏硬度A型60A至75A之范围内。
顶盖24之组件241、组件242及组件243可藉由后期组装而组合在一起。因此,组件241、组件242及组件243之间可能存在组装偏位、零件公差问题,进而导致漏液风险(例如烟油泄漏)。组件241与组件242之间的结合力趋向0N(即0牛顿)。组件243与组件242之间的结合力趋向0N。举例言之,互相结合的组件241与组件242可轻易的分离。互相结合的组件242与组件243可轻易的分离。
当组件241与组件242接合时,组件241环绕组件242之一部分。当组件242与组件243接合时,组件242之一部分环绕组件243。
当顶盖24与壳体23接合时,壳体23之内表面环绕组件241。当顶盖24与加热组件25接合时,组件243环绕加热组件25。
在一些实施例中,加热组件25的上表面包含一凹槽。在一些实施例中,加热组件25之下表面具有二针脚,加热组件25之二针脚各别可与对应之顶针28耦接。顶针28可与PCB模块29耦接。
图8A为本申请的一些实施例的顶盖组件241的立体示意图,图8B为本申请的一些实施例的顶盖组件241的上视示意图,图8C为本申请的一些实施例的顶盖组件241的剖面结构示意图。如图8A、图8B和图8C所示,组件241具有一个贯穿组件241本 体的通孔2411。参考图8C,图8C为图8B沿A-A线的剖面图,通孔2411具有二相对的内壁2412、2413;檔板2415大致在内壁2412的上缘处自内壁2412大致水平地延伸,檔板2417大致在内壁2413的下缘处自内壁2413大致水平地延伸;进一步说明,档板2415大致水平地设置于通孔2411的开口24111处,且自内壁2412延伸突出,而檔板2417大致水平地设置于通孔2411的开口24112处,且自内壁2413延伸突出。如此,檔板2415、2417经构形以在通孔2411内形成一迂回如Z字型的信道。其中,檔板2415的垂直投影并不会与档板2417相互交迭。
图9A为本申请的一些实施例的顶盖组件242的立体示意图,图3B为本申请的一些实施例的顶盖组件242的上视示意图,图3C为本申请的一些实施例的顶盖组件242的剖面结构示意图。如图9A、图9B和图9C所示,组件242具有二个通孔2421、2422,通孔2421、2422系分别贯穿组件242的本体。参考图9C,图9C为图9B沿B-B线的剖面图,通孔2421具有上开口24211和下开口24212,通孔2422具有上开口24221和下开口24222。
图10为本申请的一些实施例的烟弹2的剖面结构示意图。壳体23中包含储存舱232。储存舱232用以储存待雾化之流体物质,如烟油。顶盖24(包含组件241、组件242及组件243)接合至壳体23。在一些实施例中,壳体23及顶盖24界定储存舱232。当顶盖24接合至壳体23,壳体23之内表面环绕顶盖24之组件241。一些实施例中,壳体23界定储存舱232。当顶盖24接合至壳体23,储存舱232之内表面环绕顶盖24之组件241。顶盖24(包含组件241、组件242及组件243)接合至加热组件25。当顶盖24接合至加热组件25,顶盖24之组件243环绕加热组件25。
顶盖24的组件241具有通孔2411,而组件242具有通孔2421、2422。加热组件25之上表面具有凹槽。组件242与加热组件25上表面的凹槽界定一空腔255。
储存舱232与通孔2411流体连通。通孔2411与通孔2421及通孔2422流体连通。通孔2411与空腔255经由通孔2421、2422流体连通。因此,储存舱232、通孔2411、通孔2421、2422与空腔255流体连通。通孔2421或2422的横截面面积与储存舱232的横截面面积的比例大致为1∶15至1∶20,又,通孔2421或2422的横截面直径大约为1.7mm。
加热组件25包含二针脚252。针脚252与顶针28耦接。管27自底盖20朝向加热组件25延伸。管27包含两端。管27之两端各别具有开口271及开口272。管27延伸并部分穿过加热底座26。加热底座26之孔261(如图7A所示)容纳管27。管27之开口271于加热底座26底面界定一开口。管27之开口271暴露于加热底座26之底面。 加热底座26包含管27之开口271。底盖20之通孔201暴露开口271。管27之开口271及开口272与外部流体连通。
图10中之虚线箭头显示烟弹2之出气通道P2。外部之流体(如空气)自管27之开口271流入,经过管27,于管27之开口272流出。自管27之开口272流出之空气,经由加热底座26之复数个孔263(如图7B所示)流至雾化室253。雾化室253由加热组件25之下部、针脚252及顶针28所界定。加热组件25之下部暴露于雾化室253中。由加热组件25加热产生的气雾与空气混合,接着经由壳体23的通道233流至壳体23之孔231(如图7A所示)以及帽盖22之孔221(如图7A所示),再流至吸嘴盖21之孔211被使用者吸食。
当使用烟弹2时,储存舱232所储存的烟油可先经由组件241的通孔2411及组件242的通孔2421或2422流入空腔255中。随后,加热组件25可开始加热流入空腔255内的烟油;当空腔255内的烟油被加热后,即会产生气雾,一部分的气雾随由外部进入之空气进入壳体23的通道233,以进一步进入帽盖22的孔221及吸嘴盖21的孔211供使用者吸食。然,若烟油自储存舱232流入空腔255的流率过快,则会有过量的烟油流入空腔255中,如此一来,则容易产生烟弹漏油、糊味或者不出烟等情形。为此,本申请的一些实施例提供了组件241的通孔2411与组件242的通孔2421、2422,其经构形以可抑制烟油自储存舱232流入空腔255的流率,避免过量的烟油流入空腔255中,则可解决上述之技术问题。
承上,当加热组件25可开始加热流入空腔255内的烟油,其所产生的烟雾的一部分会随由外部进入之空气进入壳体23的通道233,而另一部分的烟雾则会成为气泡而通过组件242的通孔2421、2422流入组件241的通孔2411(参箭头f4);在所述部分之烟雾形成气泡流入通孔2411中时,因通孔2411的檔板2415及2417经构形以在通孔2411内形成一Z字型的迂回路径;因形成于通孔2411的Z字型的迂回路径,所述气泡必须经过更长的路径才能通过通孔2411而进一步进入储存舱232(参箭头f5),如此一来,气泡则会耗费较多的时间停留在通孔2411内。同样地,自储存舱232流入空腔的烟油亦必须通过通孔2411的Z字型的迂回路径,如此烟油亦经过更长的路径才能通过通孔2411而进一步流入组件242的通孔2421、2422,并进一步流入空腔255中(参箭头f6),故烟油自储存舱232通过组件241、242流入空腔255的流率则会被减缓;再者,气泡停留在通孔2411的时间较多,而留在通孔2411的气泡会部分地阻碍烟油通过通孔2411,如此则会进一步减缓烟油通过通孔2411的流率。根据以上,通孔2411的檔板2415及2417可有效地减缓烟油自储存舱232通过组件241、242流入空腔255的流率。
利用上述的方式,可有效的抑制储存舱232内的烟油流入空腔255的流率,以可避免过量的烟油流入空腔255中。
图11A为本申请的一些实施例的顶盖组件的立体图。图11B为本申请的一些实施例的顶盖组件的侧壁的示意图。图11C为本申请的一些实施例的烟弹的部分截面图。图11D为本申请的一些实施例的顶盖组件的侧壁示意图。
如先前所述,组件243可为一密封件。如图11A、图11B及图11C所示,组件243具有顶部2431、底部2433及位于顶部2431及底部2433之间延伸的侧壁2435。所述侧壁2435具有凹槽24351。组件243的顶部2431具有凹槽24311。组件243的底部2433具有凹槽24331。
侧壁2435包括分隔件2432,所述分隔件2432包括区段24321及区段24322,且区段24321的一端与区段24322的一端系直接连接。所述区段24321的另一端与凹槽24351的一边24353形成间隙24355。区段24322的另一端与凹槽24351的另一边24354形成间隙24356。在某些实施例中,区段24321与区段24322之间的角度θ 1介于90至180度之间。在某些实施例中,区段24321与区段24322之间的角度θ 1介于90至120度之间。在某些实施例中,区段23421与区段24322之间的角度θ 1介于120至150度之间。在某些实施例中,区段24321与区段24322之间的角度θ 1介于150至180度之间。在某些实施例中,区段24321与区段24322形成一开口朝上(例如图11B所示的垂直向上方向)的V型形状。
组件243的侧壁2435进一步包含分隔件2434。所述第二分隔件2434包括区段24341及区段24342。区段24341与区段24342之间形成间隙24358。区段24341与区段24342之间具有一角度θ 2。在某些实施例中,区段24341与区段24342之间的角度θ 2与区段24321与区段24322之间的角度θ 1可为不同。在某些实施例中,区段24341与区段24342之间的角度θ 2与区段24321与区段24322之间的角度θ 1可为相同。在某些实施例中,区段24341与区段24342形成一开口朝下(例如图11B所示的垂直向下方向)的倒V型形状。
当组件243覆盖于加热组件25上时,分隔件2432、分隔件2434、凹槽24351与加热组件25之间界定至少一空腔(或称为透气通道)。详细而言,凹槽24331、间隙24358、间隙24355及凹槽24311可界定透气通道24301(如图11D所示)。雾化室253可经由透气通道24301而与储存舱(如图10所示之储存舱232)流体连通。凹槽24331、间隙24358、间隙24356及凹槽24311可界定透气通道24302(如图11D所示)。雾化室253可经由透气通道24302而与储存舱(如图10所示之储存舱232)流体连通。
随着使用者持续使用雾化装置,储存舱232内的可雾化材料不断消耗并减少,使储存舱232内压力逐渐变小。储存舱232内压力变小可能产生负压。储存舱232内压力变小可能使可雾化材料(例如烟油)不易经由通道2421及2422流至加热组件25的空腔255。当空腔255未完全吸附可雾化材料时,高温的加热组件25可能干烧并产生焦味。
藉由在组件243的侧壁中设置透气通道可以改善上述问题。形成于组件243的侧壁中的透气通道(如图11D之箭头所示之流动方向)可以平衡储存舱232内的压力。
如前述,烟弹2还包括位于加热组件25下方的吸油垫251。吸油垫251可以用于吸收可能泄露的烟油(参图7A)。然,当使用者吸气时,空气会通过如图10所示之通道P2,在空气经过雾化室253时,经雾化之烟油与冷空气混合,可能使雾化之烟油冷凝,而未被吸油垫251完全吸收的烟油可能外溢于烟弹2之外。为避免未被吸油垫251完全吸收的烟油外溢,本申请的一些实施例的加热底座26进一步包含有吸油垫265(参图12A)。吸油垫265系设置于相对孔261所在位置的一端的相对端(参图12B)。吸油垫265的材质为高分子棉,但可以根据实际情况进行选择,并不限定于此。
图13A及图13B为本申请的一些实施例的烟弹3的分解结构示意图。烟弹3包括吸嘴盖(mouthpiece)31、帽盖32、壳体33、顶盖34、加热组件35、加热底座36、管37、顶针38、PCB(Printed Circuit Board,印制电路板)模块39以及底盖30。在一些实施例中,加热组件35与加热底座36可组成本申请的一些实施例中的加热总成。在一些实施例中,加热组件35、顶针38和PCB模块39组成本申请的一些实施例中的加热电路。在一些实施例中,PCB模块39上设置有表征烟弹3的口味信息的电阻(图中未标示)。在一些实施例中PCB模块39上还设置有加密芯片(图中未标示)。
在本申请的一些实施例中,烟弹3还包括位于加热组件35下方的吸油垫351。吸油垫351可以用于吸收可能泄露的烟油。吸油垫351的材质为高分子棉,但可以根据实际情况进行选择,并不限定于此。吸油垫351两侧设有通孔或开口,该通孔或开口可以包覆顶针351的上半部的外壁。
加热底座36包含孔361、二个孔362以及复数个孔363。孔361用以容纳管37。当烟弹3组合时,PCB模块39与管37分离,且PCB模块39不与管37直接接触。二个孔362用以分别容纳一个顶针38。经由复数个孔363,管37可流体连通至加热组件35之下表面、吸油垫351及顶针38所在之空间。
在一些实施例中,吸嘴盖31具有孔311,帽盖32具有孔321,壳体33具有孔331。当吸嘴盖31、帽盖32以及壳体33接合时,孔311、孔321以及孔331为流体连通。使用者可自吸嘴盖31之孔311吸入包含经雾化物质(如烟油)之气体。
参考图13A及图13B,在一些实施例中,顶盖34具有组件341、组件342以及组件343,其中组件343可为加热密封件。在一些实施例中,组件341、组件342及组件343由不同材料所制成。在一些实施例中,组件341与组件343可由相同材料所制成。在一些实施例中,组件342是由与组件341及组件343不同之材料所制成。
组件341可由硅胶所制成。组件343可由硅胶所制成。组件342可由塑料所制成。组件342之材料硬度可高于组件341之材料硬度。组件342之材料硬度可高于组件343之材料硬度。
组件342之材料硬度可在邵氏硬度A型65A至75A之范围内。组件342之材料硬度可在邵氏硬度A型75A至85A之范围内。组件342之材料硬度可在邵氏硬度A型85A至90A之范围内。组件341之材料硬度可在邵氏硬度A型20A至40A之范围内。组件341之材料硬度可在邵氏硬度A型40A至60A之范围内。组件341之材料硬度可在邵氏硬度A型60A至75A之范围内。组件343之材料硬度可在邵氏硬度A型20A至40A之范围内。组件343之材料硬度可在邵氏硬度A型40A至60A之范围内。组件343之材料硬度可在邵氏硬度A型60A至75A之范围内。
顶盖34之组件341、组件342及组件343可藉由后期组装而组合在一起。因此,组件341、组件342及组件343之间可能存在组装偏位、零件公差问题,进而导致漏液风险(例如烟油泄漏)。组件341与组件342之间的结合力趋向0N(即0牛顿)。组件343与组件342之间的结合力趋向0N。举例言之,互相结合的组件341与组件342可轻易的分离。互相结合的组件342与组件343可轻易的分离。
当组件341与组件342接合时,组件341环绕组件342之一部分。当组件342与组件343接合时,组件342之一部分环绕组件343。
当顶盖34与壳体33接合时,壳体33之内表面环绕组件341。当顶盖34与加热组件35接合时,组件343环绕加热组件35。
在一些实施例中,加热组件35的上表面包含一凹槽。在一些实施例中,加热组件35之下表面具有二针脚,加热组件35之二针脚各别可与对应之顶针38耦接。顶针38可与PCB模块39耦接。
图14A为本申请的一些实施例的顶盖组件341的立体示意图,图14B为本申请的一些实施例的顶盖组件341的上视示意图,图14C为本申请的一些实施例的顶盖组件341的剖面结构示意图。如图14A、图14B和图14C所示,组件341具有一个贯穿组件341本体的通孔3411。参考图14C,图14C为图14B沿A-A线的剖面图,通孔3411具有二相对的内壁3412、3413;檔板3415大致在内壁3412的上缘处自内壁3412大致水 平地延伸,檔板3417大致在内壁3413的下缘处自内壁3413大致水平地延伸;进一步说明,档板3415大致水平地设置于通孔3411的开口34111处,且自内壁3412延伸突出,而檔板3417大致水平地设置于通孔3411的开口34112处,且自内壁3413延伸突出。如此,檔板3415、3417经构形以在通孔3411内形成一迂回如Z字型的信道。其中,檔板3415的垂直投影至少部分地与档板3417相互交迭。
图15A为本申请的一些实施例的顶盖组件342的立体示意图,图15B为本申请的一些实施例的顶盖组件342的上视示意图,图15C为本申请的一些实施例的顶盖组件342的剖面结构示意图。如图15A、图15B和图15C所示,组件342具有二个通孔3421、3422,通孔3421、3422系分别贯穿组件342的本体。参考图15C,图15C为图15B沿B-B线的剖面图,通孔3421具有上开口34211和下开口34212,通孔3422具有上开口34221和下开口34222。
图16为本申请的一些实施例的烟弹3的剖面结构示意图。壳体33中包含储存舱332。储存舱332用以储存待雾化之流体物质,如烟油。顶盖34(包含组件341、组件342及组件343)接合至壳体33。在一些实施例中,壳体33及顶盖34界定储存舱332。当顶盖34接合至壳体33,壳体33之内表面环绕顶盖34之组件341。一些实施例中,壳体33界定储存舱332。当顶盖34接合至壳体33,储存舱332之内表面环绕顶盖34之组件341。顶盖34(包含组件341、组件342及组件343)接合至加热组件35。当顶盖34接合至加热组件35,顶盖34之组件343环绕加热组件35。
顶盖34的组件341具有通孔3411,而组件342具有通孔3421、3422。加热组件35之上表面具有凹槽。组件342与加热组件35上表面的凹槽界定一空腔355。
储存舱332与通孔3411流体连通。通孔3411与通孔3421及通孔3422流体连通。通孔3411与空腔355经由通孔3421、3422流体连通。因此,储存舱332、通孔3411、通孔3421、3422与空腔355流体连通。通孔3421或3422的横截面面积与储存舱332的横截面面积的比例大致为1∶15至1∶20,又,通孔3421或3422的横截面直径大约为1.7mm。
加热组件35包含二针脚352。针脚352与顶针38耦接。管37自底盖30朝向加热组件35延伸。管37包含两端。管37之两端各别具有开口371及开口372。管37延伸并部分穿过加热底座36。加热底座36之孔361(如图13A所示)容纳管37。管37之开口371于加热底座36底面界定一开口。管37之开口371暴露于加热底座36之底面。加热底座36包含管37之开口371。底盖30之通孔301暴露开口371。管37之开口371及开口372与外部流体连通。
图16中之虚线箭头显示烟弹3之出气通道P3。外部之流体(如空气)自管37之开口371流入,经过管37,于管37之开口372流出。自管37之开口372流出之空气,经由加热底座36之复数个孔363(如图13B所示)流至雾化室353。雾化室353由加热组件35之下部、针脚352及顶针38所界定。加热组件35之下部暴露于雾化室353中。由加热组件35加热产生的气雾与空气混合,接着经由壳体33的通道333流至壳体33之孔331(如图13A所示)以及帽盖32之孔321(如图13A所示),再流至吸嘴盖31之孔311被使用者吸食。
当使用烟弹3时,储存舱332所储存的烟油可先经由组件241的通孔3411及组件342的通孔3421或3422流入空腔355中。随后,加热组件35可开始加热流入空腔355内的烟油;当空腔355内的烟油被加热后,即会产生气雾,一部分的气雾随由外部进入之空气进入壳体33的通道333,以进一步进入帽盖32的孔321及吸嘴盖31的孔311供使用者吸食。然,若烟油自储存舱332流入空腔355的流率过快,则会有过量的烟油流入空腔355中,如此一来,则容易产生烟弹漏油、糊味或者不出烟等情形。为此,本申请的一些实施例提供了组件341的通孔3411与组件342的通孔3421、3422,其经构形以可抑制烟油自储存舱332流入空腔355的流率,避免过量的烟油流入空腔355中,则可解决上述之技术问题。
承上,当加热组件35可开始加热流入空腔355内的烟油,其所产生的烟雾的一部分会随由外部进入之空气进入壳体33的通道333,而另一部分的烟雾则会成为气泡而通过组件342的通孔3421、3422流入组件341的通孔3411(参箭头f7);在所述部分之烟雾形成气泡流入通孔3411中时,因通孔3411的檔板3415及3417经构形以在通孔3411内形成一Z字型的迂回路径;因形成于通孔3411的Z字型的迂回路径,所述气泡必须经过更长的路径才能通过通孔3411而进一步进入储存舱332(参箭头f8),如此一来,气泡则会耗费较多的时间停留在通孔3411内。同样地,自储存舱332流入空腔的烟油亦必须通过通孔3411的Z字型的迂回路径,如此烟油亦经过更长的路径才能通过通孔3411而进一步流入组件342的通孔3421、3422(参箭头f9),并进一步流入空腔355中,故烟油自储存舱332通过组件341、342流入空腔355的流率则会被减缓;再者,气泡停留在通孔3411的时间较多,而留在通孔3411的气泡会部分地阻碍烟油通过通孔3411,如此则会进一步减缓烟油通过通孔3411的流率。根据以上,通孔3411的檔板3415及3417可有效地减缓烟油自储存舱332通过组件341、342流入空腔355的流率。
利用上述的方式,可有效的抑制储存舱332内的烟油流入空腔355的流率,以可避免过量的烟油流入空腔355中。
图17A为本申请的一些实施例的顶盖组件的立体图。图17B为本申请的一些实施例的顶盖组件的侧壁的示意图。图17C为本申请的一些实施例的烟弹的部分截面图。图17D为本申请的一些实施例的顶盖组件的侧壁示意图。
如先前所述,组件343可为一密封件。如图17A、图17B及图17C所示,组件343具有顶部3431、底部3433及位于顶部3431及底部3433之间延伸的侧壁3435。所述侧壁3435具有凹槽34351。组件343的顶部3431具有凹槽34311。组件343的底部3433具有凹槽34331。
侧壁3435包括分隔件3432,所述分隔件3432包括区段34321及区段34322,且区段34321的一端与区段34322的一端系直接连接。所述区段34321的另一端与凹槽34351的一边34353形成间隙34355。区段34322的另一端与凹槽34351的另一边34354形成间隙34356。在某些实施例中,区段34321与区段34322之间的角度θ 1介于90至180度之间。在某些实施例中,区段34321与区段34322之间的角度θ 1介于90至120度之间。在某些实施例中,区段33421与区段34322之间的角度θ 1介于120至150度之间。在某些实施例中,区段34321与区段34322之间的角度θ 1介于150至180度之间。在某些实施例中,区段34321与区段34322形成一开口朝上(例如图17B所示的垂直向上方向)的V型形状。
组件343的侧壁3435进一步包含分隔件3434。所述第二分隔件3434包括区段34341及区段34342。区段34341与区段34342之间形成间隙34358。区段34341与区段34342之间具有一角度θ 2。在某些实施例中,区段34341与区段34342之间的角度θ 2与区段34321与区段34322之间的角度θ 1可为不同。在某些实施例中,区段34341与区段34342之间的角度θ 2与区段34321与区段34322之间的角度θ 1可为相同。在某些实施例中,区段34341与区段34342形成一开口朝下(例如图17B所示的垂直向下方向)的倒V型形状。
当组件343覆盖于加热组件35上时,分隔件3432、分隔件3434、凹槽34351与加热组件35之间界定至少一空腔(或称为透气通道)。详细而言,凹槽34331、间隙34358、间隙34355及凹槽34311可界定透气通道34301(如图17D所示)。雾化室353可经由透气通道34301而与储存舱(如图16所示之储存舱332)流体连通。凹槽34331、间隙34358、间隙34356及凹槽34311可界定透气通道34302(如图17D所示)。雾化室353可经由透气通道34302而与储存舱(如图16所示之储存舱332)流体连通。
随着使用者持续使用雾化装置,储存舱332内的可雾化材料不断消耗并减少,使储存舱332内压力逐渐变小。储存舱332内压力变小可能产生负压。储存舱332内压力 变小可能使可雾化材料(例如烟油)不易经由通道3421及3422流至加热组件35的空腔355。当空腔355未完全吸附可雾化材料时,高温的加热组件35可能干烧并产生焦味。
藉由在组件343的侧壁中设置透气通道可以改善上述问题。形成于组件343的侧壁中的透气通道(如图17D之箭头所示之流动方向)可以平衡储存舱332内的压力。
如前述,烟弹3还包括位于加热组件35下方的吸油垫351。吸油垫351可以用于吸收可能泄露的烟油(参图13A)。然,当使用者吸气时,空气会通过如图16所示之通道P3,在空气经过雾化室353时,经雾化之烟油与冷空气混合,可能使雾化之烟油冷凝,而未被吸油垫351完全吸收的烟油可能外溢于烟弹3之外。为避免未被吸油垫351完全吸收的烟油外溢,本申请的一些实施例的加热底座36进一步包含有吸油垫365(参图18A)。吸油垫365系设置于相对孔361所在位置的一端的相对端(参图18B)。吸油垫365的材质为高分子棉,但可以根据实际情况进行选择,并不限定于此。
整个说明书中对“一些实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例“,其不必然是引用本申请中的相同的实施例或示例。
如本文中所使用,空间相对术语,例如,“之下”、“下方”、“下部”、“上方”、“上部”、“下部”、“左侧”、“右侧”及类似者可在本文中用于描述的简易以描述如图中所说明的一个组件或特征与另一组件或特征的关系。除了图中所描绘的定向之外,空间相对术语意图涵盖在使用或操作中的装置的不同定向。设备可以其它方式定向(旋转90度或处于其它定向),且本文中所使用的空间相对描述词同样可相应地进行解释。应理解,当一组件被称为“连接到”或“耦合到”另一组件时,其可直接连接或耦合到另一组件,或可存在中间组件。
如本文中所使用,术语“近似地”、“基本上”、“基本”及“约”用于描述并考虑小变化。当与事件或情况结合使用时,所述术语可指事件或情况精确地发生的例子以及事件或情况极近似地发生的例子。如本文中相对于给定值或范围所使用,术语“约”大体上意味着在给定值或范围的±10%、±5%、±1%或±0.5%内。范围可在本文中表示为自一个端点至另一端点或在两个端点之间。除非另外规定,否则本文中所公开的所有范围包括端点。术语“基本上共面”可指沿同一平面定位的在数微米(μm)内的两个表面,例如,沿着同一平面定位的在10μm内、5μm内、1μm内或0.5μm内。当参考“基本上”相同的数值或 特性时,术语可指处于所述值的平均值的±10%、±5%、±1%或±0.5%内的值。
如本文中所使用,术语“近似地”、“基本上”、“基本”和“约”用于描述和解释小的变化。当与事件或情况结合使用时,所述术语可指事件或情况精确地发生的例子以及事件或情况极近似地发生的例子。举例来说,当与数值结合使用时,术语可指小于或等于所述数值的±10%的变化范围,例如,小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%,或小于或等于±0.05%。举例来说,如果两个数值之间的差小于或等于所述值的平均值的±10%(例如,小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%,或小于或等于±0.05%),那么可认为所述两个数值“基本上”或“约”相同。举例来说,“基本上”平行可以指相对于0°的小于或等于±10°的角度变化范围,例如,小于或等于±5°、小于或等于±4°、小于或等于±3°、小于或等于±2°、小于或等于±1°、小于或等于±0.5°、小于或等于±0.1°,或小于或等于±0.05°。举例来说,“基本上”垂直可以指相对于90°的小于或等于±10°的角度变化范围,例如,小于或等于±5°、小于或等于±4°、小于或等于±3°、小于或等于±2°、小于或等于±1°、小于或等于±0.5°、小于或等于±0.1°,或小于或等于±0.05°。
如本文中所使用,除非上下文另外明确规定,否则单数术语“一(a/an)”和“所述”可包含复数指示物。在一些实施例的描述中,提供于另一组件“上”或“上方”的组件可涵盖前一组件直接在后一组件上(例如,与后一组件物理接触)的情况,以及一或多个中间组件位于前一组件与后一组件之间的情况。
除非另外规定,否则例如“上方”、“下方”、“上”、“左”、“右”、“下”、“顶部”、“底部”、“垂直”、“水平”、“侧面”、“高于”、“低于”、“上部”、“在......上”、“在......下”、“向下”等等的空间描述是相对于图中所示的定向来指示的。应理解,本文中所使用的空间描述仅出于说明的目的,且本文中所描述的结构的实际实施方案可以任何定向或方式在空间上布置,其前提是本发明的实施例的优点是不会因此类布置而有偏差。
虽然已参考本揭露的特定实施例描述并说明本揭露,但是这些描述和说明并不限制本揭露。所属领域的技术人员可清晰地理解,在不脱离如由所附权利要求书定义的本揭露的真实精神和范围的情况下,可进行各种改变,且可在实施例内取代等效组件。图示可能未必按比例绘制。归因于制造过程中的变量等等,本揭露中的艺术再现与实际设备之间可能存在区别。可能存在并未特定说明的本揭露的其它实施例。应将本说明书和图式视为说明性而非限定性的。可进行修改,以使特定情形、材料、物质组成、物质、方法或过程适宜于本揭露的目标、精神和范围。所有此类修改都意图在此所附权利要求 书的范围内。虽然已参考按特定次序执行的特定操作描述本文中所公开的方法,但应理解,可在不脱离本揭露的教示的情况下组合、细分或重新排序这些操作以形成等效方法。因此,除非本文中特别指示,否则操作的次序和分组并非本揭露的限制。
前文概述本揭露的若干实施例及细节方面的特征。本揭露中描述的实施例可容易地用作用于设计或修改其它过程的基础以及用于执行相同或相似目的和/或获得引入本文中的实施例的相同或相似优点的结构。此类等效构造并不脱离本揭露的精神和范围,并且可在不脱离本揭露的精神和范围的情况下作出各种改变、替代和变化。

Claims (25)

  1. 一种雾化装置,其包含:
    包含储存舱的壳体;
    顶盖,其设置于所述壳体中并连接所述储存舱;及
    加热总成,其设置于所述壳体中并连接所述顶盖;
    其中所述顶盖包含相互配合的第一顶盖组件与第二顶盖组件,所述第一顶盖组件与所述储存舱连接,所述第二顶盖组件与所述加热总成连接;
    其中,所述第一顶盖组件具有第一通孔、第二通孔及第三通孔,所述储存舱与所述第一通孔、第二通孔及第三通孔流体连通,所述第二顶盖组件具有第四通孔及第五通孔,所述加热总成与所述第四通孔及第五通孔流体连通,所述第一通孔、第二通孔及第三通孔与所述第四通孔流体连通,亦与所述第五通孔流体连通;
    其中所述第一通孔、第二通孔及第三通孔各个的内径的尺寸并非均一。
  2. 根据权利要求1所述的雾化装置,其中所述第四通孔经配置大致与所述第一通孔相对应,而所述第五通孔经配置大致与所述第三通孔相对应。
  3. 根据权利要求1所述的雾化装置,其中
    所述第一通孔具有邻近所述储存舱之第一开口及邻近所述第二顶盖组件之第二开口,所述第一开口的横截面面积小于所述第二开口的横截面面积;
    所述第二通孔具有邻近所述储存舱之第三开口及邻近所述第二顶盖组件之第四开口,所述第三开口的横截面面积大于所述第四开口的横截面面积;
    所述第三通孔具有邻近所述储存舱之第五开口及邻近所述第二顶盖组件之第六开口,所述第五开口的横截面面积小于所述第六开口的横截面面积。
  4. 根据权利要求3所述的雾化装置,其中所述第二开口大致对准所述第四通孔,且其中所述第六开口大致对准所述第五通孔。
  5. 根据权利要求1所述的雾化装置,其中所述第一通孔及所述第三通孔的各个内径由邻近所述第二顶盖组件处朝向邻近所述储存舱处渐缩,所述第二通孔的内径由邻近所述储存舱处朝向邻近所述第二顶盖组件处渐缩。
  6. 根据权利要求1所述的雾化装置,其中所述第四通孔或第五通孔的横截面面积与所述储存舱的横截面面积的比例为1∶15至1∶20。
  7. 根据权利要求1所述的雾化装置,其中所述第四通孔或第五通孔的横截面直径为1.7mm。
  8. 根据权利要求1所述的雾化装置,其中所述顶盖进一步包含密封件,且其中所述密封件可与所述第二顶盖组件相互配合并与所述加热总成相互连接。
  9. 根据权利要求8所述的雾化装置,其中所述加热总成包含加热组件及用于支承所述加热组件之加热底座,且其中所述密封件设置于所述加热组件上。
  10. 根据权利要求9所述的雾化装置,其中所述密封件具有顶部、底部及于所述顶部及所述底部之间延伸的第一侧壁,所述第一侧壁具有第一凹槽,所述顶部具有第二凹槽,且所述底部具有第三凹槽,且其中所述第一凹槽与所述加热组件之界定空腔。
  11. 根据权利要求10所述的雾化装置,其中所述密封件的第一侧壁包括第一分隔件,所述第一分隔件包括第一区段及第二区段,且所述第一区段的第一端与所述第二区段的第二端相互连接。
  12. 根据权利要求11所述的雾化装置,其中所述第一区段与所述第二区段之间具有第一角度,所述第一角度介于90至180度之间。
  13. 根据权利要求11所述的雾化装置,其中所述第一区段具有相对所述第一端之第三端,所述第二区段具有相对所述第二端之第四端,且其中所述第三端与所述第一凹槽的第一表面形成第一间隙,所述第四端与所述第一凹槽的相对所述第一表面的第二表面形成第二间隙。
  14. 根据权利要求11所述的雾化装置,其中所述密封件的第一侧壁进一步包括第二分隔件(1434),所述第二分隔件包括第三区段及第四区段,且其中所述第三区段的第五端与所述第四区段的第六端之间形成第三间隙。
  15. 根据权利要求14所述的雾化装置,其中所述第一区段与所述第二区段之间具有第一角度且所述第三区段及与四区段之间具有第二角度,其中所述第一角度与所述第二角度不同。
  16. 根据权利要求14所述的雾化装置,其中所述第三区段系自所述第一凹槽的第一侧边(14353)呈一角度朝向所述第一凹槽的相对所述第一侧边的第二侧边延伸,且其中所述第四区段系自所述第一凹槽的所述第二侧边呈一角度朝向所述第一凹槽的所述第一表面延伸。
  17. 根据权利要求8所述的雾化装置,其中所述第一顶盖组件、所述第二顶盖组件及所述密封件由不同材料所制成。
  18. 根据权利要求1所述的雾化装置,其中所述第一顶盖组件由硅胶所制成。
  19. 根据权利要求8所述的雾化装置,其中密封件由硅胶所制成。
  20. 根据权利要求9所述的雾化装置,其进一步包含第一吸油垫,其中所述第一吸油垫 设置于所述加热组件与所述加热底座之间。
  21. 根据权利要求9所述的雾化装置,其中所述加热底座具有第一开口,所述加热总成经由所述第一开口与外界连通。
  22. 根据权利要求21所述的雾化装置,其中所述第一开口经设置邻近所述加热底座的第一端,且其中所述加热底座的相对所述第一端的第二端具有一第二吸油垫。
  23. 根据权利要求20所述的雾化装置,其中所述第一吸油垫为高分子棉所制成。
  24. 根据权利要求22所述的雾化装置,其中所述第二吸油垫为高分子棉所制成。
  25. 根据权利要求9所述的雾化装置,其进一步包含与所述加热组件电连接的电路板。
PCT/CN2019/110327 2019-10-10 2019-10-10 雾化装置 WO2021068155A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110327 WO2021068155A1 (zh) 2019-10-10 2019-10-10 雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110327 WO2021068155A1 (zh) 2019-10-10 2019-10-10 雾化装置

Publications (1)

Publication Number Publication Date
WO2021068155A1 true WO2021068155A1 (zh) 2021-04-15

Family

ID=75436905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110327 WO2021068155A1 (zh) 2019-10-10 2019-10-10 雾化装置

Country Status (1)

Country Link
WO (1) WO2021068155A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208909136U (zh) * 2018-09-25 2019-05-31 深圳雾芯科技有限公司 一种电子烟雾化装置及电子烟
CN209346085U (zh) * 2018-05-04 2019-09-06 深圳麦克韦尔科技有限公司 电子烟及其雾化装置
KR102019593B1 (ko) * 2018-03-06 2019-09-06 주식회사 케이티앤지 에어로졸 흡입기
CN209403574U (zh) * 2018-09-05 2019-09-20 深圳麦克韦尔科技有限公司 雾化装置及电子烟
CN110250577A (zh) * 2019-06-17 2019-09-20 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器
CN110279159A (zh) * 2019-07-16 2019-09-27 深圳雾芯科技有限公司 一种雾化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102019593B1 (ko) * 2018-03-06 2019-09-06 주식회사 케이티앤지 에어로졸 흡입기
CN209346085U (zh) * 2018-05-04 2019-09-06 深圳麦克韦尔科技有限公司 电子烟及其雾化装置
CN209403574U (zh) * 2018-09-05 2019-09-20 深圳麦克韦尔科技有限公司 雾化装置及电子烟
CN208909136U (zh) * 2018-09-25 2019-05-31 深圳雾芯科技有限公司 一种电子烟雾化装置及电子烟
CN110250577A (zh) * 2019-06-17 2019-09-20 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器
CN110279159A (zh) * 2019-07-16 2019-09-27 深圳雾芯科技有限公司 一种雾化装置

Similar Documents

Publication Publication Date Title
US11284645B2 (en) Vaporization device
US11259572B2 (en) Vaporization device having a top cap for flow rate control
CN112971217A (zh) 雾化芯、雾化器及电子雾化装置
JP7377356B2 (ja) 電子霧化装置及びそのアトマイザー
US20220218038A1 (en) Electronic atomization device and atomizer thereof
CN111011933A (zh) 电子雾化装置及其雾化器
CN214710376U (zh) 雾化器及电子雾化装置
WO2022083485A1 (zh) 一种雾化器及其电子雾化装置
WO2023124498A1 (zh) 雾化顶座、雾化器及电子雾化装置
WO2021031891A1 (zh) 一种电子烟雾化芯及雾化器
WO2021062779A1 (zh) 一种电子雾化装置及其雾化器
WO2023174054A1 (zh) 用于电子烟的雾化芯组件、用于电子烟的烟弹和电子烟
WO2021068155A1 (zh) 雾化装置
WO2021068154A1 (zh) 雾化装置
CN217407797U (zh) 雾化器和雾化装置
CN215303020U (zh) 雾化器及电子雾化装置
WO2022151846A1 (zh) 油气路分离雾化器及电子烟
WO2023185155A1 (zh) 一种电子雾化装置及其雾化器
CN215347019U (zh) 一种雾化器及气溶胶生成装置
CN212088062U (zh) 雾化装置
CN212260466U (zh) 雾化装置
CN213549686U (zh) 雾化器及电子雾化装置
WO2021051359A1 (zh) 一种雾化装置
JP7419523B2 (ja) 電子霧化装置及びそのアトマイザー
WO2021051360A1 (zh) 一种雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948409

Country of ref document: EP

Kind code of ref document: A1