WO2021066274A1 - Steel sheet having high strength and high formability and method for manufacturing same - Google Patents

Steel sheet having high strength and high formability and method for manufacturing same Download PDF

Info

Publication number
WO2021066274A1
WO2021066274A1 PCT/KR2020/006385 KR2020006385W WO2021066274A1 WO 2021066274 A1 WO2021066274 A1 WO 2021066274A1 KR 2020006385 W KR2020006385 W KR 2020006385W WO 2021066274 A1 WO2021066274 A1 WO 2021066274A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
steel
strength
high strength
Prior art date
Application number
PCT/KR2020/006385
Other languages
French (fr)
Korean (ko)
Inventor
엄호용
구남훈
김민성
오규진
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to MX2022001389A priority Critical patent/MX2022001389A/en
Priority to US17/608,068 priority patent/US20220220576A1/en
Priority to BR112022001969A priority patent/BR112022001969A2/en
Priority to CN202080035734.7A priority patent/CN113825852B/en
Priority to JP2021564566A priority patent/JP7419401B2/en
Priority to DE112020004666.4T priority patent/DE112020004666T5/en
Publication of WO2021066274A1 publication Critical patent/WO2021066274A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a steel plate and a method of manufacturing the same, and more particularly, to a steel plate having high strength and high formability, and a method of manufacturing the same.
  • Patent Application No. 10-2016-0077463 title of the invention: ultra-high strength, high ductility steel sheet with excellent yield strength and a manufacturing method thereof.
  • the problem to be solved by the present invention is to provide a steel sheet having high formability and high strength, and a method of manufacturing the same.
  • the steel sheet having high strength and high formability is in weight%, carbon (C): 0.05 to 0.15%, silicon (Si): more than 0 0.4% or less, manganese (Mn): 4.0 to 9.0%, Aluminum (Al): greater than 0 and 0.3% or less, phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less, nitrogen (N): 0.006% or less, balance iron (Fe) and other inevitable impurities included do. It has a microstructure made of ferrite and retained austenite. The grain size of the microstructure is 3 ⁇ m or less. Yield strength (YS): 800 MPa or more, tensile strength (TS): 980 MPa or more, elongation (EL): 25% or more, hole expandability (HER): 20% or more.
  • YS Yield strength
  • TS tensile strength
  • EL elongation
  • HER hole expandability
  • the steel sheet includes at least one of niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo), and the at least one may be greater than 0 and less than 0.02% by weight. .
  • the steel sheet may further include boron (B): greater than 0 and less than or equal to 0.001%.
  • the volume fraction of the retained austenite in the microstructure may be 10 to 30% by volume.
  • the method of manufacturing a steel sheet having high strength and high formability is (a) in weight%, carbon (C): 0.05 to 0.15%, silicon (Si): more than 0 and not more than 0.4%, manganese (Mn) : 4.0 to 9.0%, aluminum (Al): more than 0 and 0.3% or less, phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less, nitrogen (N): 0.006% or less, balance iron (Fe) And manufacturing a hot-rolled sheet material using a steel slab containing other inevitable impurities; (b) cold rolling the hot-rolled sheet to manufacture a cold-rolled sheet; (c) subjecting the cold-rolled sheet to a first heat treatment at a temperature of AC3 to AC3 + 15°C; And (d) subjecting the cold-rolled sheet material subjected to the first heat treatment to a second heat treatment at an ideal temperature. After step (d), the cold-rolled sheet has a microstructure made of ferrite
  • the steel slab includes at least one of niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo), wherein the at least one is greater than 0 and less than 0.02% by weight, respectively. have.
  • the steel slab may further include boron (B): greater than 0 and less than or equal to 0.001%.
  • step (c) may include cooling the heat-treated cold-rolled sheet material to 350 to 450°C at a cooling rate of 4 to 10°C/s.
  • step (d) may include cooling the heat-treated cold-rolled sheet material to 350 to 450°C or less at 4 to 10°C/s.
  • the step (a) comprises the steps of (a1) reheating the steel slab to a temperature of 1150 ⁇ 1250 °C; (a2) hot rolling the reheated steel slab at a finish rolling temperature of 925 to 975°C; And (a3) cooling the hot-rolled steel to 700°C to 800°C at a cooling rate of 10 to 30°C/s and then winding it up.
  • the hot-rolled sheet may further include a step of softening heat treatment at 550°C to 650°C.
  • the cold-rolled sheet has yield strength (YS): 800 MPa or more, tensile strength (TS): 980 MPa or more, elongation (EL): 25% or more, hole expandability (HER): It can have more than 20%.
  • the crystal grain size of the cold-rolled sheet may be 3 ⁇ m or less.
  • a steel sheet having a microstructure made of ultrafine ferrite and retained austenite can be manufactured through component system control and process condition control. Due to the fine grain ferrite, the steel sheet has high strength, and due to the residual austenite present in the microstructure in 10 to 30% by volume, it has high strength and elongation, and by controlling the shape of the microstructure, high It can function to have hole expandability (HER). As a result, it is possible to effectively secure a steel sheet having high formability and high strength.
  • HER hole expandability
  • FIG. 1 is a process flow diagram schematically showing a method of manufacturing a steel sheet having high strength and high formability according to an embodiment of the present invention.
  • FIG. 4 is a photograph showing the microstructure of a high-strength steel sheet according to an embodiment of the present invention.
  • a steel sheet having high strength and high formability may have a fine grain ferrite and residual austenite present in an amount of 10 to 30% by volume as a final microstructure.
  • the steel sheet may have high strength, high elongation, and high hole expandability (HER).
  • the steel sheet is made to sufficiently contain residual austenite at a level of 10 to 30% by volume.
  • the retained austenite can improve the elongation of the steel sheet in substantially the same manner as in the conventional metamorphic organic plastic steel.
  • an austenite stabilizing element may be appropriately added to the steel sheet as described later.
  • the first and second annealing heat treatment may be continuously performed, and the second annealing heat treatment may be performed in an ideal area.
  • the interface between the hard phase and the soft phase, which can function as a crack formation point in the steel sheet is reduced.
  • hard phases such as martensite and bainite
  • the boundary surface between precipitates and crystal grains is reduced.
  • the content of a precipitate generating element such as titanium, niobium, vanadium, and the like and a precipitate growth inhibiting element such as molybdenum may be controlled.
  • the fraction of High Angle Grain Boundaries (HAGBs) in the final structure may be increased.
  • the high-angle grain boundary may mean a grain boundary having an angle of 15° or more between neighboring grains.
  • the shape of the microstructure may be controlled so that the steel sheet has high hole expandability.
  • the annealing heat treatment may be divided into a first and a second heat treatment in a two-stage heat treatment process.
  • the crystal grains of the final microstructure are refined.
  • the grain size of ferrite and retained austenite can be controlled to be 3 ⁇ m or less.
  • the primary annealing temperature can proceed at AC3 ⁇ AC3 +15 °C.
  • the high-strength steel sheet according to an embodiment of the present invention is in weight%, carbon (C): 0.05 to 0.15%, silicon (Si): more than 0 0.4%, manganese (Mn): 4.0 to 9.0%, aluminum (Al) : More than 0 0.3%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Nitrogen (N): 0.006% or less
  • the balance contains iron (Fe) and other unavoidable impurities.
  • the high-strength steel sheet further includes at least one of niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo), wherein each of the at least one may exceed 0 and be 0.02% or less.
  • the high-strength steel sheet may further include boron (B): greater than 0 and less than or equal to 0.001% by weight.
  • each component included in the high-strength cold-rolled steel sheet according to an embodiment of the present invention will be described in detail (the content of each component is a weight percent of the total steel sheet, hereinafter expressed as %).
  • Carbon (C) is the most important alloying element in steel making, and in the present invention, the main purpose is to play a basic reinforcing role and to stabilize austenite.
  • the high carbon (C) concentration in austenite improves austenite stability, making it easy to secure appropriate austenite for material improvement.
  • an excessively high carbon (C) content may lead to a decrease in weldability due to an increase in carbon equivalent, and since a large number of cementite precipitated structures such as pearlite may be formed during cooling, carbon (C) is 0.05 to 0.15% of the total weight of the steel sheet. It is preferable to add.
  • the carbon is included in an amount of less than 0.05%, it is difficult to secure the strength of the steel sheet, and when it is included in an amount exceeding 0.15%, toughness and ductility may be deteriorated.
  • Silicon (Si) is an element that suppresses the formation of carbides in ferrite, and increases the activity of carbon (C) to increase the diffusion rate of austenite. Silicon (Si) is also well known as a ferrite stabilizing element and is known as an element that increases the ferrite fraction during cooling to increase ductility. In addition, since the suppression of the formation of carbide is very high, it is a necessary element to secure the TRIP effect by increasing the carbon concentration in the retained austenite during the formation of bainite. However, when silicon (Si) is added in excess of 0.4%, oxide (SiO2) may be formed on the surface of the steel sheet during the process, the rolling load may be increased during hot rolling, and a large amount of red scale may be generated. Therefore, it is preferable to add silicon (Si) in an amount of 0.4% or less of the total weight of the steel sheet.
  • Manganese (Mn) is an austenite stabilizing element, and as manganese (Mn) is added, the starting temperature of martensite, Ms, gradually decreases, thereby increasing the residual austenite fraction after heat treatment.
  • Manganese is contained in 4.0 to 9.0% of the total weight of the steel sheet. When manganese is added in an amount of less than 4.0%, the above-described effect cannot be sufficiently secured. Conversely, when manganese is added in excess of 9.0%, weldability decreases due to an increase in carbon equivalent and oxides (MnO) are formed on the surface of the steel sheet during processing, resulting in a decrease in plating properties due to poor wettability.
  • MnO oxides
  • Al aluminum
  • Al aluminum
  • Niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo) may be selectively included in the steel.
  • niobium (Nb), titanium (Ti), and vanadium (V) are elements precipitated in the form of carbides in steel, and are elements added to secure strength through precipitation of carbides.
  • titanium (Ti) it is possible to suppress the formation of AlN to suppress the formation of cracks during playing.
  • niobium (Nb), titanium (Ti), and vanadium (V) are added in excess of 0.2%, respectively, by forming coarse precipitates, the amount of carbon in the steel is reduced to deteriorate the material, and niobium (Nb) , Titanium (Ti), and vanadium (V)
  • Nb niobium
  • Ti Titanium
  • V vanadium
  • molybdenum may play a role of controlling the size of the carbide by suppressing the growth of the carbide.
  • molybdenum when molybdenum is added in excess of 0.2%, the above effect is saturated and there is a disadvantage of an increase in manufacturing cost.
  • Boron (B) may be selectively added to the steel sheet, and may function as a grain boundary strengthening element. Boron may be added in an amount greater than 0 and 0.001% or less of the total weight of the steel sheet. When boron is added in excess of 0.001%, high-temperature ductility can be reduced by forming nitrides such as BN.
  • Phosphorus (P), sulfur (S) and nitrogen (N) may inevitably be added into the steel during the steelmaking process. That is, ideally, it is preferable not to include it, but it is difficult to completely remove it due to the process technology, so a certain small amount may be included.
  • Phosphorus (P) can play a similar role to silicon in steel. However, when phosphorus is added in excess of 0.02% of the total weight of the steel sheet, it may reduce the weldability of the steel sheet and increase brittleness, resulting in material degradation. Therefore, phosphorus can be controlled to be added to 0.02% or less of the total weight of the steel sheet.
  • sulfur (S) may impair toughness and weldability in the steel, it may be controlled to be contained in 0.005% or less of the total weight of the steel sheet.
  • nitrogen (N) When nitrogen (N) is excessively present in the steel, a large amount of nitride may be precipitated and ductility may be deteriorated. Therefore, nitrogen (N) can be controlled to be contained in 0.006% or less of the total weight of the steel sheet.
  • the high-strength steel sheet of the present invention having the above alloying components has a microstructure made of ferrite and retained austenite.
  • the volume fraction of the retained austenite in the microstructure may be 10 to 30% by volume.
  • the crystal grains of the high-strength steel sheet may be fine grains having a size of 3 ⁇ m or less. Among the crystal grains, a fraction of an elevation grain boundary may be 70% or more.
  • the high-strength steel sheet may have material properties such as yield strength (YS): 800 MPa or more, tensile strength (TS): 980 MPa or more, elongation (EL): 25% or more, and hole expandability (HER): 20% or more. Accordingly, the high-strength steel sheet according to an embodiment of the present invention can be applied to fields requiring high strength and high formability.
  • the high-strength steel sheet according to the exemplary embodiment of the present invention described above may be manufactured by the method of an exemplary embodiment as follows.
  • the present invention intends to present a steel sheet having excellent elongation, hole expandability and strength by performing a two-stage annealing heat treatment after proceeding with an alloy component of an appropriately controlled composition ratio, a hot rolling process and a cold rolling process, and a manufacturing method thereof.
  • FIG. 1 is a process flow diagram schematically showing a method of manufacturing a steel sheet having high strength and high formability according to an embodiment of the present invention.
  • the method of manufacturing the steel sheet includes reheating a steel slab (S110), manufacturing a hot-rolled sheet material by hot rolling the steel slab (S120), and cold-rolling the hot-rolled sheet material (S130). , And annealing and heat treatment of the cold-rolled sheet (S140).
  • the steel slab reheating step (S110) is, in weight%, carbon (C): 0.05 to 0.15%, silicon (Si): more than 0 0.4%, manganese (Mn): 4.0 to 9.0%, aluminum (Al) : More than 0 0.3%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Nitrogen (N): 0.006% or less Prepare a steel slab containing the balance iron (Fe) and other inevitable impurities And, it is a step of reheating the steel slab to re-dissolve the segregated components during casting and homogenize the components at the time of casting.
  • the steel slab further includes at least one of niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo), wherein each of the at least one may exceed 0 and be 0.02% or less.
  • the steel slab may further include boron (B): greater than 0 and not more than 0.001% by weight.
  • the steel slab reheating temperature is preferably about 1150 to 1250°C so as to secure a normal hot rolling temperature. If the reheating temperature is less than 1150°C, the hot rolling load may rapidly increase, and if it exceeds 1250°C, it may be difficult to secure the strength of the final produced steel sheet due to coarsening of initial austenite grains.
  • the hot rolling step (S120) is a step of forming a hot-rolled sheet material by performing hot rolling in a conventional method after reheating the slab, and performing finish rolling at a temperature of 925 to 975°C.
  • the finish rolling may be performed at a high temperature of 925 to 975°C.
  • the hot-rolled sheet is cooled to 700 to 800°C at a cooling rate of 10 to 30°C/s, and then wound up.
  • the cooling method may be applied to the non-injection cooling method.
  • the hot-rolled sheet may have a full martensite structure after cooling.
  • softening heat treatment may be performed to reduce a rolling load during cold rolling.
  • the softening heat treatment may be performed at 550 to 650°C.
  • the temperature of the softening heat treatment is less than 550° C., recrystallization does not occur for martensite generated after the hot rolling, and only tempering proceeds, so that supersaturated carbon in the structure may be formed in the form of cementite and spheroidized. In this case, the brittleness of the martensite may be expressed, and thus the plate may be fractured during cold rolling.
  • the softening heat treatment when the temperature of the softening heat treatment exceeds 650° C., austenite is excessively formed, and martensite is formed from the austenite during cooling, so that the effect of the softening heat treatment may not occur effectively.
  • the softening heat treatment in the above temperature range the martensite structure after hot rolling can be converted into a composite structure of ferrite and retained austenite.
  • the cold-rolling step (S130) is a step of cold-rolling the hot-rolled sheet after pickling.
  • the cold rolling may be performed under conditions of a reduction ratio of 40 to 60% of the hot-rolled sheet material.
  • the annealing heat treatment step includes a step of primary heat treatment at a temperature of AC3 ⁇ AC3 + 15 °C for the cold rolled sheet material and a second heat treatment of the cold rolled sheet material subjected to the first heat treatment at an ideal temperature. Can proceed.
  • the temperature of AC3 to AC3 + 15°C in the first heat treatment step may be, for example, a temperature of 735 to 750°C.
  • the ideal temperature in the second heat treatment step may be, for example, a temperature of 640 to 660°C.
  • the first heat treatment may convert a composite structure of ferrite and martensite of a sheet material after cold rolling into a structure of martensite.
  • the cold-rolled sheet is heated to a target temperature of 735 to 750°C at a temperature increase rate of 1 to 3°C/s, and a heat treatment for maintaining 40 to 120 seconds is performed.
  • the temperature increase rate is less than 1°C/s
  • the time to stay at the target temperature of 735 to 750°C exceeds the range of 40 to 120 seconds, so that the austenite grain size at the target temperature may increase excessively.
  • the heating rate exceeds 3°C/s
  • the time to stay at the target temperature of 735 to 750°C is less than the range of 40 to 120 seconds, so that the austenite grains of sufficient size at the target temperature are not secured. It may not be possible.
  • the heat-treated cold-rolled sheet is cooled to 350 to 450°C at a cooling rate of 4 to 10°C/s.
  • the cold-rolled sheet material cooled to the above temperature may be aged for 120 to 330 seconds.
  • the second heat treatment may be continuously performed on the cold-rolled sheet material on which the above-described first heat treatment has been completed.
  • the cold-rolled sheet is heated to a target temperature of 640 to 660°C at a temperature increase rate of 1 to 3°C/s, and heat treatment is performed for 40 to 120 seconds.
  • the secondary heat treatment may be performed at an ideal temperature within the target temperature range, so that the structure of martensite after the first heat treatment may be changed into a structure of ferrite and retained austenite. In this case, the volume fraction of retained austenite may be 10 to 30% by volume.
  • the cold-rolled sheet When the heating rate is less than 1°C/s, the cold-rolled sheet may not be secured by deteriorating material properties by forming or spheroidizing unnecessary cementite before reaching the abnormal temperature.
  • the temperature increase rate exceeds 3°C/s, it may not be maintained in the target temperature range for 40 to 120 seconds, and thus a sufficient fraction of retained austenite may not be secured in the final tissue.
  • the heat-treated cold-rolled sheet is cooled to 350 to 450°C at a cooling rate of 4 to 10°C/s.
  • the cold-rolled sheet material cooled to the above temperature may be aged for 120 to 330 seconds.
  • the steel sheet of the present invention manufactured by the above-described process has yield strength (YS): 800 MPa or more, tensile strength (TS): 980 MPa or more, elongation (EL): 25% or more, and hole expandability (HER): 20% or more.
  • YS yield strength
  • TS tensile strength
  • EL elongation
  • HER hole expandability
  • a predetermined amount of an austenite stabilizing element may be added to the steel slab as described above.
  • the steel sheet may have a composite structure of ferrite of fine grains and 10 to 30% by volume of retained austenite as a final microstructure. Since the steel sheet retains a sufficient fraction of retained austenite, it may have a high elongation of 25% or more due to the metamorphic organic plastic properties.
  • the interface between the hard phase and the soft phase can be reduced.
  • the content of the precipitate forming element such as titanium, niobium, vanadium, and the precipitate growth inhibiting element such as molybdenum by controlling the content of the precipitate forming element such as titanium, niobium, vanadium, and the precipitate growth inhibiting element such as molybdenum, the boundary between the precipitate and the crystal grains can be reduced.
  • the annealing heat treatment is performed as a two-stage heat treatment in which the annealing heat treatment is divided into the first and the second in a predetermined temperature range, thereby increasing the fraction of High Angle Grain Boundaries (HAGBs) in the final structure.
  • HAGBs High Angle Grain Boundaries
  • the steel sheet may have a high hole expandability of 20% or more.
  • crystal grains of the final microstructure may be refined.
  • the grain size of ferrite and retained austenite in the final microstructure can be controlled to be 3 ⁇ m or less.
  • a steel slab having a comparative component system and an actual component system in Table 1 was manufactured.
  • a specimen was prepared from the steel slab, and a high temperature tensile test was performed.
  • the content range of silicon and aluminum exceeded the upper limit of the content range of silicon and aluminum according to an embodiment of the present invention.
  • Figure 2 is a high-temperature tensile test result of the comparative component-based specimen of the present invention
  • Figure 3 is a high-temperature tensile test result of the actual component-based specimen of the present invention.
  • the sample of the comparative component system and the sample of the actual component system are respectively 700°C, 750°C, 800°C, 850°C, 900°C, 950°C, 1000°C, 1050°C, and 1100°C. After heating to a temperature, it is a result of performing a tensile test at the temperature.
  • the high-temperature tensile test is a graph 201 and -20°C/ when the specimen is heated to a temperature exceeding 1100°C and then cooled to each tensile test temperature at a cooling rate of -1°C/s.
  • a graph 202 in the case of cooling at each tensile test temperature at a cooling rate of s is shown together.
  • the area reduction rate is 50% or more at a predetermined temperature, it can be determined that ductility is secured at the predetermined temperature.
  • the area reduction rate is 55% at 1100°C
  • the area reduction rate is 50% at 700 to 800°C
  • the area reduction rate is less than the target value of 50% in the temperature range of 800 to 1050°C. I did.
  • the area reduction rate exceeded the target value of 50%.
  • Table 2 is a chart showing the rolling force per pass calculated by simulating hot rolling according to an embodiment of the present invention for a comparative component specimen and an implementation component specimen.
  • the specimen of the comparative component system should be applied with a large reduction force compared to the specimen of the actual component system. That is, it can be seen that a relatively large load is applied to the rolling mill when the specimen of the comparative component system is hot-rolled.
  • the first and second annealing heat treatment processes were each performed according to Table 3 for the specimens of the implementation component system of Table 1.
  • the secondary annealing temperature was lower than the lower limit of the secondary annealing temperature according to the embodiment of the present invention 640 °C.
  • the secondary annealing temperature was higher than the upper limit of 660 °C of the secondary annealing temperature according to the embodiment of the present invention.
  • the primary annealing temperature was higher than the upper limit of 750°C of the primary annealing temperature according to an embodiment of the present invention.
  • the secondary annealing temperature was higher than the upper limit of 660°C of the secondary annealing temperature according to an embodiment of the present invention.
  • the primary annealing heat treatment was not performed, and only the secondary annealing heat treatment was performed.
  • the secondary annealing temperature was higher than the upper limit of 660°C of the secondary annealing temperature according to an embodiment of the present invention.
  • Table 4 is a chart evaluating the material properties of the specimens of Comparative Examples 1 to 11 and Examples 1 to 6 subjected to annealing heat treatment according to Table 3.
  • Target values of the material properties of the high-strength steel sheet according to an embodiment of the present invention yield strength 800 MPa or more, tensile strength 980 MPa or more, elongation 25% or more, residual austenite volume fraction 10 to 30%, high angle grain boundaries (HAGBs) fraction More than 70% and more than 20% of hole expandability.
  • the specimens of Examples 1 to 6 satisfied all of the above target values. In the case of Comparative Example 1, the elongation and the fraction of high-angle grain boundaries (HAGBs) were less than the target values. In the case of Comparative Example 2, the elongation was less than the target value.
  • tensile strength, elongation, and fraction of high-angle grain boundaries were less than the target values.
  • the elongation, tensile strength x elongation, average grain size, and high-angle grain boundary (HAGBs) fraction were less than the target values.
  • the tensile strength, elongation, average grain size, and high angle grain boundaries (HAGBs) fraction were less than the target values.
  • the yield strength, tensile strength, elongation, average grain size, and high angle grain boundaries (HAGBs) fraction were less than the target values.
  • Figure 4 is a photograph showing the microstructure of a high-strength steel sheet according to an embodiment of the present invention. Specifically, Figure 4 is a microstructure photograph of the specimen of Example 1. Referring to Table 4 and FIG. 4, in the specimen of Example 1, residual austenite and excess ferrite having a volume fraction of 17% were observed.
  • the first and second annealing heat treatment processes were each performed according to Table 5 for the specimens of the implementation component system of Table 1.
  • Table 6 is a chart evaluating the material properties of the specimens of Comparative Examples 12 to 14 and Examples 13 to 16 subjected to annealing heat treatment according to Table 5.
  • the first and second annealing heat treatment processes were each performed according to Table 7 for the specimens of the implementation component system of Table 1.
  • Table 8 is a chart evaluating the material properties of the specimens of Comparative Examples 15 and 16 and Examples 11 to 14 subjected to annealing heat treatment according to Table 7.

Abstract

A steel sheet having high strength and high formability according to an aspect of the present invention comprises, by wt%, 0.05-0.15% of carbon (C), greater than 0 and 0.4% or less of silicon (Si), 4.0-9.0% of manganese (Mn), greater than 0 and 0.3% or less of aluminum (Al), 0.02% or less of phosphorus (P), 0.005% or less of sulfur (S), 0.006% or less of nitrogen (N), and the remainder of iron (Fe) and other inevitable impurities. The steel sheet has a microstructure consisting of ferrite and residual austenite. The grain size of the microstructure is 3 µm or less. The steel sheet has a yield strength (YS) of 800 MPa or more, a tensile strength (TS) of 980 Mpa or more, an elongation (EL) of 25% or more, and a hole expansion ratio (HER) of 20% or more.

Description

고강도 및 고성형성을 가지는 강판 및 그 제조방법Steel plate having high strength and high formability and manufacturing method thereof
본 발명은 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 고강도 및 고성형성을 가지는 강판 및 그 제조 방법에 관한 것이다.The present invention relates to a steel plate and a method of manufacturing the same, and more particularly, to a steel plate having high strength and high formability, and a method of manufacturing the same.
근래에, 자동차의 안전성, 경량화의 관점에서 자동차용 강판의 고강도화가 더욱 빠르게 진행되고 있다. 승객의 안전을 확보하기 위해서 자동차의 구조 부재로 사용되는 강판은 강도를 높이거나 두께를 증가시켜 충분한 충격 인성을 확보해야 한다. 또한, 자동차용 부품에 적용되기 위해서는 충분한 성형성이 요구되며, 자동차의 연비향상을 위해서는 차체 경량화가 필수적이기에, 자동차용 강판을 지속적으로 고강도화하고 성형성을 높이기 위한 연구가 진행중이다.In recent years, from the viewpoint of safety and weight reduction of automobiles, the high strength of automobile steel sheets is progressing more rapidly. In order to ensure the safety of passengers, the steel plate used as a structural member of automobiles must be increased in strength or thickness to secure sufficient impact toughness. In addition, sufficient formability is required in order to be applied to automobile parts, and since it is essential to reduce the weight of the vehicle body to improve fuel efficiency of automobiles, research is underway to continuously increase the strength of the steel sheet for automobiles and increase the formability.
현재, 상술한 특성을 가지는 자동차용 고강도 강판으로는, 페라이트 및 마르텐사이트의 두가지 상으로 강도 및 연신율을 확보하는 이상강(Dual-phase steel) 및 소성 변형시 최종 조직 내 잔류 오스테나이트의 상변태를 통해 강도 및 연신율을 확보하는 변태유기소성강(Transformation induced plasticity steel)이 제안되고 있다. Currently, as high-strength steel sheets for automobiles having the above-described characteristics, dual-phase steel securing strength and elongation in two phases of ferrite and martensite, and through phase transformation of residual austenite in the final structure during plastic deformation. Transformation induced plasticity steel to secure strength and elongation has been proposed.
이에 관련된 기술로는 특허출원 제10-2016-0077463호(발명의 명칭: 항복강도가 우수한 초고강도 고연성 강판 및 그 제조방법)가 있다.As a related technology, there is Patent Application No. 10-2016-0077463 (title of the invention: ultra-high strength, high ductility steel sheet with excellent yield strength and a manufacturing method thereof).
본 발명이 해결하고자 하는 과제는, 고성형성 및 고강도를 가지는 강판 및 그 제조 방법을 제공하는 데 있다.The problem to be solved by the present invention is to provide a steel sheet having high formability and high strength, and a method of manufacturing the same.
본 발명의 일 측면에 따른 고강도 및 고성형성을 가지는 강판은 중량%로, 탄소(C): 0.05 ~ 0.15%, 실리콘(Si): 0 초과 0.4% 이하, 망간(Mn): 4.0 ~ 9.0%, 알루미늄(Al): 0 초과 0.3% 이하, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 질소(N): 0.006% 이하, 잔부의 철(Fe) 및 기타 불가피한 불순물을 포함한다. 페라이트 및 잔류 오스테나이트로 이루어지는 미세조직을 가진다. 상기 미세조직의 결정립 크기는 3 ㎛ 이하이다. 항복강도(YS): 800MPa 이상, 인장강도(TS): 980MPa 이상, 연신율(EL): 25% 이상, 홀 확장성(HER): 20% 이상이다.The steel sheet having high strength and high formability according to an aspect of the present invention is in weight%, carbon (C): 0.05 to 0.15%, silicon (Si): more than 0 0.4% or less, manganese (Mn): 4.0 to 9.0%, Aluminum (Al): greater than 0 and 0.3% or less, phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less, nitrogen (N): 0.006% or less, balance iron (Fe) and other inevitable impurities included do. It has a microstructure made of ferrite and retained austenite. The grain size of the microstructure is 3 μm or less. Yield strength (YS): 800 MPa or more, tensile strength (TS): 980 MPa or more, elongation (EL): 25% or more, hole expandability (HER): 20% or more.
일 실시 예에 있어서, 상기 강판은 니오븀(Nb), 티타늄(Ti), 바나듐(V) 및 몰리브덴(Mo) 중 적어도 하나를 포함하되, 상기 적어도 하나는 중량%로 각각 0 초과 0.02% 이하일 수 있다.In one embodiment, the steel sheet includes at least one of niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo), and the at least one may be greater than 0 and less than 0.02% by weight. .
일 실시 예에 있어서, 상기 강판은 보론(B): 0 초과 0.001% 이하를 더 포함할 수 있다.In one embodiment, the steel sheet may further include boron (B): greater than 0 and less than or equal to 0.001%.
일 실시 예에 있어서, 상기 미세조직 내 상기 잔류 오스테나이트의 부피분율은 10 ~ 30 부피%일 수 있다.In one embodiment, the volume fraction of the retained austenite in the microstructure may be 10 to 30% by volume.
본 발명의 다른 관점에 따른 고강도 및 고성형성을 가지는 강판의 제조 방법은 (a) 중량%로, 탄소(C): 0.05 ~ 0.15%, 실리콘(Si): 0 초과 0.4% 이하, 망간(Mn): 4.0 ~ 9.0%, 알루미늄(Al): 0 초과 0.3% 이하, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 질소(N): 0.006% 이하, 잔부의 철(Fe) 및 기타 불가피한 불순물을 포함하는 강 슬라브를 이용하여 열연판재를 제조하는 단계; (b) 상기 열연판재를 냉간 압연하여, 냉연판재를 제조하는 단계; (c) 상기 냉연판재를 AC3 ~ AC3 + 15℃의 온도에서 1차 열처리하는 단계; 및 (d) 상기 1차 열처리한 냉연판재를 이상역 온도에서 2차 열처리하는 단계를 포함한다. (d) 단계 후에 상기 냉연판재는 페라이트 및 잔류 오스테나이트로 이루어지는 미세조직을 가진다. The method of manufacturing a steel sheet having high strength and high formability according to another aspect of the present invention is (a) in weight%, carbon (C): 0.05 to 0.15%, silicon (Si): more than 0 and not more than 0.4%, manganese (Mn) : 4.0 to 9.0%, aluminum (Al): more than 0 and 0.3% or less, phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less, nitrogen (N): 0.006% or less, balance iron (Fe) And manufacturing a hot-rolled sheet material using a steel slab containing other inevitable impurities; (b) cold rolling the hot-rolled sheet to manufacture a cold-rolled sheet; (c) subjecting the cold-rolled sheet to a first heat treatment at a temperature of AC3 to AC3 + 15°C; And (d) subjecting the cold-rolled sheet material subjected to the first heat treatment to a second heat treatment at an ideal temperature. After step (d), the cold-rolled sheet has a microstructure made of ferrite and retained austenite.
일 실시 예에 있어서, 상기 강 슬라브는 니오븀(Nb), 티타늄(Ti), 바나듐(V) 및 몰리브덴(Mo) 중 적어도 하나를 포함하되, 상기 적어도 하나는 중량%로 각각 0 초과 0.02% 이하일 수 있다.In one embodiment, the steel slab includes at least one of niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo), wherein the at least one is greater than 0 and less than 0.02% by weight, respectively. have.
일 실시 예에 있어서, 상기 강 슬라브는 보론(B): 0 초과 0.001% 이하를 더 포함할 수 있다.In one embodiment, the steel slab may further include boron (B): greater than 0 and less than or equal to 0.001%.
일 실시 예에 있어서, (c) 단계는 상기 열처리된 냉연판재를 4 ~ 10 ℃/s의 냉각 속도로 350 ~ 450℃ 까지 냉각하는 단계를 포함할 수 있다.In one embodiment, step (c) may include cooling the heat-treated cold-rolled sheet material to 350 to 450°C at a cooling rate of 4 to 10°C/s.
일 실시 예에 있어서, (d) 단계는 상기 열처리된 냉연판재를 4 ~ 10 ℃/s로 350 ~ 450℃ 이하로 냉각하는 단계를 포함할 수 있다.In an embodiment, step (d) may include cooling the heat-treated cold-rolled sheet material to 350 to 450°C or less at 4 to 10°C/s.
일 실시 예에 있어서, (a) 단계는 (a1) 상기 강 슬라브를 1150 ~ 1250℃의 온도로 재가열하는 단계; (a2) 재가열된 상기 강 슬라브를 925 ~ 975℃의 마무리 압연온도로 열간 압연하는 단계; 및 (a3) 상기 열간 압연된 강재를 10 ~ 30℃/s의 냉각속도로 700℃ ~ 800℃까지 냉각한 후에 권취하는 단계를 포함할 수 있다.In one embodiment, the step (a) comprises the steps of (a1) reheating the steel slab to a temperature of 1150 ~ 1250 ℃; (a2) hot rolling the reheated steel slab at a finish rolling temperature of 925 to 975°C; And (a3) cooling the hot-rolled steel to 700°C to 800°C at a cooling rate of 10 to 30°C/s and then winding it up.
일 실시 예에 있어서, (a) 단계와 (b) 단계 사이에, 상기 열연판재를 550℃~650℃에서 연화 열처리하는 단계를 더 포함할 수 있다.In one embodiment, between steps (a) and (b), the hot-rolled sheet may further include a step of softening heat treatment at 550°C to 650°C.
일 실시 예에 있어서, (d) 단계 후에, 상기 냉연판재는 항복강도(YS): 800MPa 이상, 인장강도(TS): 980MPa 이상, 연신율(EL): 25% 이상, 홀 확장성(HER): 20% 이상을 가질 수 있다.In one embodiment, after step (d), the cold-rolled sheet has yield strength (YS): 800 MPa or more, tensile strength (TS): 980 MPa or more, elongation (EL): 25% or more, hole expandability (HER): It can have more than 20%.
일 실시 예에 있어서, (d) 단계 후에, 상기 냉연판재의 결정립 크기는 3 ㎛ 이하일 수 있다.In one embodiment, after step (d), the crystal grain size of the cold-rolled sheet may be 3 μm or less.
본 발명에 따르면, 성분계 제어 및 공정 조건 제어를 통해, 초미세립 페라이트 및 잔류 오스테나이트로 이루어지는 미세조직을 가지는 강판을 제조할 수 있다. 상기 미세립 페라이트로 인해 강판이 높은 강도를 가지도록 하며, 상기 미세조직 내 10 ~ 30 부피%로 존재하는 잔류 오스테나이트로 인해, 높은 강도, 연신율을 가지도록 하며, 미세조직의 형상을 제어하여 높은 홀확장성(HER)을 가지도록 기능할 수 있다. 그 결과, 고성형성 및 고강도를 가지는 강판을 효과적으로 확보할 수 있다.According to the present invention, a steel sheet having a microstructure made of ultrafine ferrite and retained austenite can be manufactured through component system control and process condition control. Due to the fine grain ferrite, the steel sheet has high strength, and due to the residual austenite present in the microstructure in 10 to 30% by volume, it has high strength and elongation, and by controlling the shape of the microstructure, high It can function to have hole expandability (HER). As a result, it is possible to effectively secure a steel sheet having high formability and high strength.
도 1은 본 발명의 일 구체예에 따른 고강도 및 고성형성을 가지는 강판의 제조방법을 개략적으로 나타낸 공정 흐름도이다.1 is a process flow diagram schematically showing a method of manufacturing a steel sheet having high strength and high formability according to an embodiment of the present invention.
도 2는 본 발명의 비교 성분계 시편의 고온 인장 시험 결과이다. 2 is a high temperature tensile test result of the comparative component-based specimen of the present invention.
도 3은 본 발명의 실시 성분계 시편의 고온 인장 시험 결과이다.3 is a high-temperature tensile test result of the actual component-based specimen of the present invention.
도 4는 본 발명의 일 실시 예에 따르는 고강도 강판의 미세 조직을 나타내는 사진이다.4 is a photograph showing the microstructure of a high-strength steel sheet according to an embodiment of the present invention.
이하, 첨부한 도면을 참고하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명을 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에서 설명하는 실시예들에 한정되지 않는다. 본 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 붙였다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art can easily implement the present invention. The present invention may be implemented in various different forms, and is not limited to the embodiments described herein. The same reference numerals are assigned to the same or similar components throughout the present specification. In addition, detailed descriptions of known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
본 발명의 실시 예에 따르면, 고강도 및 고성형성을 가지는 강판은 최종 미세조직으로서, 미세립 페라이트와 10 ~ 30 부피%로 존재하는 잔류 오스테나이트를 가질 수 있다. 이를 통해, 상기 강판은 고강도, 고연신율 및 높은 홀 확장성(HER)을 가질 수 있다. According to an embodiment of the present invention, a steel sheet having high strength and high formability may have a fine grain ferrite and residual austenite present in an amount of 10 to 30% by volume as a final microstructure. Through this, the steel sheet may have high strength, high elongation, and high hole expandability (HER).
먼저, 상기 강판이 높은 연신율을 가지도록 하기 위해, 상기 강판이 잔류 오스테나이트를 10 ~ 30 부피% 수준으로 충분히 포함하도록 한다. 상기 잔류 오스테나이트는 종래의 변태유기소성강에서와 실질적으로 동일한 동작 방식으로, 강판의 연신율을 향상시킬 수 있다. 상기 잔류 오스테나이트의 분율을 확보하기 위해, 후술하는 바와 같이, 상기 강판 내에 오스테나이트 안정화 원소를 적절하게 첨가할 수 있다. 또한, 후술하는 바와 같이, 1차 및 2차의 소둔 열처리를 연속으로 진행할 수 있으며, 2차 소둔 열처리를 이상역에서 진행할 수 있다.First, in order for the steel sheet to have a high elongation, the steel sheet is made to sufficiently contain residual austenite at a level of 10 to 30% by volume. The retained austenite can improve the elongation of the steel sheet in substantially the same manner as in the conventional metamorphic organic plastic steel. In order to secure the fraction of the retained austenite, an austenite stabilizing element may be appropriately added to the steel sheet as described later. In addition, as will be described later, the first and second annealing heat treatment may be continuously performed, and the second annealing heat treatment may be performed in an ideal area.
다음으로, 상기 강판이 높은 홀확장성을 가지도록 하기 위해, 강판 내 균열 형성 지점으로 기능할 수 있는 경질상과 연질상의 상 경계면을 감소시키도록 한다. 이를 위해, 최종 미세 조직에 마르텐사이트 및 베이나이트와 같은 경질상이 포함되지 않도록 할 수 있다. 또한, 상기 강판이 높은 홀확장성을 가지도록 하기 위해, 석출물 및 결정립간 경계면을 감소시키도록 한다. 이를 위해, 티타늄, 니오븀, 바나듐 등과 같은 석출물 생성 원소 및 몰리브덴과 같은 석출물 성장 억제 원소의 함량을 제어할 수 있다. 또한, 상기 강판이 높은 홀확장성을 가지도록 하기 위해, 최종 조직 내에 고각 결정립계(High Angle Grain Boundaries, HAGBs)의 분율을 증가시킬 수 있다. 일 예로서, 고각 결정립계란 이웃하는 결정립 사이의 각이 15°이상인 결정립계를 의미할 수 있다. 또한, 상기 강판이 높은 홀확장성을 가지도록 하기 위해 미세조직의 형상을 제어할 수 있다. 상기 고각 결정립계의 분율을 증가 및 미세조직의 형상을 제어하기 위해, 후술하는 바와 같이, 소둔 열처리를 1차와 2차로 나누어 진행하는 2단계 열처리로 진행할 수 있다.Next, in order for the steel sheet to have high hole expandability, the interface between the hard phase and the soft phase, which can function as a crack formation point in the steel sheet, is reduced. To this end, it is possible to prevent hard phases such as martensite and bainite from being included in the final microstructure. In addition, in order for the steel sheet to have high hole expandability, the boundary surface between precipitates and crystal grains is reduced. To this end, the content of a precipitate generating element such as titanium, niobium, vanadium, and the like and a precipitate growth inhibiting element such as molybdenum may be controlled. In addition, in order for the steel sheet to have high hole expandability, the fraction of High Angle Grain Boundaries (HAGBs) in the final structure may be increased. As an example, the high-angle grain boundary may mean a grain boundary having an angle of 15° or more between neighboring grains. In addition, the shape of the microstructure may be controlled so that the steel sheet has high hole expandability. In order to increase the fraction of the high-angle grain boundaries and control the shape of the microstructure, as described later, the annealing heat treatment may be divided into a first and a second heat treatment in a two-stage heat treatment process.
다음으로, 상기 강판이 고강도를 가지도록 하기 위해, 최종 미세 조직의 결정립을 미세화하도록 한다. 상술한 2단계로 진행하는 소둔 열처리를 통해, 페라이트 및 잔류 오스테나이트의 결정립 크기를 3㎛ 이하로 제어할 수 있다. 또한, 1차 소둔 온도를 AC3 ~ AC3 +15℃ 에서 진행할 수 있다.Next, in order for the steel sheet to have high strength, the crystal grains of the final microstructure are refined. Through the annealing heat treatment proceeding in the above-described two steps, the grain size of ferrite and retained austenite can be controlled to be 3 μm or less. In addition, the primary annealing temperature can proceed at AC3 ~ AC3 +15 ℃.
이하에서는, 상술한 특성을 가지는 본 발명의 실시 예의 고성형성 및 고강도를 가지는 강판을 보다 상세하게 설명한다.Hereinafter, a steel sheet having high formability and high strength according to an embodiment of the present invention having the above-described characteristics will be described in more detail.
고강도 및 고성형성을 가지는 강판Steel plate with high strength and high formability
본 발명의 일 실시 예에 따르는 고강도 강판은 중량%로, 탄소(C): 0.05 ~ 0.15%, 실리콘(Si): 0 초과 0.4% 이하, 망간(Mn): 4.0 ~ 9.0%, 알루미늄(Al): 0 초과 0.3% 이하, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 질소(N): 0.006% 이하 잔부의 철(Fe) 및 기타 불가피한 불순물을 포함한다. 또한, 상기 고강도 강판은 니오븀(Nb), 티타늄(Ti), 바나듐(V) 및 몰리브덴(Mo) 중 적어도 하나를 더 포함하되, 상기 적어도 하나는 각각 0 초과 0.02% 이하일 수 있다. 또한, 상기 고강도 강판은 중량%로, 보론(B): 0 초과 0.001% 이하를 더 포함할 수 있다.The high-strength steel sheet according to an embodiment of the present invention is in weight%, carbon (C): 0.05 to 0.15%, silicon (Si): more than 0 0.4%, manganese (Mn): 4.0 to 9.0%, aluminum (Al) : More than 0 0.3%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Nitrogen (N): 0.006% or less The balance contains iron (Fe) and other unavoidable impurities. In addition, the high-strength steel sheet further includes at least one of niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo), wherein each of the at least one may exceed 0 and be 0.02% or less. In addition, the high-strength steel sheet may further include boron (B): greater than 0 and less than or equal to 0.001% by weight.
이하에서는, 본 발명의 일 구체예에 따른 고강도 냉연 강판에 포함되는 각 성분의 역할 및 함량에 대해 상세히 설명한다 (각 성분의 함량은 전체 강판에 대한 중량% 로서, 이하에서는 %로 표시함).Hereinafter, the role and content of each component included in the high-strength cold-rolled steel sheet according to an embodiment of the present invention will be described in detail (the content of each component is a weight percent of the total steel sheet, hereinafter expressed as %).
탄소(C) : 0.05% ~ 0.15% Carbon (C): 0.05% ~ 0.15%
탄소(C)는 제강에 있어서 가장 중요한 합금 원소이며, 본 발명에서는 기본적인 강화 역할 및 오스테나이트 안정화를 주요 목적으로 한다. 오스테나이트 내 높은 탄소(C) 농도는 오스테나이트 안정도를 향상시켜 재질 향상을 위한 적절한 오스테나이트 확보에 용이하다. 하지만 지나치게 높은 탄소(C) 함량은 탄소당량 증가에 따른 용접성의 하락을 가져올 수 있고, 냉각 중 펄라이트 등 시멘타이트 석출조직이 다수 생성될 수 있기 때문에, 탄소(C)는 강판 전체 중량의 0.05~0.15% 첨가하는 것이 바람직하다. 상기 탄소를 0.05% 미만으로 포함시 강판의 강도 확보가 어려우며, 0.15%를 초과하여 포함시 인성 및 연성이 열화될 수 있다.Carbon (C) is the most important alloying element in steel making, and in the present invention, the main purpose is to play a basic reinforcing role and to stabilize austenite. The high carbon (C) concentration in austenite improves austenite stability, making it easy to secure appropriate austenite for material improvement. However, an excessively high carbon (C) content may lead to a decrease in weldability due to an increase in carbon equivalent, and since a large number of cementite precipitated structures such as pearlite may be formed during cooling, carbon (C) is 0.05 to 0.15% of the total weight of the steel sheet. It is preferable to add. When the carbon is included in an amount of less than 0.05%, it is difficult to secure the strength of the steel sheet, and when it is included in an amount exceeding 0.15%, toughness and ductility may be deteriorated.
실리콘(Si) : 0 초과 0.4% 이하Silicon (Si): greater than 0 and less than 0.4%
실리콘(Si)은 페라이트 내 탄화물 형성을 억제하는 원소이며 탄소(C)의 활동도를 높여 오스테나이트의 확산속도를 높인다. 실리콘(Si)은 또한 페라이트 안정화 원소로 잘 알려져 있어 냉각 중 페라이트 분율을 높여 연성을 증가시키는 원소로 알려져 있다. 또한, 탄화물의 형성 억제력이 매우 크기 때문에 베이나이트 형성 시 잔류 오스테나이트 내 탄소 농도 증가를 통한 TRIP 효과를 확보하기 위해 필요 원소이다. 하지만, 실리콘(Si)이 0.4%를 초과하여 첨가되는 경우, 공정 시 강판 표면에 산화물(SiO2)이 형성될 수 있고, 열간 압연 시 압연부하를 높이고, 붉은형 스케일을 다량 발생시킬 가능성이 있다. 따라서, 실리콘(Si)은 강판 전체 중량의 0.4% 이하로 첨가하는 것이 바람직하다.Silicon (Si) is an element that suppresses the formation of carbides in ferrite, and increases the activity of carbon (C) to increase the diffusion rate of austenite. Silicon (Si) is also well known as a ferrite stabilizing element and is known as an element that increases the ferrite fraction during cooling to increase ductility. In addition, since the suppression of the formation of carbide is very high, it is a necessary element to secure the TRIP effect by increasing the carbon concentration in the retained austenite during the formation of bainite. However, when silicon (Si) is added in excess of 0.4%, oxide (SiO2) may be formed on the surface of the steel sheet during the process, the rolling load may be increased during hot rolling, and a large amount of red scale may be generated. Therefore, it is preferable to add silicon (Si) in an amount of 0.4% or less of the total weight of the steel sheet.
망간(Mn) : 4.0% ~ 9.0% Manganese (Mn): 4.0% ~ 9.0%
망간(Mn)은 오스테나이트 안정화 원소로서, 망간(Mn)이 첨가됨에 따라 마르텐사이트 형성 시작 온도인 Ms가 점차 낮아지게 되어 열처리 후 잔류 오스테나이트 분율을 증가시키는 효과를 가져올 수 있다. Manganese (Mn) is an austenite stabilizing element, and as manganese (Mn) is added, the starting temperature of martensite, Ms, gradually decreases, thereby increasing the residual austenite fraction after heat treatment.
망간은 강판 전체 중량의 4.0~9.0%로 포함된다. 망간을 4.0% 미만으로 첨가시에는 상술한 효과를 충분히 확보할 수 없다. 반대로, 망간을 9.0%를 초과하여 첨가시, 탄소당량 증가에 따른 용접성의 하락 및 공정 시 강판 표면에 산화물(MnO)이 형성되어 해당 부분 젖음성 열위에 따른 도금성 저하를 가져올 수 있다. Manganese is contained in 4.0 to 9.0% of the total weight of the steel sheet. When manganese is added in an amount of less than 4.0%, the above-described effect cannot be sufficiently secured. Conversely, when manganese is added in excess of 9.0%, weldability decreases due to an increase in carbon equivalent and oxides (MnO) are formed on the surface of the steel sheet during processing, resulting in a decrease in plating properties due to poor wettability.
알루미늄(Al): 0 초과 0.3% 이하Aluminum (Al): more than 0 and less than 0.3%
알루미늄(Al)은 실리콘(Si)과 같이 페라이트 안정화 및 탄화물의 형성을 억제하는 원소로 알려져 있다. 또한, 평형 온도를 높이는 효과가 있어 알루미늄(Al) 첨가시 적정 열처리 온도구간이 넓어지는 장점이 있다. 다만, 알루미늄이 0.3%를 초과하여 과도하게 첨가될 경우 AlN 석출로 인해 연주에 문제가 발생할 수 있다. 따라서, 알루미늄은 강판 전체 중량의 0 초과 0.3%이하로 첨가될 수 있다.Aluminum (Al), like silicon (Si), is known as an element that stabilizes ferrite and suppresses the formation of carbides. In addition, since there is an effect of increasing the equilibrium temperature, there is an advantage in that an appropriate heat treatment temperature range is widened when aluminum (Al) is added. However, if aluminum exceeds 0.3% and is excessively added, problems may occur in playing due to AlN precipitation. Therefore, aluminum may be added in an amount greater than 0 and 0.3% or less of the total weight of the steel sheet.
니오븀(Nb), 티타늄(Ti), 바나듐(V) 및 몰리브덴(Mo) 중 적어도 하나: 각각 0 초과 0.2% 이하At least one of niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo): more than 0 and less than 0.2% each
니오븀(Nb), 티타늄(Ti), 바나듐(V) 및 몰리브덴(Mo)은 강 내에 선택적으로 포함될 수 있다. 먼저, 니오븀(Nb), 티타늄(Ti), 및 바나듐(V)은 강 내에서 탄화물의 형태로 석출되는 원소이며, 탄화물 석출을 통한 강도 확보를 위해 첨가되는 원소이다. 티타늄(Ti)의 경우, AlN의 형성을 억제하여 연주 중 크랙 형성을 억제하는 기능을 수행할 수 있다. 다만, 니오븀(Nb), 티타늄(Ti), 및 바나듐(V)을 각각 0.2%를 초과하여 첨가할 경우, 조대한 석출물을 형성함으로써, 강내 탄소량을 저감시켜 재질을 열화시키고, 니오븀(Nb), 티타늄(Ti), 및 바나듐(V)의 투입에 따르는 제조 원가 상승의 단점이 있다. 또한, 티타늄이 과다하게 첨가될 경우, 연주 중 노즐 막힘의 원인이 될 수 있다. 이에 따라, 니오븀(Nb), 티타늄(Ti) 및 바나듐(V)은 적어도 하나가 첨가될 때, 각각 강판 전체 중량의 0 초과 0.2% 이하로 첨가될 수 있다.Niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo) may be selectively included in the steel. First, niobium (Nb), titanium (Ti), and vanadium (V) are elements precipitated in the form of carbides in steel, and are elements added to secure strength through precipitation of carbides. In the case of titanium (Ti), it is possible to suppress the formation of AlN to suppress the formation of cracks during playing. However, when niobium (Nb), titanium (Ti), and vanadium (V) are added in excess of 0.2%, respectively, by forming coarse precipitates, the amount of carbon in the steel is reduced to deteriorate the material, and niobium (Nb) , Titanium (Ti), and vanadium (V) There is a disadvantage of increasing the manufacturing cost according to the input. In addition, excessive addition of titanium may cause clogging of the nozzle during playing. Accordingly, when at least one of niobium (Nb), titanium (Ti), and vanadium (V) is added, each may be added in an amount of more than 0 and 0.2% or less of the total weight of the steel sheet.
다음으로, 몰리브덴(Mo)은 탄화물 성장을 억제하여, 탄화물의 크기를 제어하는 역할을 할 수 있다. 다만, 몰리브덴이 0.2%를 초과하여 첨가될 경우, 상기 효과가 포화되고, 제조 원가 상승의 단점이 있다.Next, molybdenum (Mo) may play a role of controlling the size of the carbide by suppressing the growth of the carbide. However, when molybdenum is added in excess of 0.2%, the above effect is saturated and there is a disadvantage of an increase in manufacturing cost.
보론(B)Boron (B)
보론(B)은 강판에 선택적으로 첨가될 수 있으며, 입계 강화 원소로 기능할 수 있다. 보론은 강판 전체 중량의 0 초과 0.001% 이하로 첨가될 수 있다. 보론이 0.001% 를 초과하여 첨가되는 경우, BN 등 질화물을 형성함으로써, 고온 연성을 저하시킬 수 있다.Boron (B) may be selectively added to the steel sheet, and may function as a grain boundary strengthening element. Boron may be added in an amount greater than 0 and 0.001% or less of the total weight of the steel sheet. When boron is added in excess of 0.001%, high-temperature ductility can be reduced by forming nitrides such as BN.
기타 원소Other elements
인(P), 황(S) 및 질소(N)는 제강 과정에서 강 내에 불가피하게 첨가될 수 있다. 즉, 이상적으로는 포함하지 않는 것이 바람직하나, 공정 기술 상 완전히 제거가 힘들어 일정 소량이 포함될 수 있다.Phosphorus (P), sulfur (S) and nitrogen (N) may inevitably be added into the steel during the steelmaking process. That is, ideally, it is preferable not to include it, but it is difficult to completely remove it due to the process technology, so a certain small amount may be included.
인(P)은 강 내에서 실리콘과 유사한 역할을 수행할 수 있다. 다만, 인이 강판 전체 중량의 0.02%를 초과하여 첨가되는 경우, 강판의 용접성을 저하시키고 취성을 증가시켜 재질 저하를 발생시킬 수 있다. 따라서, 인은 강판 전체 중량의 0.02% 이하로 첨가되도록 제어될 수 있다.Phosphorus (P) can play a similar role to silicon in steel. However, when phosphorus is added in excess of 0.02% of the total weight of the steel sheet, it may reduce the weldability of the steel sheet and increase brittleness, resulting in material degradation. Therefore, phosphorus can be controlled to be added to 0.02% or less of the total weight of the steel sheet.
황(S)은 강 내에서, 인성 및 용접성을 저해할 수 있으므로, 강판 전체 중량의 0.005% 이하로 포함되도록 제어될 수 있다.Since sulfur (S) may impair toughness and weldability in the steel, it may be controlled to be contained in 0.005% or less of the total weight of the steel sheet.
질소(N)는 강 내에 과잉으로 존재하면 질화물이 다량으로 석출되어 연성을 열화시킬 수 있다. 따라서, 질소(N)는 강판 전체 중량의 0.006% 이하로 포함되도록 제어될 수 있다.When nitrogen (N) is excessively present in the steel, a large amount of nitride may be precipitated and ductility may be deteriorated. Therefore, nitrogen (N) can be controlled to be contained in 0.006% or less of the total weight of the steel sheet.
상기한 합금성분을 가지는 본 발명의 고강도 강판은 페라이트 및 잔류 오스테나이트로 이루어지는 미세조직을 가진다. 이때, 상기 미세조직 내 상기 잔류 오스테나이트의 부피분율은 10 ~ 30 부피%일 수 있다. 상기 고강도 강판의 결정립은 3 ㎛ 이하의 크기를 가지는 미세 결정립일 수 있다. 상기 결정립 중 고각 결정립계 분율이 70% 이상일 수 있다. The high-strength steel sheet of the present invention having the above alloying components has a microstructure made of ferrite and retained austenite. In this case, the volume fraction of the retained austenite in the microstructure may be 10 to 30% by volume. The crystal grains of the high-strength steel sheet may be fine grains having a size of 3 μm or less. Among the crystal grains, a fraction of an elevation grain boundary may be 70% or more.
상기 고강도 강판은 항복강도(YS): 800MPa 이상, 인장강도(TS): 980MPa 이상, 연신율(EL): 25% 이상, 홀 확장성(HER): 20% 이상의 재질 특성을 가질 수 있다. 이에 따라, 본 발명의 실시 예에 따르는 고강도 강판은 고강도와 고성형성을 요구하는 분야에 적용될 수 있다.The high-strength steel sheet may have material properties such as yield strength (YS): 800 MPa or more, tensile strength (TS): 980 MPa or more, elongation (EL): 25% or more, and hole expandability (HER): 20% or more. Accordingly, the high-strength steel sheet according to an embodiment of the present invention can be applied to fields requiring high strength and high formability.
이상에서 설명한 본 발명 실시예에 따르는 고강도 강판은 하기와 같은 일 실시 예의 방법으로 제조될 수 있다. 본 발명은 적절히 제어된 조성비의 합금 성분과 열연 공정 및 냉연 공정을 진행한 후에 2단계 소둔열처리를 실시함으로써 연신율, 홀확장성 및 강도가 우수한 강판 및 그 제조방법을 제시하고자 한다.The high-strength steel sheet according to the exemplary embodiment of the present invention described above may be manufactured by the method of an exemplary embodiment as follows. The present invention intends to present a steel sheet having excellent elongation, hole expandability and strength by performing a two-stage annealing heat treatment after proceeding with an alloy component of an appropriately controlled composition ratio, a hot rolling process and a cold rolling process, and a manufacturing method thereof.
고강도 및 고성형성을 가지는 강판의 제조방법Method for manufacturing a steel plate having high strength and high formability
도 1은 본 발명의 일 구체예에 따른 고강도 및 고성형성을 가지는 강판의 제조방법을 개략적으로 나타낸 공정 흐름도이다.1 is a process flow diagram schematically showing a method of manufacturing a steel sheet having high strength and high formability according to an embodiment of the present invention.
도 1을 참조하면, 상기 강판의 제조방법은 강 슬라브를 재가열하는 단계(S110), 상기 강 슬라브를 열간 압연하여 열연판재를 제조하는 단계(S120), 상기 열연판재를 냉간 압연하는 단계(S130), 및 상기 냉연판재를 소둔 열처리하는 단계(S140)를 포함하여 이루어진다.Referring to FIG. 1, the method of manufacturing the steel sheet includes reheating a steel slab (S110), manufacturing a hot-rolled sheet material by hot rolling the steel slab (S120), and cold-rolling the hot-rolled sheet material (S130). , And annealing and heat treatment of the cold-rolled sheet (S140).
먼저, 강 슬라브 재가열 단계(S110)는, 중량%로, 탄소(C): 0.05 ~ 0.15%, 실리콘(Si): 0 초과 0.4% 이하, 망간(Mn): 4.0 ~ 9.0%, 알루미늄(Al): 0 초과 0.3% 이하, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 질소(N): 0.006% 이하 잔부의 철(Fe) 및 기타 불가피한 불순물을 포함하는 강 슬라브를 준비하고, 상기 강 슬라브를 재가열하여 주조시 편석된 성분을 재고용시키고 주조 당시 성분을 균질화하는 단계이다. 한편, 상기 강 슬라브는 니오븀(Nb), 티타늄(Ti), 바나듐(V) 및 몰리브덴(Mo) 중 적어도 하나를 더 포함하되, 상기 적어도 하나는 각각 0 초과 0.02% 이하일 수 있다. 또한, 상기 강 슬라브는 중량%로, 보론(B): 0 초과 0.001% 이하를 더 포함할 수 있다.First, the steel slab reheating step (S110) is, in weight%, carbon (C): 0.05 to 0.15%, silicon (Si): more than 0 0.4%, manganese (Mn): 4.0 to 9.0%, aluminum (Al) : More than 0 0.3%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.005% or less, Nitrogen (N): 0.006% or less Prepare a steel slab containing the balance iron (Fe) and other inevitable impurities And, it is a step of reheating the steel slab to re-dissolve the segregated components during casting and homogenize the components at the time of casting. Meanwhile, the steel slab further includes at least one of niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo), wherein each of the at least one may exceed 0 and be 0.02% or less. In addition, the steel slab may further include boron (B): greater than 0 and not more than 0.001% by weight.
상기 강 슬라브 재가열 온도는 통상의 열간 압연 온도를 확보할 수 있도록1150 ~ 1250℃ 정도로 하는 것이 바람직하다. 상기 재가열 온도가 1150℃ 미만이면 열간 압연 하중이 급격히 증가하는 문제가 발생할 수 있으며, 1250℃를 초과하는 경우 초기 오스테나이트 결정립의 조대화로 인해 최종 생산 강판의 강도 확보가 어려울 수 있다.The steel slab reheating temperature is preferably about 1150 to 1250°C so as to secure a normal hot rolling temperature. If the reheating temperature is less than 1150°C, the hot rolling load may rapidly increase, and if it exceeds 1250°C, it may be difficult to secure the strength of the final produced steel sheet due to coarsening of initial austenite grains.
다음에, 열간 압연 단계(S120)는, 상기 강 슬라브를 상기 슬라브 재가열 후 통상의 방법으로 열간 압연을 행하고, 925 ~ 975℃의 온도에서 마무리 압연을 수행하여 열연판재를 형성하는 단계이다. 본 발명의 강 슬라브가 망간과 같은 합금 성분의 함량이 높은 점을 감안하여, 상기 마무리 압연은 925 ~ 975℃의 고온에서 진행할 수 있다. 상기 마무리 압연 후, 상기 열연판재를 10 ~ 30℃/s의 냉각 속도로 700 ~ 800℃로 냉각한 후에 권취한다. 상기 냉각 방법은 무주수 냉각 방법을 적용할 수 있다. 상기 열연판재는 냉각 후 풀마르텐사이트 조직을 가질 수 있다. Next, the hot rolling step (S120) is a step of forming a hot-rolled sheet material by performing hot rolling in a conventional method after reheating the slab, and performing finish rolling at a temperature of 925 to 975°C. In view of the fact that the steel slab of the present invention has a high content of an alloy component such as manganese, the finish rolling may be performed at a high temperature of 925 to 975°C. After the finish rolling, the hot-rolled sheet is cooled to 700 to 800°C at a cooling rate of 10 to 30°C/s, and then wound up. The cooling method may be applied to the non-injection cooling method. The hot-rolled sheet may have a full martensite structure after cooling.
몇몇 실시 예에 따르면, 풀마르텐사이트 조직을 가지는 열연판재를 냉간 압연하기 전에 냉간 압연 시의 압연 부하를 경감시키기 위해 연화 열처리를 진행할 수 있다. 상기 연화 열처리는 550 ~ 650℃ 에서 진행될 수 있다. 연화 열처리의 온도가 550 ℃ 미만일 경우, 상기 열간 압연 후 생성된 마르텐사이트에 대해 재결정이 발생하지 않고 템퍼링만 진행되어 조직 내 과포화된 탄소가 시멘타이트의 형태로 형성되고 구상화될 수 있다. 이 경우, 상기 마르텐사이트의 취성이 발현될 수 있으므로, 냉간 압연 중 판재의 파단이 발생할 수 있다. 반면에, 연화 열처리의 온도가 650℃를 초과할 경우, 오스테나이트가 과도하게 형성되고, 냉각 중 상기 오스테나이트로부터 마르텐사이트가 형성됨으로써, 연화 열처리의 효과가 효과적으로 발생하지 않을 수 있다. 상기 온도 범위의 연화 열처리에 의해, 상기 열간 압연 후의 마르텐사이트 조직은 페라이트 및 잔류 오스테나이트의 복합 조직으로 변환될 수 있다.According to some embodiments, before cold rolling a hot-rolled sheet material having a full martensite structure, softening heat treatment may be performed to reduce a rolling load during cold rolling. The softening heat treatment may be performed at 550 to 650°C. When the temperature of the softening heat treatment is less than 550° C., recrystallization does not occur for martensite generated after the hot rolling, and only tempering proceeds, so that supersaturated carbon in the structure may be formed in the form of cementite and spheroidized. In this case, the brittleness of the martensite may be expressed, and thus the plate may be fractured during cold rolling. On the other hand, when the temperature of the softening heat treatment exceeds 650° C., austenite is excessively formed, and martensite is formed from the austenite during cooling, so that the effect of the softening heat treatment may not occur effectively. By the softening heat treatment in the above temperature range, the martensite structure after hot rolling can be converted into a composite structure of ferrite and retained austenite.
다음으로, 냉간압연 단계(S130)는, 상기 열연판재를 산세 후 냉간 압연하는 단계이다. 상기 냉간 압연은 상기 열연판재를 압하율 40~60%의 조건으로 실시할 수 있다. 상기 냉간 압연에 의해, 상기 연화 열처리 후의 상기 페라이트 및 잔류 오스테나이트의 복합 조직은, 페라이트와 마르텐사이트의 복합 조직으로 변환될 수 있다.Next, the cold-rolling step (S130) is a step of cold-rolling the hot-rolled sheet after pickling. The cold rolling may be performed under conditions of a reduction ratio of 40 to 60% of the hot-rolled sheet material. By the cold rolling, the composite structure of ferrite and retained austenite after the softening heat treatment can be converted into a composite structure of ferrite and martensite.
다음으로, 소둔 열처리 단계(S140)는 상기 냉연판재에 대해 AC3 ~ AC3 + 15℃의 온도에서 1차 열처리하는 단계와 상기 1차 열처리한 냉연판재를 이상역 온도에서 2차 열처리하는 단계를 포함하여 진행될 수 있다. 상기 1차 열처리 단계에서의 AC3 ~ AC3 + 15℃의 온도는 일 예로서, 735 ~ 750℃의 온도 일 수 있다. 상기 2차 열처리 단계에서의 이상역 온도는 일 예로서, 640 ~ 660℃의 온도 일 수 있다.Next, the annealing heat treatment step (S140) includes a step of primary heat treatment at a temperature of AC3 ~ AC3 + 15 °C for the cold rolled sheet material and a second heat treatment of the cold rolled sheet material subjected to the first heat treatment at an ideal temperature. Can proceed. The temperature of AC3 to AC3 + 15°C in the first heat treatment step may be, for example, a temperature of 735 to 750°C. The ideal temperature in the second heat treatment step may be, for example, a temperature of 640 to 660°C.
일 실시 예에서, 1차 열처리는 냉간 압연 후의 판재가 가지는 페라이트와 마르텐사이트의 복합 조직을 마르텐사이트의 조직으로 변환시킬 수 있다. 상기 1차 열처리에 있어서, 먼저, 상기 냉연판재를 상기 냉연판재를 승온 속도 1 ~ 3℃/s 로 목표 온도인 735 ~ 750℃로 가열하여, 40 ~ 120 초 유지하는 열처리를 진행한다. In an embodiment, the first heat treatment may convert a composite structure of ferrite and martensite of a sheet material after cold rolling into a structure of martensite. In the first heat treatment, first, the cold-rolled sheet is heated to a target temperature of 735 to 750°C at a temperature increase rate of 1 to 3°C/s, and a heat treatment for maintaining 40 to 120 seconds is performed.
열처리 온도가 735℃ 미만인 경우, 상기 목표 온도에서 충분한 크기의 오스테나이트 결정립을 확보하지 못하며, 또한 열처리 후 마르텐사이트와 페라이트의 복합조직을 형성함으로써, 상기 소둔 열처리에 따르는 최종 조직에서 강도와 연성이 감소할 수 있다. 반면에 열처리 온도가 750℃를 초과하는 경우, 상기 목표 온도에서의 오스테나이트 결정립의 크기가 과도하게 증가하여 상기 소둔 열처리에 따르는 최종조직에서 오스테나이트의 안정화를 확보하는데 불리하여 강도 측면에서 열위할 수 있다.When the heat treatment temperature is less than 735°C, austenite grains of sufficient size cannot be secured at the target temperature, and by forming a composite structure of martensite and ferrite after heat treatment, strength and ductility are reduced in the final structure following the annealing heat treatment. can do. On the other hand, when the heat treatment temperature exceeds 750°C, the size of the austenite grains at the target temperature increases excessively, which is disadvantageous in securing the stabilization of austenite in the final structure following the annealing heat treatment, and thus may be inferior in terms of strength. have.
또한, 상기 승온 속도가 1℃/s 미만일 경우, 목표 온도인 735 ~ 750℃에 머무르는 시간이 40 ~ 120 초 범위를 초과함으로써, 상기 목표 온도에서의 오스테나이트 결정립 크기가 과도하게 증가할 수 있다. 반면에, 상기 승온 속도가 3℃/s 를 초과하는 경우, 목표 온도인 735 ~ 750℃에 머무르는 시간이 40 ~ 120 초 범위에 미달함으로써, 상기 목표 온도에서의 충분한 크기의 오스테나이트 결정립을 확보하지 못할 수 있다.In addition, when the temperature increase rate is less than 1°C/s, the time to stay at the target temperature of 735 to 750°C exceeds the range of 40 to 120 seconds, so that the austenite grain size at the target temperature may increase excessively. On the other hand, when the heating rate exceeds 3°C/s, the time to stay at the target temperature of 735 to 750°C is less than the range of 40 to 120 seconds, so that the austenite grains of sufficient size at the target temperature are not secured. It may not be possible.
이어서, 상기 열처리된 냉연판재를 4 ~ 10 ℃/s의 냉각 속도로 350 ~ 450℃ 까지 냉각한다. 일 실시 예에 있어서, 상기 온도로 냉각된 냉연판재를 120 내지 330초 동안 시효처리할 수 있다.Subsequently, the heat-treated cold-rolled sheet is cooled to 350 to 450°C at a cooling rate of 4 to 10°C/s. In one embodiment, the cold-rolled sheet material cooled to the above temperature may be aged for 120 to 330 seconds.
상술한 1차 열처리가 완료된 냉연판재에 대해 연속하여 2차 열처리를 진행할 수 있다. 일 실시 예에서, 2차 열처리는 먼저, 상기 냉연판재를 승온 속도 1 ~ 3℃/s 로 목표 온도인 640 ~ 660℃로 가열하여, 40 ~ 120 초 유지하는 열처리를 진행한다. 2차 열처리는 상기 목표 온도 범위인 이상역 온도에서 진행됨으로써, 1차 열처리 후의 마르텐사이트 조직이 페라이트와 잔류 오스테나이트의 조직으로 변화될 수 있다. 이때, 잔류 오스테나이트의 부피분율은 10 ~ 30 부피% 일 수 있다.The second heat treatment may be continuously performed on the cold-rolled sheet material on which the above-described first heat treatment has been completed. In an embodiment, in the second heat treatment, first, the cold-rolled sheet is heated to a target temperature of 640 to 660°C at a temperature increase rate of 1 to 3°C/s, and heat treatment is performed for 40 to 120 seconds. The secondary heat treatment may be performed at an ideal temperature within the target temperature range, so that the structure of martensite after the first heat treatment may be changed into a structure of ferrite and retained austenite. In this case, the volume fraction of retained austenite may be 10 to 30% by volume.
열처리 온도가 640℃ 미만인 경우, 상기 목표 온도에서 지나치게 적은 오스테나이트 조직이 형성되어 오스테나이트 안정도가 올라가게 되고, 이로 인해 냉각 후 미세조직 상의 오스테나이트가 소성 변형 시 상변태를 발현하지 않아 강도와 연성이 감소할 수 있다. 반면에 열처리 온도가 660℃를 초과하는 경우, 상기 목표 온도에서 지나치게 많은 오스테나이트 조직이 형성되어 오스테나이트 안정도가 내려가게 되고, 이로 인해 냉각 후 미세조직 상에 마르텐사이트가 형성되어 연성과 홀 확장성이 감소할 수 있다.When the heat treatment temperature is less than 640°C, too little austenite structure is formed at the target temperature, resulting in increased austenite stability, and as a result, the austenite on the microstructure after cooling does not develop a phase transformation during plastic deformation, resulting in strength and ductility. Can decrease. On the other hand, when the heat treatment temperature exceeds 660°C, too much austenite structure is formed at the target temperature, resulting in a decrease in austenite stability, which results in the formation of martensite on the microstructure after cooling, resulting in ductility and hole expandability. This can be reduced.
상기 승온 속도가 1℃/s 미만일 경우, 상기 냉연판재가 상기 이상역 온도에 도달하기 전에, 불필요한 시멘타이트를 형성하거나 구상화 함으로써 재질 특성을 열화시켜 확보할 수 없게 될 수 있다. 상기 승온 속도가 3℃/s를 초과하는 경우, 상기 목표 온도 범위에서 40 ~ 120 초 동안 유지하지 못하여, 최종 조직에서 충분한 분율의 잔류 오스테나이트를 확보하지 못할 수 있다. When the heating rate is less than 1°C/s, the cold-rolled sheet may not be secured by deteriorating material properties by forming or spheroidizing unnecessary cementite before reaching the abnormal temperature. When the temperature increase rate exceeds 3°C/s, it may not be maintained in the target temperature range for 40 to 120 seconds, and thus a sufficient fraction of retained austenite may not be secured in the final tissue.
이어서, 상기 열처리된 냉연판재를 4 ~ 10 ℃/s의 냉각 속도로 350 ~ 450℃ 까지 냉각한다. 일 실시 예에 있어서, 상기 온도로 냉각된 냉연판재를 120 내지 330초 동안 시효처리할 수 있다.Subsequently, the heat-treated cold-rolled sheet is cooled to 350 to 450°C at a cooling rate of 4 to 10°C/s. In one embodiment, the cold-rolled sheet material cooled to the above temperature may be aged for 120 to 330 seconds.
상술한 방법을 통해, 본 발명의 일 실시 예에 따르는 고강도와 고성형성을 가지는 강판을 제조할 수 있다.Through the above-described method, it is possible to manufacture a steel sheet having high strength and high formability according to an embodiment of the present invention.
상기한 과정으로 제조된 본 발명의 강판은 항복강도(YS): 800MPa 이상, 인장강도(TS): 980MPa 이상, 연신율(EL): 25% 이상, 홀 확장성(HER): 20% 이상을 가질 수 있다. The steel sheet of the present invention manufactured by the above-described process has yield strength (YS): 800 MPa or more, tensile strength (TS): 980 MPa or more, elongation (EL): 25% or more, and hole expandability (HER): 20% or more. I can.
상술한 바와 같이, 본 발명의 실시 예에 따르는 제조 방법에서, 상기 강 슬라브 내에 오스테나이트 안정화 원소를 상술한 바와 같이 소정량 첨가할 수 있다. 또한, 1차 및 2차의 소둔 열처리를 연속으로 진행함으로써, 강판은 최종 미세 조직으로서, 미세 결정립의 페라이트와 10 ~ 30 부피%의 잔류 오스테나이트의 복합 조직을 가질 수 있다. 상기 강판이 충분한 분율의 잔류 오스테나이트를 보유함으로써, 변태유기소성 특성에 의해 25% 이상의 높은 연신율을 가질 수 있다. As described above, in the manufacturing method according to the embodiment of the present invention, a predetermined amount of an austenite stabilizing element may be added to the steel slab as described above. In addition, by continuously performing the first and second annealing heat treatments, the steel sheet may have a composite structure of ferrite of fine grains and 10 to 30% by volume of retained austenite as a final microstructure. Since the steel sheet retains a sufficient fraction of retained austenite, it may have a high elongation of 25% or more due to the metamorphic organic plastic properties.
또한, 상술한 바와 같이, 최종 미세 조직에 마르텐사이트 및 베이나이트와 같은 경질상이 포함되지 않도록 제어함으로써, 경질상과 연질상의 상 경계면을 감소시킬 수 있다. 또한, 강 슬라브의 성분계에서, 티타늄, 니오븀, 바나듐 등과 같은 석출물 생성 원소 및 몰리브덴과 같은 석출물 성장 억제 원소의 함량을 제어함으로써, 석출물 및 결정립간 경계면을 감소시킬 수 있다. 소둔 열처리를 소정의 온도 범위에서 1차와 2차로 나누어 진행하는 2단계 열처리로 진행함으로써, 최종 조직 내에 고각 결정립계(High Angle Grain Boundaries, HAGBs)의 분율을 증가시킬 수 있다. 1차 열처리에서는, 냉연 공정에 의해 형성된 마르텐사이트 내에 존재하는 높은 전위 밀도로 인하여, 상기 마르텐사이트가 오스테나이트로 역변태하기 전에 재결정이 활발하게 발생할 수 있고, 2차 열처리는 1차 열처리를 통해 생성된 마르텐사이트를 열처리함으로써, 상기 마르텐사이트가 오스테나이트로 역변태하기 전에 재결정이 상대적으로 억제함으로써, 최종 미세 조직에서의 고각 결정립계의 분율이 결정립 중 70% 이상으로 증가할 수 있다. 그 결과, 상기 강판이 20% 이상의 높은 홀 확장성을 가질 수 있다.In addition, as described above, by controlling the final microstructure so that hard phases such as martensite and bainite are not included, the interface between the hard phase and the soft phase can be reduced. In addition, in the component system of the steel slab, by controlling the content of the precipitate forming element such as titanium, niobium, vanadium, and the precipitate growth inhibiting element such as molybdenum, the boundary between the precipitate and the crystal grains can be reduced. The annealing heat treatment is performed as a two-stage heat treatment in which the annealing heat treatment is divided into the first and the second in a predetermined temperature range, thereby increasing the fraction of High Angle Grain Boundaries (HAGBs) in the final structure. In the first heat treatment, due to the high dislocation density present in the martensite formed by the cold rolling process, recrystallization may actively occur before the martensite is reverse transformed into austenite, and the second heat treatment is generated through the first heat treatment. By heat treatment of the martensite, recrystallization is relatively suppressed before the martensite is reversely transformed into austenite, so that the fraction of the high-angle grain boundary in the final microstructure can be increased to 70% or more of the grains. As a result, the steel sheet may have a high hole expandability of 20% or more.
다음으로, 상기 강판이 고강도를 가지도록 하기 위해, 최종 미세 조직의 결정립을 미세화할 수 있다. 특히, 1차 열처리의 온도를 AC3 ~ AC3 + 15℃의 온도로 진행하여, 초기 오스테나이트의 결정립 사이즈를 최적화할 수 있다. 또한, 이상역 온도 범위에서 진행되는 2차 열처리를 통해, 최종 미세 조직내 페라이트 및 잔류 오스테나이트의 결정립 크기를 3㎛ 이하로 제어할 수 있다.Next, in order for the steel sheet to have high strength, crystal grains of the final microstructure may be refined. In particular, it is possible to optimize the crystal grain size of initial austenite by proceeding the temperature of the primary heat treatment at a temperature of AC3 to AC3 + 15°C. In addition, through the secondary heat treatment conducted in an ideal temperature range, the grain size of ferrite and retained austenite in the final microstructure can be controlled to be 3 μm or less.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위가 하기 실시예에 한정되지는 않는다.Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred embodiments of the present invention. However, the following examples are for aiding understanding of the present invention, and the scope of the present invention is not limited to the following examples.
실시예 1Example 1
연주 공정을 통해 표 1의 비교 성분계 및 실시 성분계를 가지는 강 슬라브를 제조하였다. 상기 강 슬라브로부터 시편을 제조하여, 고온 인장 시험을 실시하였다. 비교 성분계의 경우, 실리콘 및 알루미늄의 함량 범위가 본 발명의 실시 예에 따르는 실리콘 및 알루미늄의 함량 범위의 상한치를 초과하였다.Through the playing process, a steel slab having a comparative component system and an actual component system in Table 1 was manufactured. A specimen was prepared from the steel slab, and a high temperature tensile test was performed. In the case of the comparative component system, the content range of silicon and aluminum exceeded the upper limit of the content range of silicon and aluminum according to an embodiment of the present invention.
[표 1][Table 1]
Figure PCTKR2020006385-appb-img-000001
Figure PCTKR2020006385-appb-img-000001
도 2는 본 발명의 비교 성분계 시편의 고온 인장 시험 결과이며, 도 3은 본 발명의 실시 성분계 시편의 고온 인장 시험 결과이다. 구체적으로, 상기 고온 인장 시험은, 상기 비교 성분계의 시편과 상기 실시 성분계의 시편을 각각 700℃, 750℃, 800℃, 850℃, 900℃, 950℃, 1000℃, 1050℃, 및 1100℃의 온도로 가열한 후에, 상기 온도에서 인장 시험을 진행한 결과이다. 도 3에서 고온 인장 시험은, 상기 시편을 1100℃ 를 초과하는 온도로 가열한 후에, -1℃/s의 냉각 속도로 각각의 인장 시험 온도로 냉각한 경우의 그래프(201)과 -20℃/s의 냉각 속도로 각각의 인장 시험 온도로 냉각한 경우의 그래프(202)를 함께 나타내었다. 통상적으로, 소정의 온도에서 면적 감소율이 50% 이상일 경우, 상기 소정의 온도에서 연성이 확보되었다고 판단할 수 있다.2 is a high-temperature tensile test result of the comparative component-based specimen of the present invention, and Figure 3 is a high-temperature tensile test result of the actual component-based specimen of the present invention. Specifically, in the high-temperature tensile test, the sample of the comparative component system and the sample of the actual component system are respectively 700°C, 750°C, 800°C, 850°C, 900°C, 950°C, 1000°C, 1050°C, and 1100°C. After heating to a temperature, it is a result of performing a tensile test at the temperature. In Figure 3, the high-temperature tensile test is a graph 201 and -20°C/ when the specimen is heated to a temperature exceeding 1100°C and then cooled to each tensile test temperature at a cooling rate of -1°C/s. A graph 202 in the case of cooling at each tensile test temperature at a cooling rate of s is shown together. Typically, when the area reduction rate is 50% or more at a predetermined temperature, it can be determined that ductility is secured at the predetermined temperature.
도 2를 참조하면, 비교 성분계 시편의 경우, 1100℃ 에서 면적 감소율이 55%이며, 700 ~ 800℃ 에서는 면적 감소율이 50%이며, 800 ~ 1050℃ 온도 구간에서는 면적 감소율이 목표치인 50% 에 미달하였다. 반면에, 도 3을 참조하면, 800 ~ 1100 ℃ 온도 구간에서, 면적 감소율이 목표치인 50%를 상회하였다. Referring to FIG. 2, in the case of the comparative component-based specimen, the area reduction rate is 55% at 1100°C, the area reduction rate is 50% at 700 to 800°C, and the area reduction rate is less than the target value of 50% in the temperature range of 800 to 1050°C. I did. On the other hand, referring to FIG. 3, in the temperature range of 800 to 1100° C., the area reduction rate exceeded the target value of 50%.
도 2 및 도 3을 참조하면, 비교 성분계 시편의 경우, 본 발명의 실시 예의 실시 성분계의 시편과 대비하여, 본 발명의 실시 예에 따라 연속 연주가 진행되는 온도 800℃ 이상 고온 구간에서, 고온 연성이 확보되지 못해, 연속 주조 진행 시 연주 크랙이 발생하여 건전한 슬라브를 확보할 수 없게 될 수 있다.2 and 3, in the case of a comparative component-based specimen, in a high-temperature section at a temperature of 800° C. or higher in which continuous playing is performed according to an embodiment of the present invention, as compared to the specimen of the actual component-based specimen of the embodiment of the present invention, As it cannot be secured, it may not be possible to secure a sound slab due to the occurrence of cracks during continuous casting.
표 2는 비교 성분계 시편과 실시 성분계 시편에 대해 본 발명의 실시 예에 따르는 열간 압연을 모사하여 산출한 각 패스당 압하력을 나타내는 도표이다. Table 2 is a chart showing the rolling force per pass calculated by simulating hot rolling according to an embodiment of the present invention for a comparative component specimen and an implementation component specimen.
[표 2][Table 2]
Figure PCTKR2020006385-appb-img-000002
Figure PCTKR2020006385-appb-img-000002
표 2를 참조하면, 각 압연 패스 별로 동일한 압하율을 발생시키기 위해 비교 성분계의 시편은 실시 성분계의 시편과 대비하여 큰 압하력을 인가해야 함을 확인할 수 있다. 즉, 비교 성분계의 시편이 열간 압연시에 압연기에 상대적으로 큰 부하가 가해짐을 확인할 수 있다.Referring to Table 2, it can be seen that in order to generate the same reduction ratio for each rolling pass, the specimen of the comparative component system should be applied with a large reduction force compared to the specimen of the actual component system. That is, it can be seen that a relatively large load is applied to the rolling mill when the specimen of the comparative component system is hot-rolled.
실시예 2Example 2
표 1의 실시 성분계의 시편에 대해 표 3에 따라 1차 및 2차 소둔 열처리 공정을 각각 실시하였다. 비교예 1 및 비교예 3의 경우, 2차 소둔 온도가 본 발명의 실시 예에 따르는 2차 소둔 온도의 하한치 640℃ 보다 낮았다. 비교예 2 및 비교예 4의 경우, 2차 소둔 온도가 본 발명의 실시 예에 따르는 2차 소둔 온도의 상한치 660℃ 보다 높았다. 비교예 5 내지 비교예 7은 1차 소둔 온도가 본 발명의 실시 예에 따르는 1차 소둔 온도의 상한치 750℃ 보다 높았다. 또한, 비교예 7은 2차 소둔 온도가 본 발명의 실시 예에 따르는 2차 소둔 온도의 상한치 660℃ 보다 높았다. 비교예 8 내지 11의 경우, 1차 소둔 열처리를 진행하지 않고, 2차 소둔 열처리만 진행하였다. 또한, 비교예 11은 2차 소둔 온도가 본 발명의 실시 예에 따르는 2차 소둔 온도의 상한치 660℃ 보다 높았다. The first and second annealing heat treatment processes were each performed according to Table 3 for the specimens of the implementation component system of Table 1. In the case of Comparative Example 1 and Comparative Example 3, the secondary annealing temperature was lower than the lower limit of the secondary annealing temperature according to the embodiment of the present invention 640 ℃. In the case of Comparative Example 2 and Comparative Example 4, the secondary annealing temperature was higher than the upper limit of 660 °C of the secondary annealing temperature according to the embodiment of the present invention. In Comparative Examples 5 to 7, the primary annealing temperature was higher than the upper limit of 750°C of the primary annealing temperature according to an embodiment of the present invention. In addition, in Comparative Example 7, the secondary annealing temperature was higher than the upper limit of 660°C of the secondary annealing temperature according to an embodiment of the present invention. In the case of Comparative Examples 8 to 11, the primary annealing heat treatment was not performed, and only the secondary annealing heat treatment was performed. In addition, in Comparative Example 11, the secondary annealing temperature was higher than the upper limit of 660°C of the secondary annealing temperature according to an embodiment of the present invention.
[표 3][Table 3]
Figure PCTKR2020006385-appb-img-000003
Figure PCTKR2020006385-appb-img-000003
표 4는 표 3에 따라 소둔 열처리가 진행된 비교예 1 내지 11 및 실시예 1 내지 6 시편의 재질 특성을 평가한 도표이다.Table 4 is a chart evaluating the material properties of the specimens of Comparative Examples 1 to 11 and Examples 1 to 6 subjected to annealing heat treatment according to Table 3.
[표 4][Table 4]
Figure PCTKR2020006385-appb-img-000004
Figure PCTKR2020006385-appb-img-000004
본 발명의 일 실시 예에 따르는 고강도 강판의 재질 특성의 목표치는, 항복강도 800 MPa 이상, 인장강도 980 MPa 이상, 연신율 25% 이상, 잔류 오스테나이트 부피분율 10~30%, 고각 결정립계(HAGBs) 분율 70% 이상 및 홀 확장성 20% 이상이다. 실시예 1 내지 실시예 6의 시편은 상기 목표치를 모두 만족시켰다. 비교예 1의 경우, 연신율 및 고각 결정립계(HAGBs) 분율이 목표치에 미달하였다. 비교예 2의 경우, 연신율이 목표치에 미달하였다. 비교예 3의 경우, 인장강도, 연신율, 및 고각 결정립계(HAGBs) 분율이 목표치에 미달하였다. 비교예4의 경우, 연신율, 인장강도 x 연신율의 값, 결정립 평균 크기 및 고각 결정립계(HAGBs) 분율이 목표치에 미달하였다. 비교예 5의 경우, 인장강도, 연신율, 결정립 평균 크기 및 고각 결정립계(HAGBs) 분율이 목표치에 미달하였다. 비교예 6 및 7의 경우, 항복강도, 인장강도, 연신율, 결정립 평균 크기 및 고각 결정립계(HAGBs) 분율이 목표치에 미달하였다. 비교예 8의 경우, 인장강도, 연신율 및 고각 결정립계(HAGBs) 분율이 목표치에 미달하였다. 비교예 9 내지 11의 경우, 연신율, 고각 결정립계(HAGBs) 분율 및 홀 확장성이 목표치에 미달하였다.Target values of the material properties of the high-strength steel sheet according to an embodiment of the present invention, yield strength 800 MPa or more, tensile strength 980 MPa or more, elongation 25% or more, residual austenite volume fraction 10 to 30%, high angle grain boundaries (HAGBs) fraction More than 70% and more than 20% of hole expandability. The specimens of Examples 1 to 6 satisfied all of the above target values. In the case of Comparative Example 1, the elongation and the fraction of high-angle grain boundaries (HAGBs) were less than the target values. In the case of Comparative Example 2, the elongation was less than the target value. In the case of Comparative Example 3, tensile strength, elongation, and fraction of high-angle grain boundaries (HAGBs) were less than the target values. In the case of Comparative Example 4, the elongation, tensile strength x elongation, average grain size, and high-angle grain boundary (HAGBs) fraction were less than the target values. In the case of Comparative Example 5, the tensile strength, elongation, average grain size, and high angle grain boundaries (HAGBs) fraction were less than the target values. In the case of Comparative Examples 6 and 7, the yield strength, tensile strength, elongation, average grain size, and high angle grain boundaries (HAGBs) fraction were less than the target values. In the case of Comparative Example 8, the tensile strength, elongation, and fraction of high-angle grain boundaries (HAGBs) were less than the target values. In the case of Comparative Examples 9 to 11, the elongation, the fraction of high-angle grain boundaries (HAGBs), and the hole expandability were less than the target values.
도 4는 본 발명의 일 실시 예에 따르는 고강도 강판의 미세 조직을 나타내는 사진이다. 구체적으로 도 4는 실시예 1의 시편의 미세 조직 사진이다. 표 4 및 도 4를 참조하면, 실시예 1의 시편에서, 부피분율 17%의 잔류 오스테나이트와 여분의 페라이트가 관찰되었다. 4 is a photograph showing the microstructure of a high-strength steel sheet according to an embodiment of the present invention. Specifically, Figure 4 is a microstructure photograph of the specimen of Example 1. Referring to Table 4 and FIG. 4, in the specimen of Example 1, residual austenite and excess ferrite having a volume fraction of 17% were observed.
실시예 3Example 3
표 1의 실시 성분계의 시편에 대해 표 5에 따라 1차 및 2차 소둔 열처리 공정을 각각 실시하였다. The first and second annealing heat treatment processes were each performed according to Table 5 for the specimens of the implementation component system of Table 1.
[표 5][Table 5]
Figure PCTKR2020006385-appb-img-000005
Figure PCTKR2020006385-appb-img-000005
표 5를 참조하면, 비교예 12는 1차 소둔 열처리 시의 승온속도가 본 발명의 일 실시 예에 따르는 승온속도의 상한치 3℃/s를 초과하였으며, 1차 소둔 유지 시간 40 초 이상을 만족 하지 못하였다. 비교예 13의 경우, 본 발명의 일 실시 예에 따르는 1차 소둔 열처리 시의 승온속도의 하한치 1℃/s 미만이었으며, 1차 소둔 유지 시간의 상한치 120 초를 초과하였다. 비교예 14의 경우, 본 발명의 일 실시 예에 따르는 승온속도의 하한치 1℃/s 미만이었으며, 1차 소둔 유지 시간의 상한치 120 초를 초과하였다. 또한, 냉각 속도의 하한치 4℃/s 미만이었다. 실시예 7 내지 10의 경우, 본 발명의 일 실시 예에 따르는 1차 및 2차 소둔 열처리 조건을 모두 만족하였다.Referring to Table 5, in Comparative Example 12, the temperature increase rate during the first annealing heat treatment exceeded the upper limit of the temperature increase rate of 3°C/s according to an embodiment of the present invention, and the first annealing holding time was not satisfied more than 40 seconds. I couldn't. In the case of Comparative Example 13, the lower limit of the temperature increase rate during the first annealing heat treatment according to an embodiment of the present invention was less than 1°C/s, and the upper limit of the first annealing holding time exceeded 120 seconds. In the case of Comparative Example 14, the lower limit of the heating rate according to an embodiment of the present invention was less than 1° C./s, and the upper limit of the first annealing holding time exceeded 120 seconds. Moreover, it was less than 4 degreeC/s of the lower limit of a cooling rate. In the case of Examples 7 to 10, both the primary and secondary annealing heat treatment conditions according to an embodiment of the present invention were satisfied.
표 6은 표 5에 따라 소둔 열처리가 진행된 비교예 12 내지 14 및 실시예 13 내지 16 시편의 재질 특성을 평가한 도표이다.Table 6 is a chart evaluating the material properties of the specimens of Comparative Examples 12 to 14 and Examples 13 to 16 subjected to annealing heat treatment according to Table 5.
[표 6][Table 6]
Figure PCTKR2020006385-appb-img-000006
Figure PCTKR2020006385-appb-img-000006
표 6을 참조하면, 비교예 12의 경우, 인장강도 및 연신율의 목표치를 달성하지 못하였다. 비교예 13의 경우, 인장강도, 연신율 및 결정립 평균 크기의 목표치를 달성하지 못하였다. 비교예 14의 경우, 항복강도, 인장강도, 연신율, 및 결정립 평균 크기의 목표치를 달성하지 못하였다. 실시예 7 내지 10의 경우, 본 발명의 실시예에 따르는 재질의 목표치를 모두 만족시켰다.Referring to Table 6, in the case of Comparative Example 12, the target values of tensile strength and elongation were not achieved. In the case of Comparative Example 13, the target values of tensile strength, elongation and average grain size were not achieved. In the case of Comparative Example 14, the target values of yield strength, tensile strength, elongation, and average grain size were not achieved. In the case of Examples 7 to 10, all of the target values of the material according to the embodiment of the present invention were satisfied.
실시예 4Example 4
표 1의 실시 성분계의 시편에 대해 표 7에 따라 1차 및 2차 소둔 열처리 공정을 각각 실시하였다. The first and second annealing heat treatment processes were each performed according to Table 7 for the specimens of the implementation component system of Table 1.
[표 7][Table 7]
Figure PCTKR2020006385-appb-img-000007
Figure PCTKR2020006385-appb-img-000007
표 7을 참조하면, 비교예 15는 2차 소둔 열처리 시의 승온속도가 본 발명의 일 실시 예에 따르는 승온속도의 상한치 3℃/s를 초과하였으며, 2차 소둔 유지 시간 40 초 이상을 만족 하지 못하였다. 비교예 16의 경우, 본 발명의 일 실시 예에 따르는 2차 소둔 시의 승온속도의 하한치 1℃/s 미만이었으며, 2차 소둔 유지 시간의 상한치 120 초를 초과하였다. 실시예 11 내지 14의 경우, 본 발명의 일 실시 예에 따르는 1차 및 2차 소둔 열처리 조건을 모두 만족하였다.Referring to Table 7, in Comparative Example 15, the temperature increase rate during the secondary annealing heat treatment exceeded the upper limit of the temperature increase rate of 3°C/s according to an embodiment of the present invention, and the secondary annealing holding time was not satisfied more than 40 seconds. I couldn't. In the case of Comparative Example 16, the lower limit of the heating rate during the secondary annealing according to an embodiment of the present invention was less than 1°C/s, and the upper limit of the secondary annealing holding time exceeded 120 seconds. In the case of Examples 11 to 14, both the primary and secondary annealing heat treatment conditions according to an embodiment of the present invention were satisfied.
표 8은 표 7에 따라 소둔 열처리가 진행된 비교예 15 및 16과 실시예 11 내지 14 시편의 재질 특성을 평가한 도표이다.Table 8 is a chart evaluating the material properties of the specimens of Comparative Examples 15 and 16 and Examples 11 to 14 subjected to annealing heat treatment according to Table 7.
[표 8][Table 8]
Figure PCTKR2020006385-appb-img-000008
Figure PCTKR2020006385-appb-img-000008
표 8을 참조하면, 비교예 15의 경우, 인장강도 및 연신율의 목표치를 달성하지 못하였다. 비교예 16의 경우, 연신율의 목표치를 달성하지 못하였다. 실시예 11내지 14의 경우, 본 발명의 실시예에 따르는 재질의 목표치를 모두 만족시켰다.Referring to Table 8, in the case of Comparative Example 15, the target values of tensile strength and elongation were not achieved. In the case of Comparative Example 16, the target value of the elongation was not achieved. In the case of Examples 11 to 14, all of the target values of the materials according to the embodiments of the present invention were satisfied.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.In the above, the embodiments of the present invention have been described mainly, but various changes or modifications may be made at the level of those skilled in the art. These changes and modifications can be said to belong to the present invention as long as they do not depart from the scope of the present invention. Therefore, the scope of the present invention should be determined by the claims set forth below.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다. Simple modifications or changes of the present invention can be easily implemented by those of ordinary skill in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (14)

  1. 중량%로, 탄소(C): 0.05 ~ 0.15%, 실리콘(Si): 0 초과 0.4% 이하, 망간(Mn): 4.0 ~ 9.0%, 알루미늄(Al): 0 초과 0.3% 이하, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 질소(N): 0.006% 이하, 잔부의 철(Fe) 및 기타 불가피한 불순물을 포함하며,By weight%, carbon (C): 0.05 to 0.15%, silicon (Si): more than 0 0.4% or less, manganese (Mn): 4.0 to 9.0%, aluminum (Al): more than 0 0.3% or less, phosphorus (P) : 0.02% or less, sulfur (S): 0.005% or less, nitrogen (N): 0.006% or less, the balance contains iron (Fe) and other inevitable impurities,
    페라이트 및 잔류 오스테나이트로 이루어지는 미세조직을 가지며,It has a microstructure consisting of ferrite and retained austenite,
    상기 미세조직의 결정립 크기는 3 ㎛ 이하이며,The grain size of the microstructure is 3 μm or less,
    항복강도(YS): 800MPa 이상, 인장강도(TS): 980MPa 이상, 연신율(EL): 25% 이상, 홀 확장성(HER): 20% 이상인,Yield strength (YS): 800 MPa or more, Tensile strength (TS): 980 MPa or more, Elongation (EL): 25% or more, Hole expandability (HER): 20% or more,
    고강도 및 고성형성을 가지는 강판.Steel plate with high strength and high formability.
  2. 제1 항에 있어서,The method of claim 1,
    니오븀(Nb), 티타늄(Ti), 바나듐(V) 및 몰리브덴(Mo) 중 적어도 하나를 포함하되, 상기 적어도 하나는 중량%로 각각 0 초과 0.02% 이하인At least one of niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo) is included, wherein the at least one is greater than 0 and less than 0.02% by weight, respectively.
    고강도 및 고성형성을 가지는 강판.Steel plate with high strength and high formability.
  3. 제1 항에 있어서,The method of claim 1,
    보론(B): 0 초과 0.001% 이하를 더 포함하는Boron (B): more than 0 and containing 0.001% or less
    고강도 및 고성형성을 가지는 강판.Steel plate with high strength and high formability.
  4. 제1 항에 있어서,The method of claim 1,
    상기 미세조직 내 상기 잔류 오스테나이트의 부피분율은 10 ~ 30 부피%인 The volume fraction of the residual austenite in the microstructure is 10 to 30% by volume.
    고강도 및 고성형성을 가지는 강판.Steel plate with high strength and high formability.
  5. (a) 중량%로, 탄소(C): 0.05 ~ 0.15%, 실리콘(Si): 0 초과 0.4% 이하, 망간(Mn): 4.0 ~ 9.0%, 알루미늄(Al): 0 초과 0.3% 이하, 인(P): 0.02% 이하, 황(S): 0.005% 이하, 질소(N): 0.006% 이하, 잔부의 철(Fe) 및 기타 불가피한 불순물을 포함하는 강 슬라브를 이용하여 열연판재를 제조하는 단계;(a) By weight%, carbon (C): 0.05 to 0.15%, silicon (Si): more than 0 0.4% or less, manganese (Mn): 4.0 to 9.0%, aluminum (Al): more than 0 0.3% or less, phosphorus (P): 0.02% or less, sulfur (S): 0.005% or less, nitrogen (N): 0.006% or less, the balance of iron (Fe) and other unavoidable impurities containing steel slab using a steel slab to manufacture a hot-rolled sheet material ;
    (b) 상기 열연판재를 냉간 압연하여, 냉연판재를 제조하는 단계; (b) cold rolling the hot-rolled sheet to manufacture a cold-rolled sheet;
    (c) 상기 냉연판재를 AC3 ~ AC3 + 15℃의 온도에서 1차 열처리하는 단계; 및(c) subjecting the cold-rolled sheet to a first heat treatment at a temperature of AC3 to AC3 + 15°C; And
    (d) 상기 1차 열처리한 냉연판재를 이상역 온도에서 2차 열처리하는 단계를 포함하되,(d) including the step of secondary heat treatment of the cold-rolled sheet material subjected to the first heat treatment at an ideal temperature,
    (d) 단계 후에 상기 냉연판재는 페라이트 및 잔류 오스테나이트로 이루어지는 미세조직을 가지는After step (d), the cold-rolled sheet material has a microstructure consisting of ferrite and retained austenite.
    고강도 및 고성형성을 가지는 강판의 제조 방법.A method of manufacturing a steel sheet having high strength and high formability.
  6. 제5 항에 있어서, The method of claim 5,
    상기 강 슬라브는The river slab is
    니오븀(Nb), 티타늄(Ti), 바나듐(V) 및 몰리브덴(Mo) 중 적어도 하나를 포함하되, 상기 적어도 하나는 중량%로 각각 0 초과 0.02% 이하인At least one of niobium (Nb), titanium (Ti), vanadium (V), and molybdenum (Mo) is included, wherein the at least one is greater than 0 and less than 0.02% by weight, respectively.
    고강도 및 고성형성을 가지는 강판의 제조 방법.A method of manufacturing a steel sheet having high strength and high formability.
  7. 제5 항에 있어서,The method of claim 5,
    상기 강 슬라브는 The river slab is
    보론(B): 0 초과 0.001% 이하를 더 포함하는Boron (B): more than 0 and containing 0.001% or less
    고강도 및 고성형성을 가지는 강판의 제조 방법.A method of manufacturing a steel sheet having high strength and high formability.
  8. 제5 항에 있어서,The method of claim 5,
    상기 미세조직 내 상기 잔류 오스테나이트의 부피분율은 10 ~ 30 부피%인 The volume fraction of the residual austenite in the microstructure is 10 to 30% by volume.
    고강도 및 고성형성을 가지는 강판의 제조 방법.A method of manufacturing a steel sheet having high strength and high formability.
  9. 제5 항에 있어서,The method of claim 5,
    (c) 단계는Step (c) is
    상기 열처리된 냉연판재를 4 ~ 10 ℃/s의 냉각 속도로 350 ~ 450℃ 까지 냉각하는 단계를 포함하는Comprising the step of cooling the heat-treated cold-rolled sheet material to 350 ~ 450 ℃ at a cooling rate of 4 ~ 10 ℃ / s
    고강도 및 고성형성을 가지는 강판의 제조 방법.A method of manufacturing a steel sheet having high strength and high formability.
  10. 제9 항에 있어서,The method of claim 9,
    (d) 단계는Step (d) is
    상기 열처리된 냉연판재를 4 ~ 10 ℃/s로 350 ~ 450℃로 냉각하는 단계를 포함하는Comprising the step of cooling the heat-treated cold-rolled sheet material to 350 ~ 450 ℃ at 4 ~ 10 ℃ / s
    고강도 및 고성형성을 가지는 강판의 제조 방법.A method of manufacturing a steel sheet having high strength and high formability.
  11. 제5 항에 있어서,The method of claim 5,
    (a) 단계는Step (a)
    (a1) 상기 강 슬라브를 1150 ~ 1250℃의 온도로 재가열하는 단계;(a1) reheating the steel slab to a temperature of 1150 to 1250°C;
    (a2) 재가열된 상기 강 슬라브를 925 ~ 975℃의 마무리 압연온도로 열간 압연하는 단계; 및(a2) hot rolling the reheated steel slab at a finish rolling temperature of 925 to 975°C; And
    (a3) 상기 열간 압연된 강재를 10 ~ 30℃/s의 냉각속도로 700℃ ~ 800℃까지 냉각한 후에 권취하는 단계를 포함하는(a3) comprising the step of cooling the hot-rolled steel material to 700 ℃ ~ 800 ℃ at a cooling rate of 10 ~ 30 ℃ / s, and then winding
    고강도 및 고성형성을 가지는 강판의 제조 방법.A method of manufacturing a steel sheet having high strength and high formability.
  12. 제5 항에 있어서,The method of claim 5,
    (a) 단계와 (b) 단계 사이에,Between steps (a) and (b),
    상기 열연판재를 550℃~650℃에서 연화 열처리하는 단계를 더 포함하는Further comprising the step of softening heat treatment of the hot-rolled sheet material at 550 ℃ ~ 650 ℃
    고강도 및 고성형성을 가지는 강판의 제조 방법.A method of manufacturing a steel sheet having high strength and high formability.
  13. 제5 항에 있어서,The method of claim 5,
    (d) 단계 후에,after step (d),
    상기 냉연판재는 항복강도(YS): 800MPa 이상, 인장강도(TS): 980MPa 이상, 연신율(EL): 25% 이상, 홀 확장성(HER): 20% 이상을 가지는The cold rolled sheet has yield strength (YS): 800 MPa or more, tensile strength (TS): 980 MPa or more, elongation (EL): 25% or more, hole expandability (HER): 20% or more.
    고강도 및 고성형성을 가지는 강판의 제조 방법.A method of manufacturing a steel sheet having high strength and high formability.
  14. 제5 항에 있어서,The method of claim 5,
    (d) 단계 후에,after step (d),
    상기 냉연판재의 결정립 크기는 3 ㎛ 이하인The crystal grain size of the cold-rolled sheet is 3 μm or less.
    고강도 및 고성형성을 가지는 강판의 제조 방법.A method of manufacturing a steel sheet having high strength and high formability.
PCT/KR2020/006385 2019-09-30 2020-05-15 Steel sheet having high strength and high formability and method for manufacturing same WO2021066274A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2022001389A MX2022001389A (en) 2019-09-30 2020-05-15 Steel sheet having high strength and high formability and method for manufacturing same.
US17/608,068 US20220220576A1 (en) 2019-09-30 2020-05-15 Steel sheet having high strength and high formability and method for manufacturing same
BR112022001969A BR112022001969A2 (en) 2019-09-30 2020-05-15 Steel blade with high resistivity and high formability and method for making a steel blade with high resistibility and high formability
CN202080035734.7A CN113825852B (en) 2019-09-30 2020-05-15 Steel sheet having high strength and high formability and method for manufacturing same
JP2021564566A JP7419401B2 (en) 2019-09-30 2020-05-15 Steel plate with high strength and high formability and its manufacturing method
DE112020004666.4T DE112020004666T5 (en) 2019-09-30 2020-05-15 STEEL SHEET WHICH HAS HIGH STRENGTH AND HIGH FORMABILITY AND METHOD OF MAKING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190120562A KR102264344B1 (en) 2019-09-30 2019-09-30 Steel sheet having high strength and high formability and method for manufacturing the same
KR10-2019-0120562 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021066274A1 true WO2021066274A1 (en) 2021-04-08

Family

ID=75336583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006385 WO2021066274A1 (en) 2019-09-30 2020-05-15 Steel sheet having high strength and high formability and method for manufacturing same

Country Status (8)

Country Link
US (1) US20220220576A1 (en)
JP (1) JP7419401B2 (en)
KR (1) KR102264344B1 (en)
CN (1) CN113825852B (en)
BR (1) BR112022001969A2 (en)
DE (1) DE112020004666T5 (en)
MX (1) MX2022001389A (en)
WO (1) WO2021066274A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253331A (en) * 2002-03-05 2003-09-10 Nippon Steel Corp Method for manufacturing high-tensile-strength steel with high toughness and high ductility
KR20130046968A (en) * 2011-10-28 2013-05-08 현대제철 주식회사 High strength steel sheet and method of manufacturing the steel sheet
KR20150097722A (en) * 2012-12-21 2015-08-26 뵈스트알파인 스탈 게엠베하 Method for heat-treating a manganese steel product and manganese steel product
KR101677396B1 (en) * 2015-11-02 2016-11-18 주식회사 포스코 Ultra high strength steel sheet having excellent formability and expandability, and method for manufacturing the same
KR101977491B1 (en) * 2017-11-08 2019-05-10 주식회사 포스코 Ultra-high strength and high-ductility steel sheet having excellent cold formability, and method for manufacturing thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924203B2 (en) * 2007-05-24 2012-04-25 住友金属工業株式会社 High-strength galvannealed steel sheet and method for producing the same
JP5213643B2 (en) * 2008-03-26 2013-06-19 株式会社神戸製鋼所 High strength cold-rolled steel sheet and high-strength galvannealed steel sheet with excellent ductility and hole expansibility
JP5515623B2 (en) * 2009-10-28 2014-06-11 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
CN103987870B (en) * 2011-12-15 2016-01-06 株式会社神户制钢所 The high strength cold rolled steel plate that the deviation of intensity and ductility is little and manufacture method thereof
JP6179677B2 (en) 2014-10-30 2017-08-16 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
CN104651734B (en) * 2014-12-11 2017-03-29 武汉钢铁(集团)公司 1000MPa grade high-strength high-ductility medium managese steel containing aluminum and its manufacture method
KR20160077463A (en) 2014-12-23 2016-07-04 주식회사 포스코 Fe-Ni ALLOY ELECTROLYTES AND METHOD FOR MANUFACTURING Fe-Ni ALLOY USING THE SAME
TWI592500B (en) * 2015-02-24 2017-07-21 新日鐵住金股份有限公司 Cold rolled steel sheet and manufacturing method thereof
EP3336212B1 (en) 2015-08-11 2020-07-29 JFE Steel Corporation Material for high-strength steel sheet, hot rolled material for high-strength steel sheet, material annealed after hot rolling and for high-strength steel sheet, high-strength steel sheet, high-strength hot-dip plated steel sheet, high-strength electroplated steel sheet, and manufacturing method for same
JP6696208B2 (en) * 2016-02-18 2020-05-20 日本製鉄株式会社 High strength steel sheet manufacturing method
MX2019005636A (en) 2016-11-16 2019-07-04 Jfe Steel Corp High-strength steel sheet and method for producing same.
JP6811690B2 (en) 2017-07-05 2021-01-13 株式会社神戸製鋼所 Steel plate and its manufacturing method
KR20190079299A (en) * 2017-12-27 2019-07-05 현대제철 주식회사 High strength cold rolled steel sheet and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253331A (en) * 2002-03-05 2003-09-10 Nippon Steel Corp Method for manufacturing high-tensile-strength steel with high toughness and high ductility
KR20130046968A (en) * 2011-10-28 2013-05-08 현대제철 주식회사 High strength steel sheet and method of manufacturing the steel sheet
KR20150097722A (en) * 2012-12-21 2015-08-26 뵈스트알파인 스탈 게엠베하 Method for heat-treating a manganese steel product and manganese steel product
KR101677396B1 (en) * 2015-11-02 2016-11-18 주식회사 포스코 Ultra high strength steel sheet having excellent formability and expandability, and method for manufacturing the same
KR101977491B1 (en) * 2017-11-08 2019-05-10 주식회사 포스코 Ultra-high strength and high-ductility steel sheet having excellent cold formability, and method for manufacturing thereof

Also Published As

Publication number Publication date
CN113825852B (en) 2022-11-18
JP2022531250A (en) 2022-07-06
BR112022001969A2 (en) 2022-05-10
KR20210037984A (en) 2021-04-07
DE112020004666T5 (en) 2022-06-23
US20220220576A1 (en) 2022-07-14
JP7419401B2 (en) 2024-01-22
KR102264344B1 (en) 2021-06-11
MX2022001389A (en) 2022-03-25
CN113825852A (en) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2015174605A1 (en) High-strength cold rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet and method for manufacturing same
WO2013069937A1 (en) Steel sheet for hot press forming, hot press forming member, and manufacturing method thereof
WO2018110867A1 (en) High strength cold rolled steel plate having excellent yield strength, ductility, and hole expandability, hot dip galvanized steel plate, and method for producing same
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2020050573A1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio and manufacturing method for same
WO2017082687A1 (en) Microalloyed wire having excellent cold workability and manufacturing method therefor
WO2018004297A1 (en) High strength steel plate having excellent low yield ratio characteristics and low temperature toughness and method for manufacturing same
WO2018117646A1 (en) Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor
WO2015099222A1 (en) Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same
WO2018117614A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
WO2011105652A1 (en) High-strength steel sheet having excellent platability and method for manufacturing same
WO2017222159A1 (en) High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2021117989A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
WO2021100995A1 (en) Steel sheet having high strength and high formability and method for manufacturing same
WO2021066274A1 (en) Steel sheet having high strength and high formability and method for manufacturing same
WO2022124609A1 (en) High-strength hot-dip galvanized steel sheet with high ductility and excellent formability, and manufacturing method for same
WO2022065797A1 (en) High-strength thick hot-rolled steel sheet and method for manufacturing same
WO2018110850A1 (en) High-strength wire rod having superior impact toughness and manufacturing method therefor
WO2020130329A1 (en) High strength hot-rolled steel sheet having excellent workability, and method for manufacturing the same
WO2020130614A2 (en) High strength hot-rolled steel sheet having excellent hole expansion ratio and manufacturing method for same
WO2024071522A1 (en) Ultrahigh-strength steel sheet and manufacturing method therefor
WO2023234502A1 (en) Ultra-high strength cold-rolled steel sheet and manufacturing method therefor
WO2023048448A1 (en) High strength cold rolled steel sheet having excellent surface quality and low mechanical property deviation and manufacturing method of same
WO2021125710A1 (en) Non-heat treated wire rod having excellent drawability and impact toughness and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564566

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022001969

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022001969

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220202

122 Ep: pct application non-entry in european phase

Ref document number: 20870813

Country of ref document: EP

Kind code of ref document: A1