WO2021065956A1 - 撮像システム及び撮像カテーテル - Google Patents

撮像システム及び撮像カテーテル Download PDF

Info

Publication number
WO2021065956A1
WO2021065956A1 PCT/JP2020/037023 JP2020037023W WO2021065956A1 WO 2021065956 A1 WO2021065956 A1 WO 2021065956A1 JP 2020037023 W JP2020037023 W JP 2020037023W WO 2021065956 A1 WO2021065956 A1 WO 2021065956A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
imaging
sensor
position sensors
outer sheath
Prior art date
Application number
PCT/JP2020/037023
Other languages
English (en)
French (fr)
Inventor
泰一 坂本
克彦 清水
石原 弘之
ヌワン ヘラト
トマ エン
クレモン ジャケ
イセリン エリックセン
亮介 佐賀
Original Assignee
テルモ株式会社
株式会社ロッケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社, 株式会社ロッケン filed Critical テルモ株式会社
Publication of WO2021065956A1 publication Critical patent/WO2021065956A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • This disclosure relates to an imaging system and an imaging catheter.
  • Patent Documents 1 to 4 describe this kind of method. Further, in the methods described in Patent Documents 1 to 4, it is described that a catheter including an ultrasonic sensor is inserted into a living body to acquire a plurality of tomographic images of living tissue.
  • An object of the present disclosure is to provide an imaging system and an imaging catheter capable of accurately acquiring the coordinates of each point in a plurality of tomographic images of living tissue in three-dimensional space.
  • the imaging system is an imaging system including an imaging catheter, at least two measuring devices, and a control device, and the imaging catheter is arranged in a long outer sheath and the outer sheath.
  • An imaging sensor including an imaging probe that images a living tissue from the inside of a living body, a shaft that has the imaging sensor fixed to the distal portion and can move in the outer sheath along the longitudinal direction of the outer sheath, and the like.
  • the distal portion of the shaft includes three position sensors arranged in the vicinity of the image pickup sensor, and the at least two measuring devices can measure the position information of the three position sensors.
  • the control device can specify the three-dimensional coordinates of each point in a plurality of tomographic images of the biological tissue generated based on the biological structure information acquired from the imaging sensor based on the positional information of the three position sensors.
  • the three position sensors of the imaging catheter are provided with two position sensors arranged at different positions in the central axis direction of the shaft in the distal portion of the shaft, and the shaft. In the distal portion of the above, one of the two position sensors and one position sensor arranged at different positions in the circumferential direction of the shaft.
  • the shaft has an inner sheath extending along the longitudinal direction in the outer sheath, and the imaging sensor fixed to the distal portion, extending into the inner sheath.
  • a shaft body that is present and rotatable in the inner sheath, and the three position sensors are held in the inner sheath, and the imaging sensor includes only one imaging probe, and the imaging is performed.
  • the catheter is configured to acquire the biological structure information by rotating the imaging sensor together with the shaft body.
  • one of the two position sensors and the one position sensor are arranged at positions facing each other in the circumferential direction of the shaft.
  • the two position sensors are arranged at positions facing the central axis direction of the shaft.
  • the imaging probe is an ultrasonic transducer
  • the control device is a biological tissue identified by the biological structure information obtained from the ultrasonic transducer and the coordinate identification unit.
  • a three-dimensional construction unit that constructs a three-dimensional image of the biological tissue based on the three-dimensional coordinates of each point in the plurality of tomographic images, and a point in the plurality of tomographic images of the biological tissue specified by the coordinate identification unit.
  • a thickness calculation unit for calculating the thickness of the living tissue in a direction perpendicular to the inner wall surface of the living tissue based on three-dimensional coordinates is provided.
  • the control device uses the inner wall surface of the biological tissue on the three-dimensional image as the biological tissue based on the thickness information of the biological tissue calculated by the thickness calculation unit. It is provided with an identification processing unit that executes processing for displaying in an identifiable manner according to the thickness.
  • control device is a calorific value calculation unit that calculates the amount of heat given to a predetermined location on the inner wall surface of the biological tissue based on the thickness information of the biological tissue calculated by the thickness calculation unit. To be equipped.
  • control device includes a display unit that displays the amount of heat calculated by the calorie calculation unit on the predetermined location on the inner wall surface of the biological tissue on the three-dimensional image. ..
  • the imaging catheter according to the present disclosure includes a long outer sheath, an imaging sensor including an imaging probe that is arranged in the outer sheath and images a living tissue from the inside of a living lumen, and the imaging sensor is fixed to a distal portion.
  • a shaft that is movable in the outer sheath along the longitudinal direction of the outer sheath, and three position sensors that are arranged in the vicinity of the imaging sensor at the distal portion of the shaft.
  • the three position sensors are two position sensors arranged at different positions in the central axis direction of the shaft in the distal portion of the shaft, and the two position sensors in the distal portion of the shaft. It consists of one of the position sensors and one position sensor arranged at different positions in the circumferential direction of the shaft.
  • an imaging system and an imaging catheter capable of accurately acquiring the coordinates of each point in a plurality of tomographic images of a living tissue in a three-dimensional space.
  • FIG. 3 is a cross-sectional view showing a distal portion of the imaging catheter shown in FIG. 3 and its vicinity. It is sectional drawing which shows the proximal part of the imaging catheter shown in FIG. 3 and the vicinity thereof.
  • FIG. 3 is a cross-sectional view of the imaging catheter shown in FIG. 3 at the same position as in FIG. 4 in a state where the shaft is moved proximally to the state shown in FIG.
  • FIG. 3 is a cross-sectional view of the imaging catheter shown in FIG. 3 at the same position as in FIG.
  • FIG. 8A is a view showing the tip view of the inner sheath of the shaft alone.
  • FIG. 8B is a view showing one side view of the distal portion of the inner sheath of the shaft. It is a figure which shows an example of the procedure performed using the imaging catheter shown in FIG. It is a flowchart which shows an example of the 3D image generation method executed in the imaging system shown in FIG.
  • FIG. 3 is a diagram showing a modified example of the imaging catheter shown in FIG.
  • distal side one end side inserted into a living body such as an organ or a blood vessel
  • proximal side the hand side
  • base end side the longitudinal direction of the outer sheath of the imaging catheter according to the present disclosure
  • circumferential direction M The circumferential direction of the outer sheath of the imaging catheter according to the present disclosure is simply referred to as "circumferential direction M".
  • the radial direction of the outer sheath of the imaging catheter according to the present disclosure is simply referred to as "diameter direction N”.
  • FIG. 1 is a block diagram showing a schematic configuration of an imaging system 100 as an embodiment of the imaging system according to the present disclosure.
  • the image pickup system 100 includes an image pickup catheter 1 as an embodiment of the image pickup catheter according to the present disclosure, two measuring devices 2, and an image processing device 3.
  • the image processing device 3 includes a control device 60.
  • FIG. 2 is a schematic view of the imaging system 100.
  • FIG. 3 is a diagram showing an imaging catheter 1.
  • FIG. 4 is a cross-sectional view showing the distal portion of the imaging catheter 1 and its vicinity.
  • FIG. 5 is a cross-sectional view showing the proximal portion of the imaging catheter 1 and its vicinity.
  • FIG. 6 is a cross-sectional view taken at the same position as in FIG.
  • FIG. 7 is a cross-sectional view taken at the same position as in FIG. 5 in a state where the shaft 22 is moved to the proximal side (see the thick arrow in FIG. 7) with respect to the state shown in FIG.
  • FIG. 8A is a view showing the tip view of the inner sheath 27 of the shaft 22 alone.
  • FIG. 8B is a view showing one side view (side view of the upper surface side of the inner sheath 27 shown in FIG. 4) of the distal portion of the inner sheath 27 of the shaft 22 alone.
  • the imaging system 100 it is possible to generate a plurality of tomographic images in a living body such as an organ and a blood vessel. Further, according to the imaging system 100 of the present embodiment, it is possible to generate a three-dimensional image of an organ, a blood vessel, or the like based on a plurality of generated tomographic images. For example, the medical staff can smoothly proceed with the procedure by confirming a plurality of tomographic images and three-dimensional images generated by the imaging system 100 during the procedure.
  • the imaging catheter 1 includes an imaging sensor 21, a shaft 22, a long outer sheath 23, and three position sensors 24.
  • the image sensor 21 is arranged inside the outer sheath 23.
  • the image sensor 21 includes an image probe 21a that images a living tissue from inside the living body.
  • the shaft 22 can move inside the outer sheath 23 along the longitudinal direction L of the outer sheath 23.
  • An imaging sensor 21 is fixed to the distal portion of the shaft 22.
  • the shaft 22 of the present embodiment includes an inner sheath 27 and a shaft main body 28.
  • the shaft 22 is not limited to the configuration including the inner sheath 27 and the shaft main body 28 of the present embodiment.
  • the three position sensors 24 are arranged in the vicinity of the image sensor 21 at the distal portion of the shaft 22.
  • the three position sensors 24 are configured so that position information in a three-dimensional space can be specified by two measuring devices 2 described later. Although details will be described later, the three position sensors 24 of this embodiment are held by the inner sheath 27 of the shaft 22. However, the holding positions of the three position sensors 24 can be appropriately changed according to the specific configuration of the shaft 22, and are not limited to the holding positions of the present embodiment.
  • the three position sensors 24 include two position sensors 24b and 24c located at different positions in the central axial direction D of the shaft 22 in the distal portion of the shaft 22.
  • the three position sensors 24 are different in the distal portion of the shaft 22 from the position sensor of at least one of the two position sensors 24b and 24c described above and the circumferential direction E of the shaft 22. It includes one position sensor 24a located at the position.
  • the “circumferential direction E of the shaft 22” means the circumferential direction around the central axis O1 of the shaft 22.
  • the position sensor 24a of the present embodiment is described as “first position sensor 24a”
  • the position sensor 24b of this embodiment is described as “second position sensor 24b”
  • the position sensor of this embodiment is described.
  • 24c is described as "third position sensor 24c”.
  • first position sensor 24a, the second position sensor 24b, and the third position sensor 24c are referred to without any particular distinction, they are simply described as "position sensor 24".
  • the imaging catheter 1 may be configured to include the three position sensors 24 having the above positional relationship, and may further include another position sensor. That is, as long as the imaging catheter 1 is configured to include at least three position sensors 24 having the above positional relationship, the total number of position sensors 24 is not limited, and four or more position sensors 24 may be provided.
  • the second position sensor 24b and the third position sensor 24c of the present embodiment are arranged at positions facing each other in the central axis direction D of the shaft 22 (see FIG. 8B). Further, as will be described in detail later, in the present embodiment, the first position sensor 24a and the second position sensor 24b are arranged at positions facing each other in the circumferential direction E of the shaft 22 (FIG. 8A). reference).
  • the imaging system 100 of the present embodiment includes two measuring devices 2, but at least two measuring devices 2 may be provided, and three or more measuring devices 2 may be provided.
  • the two measuring devices 2 can measure the position information of the three position sensors 24.
  • the image processing device 3 includes a control device 60 as described above.
  • the control device 60 acquires biological structure information from the image sensor 21 of the image pickup catheter 1.
  • the control device 60 can generate a plurality of tomographic images of the biological tissue based on the biological structure information.
  • the control device 60 includes a coordinate specifying unit 62. An example of a specific specific method will be described later, but the coordinate identification unit 62 of the control device 60 sets the three-dimensional coordinates of each point in a plurality of tomographic images of the generated biological tissue to the three positions having the above-mentioned positional relationship. It can be specified based on the position information of the sensor 24.
  • the imaging system 100 it is possible to specify the three-dimensional coordinates in the three-dimensional space of each point of the plurality of tomographic images imaged by the imaging catheter 1. Therefore, even when the imaging catheter 1 is meandering or bent in the living body without following the living tissue, the control device 60 of the imaging system 100 can generate an accurate three-dimensional image of the living tissue.
  • the coordinate data can be shared with the existing device used in 3D mapping, and the existing device can be used.
  • the three-dimensional image can be easily displayed, and the convenience for the medical worker can be enhanced.
  • the image pickup system 100 of the present embodiment described above includes an image processing device 3 including a control device 60, but is not limited to a configuration including the image processing device 3 as long as the configuration includes the control device 60.
  • the imaging catheter 1 of the present embodiment is mainly inserted into a heart chamber or a blood vessel to acquire biological structure information of the heart or a blood vessel.
  • the image pickup catheter 1 of the present embodiment is configured to acquire biological structure information by rotating the image pickup sensor 21 together with the shaft body 28 described later of the shaft 22.
  • the first housing 25 and the second housing 26 are included. , A signal line 34, and a joint 42.
  • the image sensor 21 of this embodiment is an ultrasonic sensor.
  • the ultrasonic sensor as the image sensor 21 includes only one ultrasonic vibrator as the image probe 21a.
  • the ultrasonic oscillator includes, for example, a piezoelectric element.
  • the ultrasonic vibrator as the imaging probe 21a of the present embodiment transmits ultrasonic waves toward the outside in the radial direction of the shaft 22 at a part of the circumferential direction E of the shaft 22. Therefore, the imaging probe 21a of the present embodiment transmits ultrasonic waves toward the biological tissue located on the radial outer side of the shaft 22. Further, the imaging probe 21a of the present embodiment receives ultrasonic waves reflected by the living tissue.
  • the image pickup sensor 21 of the present embodiment includes an image pickup probe 21a and a holding body 21b that holds the image pickup probe 21a and is fixed to the shaft 22.
  • the maximum outer diameter of the image sensor 21 in the cross section orthogonal to the central axis direction D of the shaft 22 is larger than the maximum outer diameter of the distal portion of the shaft 22.
  • the maximum outer diameter of the image sensor 21 is about the same as, but not limited to, the maximum outer diameter of the inner sheath 27 described later of the shaft 22.
  • the image sensor 21 of the present embodiment is an ultrasonic sensor, but the present invention is not limited to this.
  • OCT optical coherence tomography
  • the image pickup sensor 21 can be a sensor using light applicable to the optical coherence tomography device. ..
  • OFDI optical frequency domain imaging diagnostic device
  • the image sensor 21 uses light applicable to the optical frequency domain imaging diagnostic device.
  • the shaft 22 of the present embodiment includes an inner sheath 27 and a shaft body 28.
  • the inner sheath 27 is a tubular body in which a part of the distal side is inserted into the outer sheath main body 35 described later of the outer sheath 23.
  • the inner sheath 27 extends within the outer sheath 23 along the central axis of the outer sheath 23. More specifically, the inner sheath 27 extends in the outer sheath main body 35 of the outer sheath 23 along the central axis of the outer sheath main body 35.
  • the inner sheath 27 is movable inside the outer sheath main body 35 of the outer sheath 23 along the central axis of the outer sheath main body 35.
  • the inner sheath 27 does not rotate together with the shaft body 28.
  • the proximal portion of the inner sheath 27 is led out proximally from the outer sheath body 35 and the first housing 25 and is fixed to the second housing 26.
  • the inner sheath 27 of the present embodiment includes an inner sheath main body 29 and an inner sheath reinforcing body 30.
  • the inner sheath main body 29 rotatably accommodates the shaft main body 28.
  • the distal portion of the inner sheath body 29 is located on the proximal side of the image sensor 21 and close to the image sensor 21.
  • the inner sheath reinforcing body 30 is an annular body that reinforces the outer peripheral surface of the proximal portion of the inner sheath main body 29.
  • the inner sheath reinforcing body 30 enhances the bending rigidity of the proximal portion of the inner sheath main body 29. Therefore, the inner sheath 27 is difficult to bend even when it is exposed on the proximal side of the first housing 25.
  • the inner sheath reinforcing body 30 of the present embodiment is an annular body that covers the radial outer side of the inner sheath main body 29, but is not limited to this configuration.
  • the inner sheath reinforcing body 30 may be, for example, a wire rod embedded in the inner sheath main body 29.
  • the image sensor 21 is fixed to the distal portion of the shaft body 28.
  • the shaft body 28 extends inside the inner sheath 27. Further, the shaft body 28 is rotatable in the inner sheath 27.
  • the imaging catheter 1 by rotating the imaging sensor 21 together with the shaft body 28, it is possible to acquire biological structure information of biological tissue located outside the radial direction N in the entire circumferential direction M. Further, the shaft main body 28, together with the inner sheath 27, can move in the outer sheath main body 35 along the longitudinal direction L. Therefore, in the imaging catheter 1, the imaging sensor 21 moves along the longitudinal direction L together with the shaft body 28, so that the biological structure information of the biological tissue located outside the radial direction N over a predetermined range in the longitudinal direction L. Can be obtained.
  • the shaft body 28 transmits the rotational driving force acting from the drive unit 50 (see FIGS. 1 and 2) of the image processing device 3 to the image sensor 21.
  • the shaft main body 28 includes a flexible drive shaft portion 31 that penetrates the inner sheath 27, and a connecting pipe portion 32 that is fixed to a proximal portion of the drive shaft portion 31.
  • the distal end of the drive shaft portion 31 is fixed to the holder 21b.
  • the drive shaft portion 31 is composed of, for example, a multi-layer coil having different winding directions around the shaft.
  • the connecting pipe portion 32 is, for example, a metal annular body.
  • the proximal portion of the connecting pipe portion 32 is fixed to the rotor 33 that rotates inside the second housing 26.
  • a signal line 34 is passed through the inside of the drive shaft portion 31 and the connecting pipe portion 32.
  • the shaft 22 includes the above-mentioned inner sheath 27, even if the shaft main body 28 which is smaller than the inner diameter of the outer sheath main body 35 is used, the movement stability of the shaft main body 28 in the longitudinal direction L and the rotational stability in the circumferential direction M Can be maintained.
  • the distance from the imaging sensor 21 to the living tissue becomes long. In such a case, the living tissue can be accurately imaged by increasing the size of the image sensor 21.
  • the inner diameter of the outer sheath body 35 increases accordingly.
  • Increasing the outer diameter of the shaft body 28 accordingly is not desirable because the load on the proximal portion of the shaft body 28 and the required rotational driving force increase.
  • the outer diameter of the shaft body 28 is too smaller than that of the image sensor 21, a wide space is created between the inner peripheral surface of the outer sheath body 35 and the outer peripheral surface of the shaft body 28. This large space reduces the above-mentioned movement stability and rotational stability of the shaft body 28. Since the inner sheath 27 is arranged in this wide space, the above-mentioned movement stability and rotational stability of the shaft body 28 can be improved.
  • the outer sheath 23 is a long tube that is inserted into the lumen of the living body.
  • the outer sheath 23 includes an outer sheath body 35, a distal tube 36, and a connecting tube 37.
  • the distal tube 36 is a cylinder for partitioning the guide wire lumen 36a.
  • the guide wire 200 is inserted through the guide wire lumen 36a.
  • the imaging catheter 1 is a so-called "rapid exchange type" catheter in which a guide wire lumen 36a is provided only in the distal portion. Therefore, as in the present embodiment, it is possible to realize a configuration in which the distal end in the outer sheath main body 35 is closed.
  • the outer sheath body 35 houses the image sensor 21, the inner sheath 27, and the shaft body 28.
  • the image sensor 21, the inner sheath 27, and the shaft main body 28 in the outer sheath main body 35 can move along the central axis of the outer sheath main body 35. Further, the image sensor 21 and the shaft main body 28 in the outer sheath main body 35 are rotatable in the outer sheath main body 35.
  • the outer sheath body 35 is a tubular body whose proximal end is open and whose distal end is closed without opening. The proximal portion of the outer sheath body 35 is fixed to the first housing 25.
  • the connecting tube 37 is a tubular body that connects the distal tube 36 to the outer sheath body 35.
  • the distal portion of the connecting tube 37 surrounds the radial outside of the distal tube 36.
  • the proximal portion of the connecting tube 37 surrounds the radial outer side of the distal portion of the outer sheath body 35.
  • the central axis of the distal tube 36 and the central axis of the outer sheath body 35 do not coincide with each other, but extend substantially in parallel.
  • the proximal portion of the outer sheath 23 is liquid-tightly fixed.
  • the first housing 25 partitions the first hollow portion 25a that penetrates.
  • the first housing 25 is fixed to the outer sheath 23 so that one end of the first hollow portion 25a communicates liquid-tightly with the hollow portion of the outer sheath main body 35.
  • the inner sheath 27 and the shaft main body 28, which are led out from the outer sheath main body 35 to the proximal side, are inserted into the first hollow portion 25a.
  • the inner sheath 27 and the shaft body 28 project from the other end of the first hollow portion 25a.
  • first hollow portion 25a On the other end side of the first hollow portion 25a, a first seal interposed between an inner surface for partitioning the first hollow portion 25a and an outer peripheral surface of the inner sheath 27 inserted through the first hollow portion 25a.
  • the unit 38 is arranged.
  • the first sealing portion 38 is in slidable contact with the outer peripheral surface of the inner sheath 27 along the central axis of the inner sheath 27.
  • the first sealing portion 38 can be configured by, for example, an O-ring or the like.
  • the first housing 25 includes a tubular first port 39.
  • the hollow portion defined by the first port 39 communicates with the first hollow portion 25a.
  • a recovery pipe 59b (see FIG. 2 and the like) of a fluid supply unit 59, which will be described later, can be connected to the first port 39 of the present embodiment to discharge a fluid such as a physiological saline solution.
  • the second housing 26 is arranged on the proximal side of the first housing 25.
  • the proximal portion of the inner sheath 27 led out from the first housing 25 to the proximal side is liquid-tightly fixed.
  • the second housing 26 is movable so as to approach or separate from the first housing 25 along the central axis of the inner sheath 27.
  • the second housing 26 partitions the second hollow portion 26a that penetrates.
  • the second housing 26 is fixed to the inner sheath 27 so that one end of the second hollow portion 26a communicates liquid-tightly with the hollow portion of the inner sheath 27.
  • a shaft body 28 led out from the inner sheath 27 to the proximal side is inserted into the second hollow portion 26a.
  • On the other end side of the second hollow portion 26a a second seal interposed between the inner surface for partitioning the second hollow portion 26a and the outer peripheral surface of the shaft body 28 inserted through the second hollow portion 26a.
  • the unit 40 is arranged.
  • the second sealing portion 40 is slidably in contact with the outer peripheral surface of the connecting pipe portion 32 of the shaft main body 28 along the central axis of the shaft main body 28.
  • the second sealing portion 40 can be configured by, for example, an O-ring or the like.
  • the second housing 26 includes a tubular second port 41.
  • the hollow portion defined by the second port 41 communicates with the second hollow portion 26a.
  • a supply pipe 59a (see FIG. 2 and the like) of the fluid supply unit 59, which will be described later, can be connected to the second port 41 of the present embodiment to inject a fluid such as a physiological saline solution.
  • the joint 42 is fixed to the proximal side of the second housing 26.
  • a connector 43 and a rotor 33 are arranged inside the joint 42.
  • the connector 43 can be connected to the drive unit 50 (see FIGS. 1 and 2) of the image processing device 3.
  • the connector 43 is mechanically and electrically connected to the drive unit 50.
  • a signal line 34 passing through the inside of the connection pipe portion 32 is connected to the connector 43. Therefore, the connector 43 is connected to the image pickup sensor 21 via the signal line 34.
  • the connecting pipe portion 32 is fixed to the rotor 33.
  • the rotor 33 rotates integrally with the connector 43 inside the joint 42. As the rotor 33 rotates, the shaft body 28 fixed to the rotor 33 rotates.
  • the signal line 34 extends through the inside of the shaft body 28.
  • the signal line 34 transmits the signal transmitted from the rotor 33 to the image sensor 21. Further, the signal line 34 transmits the signal detected by the image pickup sensor 21 to the image processing device 3 via the rotor 33.
  • the image sensor 21 and the image processing device 3 of the present embodiment are electrically wiredly connected by a signal line 34, but the configuration is not limited to this, and a wireless connection may be used. Further, the signal line 34 of the present embodiment has a configuration for transmitting an electric signal, but is not limited to this configuration.
  • the signal line 34 is composed of, for example, an optical fiber that transmits an optical signal.
  • the constituent materials of the outer sheath body 35, the distal tube 36, the connecting tube 37, and the inner sheath body 29 are not particularly limited as long as they are flexible and have a certain degree of strength, but for example, a polyolefin such as polyethylene or polypropylene.
  • Polyester polyester such as polyethylene terephthalate, fluoropolymer such as PTFE (polytetrafluoroethylene), ETFE (ethylene / tetrafluoroethylene copolymer), PEEK (polyetheretherketone), polyimide and the like can be preferably used. ..
  • the constituent material of the inner sheath reinforcing body 30 is not particularly limited, but for example, stainless steel, polyimide, polyetheretherketone and the like can be preferably used.
  • the constituent materials of the first housing 25 and the second housing 26 are not particularly limited as long as they have a certain level of strength, but for example, polycarbonate, polyamide, polysulfone, polyarylate, methacrylate-butylene-styrene copolymer and the like are preferably used. it can.
  • the position sensor 24 can be configured by, for example, a magnetic sensor, but the configuration is not particularly limited.
  • the three position sensors 24 of this embodiment are fixed to the inner sheath 27. More specifically, the three position sensors 24 of the present embodiment are fixed to the distal portion of the inner sheath main body 29 of the inner sheath 27.
  • the second position sensor 24b and the third position sensor 24c of the present embodiment are arranged at positions facing each other in the central axis direction D of the shaft 22.
  • the central axis of the shaft 22 of the present embodiment means the central axis O1 of the inner sheath 27.
  • the central axis direction D of the shaft 22 of the present embodiment means a direction parallel to the central axis O1 of the inner sheath 27.
  • the second position sensor 24b and the third position sensor 24c of the present embodiment are arranged side by side in a row in the central axis direction D.
  • the "positions facing each other in the central axis direction D" are the second position sensor 24b and the third position projected when the second position sensor 24b and the third position sensor 24c are projected in the central axis direction D. It means a state in which at least a part of the shadow of the sensor 24c overlaps.
  • the above-mentioned first position sensor 24a and the second position sensor 24b are arranged at positions facing each other in the circumferential direction E of the shaft 22.
  • the circumferential direction E of the shaft 22 of the present embodiment means the circumferential direction around the central axis O1 of the inner sheath 27.
  • the first position sensor 24a and the second position sensor 24b of the present embodiment are arranged side by side in a row in the circumferential direction E.
  • the "positions facing each other in the circumferential direction E" means that there is at least one virtual plane that passes through both the first position sensor 24a and the second position sensor 24b and is orthogonal to the central axis direction D. ..
  • the three-dimensional coordinates of each point in a plurality of tomographic images can be easily specified. .. The details will be described later.
  • the configuration of the measuring device 2 is not limited as long as the position information of the position sensor 24 in the three-dimensional space can be specified.
  • the measuring device 2 can be configured by, for example, a receiver capable of receiving an electromagnetic wave transmitted from the position sensor 24.
  • the measuring device 2 transmits the measured position information of the position sensor 24 to the image processing device 3.
  • the image processing device 3 includes a drive unit 50, a pedestal 58, a fluid supply unit 59, and a control device 60.
  • the drive unit 50 has a built-in motor and is connected to the connector 43 of the joint 42 of the imaging catheter 1.
  • the rotational driving force of the driving unit 50 is transmitted to the shaft body 28 and the image sensor 21 via the connector 43 and the rotor 33.
  • the image sensor 21 can rotate in the circumferential direction M in the outer sheath main body 35 of the outer sheath 23.
  • the drive unit 50 is attached to the pedestal 58 so as to be slidable.
  • the imaging catheter 1 is connected to a drive unit 50 attached to the pedestal 58.
  • the drive unit 50 can move along the longitudinal direction L with respect to the pedestal 58. Therefore, the shaft 22 moves along the longitudinal direction L together with the drive unit 50.
  • the image sensor 21 attached to the distal side of the shaft 22 also follows the shaft 22 and moves in the outer sheath main body 35 of the outer sheath 23 along the longitudinal direction L.
  • the fluid supply unit 59 can be configured by, for example, a pump device.
  • the fluid supply unit 59 can circulate the fluid.
  • the fluid supply unit 59 includes a supply pipe 59a for supplying the fluid and a recovery pipe 59b for collecting the fluid.
  • the supply pipe 59a is connected to the second port 41 of the second housing 26.
  • the recovery pipe 59b is connected to the first port 39 of the first housing 25.
  • the pump mechanism of the fluid supply unit 59 is not particularly limited, and is, for example, a peristaltic pump, a centrifugal pump, a diaphragm pump, or the like.
  • a fluid such as a physiological saline solution is supplied to the second port 41 from the fluid supply unit 59 through the supply pipe 59a.
  • the fluid travels between the inner sheath 27 and the shaft body 28 to the distal portion of the outer sheath body 35.
  • the fluid then folds back and moves proximally through between the inner sheath 27 and the outer sheath 23. After that, the fluid is recovered to the fluid supply unit 59 through the first port 39 and the recovery pipe 59b.
  • the control device 60 of the present embodiment includes a display unit 51, an operation unit 52, a storage unit 53, a control unit 54, and an information input unit 55.
  • the display unit 51 displays and outputs the display information generated by the control unit 54.
  • the display unit 51 includes a display device such as a liquid crystal display or an organic EL display.
  • the operation unit 52 receives input of information or instructions by the operator.
  • the input information or input instruction received by the operation unit 52 is input to the information input unit 55.
  • the operation unit 52 includes an input device such as a keyboard, a mouse, or a touch panel.
  • the touch panel may be provided integrally with the display unit 51.
  • the storage unit 53 stores various information and programs for causing the control unit 54 to execute a specific function.
  • the storage unit 53 stores a tomographic image of the organ of the subject or the like generated by the control unit 54.
  • the storage unit 53 may store a three-dimensional image of the organ of the subject or the like generated by the control unit 54.
  • the storage unit 53 includes a memory such as a RAM or a ROM.
  • the information input unit 55 receives input of biological structure information such as organs acquired by the image sensor 21. Specifically, the information input unit 55 is electrically connected to the image pickup sensor 21 via a signal line 34 extending in the shaft body 28, and acquires an electric signal related to biological structure information acquired by the image pickup sensor 21. Then, the signal is transmitted to the control unit 54. The control unit 54 generates a plurality of tomographic images of biological tissues such as organs based on the acquired biological structure information.
  • the information input unit 55 receives the input of the position information of the three position sensors 24 measured by the two measuring devices 2. Specifically, the information input unit 55 is electrically connected to the two measuring devices 2, acquires an electric signal related to the position information of the position sensor 24 acquired by the measuring device 2, and transmits the signal to the control unit 54. Send.
  • the control unit 54 specifies the three-dimensional coordinates at each point of the plurality of tomographic images of the biological tissue based on the acquired position information and the above-mentioned biological structure information.
  • the information or instruction received by the operation unit 52 is input to the information input unit 55.
  • the received information or instruction is transmitted to the control unit 54.
  • the control unit 54 controls the operation of each component that constitutes the image processing device 3.
  • the control unit 54 executes a specific function by reading a specific program.
  • the control unit 54 is composed of processors such as a CPU (Central Processing Unit) and an MPU (Micro-Processing Unit), for example.
  • the control unit 54 may include a storage unit such as a RAM or a ROM in addition to or instead of the storage unit 53 described above.
  • the control unit 54 of the present embodiment includes a tomographic image generation unit 61, a coordinate identification unit 62, a three-dimensional construction unit 63, a thickness calculation unit 64, an identification processing unit 65, and a calorific value calculation unit 66.
  • the tomographic image generation unit 61 generates a plurality of tomographic images of biological tissues such as organs based on the biological structure information acquired from the imaging sensor 21.
  • the coordinate identification unit 62 specifies the three-dimensional coordinates of each point in a plurality of tomographic images of the biological tissue generated based on the biological structure information acquired from the imaging sensor 21 based on the positional information of the three position sensors 24. .. Specifically, the coordinate identification unit 62 of the present embodiment uses the three-dimensional coordinates of each point in the plurality of tomographic images generated by the tomographic image generation unit 61 as reference vectors obtained from the position information of the three position sensors 24. It can be specified by using it.
  • an example of specifying the three-dimensional coordinates of each point in a plurality of tomographic images using the reference vectors obtained from the position information of the three position sensors 24 will be described as an example.
  • the three position sensors 24 of the present embodiment include the first position sensor 24a, the second position sensor 24b, and the third position sensor 24c.
  • the second position sensor 24b and the third position sensor 24c are arranged so as to face the central axis direction D of the shaft 22.
  • the first position sensor 24a and the second position sensor 24b are arranged so as to face the circumferential direction E of the shaft 22.
  • the first position sensor 24a and the second position sensor 24b are arranged at positions deviated by a central angle of 180 ° in the circumferential direction E.
  • the first position sensor 24a and the second position sensor 24b are arranged at positions facing each other in the radial direction with the central axis of the shaft 22 interposed therebetween.
  • the position information of the first position sensor 24a measured by the two measuring devices 2 is "A”
  • the position information of the second position sensor 24b is "B”
  • the position information of the third position sensor 24c is "C”.
  • the vector BA is a reference vector orthogonal to the central axis direction D of the distal portion of the shaft 22.
  • the vector CB is a reference vector parallel to the central axis direction D of the distal portion of the shaft 22.
  • the unit vector in the local coordinates can be expressed as the following [Equation 3].
  • the vector il is a unit vector in the direction from the position of the second position sensor 24b to the position of the first position sensor 24a, and is obtained from the vector BA.
  • the vector kl is a unit vector in the direction from the position of the third position sensor 24c to the position of the second position sensor 24b, and is obtained from the vector CB.
  • the vector jl is a unit vector perpendicular to the above two vectors il and kl.
  • any point Pl in local coordinates with the tip of the imaging catheter 1 as the origin Ol can be expressed as in [Equation 5] below.
  • the point P can be expressed as the following [Equation 6] in the global coordinates of the origin O.
  • the point P in the global coordinates can be expressed as the following [Equation 7] by using the point Pl in the local coordinates. That is, by using the rotation matrix M, the point Pl of the local coordinates can be converted into the direction of the global coordinates. Also, the vectors from the origin O in the global coordinates to the origin Ol in the local coordinates are added together. By doing so, it is possible to specify the global coordinates of arbitrary points of local coordinates, that is, the three-dimensional coordinates, based on the position information of the first position sensor 24a, the second position sensor 24b, and the third position sensor 24c.
  • the second position sensor 24b and the third position sensor 24c are arranged so as to face the central axis direction D of the shaft 22, but the second position sensor 24b and the third position sensor 24c are arranged so as to face the central axis direction D. It suffices if they are arranged at different positions in the direction D, and may not be arranged at positions facing the central axis direction D.
  • a reference vector parallel to the central axis direction D is previously obtained from the relative positional relationship between the second position sensor 24b and the third position sensor 24c. You just have to get it.
  • the second position sensor 24b and the third position sensor 24c are arranged so as to face the central axis direction D of the shaft 22 as in the present embodiment, they are parallel to the central axis direction D in advance. It is not necessary to acquire the reference vector, and it becomes easy to specify the three-dimensional coordinates.
  • the first position sensor 24a and the second position sensor 24b are arranged so as to face the circumferential direction E of the shaft 22, but the first position sensor 24a and the second position sensor 24b are arranged in the circumferential direction. It suffices if they are arranged at different positions in the direction E, and may not be arranged at positions facing the circumferential direction E.
  • the reference vector orthogonal to the central axial direction D is acquired in advance from the relative positional relationship between the first position sensor 24a and the second position sensor 24b. You should keep it.
  • the reference is orthogonal to the central axial direction D in advance. It is not necessary to acquire the vector, and it becomes easy to specify the three-dimensional coordinates. Further, in the present embodiment, the first position sensor 24a and the second position sensor 24b are arranged at positions deviated by a central angle of 180 ° in the circumferential direction E, but they may be located at different positions in the circumferential direction E.
  • the relative positional relationship in the direction E is not particularly limited.
  • any point of the local coordinates can be used.
  • Global coordinates that is, three-dimensional coordinates can be specified.
  • a three-dimensional coordinate system is used.
  • the direction in which the image pickup sensor 21 is facing that is, the direction in which ultrasonic waves or light is being transmitted can be specified.
  • the three-dimensional coordinates of each point in a plurality of tomographic images of the living tissue can be specified by the direction in which the identified image pickup sensor 21 is facing and the distance from the image pickup sensor 21.
  • the coordinate identification unit 62 of the present embodiment can specify the three-dimensional coordinates of each point in the plurality of tomographic images of the living tissue based on the position information of the three position sensors 24.
  • the three-dimensional coordinates at each point of the plurality of tomographic images are stored in the storage unit 53 together with the biological structure information at the positions of the three-dimensional coordinates, for example.
  • the three-dimensional construction unit 63 provides the biological structure information obtained from the ultrasonic transducer as the imaging probe 21a and the three-dimensional coordinates of each point in a plurality of tomographic images of the biological tissue specified by the coordinate identification unit 62. Based on this, a three-dimensional image of living tissue is constructed. More specifically, the three-dimensional construction unit 63 of the present embodiment provides three-dimensional coordinates at each point of a plurality of tomographic images specified by the coordinate identification unit 62, and biological structure information at the position of the three-dimensional coordinates. Based on this, a three-dimensional image is constructed.
  • the control unit 54 can display the three-dimensional image generated by the three-dimensional construction unit 63 on the display unit 51.
  • the thickness calculation unit 64 calculates the thickness of the biological tissue in the direction perpendicular to the inner wall surface of the biological tissue based on the biological structure information obtained from the ultrasonic vibrator as the imaging probe 21a. Specifically, the thickness calculation unit 64 of the present embodiment is in a direction perpendicular to the inner wall surface of the biological tissue based on the three-dimensional coordinates of each point in a plurality of tomographic images of the biological tissue specified by the coordinate identification unit 62. Calculate the thickness of living tissue.
  • the thickness calculation unit 64 is, for example, based on a three-dimensional image constructed by the three-dimensional construction unit 63 based on the three-dimensional coordinates of each point in a plurality of tomographic images of the biological tissue specified by the coordinate identification unit 62.
  • the thickness of the living tissue in the direction perpendicular to the inner wall surface of the living tissue can be calculated.
  • the coordinate identification unit 62 specifies the three-dimensional coordinates of each point in the plurality of tomographic images of the living tissue, an accurate three-dimensional image can be generated. Therefore, the thickness of the living tissue in the direction perpendicular to the inner wall surface of the living tissue can also be accurately calculated by using the generated three-dimensional image.
  • the identification processing unit 65 performs a process for displaying the inner wall surface of the biological tissue on the three-dimensional image in an identifiable manner according to the thickness of the biological tissue, based on the thickness information of the biological tissue calculated by the thickness calculation unit 64. Execute. Examples of the process for displaying in an identifiable manner according to the thickness of the living tissue include a process for displaying and outputting the three-dimensional image by color-coding the inside of the three-dimensional image according to the thickness of the living tissue. However, the process is not particularly limited as long as it is a process for identifiable display according to the thickness of the living tissue, and any process may be used as long as the display information is different according to the thickness of the biological tissue.
  • the control unit 54 can display the identification information processed by the identification processing unit 65 on the display unit 51.
  • the calorific value calculation unit 66 calculates the amount of heat given to a predetermined location on the inner wall surface of the biological tissue based on the thickness information of the biological tissue calculated by the thickness calculation unit 64.
  • the imaging catheter 1 is used, for example, in a procedure for cauterizing a living tissue.
  • the heat amount calculation unit 66 of the present embodiment can calculate the amount of heat given to a predetermined portion of the inner wall surface of the living tissue based on the thickness information of the living tissue.
  • the control unit 54 can display the calculated amount of heat on the display unit 51. As a result, the medical staff can grasp an appropriate amount of heat supply according to the thickness of the living tissue.
  • the display unit 51 of the control device 60 can display the heat amount calculated by the heat amount calculation unit 66 on a predetermined position on the inner wall surface of the living tissue on the three-dimensional image constructed by the three-dimensional construction unit 63.
  • the control unit 54 of the control device 60 controls the display unit 51 so that the heat amount calculated by the heat amount calculation unit 66 is displayed on the three-dimensional image constructed by the three-dimensional construction unit 63. Can be done.
  • the medical staff can grasp the appropriate amount of heat supply according to the thickness of the living tissue and its position.
  • the control unit 54 of the present embodiment includes the tomographic image generation unit 61, the coordinate identification unit 62, the three-dimensional construction unit 63, the thickness calculation unit 64, the identification processing unit 65, and the calorific value calculation unit 66 described above. It is not limited to this configuration. It may have another part that performs other processing. Further, the control unit 54 may be configured not to include some parts such as a heat quantity calculation unit 66.
  • FIG. 9 is a diagram showing an example of a procedure performed by using the imaging catheter 1 of the present embodiment.
  • FIG. 10 is a flowchart showing an example of a method for generating a three-dimensional image executed by the imaging system 100, which is performed during the procedure shown in FIG.
  • the three-dimensional image generation method shown in FIG. 10 includes a step S1 of moving the shaft 22 of the imaging catheter 1 in the longitudinal direction L, a step S2 of receiving a signal by the image processing device 3, and a plurality of faults in the image processing device 3.
  • the process includes a step S3 of generating an image, a step S4 of specifying the three-dimensional coordinates of each point of a plurality of tomographic images, and a step S5 of reflecting information on the corresponding coordinates on the three-dimensional image.
  • These steps S1 to S5 are repeatedly executed while the shaft 22 of the imaging catheter 1 is being moved in the longitudinal direction L. Thereby, the three-dimensional coordinates of each point in the tomographic image at each position in the longitudinal direction L can be specified.
  • the flowchart shown in FIG. 10 means a method of generating a three-dimensional image in one-way movement of the longitudinal direction L.
  • FIG. 9 shows the imaging catheter 1 inserted into the right atrium RA of the heart.
  • an operator such as a medical worker inserts the imaging catheter 1 into the right atrium RA via the inferior vena cava IVC as a first blood vessel having a diameter smaller than that of the subject's right atrium RA. insert.
  • the operator inserts the blocken blow needle 80 as a medical device located in the right atrium RA into the right atrium RA via the inferior vena cava IVC through the guiding catheter 84.
  • the blocken blow needle 80 is used to open the left atrium LA from the right atrium RA through the fossa ovalis H that separates the right atrium RA and the left atrium LA.
  • the operator inserts the distal portion of the imaging catheter 1 into the superior vena cava SVC as a second blood vessel having a diameter smaller than that of the right atrium RA communicating with the right atrium RA.
  • the guide wire 200 can be inserted into the superior vena cava SVC, and then the distal portion of the imaging catheter 1 can be inserted into the superior vena cava SVC along the guide wire 200.
  • the vibration of the distal portion of the imaging catheter 1 is suppressed.
  • the imaging catheter 1 since the proximal side of the imaging catheter 1 is contained in the inferior vena cava IVC having a diameter smaller than that of the right atrium RA, the imaging catheter 1 has a superior vena cava SVC and an inferior vena cava having a diameter smaller than that of the right atrium RA. It extends over the IVC, and vibration and movement of the portion of the imaging catheter 1 located in the right atrium RA are suppressed.
  • the image sensor 21 moves in the longitudinal direction L while rotating in the circumferential direction M in the outer sheath main body 35 of the outer sheath 23 (corresponding to step S1 in FIG. 10).
  • the ultrasonic sensor as the imaging sensor 21 of the present embodiment transmits ultrasonic waves toward the outside in the radial direction N (see FIG. 4 and the like) orthogonal to the longitudinal direction L, and also to the inner wall surface of the right atriosphere RA and the like. Receive reflected ultrasonic waves.
  • the image sensor 21 can acquire the biological structure information of the biological tissue of the right atrium RA at each position within the predetermined range in the longitudinal direction L over the entire area in the circumferential direction M.
  • the image sensor 21 can acquire the position information of the blocken blow needle 80 as a medical instrument located in the right atrium RA, in addition to the biological structure information of the biological tissue of the right atrium RA. Then, the biological structure information acquired by the image sensor 21 and the position information of the blocken blow needle 80 as a medical device are transmitted to the information input unit 55 (FIG. 1) of the image processing device 3 via the signal line 34 (see FIG. 4 and the like). Etc.) (corresponding to step S2 in FIG. 10).
  • the tomographic image generation unit 61 (see FIG. 1) of the control unit 54 (see FIG. 1) is at each position within a predetermined range in the longitudinal direction L based on the information from the image sensor 21 input to the information input unit 55.
  • a tomographic image is generated (corresponding to step S3 in FIG. 10). Further, the tomographic image generation unit 61 can distinguish the biological tissue and the medical device such as the blocken blow needle 80 in the plurality of tomographic images by performing image processing of a plurality of tomographic images, for example.
  • the tomographic image generation unit 61 can distinguish the biological tissue and the medical device such as the blocken blow needle 80 in the plurality of tomographic images by performing image processing of a plurality of tomographic images, for example.
  • the two measuring devices 2 arranged outside the living body measure the position information in the three-dimensional space of the three position sensors 24 fixed to the inner sheath 27 of the shaft 22.
  • the position information measured by the measuring device 2 is input to the information input unit 55 of the image processing device 3 (corresponding to step S2 in FIG. 10).
  • the coordinate identification unit 62 (see FIG. 1) of the control unit 54 includes information from the image sensor 21 input to the information input unit 55 and position information of the position sensor 24 input to the information input unit 55 from the measuring device 2. Based on, three-dimensional coordinates for each point in the tomographic image at each position within a predetermined range in the longitudinal direction L are specified (corresponding to step S4 in FIG. 10).
  • the three-dimensional construction unit 63 (see FIG. 1) of the control unit 54 takes an image at the position of the three-dimensional coordinates specified by the coordinate identification unit 62 on the three-dimensional image generated or already generated. It reflects the biological structure information of the biological tissue or the position information of the medical device acquired from the sensor 21 (corresponding to step S5 in FIG. 10).
  • the right atrium RA of the heart is shown as an example of the lumen of the organ or the like, but the lumen of the organ or the like into which the imaging catheter 1 according to the present disclosure is inserted is not particularly limited, and for example, the heart. It may be the left atrium of the heart or the lumen of an organ other than the heart.
  • FIG. 11 is a diagram showing an imaging catheter 301 as a modification of the imaging catheter 1 described above. More specifically, FIG. 11 is a cross-sectional view of the distal portion of the imaging catheter 301.
  • the imaging catheter 301 shown in FIG. 11 is mainly different in shaft configuration from the imaging catheter 1 described above.
  • the shaft 322 of the imaging catheter 301 shown in FIG. 11 is composed of only a tubular shaft body 322a.
  • the image sensor 21 is fixed to the peripheral wall of the shaft body 322a.
  • a plurality of image pickup sensors 21 are arranged along the circumferential direction of the shaft main body 322a. Further, the plurality of image pickup sensors 21 are arranged over the entire circumferential direction with a predetermined interval in the circumferential direction of the shaft main body 322a. Therefore, in the imaging catheter 301 shown in FIG. 11, it is not necessary to rotate the shaft body 322a constituting the shaft 322 in order to acquire the biological structure information in the entire circumferential direction M. That is, if the shaft 322 and the plurality of imaging sensors 21 shown in FIG. 11 are used, it is not necessary to rotate the shaft 322 in order to acquire the biological structure information. Therefore, in such an imaging catheter 301, three position sensors 24 can be arranged on the shaft body 322a.
  • a signal line 34 is inserted inside the tubular shaft body 322a shown in FIG.
  • the configuration of the distal portion of the outer sheath 323 of the imaging catheter 301 shown in FIG. 11 has a position of the central axis of the guide wire lumen 336a as compared with the configuration of the distal portion of the outer sheath 23 of the imaging catheter 1 described above. It differs in that it substantially coincides with the position of the central axis of the outer sheath body 335.
  • the configuration of the outer sheath 323 may be the same as that of the outer sheath 23 described above.
  • This disclosure relates to an imaging system and an imaging catheter.
  • Imaging catheter 2 Measuring device 3: Image processing device 21: Imaging sensor 21a: Imaging probe 21b: Holder 22, 322: Shaft 23, 323: Outer sheath 24: Position sensor 24a: First position sensor 24b: Second position sensor 24c: Third position sensor 25: First housing 25a: First hollow portion 26: Second housing 26a: Second hollow portion 27: Inner sheath 28: Shaft body 29: Inner sheath body 30: Inner sheath reinforcement Body 31: Drive shaft part 32: Connection pipe part 33: Rotor 34: Signal line 35, 335: Outer sheath body 36: Distal tube 36a, 336a: Guide wire lumen 37: Connecting tube 38: First sealing part 39: 1st port 40: 2nd sealing unit 41: 2nd port 42: Joint 43: Connector 50: Drive unit 51: Display unit 52: Operation unit 53: Storage unit 54: Control unit 55: Information input unit 58: Pedestal 59 : Fluid supply unit 59a: Supply pipe 59b: Recovery pipe 60: Control device 61: Tomographic image generation

Abstract

本開示に係る撮像システムは、撮像カテーテルと、少なくとも2つの計測機器と、制御装置と、を備える。前記撮像カテーテルは、外シースと、撮像プローブを含む撮像センサと、シャフトと、3つの位置センサと、を備える。前記制御装置は、前記撮像センサから取得される生体構造情報に基づき生成される前記生体組織の複数の断層画像における各点の三次元座標を、前記少なくとも2つの計測機器が計測する前記3つの位置センサの位置情報に基づいて特定可能な座標特定部を備える。前記3つの位置センサは、前記シャフトの中心軸方向で互いに異なる位置に配置されている2つの位置センサと、前記2つの位置センサのいずれか一方の位置センサと前記シャフトの周方向で異なる位置に配置されている1つの位置センサと、からなる。

Description

撮像システム及び撮像カテーテル
 本開示は撮像システム及び撮像カテーテルに関する。
 従来から、超音波センサと位置センサとを組み合わせることで、生体組織を3Dマッピングする方法が知られている。特許文献1~4には、この種の方法が記載されている。また、特許文献1~4に記載の方法では、超音波センサを含むカテーテルを生体内に挿入し、生体組織の複数の断層画像を取得することが記載されている。
米国特許第7517318号明細書 米国特許第5876345号明細書 米国特許第6716166号明細書 米国特許第6773402号明細書
 しかしながら、特許文献1~4に記載される超音波センサを含むカテーテルでは、カテーテルの蛇行や曲がりがある場合に、組織構造情報としての生体組織の複数の断層画像に積層して三次元画像を生成しても、正確な三次元画像にならない。そのため、二次元画像である複数の断層画像における各点の三次元空間上での座標を正確に取得することが望まれている。
 本開示は、生体組織の複数の断層画像における各点の三次元空間上での座標を正確に取得可能な撮像システム及び撮像カテーテルを提供することを目的とする。
 本開示に係る撮像システムは、撮像カテーテルと、少なくとも2つの計測機器と、制御装置と、を備える撮像システムであって、前記撮像カテーテルは、長尺な外シースと、前記外シース内に配置され、生体内から生体組織を撮像する撮像プローブを含む撮像センサと、遠位部に前記撮像センサが固定されており、前記外シース内を前記外シースの長手方向に沿って移動可能なシャフトと、前記シャフトの前記遠位部で前記撮像センサの近傍に配置されている3つの位置センサと、を備え、前記少なくとも2つの計測機器は、前記3つの位置センサの位置情報を計測可能であり、前記制御装置は、前記撮像センサから取得される生体構造情報に基づき生成される前記生体組織の複数の断層画像における各点の三次元座標を、前記3つの位置センサの前記位置情報に基づいて特定可能な座標特定部を備え、前記撮像カテーテルの前記3つの位置センサは、前記シャフトの前記遠位部において、前記シャフトの中心軸方向で互いに異なる位置に配置されている2つの位置センサと、前記シャフトの前記遠位部において、前記2つの位置センサのいずれか一方の位置センサと前記シャフトの周方向で異なる位置に配置されている1つの位置センサと、からなる。
 本開示の1つの実施形態として、前記シャフトは、前記外シース内で前記長手方向に沿って延在する内シースと、遠位部に前記撮像センサが固定されており、前記内シース内に延在すると共に前記内シース内で回転可能なシャフト本体と、を備え、前記3つの位置センサは、前記内シースに保持されており、前記撮像センサは、前記撮像プローブを1つのみ含み、前記撮像カテーテルは、前記シャフト本体と共に前記撮像センサが回転することにより、前記生体構造情報を取得するように構成されている。
 本開示の1つの実施形態として、前記2つの位置センサのうち前記一方の位置センサと、前記1つの位置センサと、は前記シャフトの前記周方向において対向する位置に配置されている。
 本開示の1つの実施形態として、前記2つの位置センサは、前記シャフトの前記中心軸方向に対向する位置に配置されている。
 本開示の1つの実施形態として、前記撮像プローブは超音波振動子であり、前記制御装置は、前記超音波振動子から得られた前記生体構造情報及び前記座標特定部により特定された生体組織の複数の断層画像における各点の三次元座標に基づいて、前記生体組織の三次元画像を構築する三次元構築部と、前記座標特定部により特定された生体組織の複数の断層画像における各点の三次元座標に基づいて、前記生体組織の内壁面に垂直な方向における前記生体組織の厚みを算出する厚み算出部と、を備える。
 本開示の1つの実施形態として、前記制御装置は、前記厚み算出部で算出した前記生体組織の厚み情報に基づいて、前記三次元画像上における前記生体組織の前記内壁面を、前記生体組織の厚みに応じて識別可能に表示するための処理を実行する識別処理部を備える。
 本開示の1つの実施形態として、前記制御装置は、前記厚み算出部で算出した前記生体組織の厚み情報に基づいて、前記生体組織の前記内壁面の所定箇所に与える熱量を算出する熱量算出部を備える。
 本開示の1つの実施形態として、前記制御装置は、前記熱量算出部で算出された熱量を、前記三次元画像上における前記生体組織の前記内壁面の前記所定箇所上に表示する表示部を備える。
 本開示に係る撮像カテーテルは、長尺な外シースと、前記外シース内に配置され、生体管腔内から生体組織を撮像する撮像プローブを含む撮像センサと、遠位部に前記撮像センサが固定されており、前記外シース内を前記外シースの長手方向に沿って移動可能なシャフトと、前記シャフトの前記遠位部で前記撮像センサの近傍に配置されている3つの位置センサと、を備え、前記3つの位置センサは、前記シャフトの前記遠位部において、前記シャフトの中心軸方向で互いに異なる位置に配置されている2つの位置センサと、前記シャフトの前記遠位部において、前記2つの位置センサのいずれか一方の位置センサと前記シャフトの周方向で異なる位置に配置されている1つの位置センサと、からなる。
 本開示によれば、生体組織の複数の断層画像における各点の三次元空間上での座標を正確に取得可能な撮像システム及び撮像カテーテルを提供することができる。
本開示の一実施形態としての撮像システムの概略構成を示すブロック図である。 図1に示す撮像システムの概略図である。 図1に示す撮像カテーテルを示す図である。 図3に示す撮像カテーテルの遠位部及びその近傍を示す断面図である。 図3に示す撮像カテーテルの近位部及びその近傍を示す断面図である。 図3に示す撮像カテーテルであって、図4に示す状態よりもシャフトを近位側に移動させた状態での、図4と同じ位置での断面図である。 図3に示す撮像カテーテルであって、図5に示す状態よりもシャフトを近位側に移動させた状態での、図5と同じ位置での断面図である。 図8(a)は、シャフトの内シース単体の先端視を示す図である。図8(b)は、シャフトの内シース単体の遠位部の一側面視を示す図である。 図3に示す撮像カテーテルを用いて行う手技の一例を示す図である。 図1に示す撮像システムにおいて実行される三次元画像の生成方法の一例を示すフローチャートである。 図3示す撮像カテーテルの変形例を示す図である。
 以下、本開示に係る撮像システム及び撮像カテーテルの実施形態について図面を参照して例示説明する。各図において共通する部材・部位には同一の符号を付している。本明細書では、本開示に係る撮像カテーテルにおいて臓器、血管等の生体内に挿入される一端側を「遠位側」又は「先端側」と記載する。また、本開示に係る撮像カテーテルにおいて医療従事者により操作される他端側である手元側を「近位側」又は「基端側」と記載する。更に、本開示に係る撮像カテーテルの外シースの長手方向を単に「長手方向L」と記載する。本開示に係る撮像カテーテルの外シースの周方向を単に「周方向M」と記載する。本開示に係る撮像カテーテルの外シースの径方向を単に「径方向N」と記載する。
 図1は、本開示に係る撮像システムの一実施形態としての撮像システム100の概略構成を示すブロック図である。図1に示すように、撮像システム100は、本開示に係る撮像カテーテルの一実施形態としての撮像カテーテル1と、2つの計測機器2と、画像処理装置3と、を備える。画像処理装置3は、制御装置60を備える。図2は、撮像システム100の概略図である。図3は、撮像カテーテル1を示す図である。図4は、撮像カテーテル1の遠位部及びその近傍を示す断面図である。図5は、撮像カテーテル1の近位部及びその近傍を示す断面図である。図6は、図4に示す状態よりもシャフト22を近位側に移動(図6の太線矢印参照)させた状態での、図4と同じ位置での断面図である。図7は、図5に示す状態よりもシャフト22を近位側に移動(図7の太線矢印参照)させた状態での、図5と同じ位置での断面図である。図8(a)は、シャフト22の内シース27単体の先端視を示す図である。図8(b)は、シャフト22の内シース27単体の遠位部の一側面視(図4に示す内シース27の上面側を見た側面視)を示す図である。
 撮像システム100によれば、臓器、血管等の生体内の複数の断層画像を生成することができる。また、本実施形態の撮像システム100によれば、生成された複数の断層画像に基づき、臓器、血管等の三次元画像を生成することができる。医療従事者は、例えば手技中に、撮像システム100により生成される複数の断層画像及び三次元画像を確認することで、手技を円滑に進めることができる。
 図1~図8に示すように、撮像カテーテル1は、撮像センサ21と、シャフト22と、長尺な外シース23と、3つの位置センサ24と、を備える。
 撮像センサ21は、外シース23内に配置されている。また、撮像センサ21は、生体内から生体組織を撮像する撮像プローブ21aを含む。
 シャフト22は、外シース23内を外シース23の長手方向Lに沿って移動可能である。シャフト22の遠位部には、撮像センサ21が固定されている。詳細は後述するが、本実施形態のシャフト22は、内シース27と、シャフト本体28と、を備える。但し、シャフト22は、本実施形態の内シース27及びシャフト本体28を備える構成に限られない。
 3つの位置センサ24は、シャフト22の遠位部で撮像センサ21の近傍に配置されている。3つの位置センサ24は、後述する2つの計測機器2により三次元空間上での位置情報を特定可能に、構成されている。詳細は後述するが、本実施形態の3つの位置センサ24は、シャフト22の内シース27に保持されている。但し、3つの位置センサ24の保持位置は、シャフト22の具体的な構成に応じて適宜変更することができ、本実施形態の保持位置に限られない。
 図3に示すように、3つの位置センサ24は、シャフト22の遠位部において、シャフト22の中心軸方向Dで互いに異なる位置に配置されている2つの位置センサ24b及び24cを備える。
 また、図3に示すように、3つの位置センサ24は、シャフト22の遠位部において、上述の2つの位置センサ24b及び24cの少なくともいずれか一方の位置センサとシャフト22の周方向Eで異なる位置に配置されている1つの位置センサ24aを備える。「シャフト22の周方向E」とは、シャフト22の中心軸O1の周りの周方向を意味する。
 以下、説明の便宜上、本実施形態の位置センサ24aを「第1位置センサ24a」と記載し、本実施形態の位置センサ24bを「第2位置センサ24b」と記載し、本実施形態の位置センサ24cを「第3位置センサ24c」と記載する。また、第1位置センサ24a、第2位置センサ24b及び第3位置センサ24cを特に区別することなく呼ぶ場合は、単に「位置センサ24」と記載する。
 撮像カテーテル1は、上記位置関係にある3つの位置センサ24を含む構成であればよく、更に別の位置センサを含んでもよい。つまり、撮像カテーテル1は、上記位置関係にある少なくとも3つの位置センサ24を備える構成であれば、位置センサ24の総数は限定されず、4つ以上の位置センサ24を備えてもよい。
 詳細は後述するが、本実施形態の第2位置センサ24b及び第3位置センサ24cは、シャフト22の中心軸方向Dにおいて互いに対向する位置に配置されている(図8(b)参照)。また、詳細は後述するが、本実施形態では、第1位置センサ24aと、第2位置センサ24bと、がシャフト22の周方向Eにおいて互いに対向する位置に配置されている(図8(a)参照)。
 本実施形態の撮像システム100は、2つの計測機器2を備えるが、少なくとも2つの計測機器2を備えればよく、3つ以上の計測機器2を備えてもよい。2つの計測機器2は、3つの位置センサ24の位置情報を計測可能である。
 画像処理装置3は、上述したように制御装置60を備える。制御装置60は、撮像カテーテル1の撮像センサ21から生体構造情報を取得する。制御装置60は、生体構造情報に基づき生体組織の複数の断層画像を生成することができる。また、制御装置60は座標特定部62を備える。具体的な特定手法の例は後述するが、制御装置60の座標特定部62は、生成された生体組織の複数の断層画像における各点の三次元座標を、上述の位置関係にある3つの位置センサ24の位置情報に基づいて特定することができる。
 そのため、撮像システム100によれば、撮像カテーテル1により撮像される複数の断層画像の各点の三次元空間における三次元座標を特定することができる。そのため、撮像カテーテル1が生体内で生体組織に沿うことなく蛇行又は曲がっている場合であっても、撮像システム100の制御装置60は、生体組織の正確な三次元画像を生成することができる。
 また、複数の断層画像における各点の三次元空間上での座標が特定されれば、3Dマッピングで用いられている既存の装置においても座標データを共有することができ、既存の装置を利用して容易に三次元画像を表示するができ、医療従事者にとっての利便性を高めることができる。
 上述した本実施形態の撮像システム100は、制御装置60を含む画像処理装置3を備えるが、制御装置60を備える構成であればよく、画像処理装置3を含む構成に限定されない。
 以下、本実施形態の撮像システム100の詳細について説明する。
<撮像カテーテル1>
 本実施形態の撮像カテーテル1は、主として心腔または血管内に挿入されて心臓や血管の生体構造情報を取得する。具体的に、本実施形態の撮像カテーテル1は、シャフト22の後述するシャフト本体28と共に撮像センサ21が回転することにより、生体構造情報を取得するように構成されている。図3~図8に示すように、本実施形態の撮像カテーテル1は、上述した撮像センサ21、シャフト22、外シース23及び位置センサ24に加えて、第1ハウジング25と、第2ハウジング26と、信号線34と、ジョイント42と、を備える。
 本実施形態の撮像センサ21は超音波センサである。本実施形態では、撮像センサ21としての超音波センサが、撮像プローブ21aとしての超音波振動子を1つのみ備える。超音波振動子は、例えば圧電素子を含む。本実施形態の撮像プローブ21aとしての超音波振動子は、シャフト22の周方向Eの一部で、シャフト22の径方向外側に向かって超音波を送信する。したがって、本実施形態の撮像プローブ21aは、シャフト22の径方向外側に位置する生体組織に向けて超音波を送信する。また、本実施形態の撮像プローブ21aは、生体組織に反射された超音波を受信する。本実施形態の撮像センサ21は、撮像プローブ21aと、この撮像プローブ21aを保持すると共にシャフト22に固定される保持体21bと、を備える。シャフト22の中心軸方向Dと直交する断面における撮像センサ21の最大外径は、シャフト22の遠位部の最大外径よりも大きい。撮像センサ21の最大外径は、シャフト22の後述する内シース27の最大外径と同程度であるが、これに限定されない。
 本実施形態の撮像センサ21は超音波センサであるが、これに限定されない。画像処理装置3として、例えば光干渉断層診断装置(OCT: Optical Coherence Tomography)を用いる場合には、撮像センサ21は、この光干渉断層診断装置に適用可能な光を利用したセンサとすることができる。また、画像処理装置3として、例えば光学周波数領域画像化診断装置(OFDI: Optical Frequency Domain Imaging)を用いる場合には、撮像センサ21は、この光学周波数領域画像化診断装置に適用可能な光を利用したセンサとすることができる。この種の光を利用するセンサでは、心臓や血管の内壁面に向けて光を出射し、その反射光を検出する撮像プローブ21aが用いられる。
 本実施形態のシャフト22は、内シース27と、シャフト本体28と、を備える。
 内シース27は、外シース23の後述する外シース本体35に遠位側の一部が挿入される筒体である。内シース27は、外シース23内で、外シース23の中心軸に沿って延在している。より具体的に、内シース27は、外シース23の外シース本体35内で、外シース本体35の中心軸に沿って延在している。内シース27は、外シース23の外シース本体35の内部で、外シース本体35の中心軸に沿って移動可能である。内シース27は、シャフト本体28と共に回転しない。内シース27の近位部は、外シース本体35および第1ハウジング25から近位側に導出されて、第2ハウジング26に固定されている。
 より具体的に、本実施形態の内シース27は、内シース本体29と、内シース補強体30と、を備える。
 内シース本体29は、シャフト本体28を回転可能に収容している。内シース本体29の遠位部は、撮像センサ21の近位側に、撮像センサ21に近接して位置している。内シース補強体30は、内シース本体29の近位部の外周面を補強する環状体である。内シース補強体30により、内シース本体29の近位部の曲げ剛性が高められる。そのため、内シース27は、第1ハウジング25よりも近位側に露出した状態であっても曲がり難い。これにより、内シース27は、外シース23に対して、外シース23の中心軸に沿って安定して往復移動することができる。本実施形態の内シース補強体30は、内シース本体29の径方向外側を覆う環状体であるが、この構成に限られない。内シース補強体30は、例えば、内シース本体29に埋設される線材であってもよい。
 シャフト本体28は、遠位部に撮像センサ21が固定されている。シャフト本体28は、内シース27内を延在している。また、シャフト本体28は、内シース27内で回転可能である。撮像カテーテル1では、シャフト本体28と共に撮像センサ21が回転することにより、周方向Mの全域において、径方向Nの外側に位置する生体組織の生体構造情報を取得することができる。また、シャフト本体28は、内シース27と共に、外シース本体35内を長手方向Lに沿って移動可能である。そのため、撮像カテーテル1では、シャフト本体28と共に撮像センサ21が長手方向Lに沿って移動することにより、長手方向Lの所定範囲に亘って、径方向Nの外側に位置する生体組織の生体構造情報を取得することができる。
 シャフト本体28は、画像処理装置3の駆動部50(図1、図2参照)から作用する回転駆動力を撮像センサ21に伝達する。シャフト本体28は、内シース27を貫通する柔軟な駆動シャフト部31と、この駆動シャフト部31の近位部に固定される接続パイプ部32と、を備える。駆動シャフト部31の遠位端は、保持体21bに固定されている。駆動シャフト部31は、例えば、軸まわりの巻き方向が異なる多層のコイルによって構成される。接続パイプ部32は、例えば金属製の環状体である。接続パイプ部32の近位部は、第2ハウジング26の内部で回転するロータ33に固定されている。駆動シャフト部31及び接続パイプ部32の内部には、信号線34が通されている。
 シャフト22が上述の内シース27を備えることで、外シース本体35の内径に比べて細いシャフト本体28を用いても、シャフト本体28の長手方向Lの移動安定性及び周方向Mの回転安定性を維持することができる。例えば、撮像カテーテル1による生体組織の撮像が、心腔のような広い空間で行われる場合、撮像センサ21から生体組織までの距離が長くなる。このような場合には、撮像センサ21を大型化することで、生体組織を正確に撮像することができる。しかしながら、撮像センサ21が大型化すると、それに応じて、外シース本体35の内径が大きくなる。それに合わせて、シャフト本体28の外径を大きくすることは、シャフト本体28の近位部の負担、必要な回転駆動力が増加することなどから、望ましくない。しかしながら、シャフト本体28の外径が、撮像センサ21よりも小さ過ぎると、外シース本体35の内周面とシャフト本体28の外周面の間に、広い空間が生じる。この広い空間は、シャフト本体28の上述の移動安定性及び回転安定性を低下させる。内シース27は、この広い空間に配置されるため、シャフト本体28の上述の移動安定性及び回転安定性を高めることができる。
 外シース23は、生体管腔内に挿入される長尺な管体である。外シース23は、外シース本体35と、遠位チューブ36と、連結チューブ37と、を備えている。
 遠位チューブ36には、ガイドワイヤルーメン36aを区画する筒体である。ガイドワイヤルーメン36aには、ガイドワイヤ200が挿通される。撮像カテーテル1は、遠位部にのみガイドワイヤルーメン36aが設けられる所謂“ラピッドエクスチェンジ型”のカテーテルである。そのため、本実施形態のように、外シース本体35内の遠位端が閉鎖された構成を実現できる。
 外シース本体35は、撮像センサ21、内シース27およびシャフト本体28を収容している。外シース本体35内の撮像センサ21、内シース27およびシャフト本体28は、外シース本体35の中心軸に沿って移動可能である。さらに、外シース本体35内の撮像センサ21およびシャフト本体28は、外シース本体35内で回転可能である。外シース本体35は、近位端が開口し、遠位端が開口せずに閉鎖された筒体である。外シース本体35の近位部は、第1ハウジング25に固定されている。
 連結チューブ37は、遠位チューブ36を外シース本体35に対して連結する筒体である。連結チューブ37の遠位部は、遠位チューブ36の径方向外側を囲んでいる。連結チューブ37の近位部は、外シース本体35の遠位部の径方向外側を囲んでいる。本実施形態において、遠位チューブ36の中心軸と外シース本体35の中心軸とは、一致していないが、略平行に延在している。
 第1ハウジング25は、図3、図5、図7に示すように、外シース23の近位部が液密に固定されている。第1ハウジング25は、貫通する第1中空部25aを区画している。第1ハウジング25は、第1中空部25aの一端が外シース本体35の中空部と液密に連通するように、外シース23に固定されている。第1中空部25aには、外シース本体35から近位側へ導出されている内シース27およびシャフト本体28が挿通されている。内シース27およびシャフト本体28は、第1中空部25aの他端から突出している。第1中空部25aの他端側には、第1中空部25aを区画する内面と、第1中空部25aに挿通されている内シース27の外周面と、の間に介在する第1封止部38が配置されている。第1封止部38は、内シース27の外周面と、内シース27の中心軸に沿って摺動可能に接触している。第1封止部38は、例えば、Oリング等により構成可能である。また、第1ハウジング25は、筒状の第1ポート39を備える。第1ポート39が区画する中空部は、第1中空部25aに連通している。本実施形態の第1ポート39には、生理食塩液等の流体を排出する、後述する流体供給部59の回収管59b(図2等参照)が連結可能である。
 第2ハウジング26は、第1ハウジング25の近位側に配置される。第2ハウジング26は、第1ハウジング25から近位側へ導出される内シース27の近位部が、液密に固定されている。第2ハウジング26は、第1ハウジング25に対して、内シース27の中心軸に沿って近接又は離間するように移動可能である。
 第2ハウジング26は、貫通する第2中空部26aを区画している。第2ハウジング26は、第2中空部26aの一端が内シース27の中空部と液密に連通するように、内シース27に固定されている。第2中空部26aには、内シース27から近位側へ導出されているシャフト本体28が挿通されている。第2中空部26aの他端側には、第2中空部26aを区画する内面と、第2中空部26aに挿通されているシャフト本体28の外周面と、の間に介在する第2封止部40が配置されている。第2封止部40は、シャフト本体28の接続パイプ部32の外周面と、シャフト本体28の中心軸に沿って摺動可能に接触している。第2封止部40は、例えば、Oリング等により構成可能である。また、第2ハウジング26は、筒状の第2ポート41を備える。第2ポート41が区画する中空部は、第2中空部26aに連通している。本実施形態の第2ポート41には、生理食塩液等の流体を注入する、後述する流体供給部59の供給管59a(図2等参照)が連結可能である。
 ジョイント42は、第2ハウジング26の近位側に固定されている。ジョイント42の内部には、コネクタ43およびロータ33が配置される。コネクタ43は、画像処理装置3の駆動部50(図1、図2参照)と連結可能である。コネクタ43は、駆動部50と機械的および電気的に連結される。コネクタ43には、接続パイプ部32の内部を通る信号線34が接続されている。したがって、コネクタ43は、信号線34を介して、撮像センサ21に接続されている。
 ロータ33には、接続パイプ部32が固着されている。ロータ33は、ジョイント42の内部で、コネクタ43と一体的に回転する。ロータ33が回転することで、ロータ33に固定されているシャフト本体28が回転する。
 信号線34は、シャフト本体28の内部を貫通して延在している。信号線34は、ロータ33から伝わる信号を、撮像センサ21に伝達する。また、信号線34は、撮像センサ21で検出された信号を、ロータ33を介して、画像処理装置3に伝達する。本実施形態の撮像センサ21及び画像処理装置3は信号線34により電気的に有線接続されているがこの構成に限られず、無線接続される構成であってもよい。また、本実施形態の信号線34は、電気信号を伝達する構成であるが、この構成に限られない。撮像センサ21が光を利用したセンサの場合、信号線34は、例えば、光信号を伝達する光ファイバにより構成とされる。
 外シース本体35、遠位チューブ36、連結チューブ37および内シース本体29の構成材料は、可撓性を有し、ある程度の強度を有すれば特に限定されないが、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、ポリエチレンテレフタレートなどのポリエステル、PTFE(ポリテトラフルオロエチレン)、ETFE(エチレン・四フッ化エチレン共重合体)等のフッ素系ポリマー、PEEK(ポリエーテルエーテルケトン)、ポリイミド等が好適に使用できる。
 内シース補強体30の構成材料は、特に限定されないが、例えば、ステンレス鋼、ポリイミド、ポリエーテルエーテルケトン等が好適に使用できる。
 第1ハウジング25および第2ハウジング26の構成材料は、ある程度の強度を有すれば特に限定されないが、例えば、ポリカーボネート、ポリアミド、ポリサルホン、ポリアリレート、メタクリレート-ブチレン-スチレン共重合体等が好適に使用できる。
 位置センサ24は、例えば磁気センサにより構成可能であるが、その構成は特に限定されない。本実施形態の3つの位置センサ24は、内シース27に固定されている。より具体的に、本実施形態の3つの位置センサ24は、内シース27の内シース本体29の遠位部に固定されている。
 図8(b)に示すように、本実施形態の第2位置センサ24b及び第3位置センサ24cは、シャフト22の中心軸方向Dにおいて互いに対向する位置に配置されている。本実施形態のシャフト22の中心軸とは内シース27の中心軸O1を意味する。また、本実施形態のシャフト22の中心軸方向Dとは、内シース27の中心軸O1に平行な方向を意味する。換言すれば、本実施形態の第2位置センサ24b及び第3位置センサ24cは、中心軸方向Dに一列に並んで配置されている。ここで「中心軸方向Dにおいて互いに対向する位置」とは、第2位置センサ24b及び第3位置センサ24cを中心軸方向Dに投影した場合に、投影される第2位置センサ24b及び第3位置センサ24cの影の少なくとも一部が重なる状態を意味する。
 また、図8(a)に示すように、本実施形態では、上述した第1位置センサ24aと第2位置センサ24bと、がシャフト22の周方向Eにおいて互いに対向する位置に配置されている。本実施形態のシャフト22の周方向Eとは、内シース27の中心軸O1周りの周方向を意味する。換言すれば、本実施形態の第1位置センサ24a及び第2位置センサ24bは、周方向Eに一列に並んで配置されている。ここで「周方向Eにおいて互いに対向する位置」とは、第1位置センサ24a及び第2位置センサ24bの両方を通る、中心軸方向Dに直交する仮想平面が少なくとも1つ存在することを意味する。
 本実施形態のように配置される第1位置センサ24a、第2位置センサ24b及び第3位置センサ24cを備えることで、複数の断層画像における各点の三次元座標を容易に特定することができる。この詳細は後述する。
<計測機器2>
 計測機器2は、位置センサ24の三次元空間における位置情報を特定できればその構成は限定されない。計測機器2は、例えば、位置センサ24から発信される電磁波を受信可能なレシーバにより構成可能である。計測機器2は、計測した位置センサ24の位置情報を、画像処理装置3に送信する。
<画像処理装置3>
 図1、図2に示すように、画像処理装置3は、駆動部50と、台座58と、流体供給部59と、制御装置60と、を備える。
 駆動部50は、モータを内蔵し、撮像カテーテル1のジョイント42のコネクタ43に連結される。駆動部50の回転駆動力は、コネクタ43及びロータ33を介して、シャフト本体28及び撮像センサ21に伝達される。これにより、撮像センサ21は、外シース23の外シース本体35内で、周方向Mに回転することができる。
 また、図2に示すように、駆動部50は、台座58にスライド移動可能に取り付けられている。撮像カテーテル1は、台座58に取り付けられている駆動部50に接続されている。駆動部50は、台座58に対して長手方向Lに沿って移動可能である。よって、シャフト22は、駆動部50と共に、長手方向Lに沿って移動する。これにより、シャフト22の遠位側に取り付けられている撮像センサ21についても、シャフト22に追従して、外シース23の外シース本体35内を、長手方向Lに沿って移動する。
流体供給部59は、例えばポンプ装置により構成可能である。流体供給部59は、流体を循環させることができる。流体供給部59は、流体を供給する供給管59aと、流体を回収する回収管59bとを備えている。供給管59aは、第2ハウジング26の第2ポート41に接続される。回収管59bは、第1ハウジング25の第1ポート39に接続される。流体供給部59のポンプ機構は、特に限定されないが、例えば、蠕動ポンプ、遠心ポンプ、ダイアフラムポンプ等である。
 このようにすることで、外シース本体35内の遠位端が閉鎖されていても、容易にプライミングを行うことができる(図4~図7における一点鎖線矢印を参照)。具体的に、流体供給部59から供給管59aを通じて、生理食塩液等の流体を第2ポート41に供給する。流体は、内シース27とシャフト本体28との間を通じて、外シース本体35の遠位部まで移動する。次いで、流体は、内シース27と外シース23との間を通じて、近位側へと折り返し移動する。その後、流体は、第1ポート39及び回収管59bを通じて、流体供給部59へと回収される。
 本実施形態の制御装置60は、表示部51と、操作部52と、記憶部53と、制御部54と、情報入力部55と、を備える。
 表示部51は、制御部54により生成された表示情報を表示出力する。表示部51は、例えば液晶ディスプレイ又は有機ELディスプレイなどの表示デバイスを含む。
 操作部52は、操作者による情報又は指示の入力を受け付ける。操作部52で受け付けた入力情報又は入力指示は、情報入力部55に入力される。操作部52は、例えばキーボード、マウス、又はタッチパネルなどの入力デバイスを含む。操作部52がタッチパネルを含む場合、タッチパネルは表示部51と一体に設けられていてもよい。
 記憶部53は、制御部54に特定の機能を実行させるための種々の情報及びプログラムを記憶する。また、記憶部53は、制御部54により生成された被検者の臓器等の断層画像を記憶する。また、記憶部53は、制御部54により生成された被検者の臓器等の三次元画像を記憶してもよい。記憶部53は、例えばRAM又はROMなどのメモリを含む。
 情報入力部55は、撮像センサ21が取得する臓器等の生体構造情報の入力を受け付ける。具体的に、情報入力部55は、シャフト本体28内に延在する信号線34を介して撮像センサ21と電気的に接続されており、撮像センサ21が取得する生体構造情報に関する電気信号を取得し、当該信号を制御部54に送信する。制御部54は、取得した生体構造情報に基づいて、臓器等の生体組織の複数の断層画像を生成する。
 また、情報入力部55は、2つの計測機器2が計測する3つの位置センサ24の位置情報の入力を受け付ける。具体的に、情報入力部55は、2つの計測機器2と電気的に接続されており、計測機器2が取得する位置センサ24の位置情報に関する電気信号を取得し、当該信号を制御部54に送信する。制御部54は、取得した位置情報と、上述の生体構造情報とに基づき、生体組織の複数の断層画像の各点における三次元座標を特定する。
 また、上述したように、情報入力部55には、操作部52で受け付けた情報又は指示が入力される。受け付けた情報又は指示は、制御部54に送信される。
 制御部54は、画像処理装置3を構成する各構成部の動作を制御する。制御部54は、特定のプログラムを読み込むことにより特定の機能を実行する。制御部54は、例えばCPU(Central Processing Unit)、MPU(Micro-Processing Unit)等のプロセッサから構成される。制御部54は、上述した記憶部53に加えて又は代わりに、RAM又はROMなどの記憶部を含んでもよい。
 本実施形態の制御部54は、断層画像生成部61と、座標特定部62と、三次元構築部63と、厚み算出部64と、識別処理部65と、熱量算出部66と、を備える。
 断層画像生成部61は、撮像センサ21から取得される生体構造情報に基づき、臓器等の生体組織の複数の断層画像を生成する。
 座標特定部62は、撮像センサ21から取得される生体構造情報に基づき生成された生体組織の複数の断層画像における各点の三次元座標を、3つの位置センサ24の位置情報に基づいて特定する。具体的に、本実施形態の座標特定部62は、断層画像生成部61により生成された複数の断層画像における各点の三次元座標を、3つの位置センサ24の位置情報から得られる基準ベクトルを利用して特定することができる。以下、3つの位置センサ24の位置情報から得られる基準ベクトルを用いて複数の断層画像における各点の三次元座標を特定する一例について例示説明する。
 上述したように、本実施形態の3つの位置センサ24は、第1位置センサ24a、第2位置センサ24b及び第3位置センサ24cからなる。本実施形態において、第2位置センサ24b及び第3位置センサ24cは、シャフト22の中心軸方向Dに対向して配置されている。また、本実施形態において、第1位置センサ24a及び第2位置センサ24bは、シャフト22の周方向Eに対向して配置されている。更に、本実施形態において、第1位置センサ24a及び第2位置センサ24bは、周方向Eに中心角180°ずれた位置に配置されている。換言すれば、第1位置センサ24a及び第2位置センサ24bは、シャフト22の中心軸を挟んで径方向で対向する位置に配置されている。2つの計測機器2により計測される第1位置センサ24aの位置情報を「A」、第2位置センサ24bの位置情報を「B」、及び、第3位置センサ24cの位置情報を「C」とし、以下の[数1]のように表す。
Figure JPOXMLDOC01-appb-M000001
 これにより以下の[数2]のような2つの基準ベクトルを設定することができる。ベクトルBAは、シャフト22の遠位部の中心軸方向Dに直交する基準ベクトルである。ベクトルCBは、シャフト22の遠位部の中心軸方向Dに平行な基準ベクトルである。
Figure JPOXMLDOC01-appb-M000002
 次に、撮像カテーテル1の先端をローカル座標の原点Olとした場合に、このローカル座標における単位ベクトルは以下の[数3]のように表すことができる。ベクトルilは、第2位置センサ24bの位置から第1位置センサ24aの位置に向かう方向の単位ベクトルであり、ベクトルBAから求められる。ベクトルklは、第3位置センサ24cの位置から第2位置センサ24bの位置に向かう方向の単位ベクトルであり、ベクトルCBから求められる。ベクトルjlは、上述の2つのベクトルil及びklに垂直な単位ベクトルである。
Figure JPOXMLDOC01-appb-M000003
 上述の情報を用いて以下の[数4]に示す回転行列を得ることができる。
Figure JPOXMLDOC01-appb-M000004
 これを用いて撮像カテーテル1の先端を原点Olとしたローカル座標の任意の点Plは以下の[数5]のように表すことができる。
Figure JPOXMLDOC01-appb-M000005
 また、原点Oのグローバル座標において点Pは以下の[数6]のように表すことができる。
Figure JPOXMLDOC01-appb-M000006
 したがって、グローバル座標の点Pは、ローカル座標の点Plを用いて、以下の[数7]のように表すことができる。つまり、回転行列Mを用いることでローカル座標の点Plをグローバル座標の向きに変換することができる。また、グローバル座標の原点Oからのローカル座標の原点Olまでのベクトルを足し合わせる。このようにすることで、第1位置センサ24a、第2位置センサ24b及び第3位置センサ24cの位置情報に基づき、ローカル座標の任意点のグローバル座標、すなわち三次元座標を特定することができる。
Figure JPOXMLDOC01-appb-M000007
 本実施形態において、第2位置センサ24b及び第3位置センサ24cは、シャフト22の中心軸方向Dに対向して配置されているが、第2位置センサ24b及び第3位置センサ24cは、中心軸方向Dにおいて異なる位置に配置されていればよく、中心軸方向Dに対向する位置に配置されていなくてよい。第2位置センサ24b及び第3位置センサ24cが中心軸方向Dに対向しない場合、第2位置センサ24b及び第3位置センサ24cの相対的な位置関係から予め中心軸方向Dに平行な基準ベクトルを取得しておけばよい。但し、本実施形態のように、第2位置センサ24b及び第3位置センサ24cが、シャフト22の中心軸方向Dに対向して配置されている構成とすれば、予め中心軸方向Dと平行な基準ベクトルを取得しなくてよく、三次元座標の特定が容易になる。
 また、本実施形態において、第1位置センサ24a及び第2位置センサ24bは、シャフト22の周方向Eに対向して配置されているが、第1位置センサ24a及び第2位置センサ24bは、周方向Eにおいて異なる位置に配置されていればよく、周方向Eに対向する位置に配置されていなくてよい。第1位置センサ24a及び第2位置センサ24bが周方向Eに対向しない場合、第1位置センサ24a及び第2位置センサ24bの相対的な位置関係から予め中心軸方向Dと直交する基準ベクトルを取得しておけばよい。但し、本実施形態のように、第1位置センサ24a及び第2位置センサ24bが、シャフト22の周方向Eに対向して配置されている構成とすれば、予め中心軸方向Dと直交する基準ベクトルを取得しなくてよく、三次元座標の特定が容易になる。また、本実施形態において、第1位置センサ24a及び第2位置センサ24bは、周方向Eに中心角180°ずれた位置に配置されているが、周方向Eの異なる位置であればよく、周方向Eにおける相対的な位置関係は特に限定されない。
 このように、シャフト22の遠位部の中心軸方向Dに平行な基準ベクトルと、シャフト22の遠位部の中心軸方向Dに直交する基準ベクトルと、を用いることで、ローカル座標の任意点のグローバル座標、すなわち三次元座標を特定することができる。
 より具体的に、シャフト22の遠位部の中心軸方向Dに平行な基準ベクトルと、シャフト22の遠位部の中心軸方向Dに直交する基準ベクトルと、を用いることで、三次元座標系における撮像センサ21が向いている向き、すなわち超音波あるいは光を送信している向きを特定できる。そして、この特定された撮像センサ21が向いている向きと、撮像センサ21からの距離によって、生体組織の複数の断層画像における各点の三次元座標を特定できる。
 以上のように、本実施形態の座標特定部62は、生体組織の複数の断層画像における各点の三次元座標を、3つの位置センサ24の位置情報に基づいて特定することができる。複数の断層画像の各点における三次元座標は、例えば、その三次元座標の位置における生体構造情報と共に記憶部53に記憶される。
 三次元構築部63は、撮像プローブ21aとしての超音波振動子から得られた生体構造情報、及び、座標特定部62により特定された生体組織の複数の断層画像における各点の三次元座標、に基づいて、生体組織の三次元画像を構築する。より具体的に、本実施形態の三次元構築部63は、座標特定部62により特定された複数の断層画像の各点における三次元座標と、その三次元座標の位置における生体構造情報と、に基づき、三次元画像を構築する。制御部54は、三次元構築部63により生成された三次元画像を、表示部51に表示させることができる。
 厚み算出部64は、撮像プローブ21aとしての超音波振動子から得られた生体構造情報に基づいて、生体組織の内壁面に垂直な方向における生体組織の厚みを算出する。具体的に、本実施形態の厚み算出部64は、座標特定部62により特定された生体組織の複数の断層画像における各点の三次元座標に基づいて、生体組織の内壁面に垂直な方向における生体組織の厚みを算出する。厚み算出部64は、例えば、座標特定部62により特定された生体組織の複数の断層画像における各点の三次元座標に基づき三次元構築部63により構築される三次元画像に基づいて、生体組織の内壁面に垂直な方向における生体組織の厚みを算出することができる。本実施形態では、座標特定部62が生体組織の複数の断層画像における各点の三次元座標を特定するため、正確な三次元画像を生成できる。そのため、生体組織の内壁面に垂直な方向における生体組織の厚みについても、生成された三次元画像を利用することで、正確に算出することができる。
 識別処理部65は、厚み算出部64で算出した生体組織の厚み情報に基づいて、三次元画像上における生体組織の内壁面を、生体組織の厚みに応じて識別可能に表示するための処理を実行する。生体組織の厚みに応じて識別可能に表示するための処理とは、例えば、生体組織の厚みに応じて三次元画像内を色分けして表示部51に表示出力するための処理が挙げられる。但し、生体組織の厚みに応じて識別可能に表示するための処理であれば特に限定されず、生体組織の厚みに応じて表示情報を異ならせる処理であればよい。制御部54は、識別処理部65が処理した識別情報を、表示部51に表示させることができる。
 熱量算出部66は、厚み算出部64で算出した生体組織の厚み情報に基づいて、生体組織の内壁面の所定箇所に与える熱量を算出する。撮像カテーテル1は、例えば、生体組織を焼灼する手技において利用される。生体組織の内壁面の所定箇所を焼灼する際に、その所定箇所の生体組織の厚みに応じて、焼灼の際に与える熱量を異ならせる。本実施形態の熱量算出部66は、このような手技において、生体組織の内壁面の所定箇所に与える熱量を、生体組織の厚み情報に基づいて算出することができる。また、制御部54は、算出された熱量を、表示部51に表示させることができる。これにより、医療従事者は、生体組織の厚みに応じた適切な供給熱量を把握することができる。
 制御装置60の表示部51は、熱量算出部66で算出された熱量を、三次元構築部63により構築された三次元画像上における生体組織の内壁面の所定箇所上に表示することができる。換言すれば、制御装置60の制御部54は、熱量算出部66で算出された熱量を、三次元構築部63により構築された三次元画像上に表示させるように、表示部51を制御することができる。これにより、医療従事者は、生体組織の厚み及びその位置に応じた適切な供給熱量を把握することができる。
 本実施形態の制御部54は、上述した断層画像生成部61、座標特定部62、三次元構築部63、厚み算出部64、識別処理部65及び熱量算出部66を備えるが、制御部54はこの構成に限定されない。他の処理を実行する別の部位を有してもよい。また、制御部54は、例えば熱量算出部66など、一部の部位を備えない構成であってもよい。
 最後に、図9、図10を参照して、本実施形態の撮像システム100により実行される三次元画像の生成方法について説明する。図9は、本実施形態の撮像カテーテル1を用いて行う手技の一例を示す図である。図10は、図9に示す手技中により行われる、撮像システム100により実行される三次元画像の生成方法の一例を示すフローチャートである。
 図10に示す三次元画像の生成方法は、撮像カテーテル1のシャフト22を長手方向Lに移動させる工程S1と、画像処理装置3が信号を受信する工程S2と、画像処理装置3が複数の断層画像を生成する工程S3と、複数の断層画像の各点の三次元座標を特定する工程S4と、三次元画像上の対応する座標に情報を反映する工程S5と、を含む。この工程S1~S5を、撮像カテーテル1のシャフト22を長手方向Lに移動している間、繰り返し実行する。これにより、長手方向Lの各位置での断層画像における各点の三次元座標を特定できる。そして、撮像カテーテル1のシャフト22の長手方向Lの移動が停止した場合に、三次元画像は完成する。詳細は後述するが、図9に示す手技では、撮像カテーテル1のシャフト22を長手方向Lに往復させることで、長手方向Lの各位置での断層画像を更新し続ける。かかる場合においては、図10に示すフローチャートは、長手方向Lの一方向の移動における三次元画像の生成方法を意味している。
 図9では、心臓の右心房RA内に挿通されている撮像カテーテル1を示している。図9に示すように、医療従事者等の操作者は、撮像カテーテル1を、被検者の右心房RAよりも径の小さい第1の血管としての下大静脈IVCを経て右心房RA内に挿入する。このとき、操作者は、右心房RA内に位置する医療器具としてのブロッケンブロー針80を、下大静脈IVCを経て右心房RA内に、ガイディングカテーテル84を通じて挿入する。ブロッケンブロー針80は、右心房RAと左心房LAとを隔離する卵円窩Hを貫通して右心房RAから左心房LAを開通させるために用いられる。
 図9に示すように、操作者は、撮像カテーテル1の遠位部を、右心房RAから連通する右心房RAよりも径の小さい第2の血管としての上大静脈SVCに挿入する。具体的には、まず、ガイドワイヤ200を上大静脈SVCに挿入し、次にガイドワイヤ200に沿って撮像カテーテル1の遠位部を上大静脈SVCに挿入することができる。これにより、撮像カテーテル1の遠位部の振動が抑制される。更に、撮像カテーテル1の近位側は、右心房RAよりも径の小さい下大静脈IVCに入っているため、撮像カテーテル1は、右心房RAよりも径の小さい上大静脈SVCと下大静脈IVCとに亘って延在することとなり、撮像カテーテル1の右心房RA内に位置する部分の振動及び移動が抑制される。
 撮像センサ21は、外シース23の外シース本体35内で、周方向Mに回転しながら長手方向Lに移動する(図10の工程S1に該当)。その間、本実施形態の撮像センサ21としての超音波センサは、長手方向Lに直交する径方向N(図4等参照)外側に向かって超音波を送信すると共に、右心房RAの内壁面等に反射した超音波を受信する。これにより、撮像センサ21は、右心房RAの生体組織の生体構造情報を、長手方向Lの所定範囲内の各位置で、周方向Mの全域に亘って取得することができる。更に、撮像センサ21は、右心房RAの生体組織の生体構造情報に加えて、右心房RA内に位置する医療器具としてのブロッケンブロー針80の位置情報を取得できる。そして、撮像センサ21が取得した生体構造情報及び医療器具としてのブロッケンブロー針80の位置情報は、信号線34(図4等参照)を介して、画像処理装置3の情報入力部55(図1等参照)に入力される(図10の工程S2に該当)。制御部54(図1参照)の断層画像生成部61(図1参照)は、情報入力部55に入力された撮像センサ21からの情報に基づき、長手方向Lの所定範囲内の各位置での断層画像を生成する(図10の工程S3に該当)。また、断層画像生成部61は、例えば複数の断層画像の画像処理を行うことで、複数の断層画像における生体組織及びブロッケンブロー針80等の医療器具を識別可能に抽出する。複数の断層画像を生成する際に、被検者の心臓の拍動周期、及び、被検者の呼吸周期、を考慮して複数の断層画像を生成することが好ましい。このようにすることで、より精度の高い複数の断層画像を生成することができる。
 また、生体外に配置されている2つの計測機器2は、シャフト22の内シース27に固定されている3つの位置センサ24の三次元空間での位置情報を計測する。計測機器2が計測した位置情報は、画像処理装置3の情報入力部55に入力される(図10の工程S2に該当)。制御部54の座標特定部62(図1参照)は、情報入力部55に入力された撮像センサ21からの情報と、計測機器2から情報入力部55に入力された位置センサ24の位置情報と、に基づき、長手方向Lの所定範囲内の各位置での断層画像における各点についての三次元座標を特定する(図10の工程S4に該当)。
 次に、制御部54の三次元構築部63(図1参照)は、これから生成する又は既に生成されている三次元画像上の、座標特定部62により特定された三次元座標の位置に、撮像センサ21から取得された、生体組織の生体構造情報又は医療器具の位置情報、を反映する(図10の工程S5に該当)。
 撮像カテーテル1のシャフト22を長手方向Lの一方向に移動させている間、上記工程S1~S5を繰り返す。このように複数の断層画像の各点の三次元座標を特定することで、図9に示すように撮像カテーテル1の右心房RA内に位置する部分が湾曲していたとしても、右心房RAの正確な三次元画像を取得することができる。
 また、図9では、臓器等の内腔の一例として心臓の右心房RAを示したが、本開示に係る撮像カテーテル1が挿入される臓器等の内腔は、特に限定されず、例えば、心臓の左心房であってもよく、心臓以外の臓器の内腔であってもよい。
 本開示に係る撮像システム及び撮像カテーテルは、上述した実施形態で示す具体的な構成及び方法に限られず、請求の範囲の記載を逸脱しない限り、種々の変形・変更が可能である。図11は、上述した撮像カテーテル1の変形例としての撮像カテーテル301を示す図である。より具体的に、図11は、撮像カテーテル301の遠位部の断面図である。図11に示す撮像カテーテル301は、上述した撮像カテーテル1と比較して、主にシャフトの構成が相違している。図11に示す撮像カテーテル301のシャフト322は、管状のシャフト本体322aのみから構成されている。撮像センサ21は、シャフト本体322aの周壁に固定されている。撮像センサ21は、シャフト本体322aの周方向に沿って複数配置されている。また、複数の撮像センサ21は、シャフト本体322aの周方向に所定間隔を隔てて、周方向全域に亘って配置されている。そのため、図11に示す撮像カテーテル301では、周方向M全域の生体構造情報を取得するために、シャフト322を構成するシャフト本体322aを回転させなくてよい。つまり、図11に示すシャフト322及び複数の撮像センサ21を用いれば、生体構造情報を取得するためにシャフト322を回転させなくてよい。そのため、このような撮像カテーテル301においては、3つの位置センサ24を、シャフト本体322aに配置することができる。図11に示す管状のシャフト本体322aの内部には、信号線34が挿通されている。図11に示す撮像カテーテル301の外シース323の遠位部の構成は、上述した撮像カテーテル1の外シース23の遠位部の構成と比較して、ガイドワイヤルーメン336aの中心軸線の位置が、外シース本体335の中心軸線の位置と、略一致している点で相違する。しかしながら、外シース323の構成は、上述した外シース23と同様であってもよい。
 本開示は撮像システム及び撮像カテーテルに関する。
1、301:撮像カテーテル
2:計測機器
3:画像処理装置
21:撮像センサ
21a:撮像プローブ
21b:保持体
22、322:シャフト
23、323:外シース
24:位置センサ
24a:第1位置センサ
24b:第2位置センサ
24c:第3位置センサ
25:第1ハウジング
25a:第1中空部
26:第2ハウジング
26a:第2中空部
27:内シース
28:シャフト本体
29:内シース本体
30:内シース補強体
31:駆動シャフト部
32:接続パイプ部
33:ロータ
34:信号線
35、335:外シース本体
36:遠位チューブ
36a、336a:ガイドワイヤルーメン
37:連結チューブ
38:第1封止部
39:第1ポート
40:第2封止部
41:第2ポート
42:ジョイント
43:コネクタ
50:駆動部
51:表示部
52:操作部
53:記憶部
54:制御部
55:情報入力部
58:台座
59:流体供給部
59a:供給管
59b:回収管
60:制御装置
61:断層画像生成部
62:座標特定部
63:三次元構築部
64:厚み算出部
65:識別処理部
66:熱量算出部
80:ブロッケンブロー針
84:ガイディングカテーテル
100:撮像システム
200:ガイドワイヤ
322a:シャフト本体
L:長手方向
M:周方向
N:径方向
D:シャフトの中心軸方向
E:シャフトの周方向
H:卵円窩
O1:シャフトの中心軸
LA:左心房
RA:右心房
IVC:下大静脈
SVC:上大静脈

Claims (9)

  1.  撮像カテーテルと、少なくとも2つの計測機器と、制御装置と、を備える撮像システムであって、
     前記撮像カテーテルは、
      長尺な外シースと、
      前記外シース内に配置され、生体内から生体組織を撮像する撮像プローブを含む撮像センサと、
      遠位部に前記撮像センサが固定されており、前記外シース内を前記外シースの長手方向に沿って移動可能なシャフトと、
      前記シャフトの前記遠位部で前記撮像センサの近傍に配置されている3つの位置センサと、を備え、
     前記少なくとも2つの計測機器は、前記3つの位置センサの位置情報を計測可能であり、
     前記制御装置は、前記撮像センサから取得される生体構造情報に基づき生成される前記生体組織の複数の断層画像における各点の三次元座標を、前記3つの位置センサの前記位置情報に基づいて特定可能な座標特定部を備え、
     前記撮像カテーテルの前記3つの位置センサは、
      前記シャフトの前記遠位部において、前記シャフトの中心軸方向で互いに異なる位置に配置されている2つの位置センサと、
      前記シャフトの前記遠位部において、前記2つの位置センサのいずれか一方の位置センサと前記シャフトの周方向で異なる位置に配置されている1つの位置センサと、からなる、撮像システム。
  2.  前記シャフトは、
      前記外シース内で前記長手方向に沿って延在する内シースと、
      遠位部に前記撮像センサが固定されており、前記内シース内に延在すると共に前記内シース内で回転可能なシャフト本体と、を備え、
     前記3つの位置センサは、前記内シースに保持されており、
     前記撮像センサは、前記撮像プローブを1つのみ含み、
     前記撮像カテーテルは、前記シャフト本体と共に前記撮像センサが回転することにより、前記生体構造情報を取得するように構成されている、請求項1に記載の撮像システム。
  3.  前記2つの位置センサのうち前記一方の位置センサと、前記1つの位置センサと、は前記シャフトの前記周方向において対向する位置に配置されている、請求項1又は2に記載の撮像システム。
  4.  前記2つの位置センサは、前記シャフトの前記中心軸方向に対向する位置に配置されている、請求項1から3のいずれか1つに記載の撮像システム。
  5.  前記撮像プローブは超音波振動子であり、
     前記制御装置は、
      前記超音波振動子から得られた前記生体構造情報及び前記座標特定部により特定された生体組織の複数の断層画像における各点の三次元座標に基づいて、前記生体組織の三次元画像を構築する三次元構築部と、
      前記座標特定部により特定された生体組織の複数の断層画像における各点の三次元座標に基づいて、前記生体組織の内壁面に垂直な方向における前記生体組織の厚みを算出する厚み算出部と、を備える、請求項1から4のいずれか1つに記載の撮像システム。
  6.  前記制御装置は、前記厚み算出部で算出した前記生体組織の厚み情報に基づいて、前記三次元画像上における前記生体組織の前記内壁面を、前記生体組織の厚みに応じて識別可能に表示するための処理を実行する識別処理部を備える、請求項5に記載の撮像システム。
  7.  前記制御装置は、前記厚み算出部で算出した前記生体組織の厚み情報に基づいて、前記生体組織の前記内壁面の所定箇所に与える熱量を算出する熱量算出部を備える、請求項5又は6に記載の撮像システム。
  8.  前記制御装置は、前記熱量算出部で算出された熱量を、前記三次元画像上における前記生体組織の前記内壁面の前記所定箇所上に表示する表示部を備える、請求項7に記載の撮像システム。
  9.  長尺な外シースと、
     前記外シース内に配置され、生体管腔内から生体組織を撮像する撮像プローブを含む撮像センサと、
     遠位部に前記撮像センサが固定されており、前記外シース内を前記外シースの長手方向に沿って移動可能なシャフトと、
     前記シャフトの前記遠位部で前記撮像センサの近傍に配置されている3つの位置センサと、を備え、
     前記3つの位置センサは、
      前記シャフトの前記遠位部において、前記シャフトの中心軸方向で互いに異なる位置に配置されている2つの位置センサと、
      前記シャフトの前記遠位部において、前記2つの位置センサのいずれか一方の位置センサと前記シャフトの周方向で異なる位置に配置されている1つの位置センサと、からなる、撮像カテーテル。
PCT/JP2020/037023 2019-09-30 2020-09-29 撮像システム及び撮像カテーテル WO2021065956A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-179245 2019-09-30
JP2019179245A JP2022169815A (ja) 2019-09-30 2019-09-30 撮像システム及び撮像カテーテル

Publications (1)

Publication Number Publication Date
WO2021065956A1 true WO2021065956A1 (ja) 2021-04-08

Family

ID=75338112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037023 WO2021065956A1 (ja) 2019-09-30 2020-09-29 撮像システム及び撮像カテーテル

Country Status (2)

Country Link
JP (1) JP2022169815A (ja)
WO (1) WO2021065956A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210282743A1 (en) * 2020-02-04 2021-09-16 Tianli Zhao Puncture needle positioning system and method
US11980496B2 (en) * 2020-02-04 2024-05-14 Tian Li Puncture needle positioning system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285069A (ja) * 1993-04-01 1994-10-11 Olympus Optical Co Ltd 超音波三次元診断装置
JP2003524443A (ja) * 1998-08-02 2003-08-19 スーパー ディメンション リミテッド 医療用体内誘導装置
JP2003260057A (ja) * 2002-02-19 2003-09-16 Biosense Inc マッピング装置およびマッピング方法
JP2007268131A (ja) * 2006-03-31 2007-10-18 Terumo Corp 画像診断装置およびその処理方法
US20190262074A1 (en) * 2018-02-27 2019-08-29 Walter Kusumoto Ultrasound thermometry for esophageal or other tissue protection during ablation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285069A (ja) * 1993-04-01 1994-10-11 Olympus Optical Co Ltd 超音波三次元診断装置
JP2003524443A (ja) * 1998-08-02 2003-08-19 スーパー ディメンション リミテッド 医療用体内誘導装置
JP2003260057A (ja) * 2002-02-19 2003-09-16 Biosense Inc マッピング装置およびマッピング方法
JP2007268131A (ja) * 2006-03-31 2007-10-18 Terumo Corp 画像診断装置およびその処理方法
US20190262074A1 (en) * 2018-02-27 2019-08-29 Walter Kusumoto Ultrasound thermometry for esophageal or other tissue protection during ablation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210282743A1 (en) * 2020-02-04 2021-09-16 Tianli Zhao Puncture needle positioning system and method
US11980496B2 (en) * 2020-02-04 2024-05-14 Tian Li Puncture needle positioning system and method

Also Published As

Publication number Publication date
JP2022169815A (ja) 2022-11-10

Similar Documents

Publication Publication Date Title
US8213693B1 (en) System and method to track and navigate a tool through an imaged subject
US8527032B2 (en) Imaging system and method of delivery of an instrument to an imaged subject
US20080287783A1 (en) System and method of tracking delivery of an imaging probe
US8364242B2 (en) System and method of combining ultrasound image acquisition with fluoroscopic image acquisition
US20080287805A1 (en) System and method to guide an instrument through an imaged subject
US8428690B2 (en) Intracardiac echocardiography image reconstruction in combination with position tracking system
EP2459074B1 (en) Methods and apparatus for detecting and mapping tissue interfaces
US11547318B2 (en) Medical navigation system using shape-sensing device and method of operation thereof
US7940972B2 (en) System and method of extended field of view image acquisition of an imaged subject
EP2744391B1 (en) Shape sensing assisted medical procedure
US20240008846A1 (en) System for tracking and imaging a treatment probe
CN105979879A (zh) 具有光学形状感测设备视角的虚拟图像
JP2007537816A (ja) 被検体の構造体をマッピングする医療撮像システム
JP7157074B2 (ja) 医療機器、特に心臓カテーテルのためのナビゲーション・プラットフォーム
CN109715054B (zh) 与体外图像中的仪器相关的图像对象的可视化
KR20220063176A (ko) 초음파 안내 동적 모드 전환
US10568702B2 (en) System and method for re-registration of localization system after shift/drift
WO2021065956A1 (ja) 撮像システム及び撮像カテーテル
WO2018115200A1 (en) Navigation platform for a medical device, particularly an intracardiac catheter
JPWO2019189519A1 (ja) 情報選択装置
US20230190231A1 (en) Ultrasound catheter and ultrasound catheter system
WO2023192875A1 (en) Needle sensor derived image plane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP