WO2021065846A1 - 抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体及びその抗原結合断片並びにその応用 - Google Patents

抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体及びその抗原結合断片並びにその応用 Download PDF

Info

Publication number
WO2021065846A1
WO2021065846A1 PCT/JP2020/036760 JP2020036760W WO2021065846A1 WO 2021065846 A1 WO2021065846 A1 WO 2021065846A1 JP 2020036760 W JP2020036760 W JP 2020036760W WO 2021065846 A1 WO2021065846 A1 WO 2021065846A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
hiv
seq
nos
amino acid
Prior art date
Application number
PCT/JP2020/036760
Other languages
English (en)
French (fr)
Inventor
修三 松下
悠 郭
岳夫 桑田
Original Assignee
国立大学法人 熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 熊本大学 filed Critical 国立大学法人 熊本大学
Priority to JP2021551277A priority Critical patent/JPWO2021065846A1/ja
Publication of WO2021065846A1 publication Critical patent/WO2021065846A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to an antibody that binds to anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) and an antigen-binding fragment thereof.
  • the present invention relates to a detection agent for anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ).
  • the present invention relates to a method for detecting anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a sample.
  • the present invention relates to a method for determining the concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a sample.
  • the present invention further relates to a method for determining or monitoring the effectiveness of treatment with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a subject suffering from HIV-1 infection.
  • HIV-1 Human Immunodeficiency virus-1; HIV-1 infects CD4-positive lymphocytes, etc., and gradually destroys them, resulting in Acquired Immunodeficiency Syndrome / HIV. -1 causes infections.
  • Advances in antiviral therapy eg, Combination Antiretroviral Therapy: cART
  • HIV-1-specific antibodies are produced, and the presence or absence of such antibodies can be used to diagnose HIV-1 infection.
  • HIV-1-specific antibodies include neutralizing antibodies that can bind to viral particles and inhibit viral infectivity.
  • Matsushita S, et al Passive transfer of neutralizing mAb KD-247 reduces plasma viral load in patients chronically infected with HIV-1.
  • AIDS 29: 453-462, 2015 Incorporated
  • this 1C10 (0.5 ⁇ ) is reported to be an antibody that neutralizes a wider range of HIV-1 virus strains than KD-247 (Ramirez, K, et al: Complementary and synergistic activities). of anti-V3, CD4bs and CD4i antibody derived from a single individual can cover a wide range of HIV-1 strains. Virology, 475, 187-203, 2015.doi: 10.1016 / j.virol.2014.11.011) (all of them The description is incorporated herein by reference).
  • anti-HIV-1 V3 antibody 1C10 In a non-human primate model, the neutralizing effect of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) was found to correlate with its blood concentration, so anti-HIV-1 V3 was also found in human clinical studies. It is considered important to measure the blood concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in patients who received antibody 1C10 (0.5 ⁇ ). Currently, the blood concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) is measured by EIA (enzyme immunoassay) using V3 peptide as an antigen.
  • EIA enzyme immunoassay
  • anti-HIV-1 V3 antibody is not induced, so the blood concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) can be measured by the above method, but human HIV-1 infection.
  • anti-HIV-1 V3 antibody other than 1C10 (0.5 ⁇ ) is induced. Therefore, in order to accurately measure the blood concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ), the above The problem is that the method is inadequate.
  • the present invention provides a method for specifically detecting an antibody against anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) and anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ). And.
  • the present inventors have developed a plurality of anti-idiotype antibodies against the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ), and further used the anti-HIDiotype antibody to anti-HIV. -1 We succeeded in specifically detecting V3 antibody 1C10 (0.5 ⁇ ). The present invention has been completed based on the above findings.
  • Anti-HIV-1 V3 antibody An antibody that binds to 1C10 (0.5 ⁇ ) (anti-1C10 (0.5 ⁇ ) antibody) or an antigen-binding fragment thereof.
  • the heavy chain variable region and the light chain variable region of the anti-1C10 (0.5 ⁇ ) antibody are a) SEQ ID NOs: 31 and 32, b) SEQ ID NOs: 33 and 34, c) SEQ ID NOs: 35 and 36, d) SEQ ID NOs: 37 and 38, or e) SEQ ID NOs: 39 and 40
  • the anti-1C10 (0.5 ⁇ ) antibody or antigen-binding fragment thereof according to [1] each comprising an amino acid sequence that is at least 80% identical to the amino acid sequence described in 1.
  • the anti-1C10 (0.5 ⁇ ) antibody according to any one of [1] to [3], wherein the antigen-binding fragment is a Fab fragment, an F (ab') 2 fragment, an Fv fragment, or an scFv fragment. Or an antigen-binding fragment thereof.
  • a nucleic acid encoding any of the anti-1C10 (0.5 ⁇ ) antibody according to any one of [1] to [5] or an antigen-binding fragment thereof.
  • a method comprising the step of detecting an anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) bound to an anti-1C10 (0.5 ⁇ ) antibody or an antigen-binding fragment thereof according to the above.
  • the method according to [10] which is detected by a sandwich assay.
  • the method according to [10] or [11] which is detected by an enzyme-linked immunosorbent assay (ELISA) or an electrochemical luminescence assay.
  • the capture antibody of the sandwich assay is any one of the anti-1C10 (0.5 ⁇ ) antibody and its antigen-binding fragment according to any one of [1] to [5], and the detection antibody of the sandwich assay is [ The method according to [11] or [12], which is any one of the anti-1C10 (0.5 ⁇ ) antibody according to any one of 1] to [5] and an antigen-binding fragment thereof.
  • the above-mentioned capture antibody a) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 1, 2, and 3, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 4, 5, and 6, respectively.
  • An antibody or an antigen-binding fragment thereof containing a light chain variable region containing The above detection antibody a) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 1, 2, and 3, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 4, 5, and 6, respectively.
  • a method for determining the concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a sample A method comprising the step of determining the concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a sample using the detection method according to any one of [10] to [14].
  • anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in subjects suffering from HIV-1 infection.
  • anti-HIV-1 V3 antibody 1C10 ( Includes a step of determining 0.5 ⁇ ) levels and a step of comparing anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels in control samples with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels in subject-derived samples. ,Method.
  • the present invention it is possible to provide an antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) and an antigen-binding fragment thereof. According to the present invention, it is possible to provide a detection agent for anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ).
  • the present invention can provide a method for detecting anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a sample. According to the present invention, it is possible to provide a method for determining the concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a sample. According to the present invention, it is possible to provide a method for determining or monitoring the efficacy of treatment with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in HIV patients.
  • FIG. 1 shows the heavy chain amino acid sequences (SEQ ID NOs: 31, 33, 35, 37 and 39) of 5 clones of anti-1C10 idiotype antibody (# 87, # 92, # 102, # 103 and # G46).
  • FIG. 2 shows the light chain amino acid sequences (SEQ ID NOs: 32, 34, 36, 38 and 40) of 5 clones of anti-1C10 idiotype antibody (# 87, # 92, # 102, # 103 and # G46).
  • FIG. 3A is an explanatory diagram of Elisa for measuring the binding inhibitory activity of 1C10 to the V3 peptide (JRFL NNT20) by the anti-1C10 diotype antibody (Anti-Id Abs).
  • Figure 3B shows the results of measurement of 1C10 binding inhibitory activity by ELISA.
  • Anti-1C10 idiotype antibodies (# 87, # 92, # 102, # 103 and # G46) are converted to 5 antibodies of anti-HIV-1 V3 antibodies other than 1C10, KD-247, 5G2, 1D9, 717G2, and 19F8. No cross-activity was observed.
  • “ ⁇ ” (white square) in the graph is unlabeled 1C10 and indicates a positive control that inhibits the binding of biotinylated 1C10 (1C10-biotin in Fig. 3A) or other biotinylated anti-HIV-1 V3 antibody. ..
  • FIG. 4A shows the positions of primers for overlapping PCR for the production of 1C10 mutants (1C10 germline reverted mutants).
  • FIG. 4B is a schematic diagram of a 1C10 mutant (1C10 germline reverted mutants).
  • FIG. 5 shows the results of analysis of the binding activity of the anti-idiotype antibody to the 1C10 mutant by ELISA.
  • FIG. 6 shows an example of a sample dilution method using an ELISA microplate in an example.
  • FIG. 7 is a schematic diagram of a sandwich ELISA.
  • FIG. 8 shows the detection result of 1C10 by sandwich ELISA using the anti-idiotype antibody Fab and IgG.
  • FIG. 10 shows the 1C10 detection result using # 92Fab as the solid phase antibody and # 87 biotinylated IgG as the detection antibody; the 1C10 detection result using # 87Fab as the solid phase antibody and # 87 biotinylated IgG as the detection antibody; The 1C10 detection result using # 87 Fab as the solid phase antibody and # 92 biotinylated IgG as the detection antibody is shown.
  • FIG. 10 shows the 1C10 detection result using # 92Fab as the solid phase antibody and # 87 biotinylated IgG as the detection antibody; the 1C10 detection result using # 87Fab as the solid phase antibody and # 92 biotinylated IgG as the detection antibody is shown.
  • FIG. 11A shows the analysis results (sensorgram) of Biacore® for evaluating the binding activity of anti-1C10 idiotype antibody # 87 to 1C10.
  • FIG. 11B shows the analysis results (sensorgram) of Biacore® for evaluating the binding activity of anti-1C10 idiotype antibody # 92 to 1C10.
  • FIG. 11C shows the analysis results (sensorgram) of Biacore® for evaluating the binding activity of anti-1C10 idiotype antibody # 102 to 1C10.
  • FIG. 11D shows the analysis results (sensorgram) of Biacore® for evaluating the binding activity of anti-1C10 idiotype antibody # G46 to 1C10.
  • the description of the present invention described below may be based on typical embodiments or specific examples, but the present invention is not limited to such embodiments.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) is disclosed in Japanese Patent No. 5526386, and is an antibody that recognizes the V3 loop of the emperope sugar protein of the HIV-1 virus, and is an antibody of SEQ ID NOs: 41 and 42. It contains a heavy chain variable region and a light chain variable region containing amino acid sequences, respectively (Fig. 12).
  • As anti-HIV-1 V3 antibodies in addition to 1C10 (0.5 ⁇ ), KD247 and 5G2 disclosed in Japanese Patent No. 5526386, 1D9 described in Ramirez, K, et al., 2015 (above).
  • the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention is an antibody that specifically recognizes the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ), and in particular, 1C10 (0.5 ⁇ ) antigen recognition.
  • the area can be recognized.
  • the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) can be specifically detected by using the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention.
  • the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) can be specifically quantitatively detected by using the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention.
  • the antibody has a structure in which two heavy chains (H chain) and two light chains (L chain) are bound.
  • the light chain and the heavy chain are linked by a disulfide bond (SS bond) to form a heterodimer, and two of these heterodimers are further bonded to form a Y-shaped heterotetramer.
  • the heavy chain consists of the heavy chain variable region VH, the heavy chain constant region CH1, CH2, CH3, and the hinge region located between CH1 and CH2, and the light chain is composed of the light chain variable region VL and the light chain constant region CL. Consists of.
  • the variable regions include complementarity-determining regions (CDRs) and framework regions (FRs).
  • variable regions of the light and heavy chains have three CDRs (heavy chain CDR1 to 3 and light chain CDR1 to 3) and four FRs (heavy chain FR1 to 4 and light chain FR1 to 4), respectively.
  • Methods for identifying CDRs are known, for example, IMGT / V-QUEST Search page (http://www.imgt.org/IMGT_vquest/input), Brochet, X. et al., Nucl. Acids Res. 36, W503-508 (2008) (the entire description of which is incorporated herein by reference), etc. References: Giudicelli, V., Brochet, X., Lefranc, M.-P., Cold Spring Harb Protoc.
  • the antibody or antigen-binding fragment thereof that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention is a) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 1, 2, and 3, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 4, 5, and 6, respectively.
  • the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) or its antigen-binding fragment is a) SEQ ID NO: 31 and 32, b) SEQ ID NO: 33 and 34, c) SEQ ID NO: 35 and 36, d) contains heavy and light chain variable regions containing the amino acid sequences set forth in SEQ ID NOs: 39 and 40, respectively.
  • the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention is based on the 5 clones # 87, # 92, # 102, # 103, and # G46 that have 1C10 binding inhibitory activity obtained in Examples. .. These 5 clones were cross-active to 5 antibodies of KD-247, 5G2, 1D9, 717G2, and 19F8, which are anti-HIV-1 V3 antibodies other than 1C10 (0.5 ⁇ ), in a binding suppression test targeting V3 peptides. The specificity for the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) was very high.
  • Clone # 87 has a) a heavy chain variable region containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 1, 2, and 3, and CDR1 containing the amino acid sequences of SEQ ID NOs: 4, 5, and 6, respectively. , CDR2, and light chain variable region containing CDR3.
  • Clone # 92 is b) a heavy chain variable region containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 7, 8 and 9, respectively, and CDR1 containing the amino acid sequences of SEQ ID NOs: 10, 11 and 12, respectively. , CDR2, and light chain variable region containing CDR3.
  • Clone # 102 has c) a heavy chain variable region containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 13, 14, and 15, and CDR1 containing the amino acid sequences of SEQ ID NOs: 16, 17, and 18, respectively. , CDR2, and light chain variable region containing CDR3.
  • Clone # 103 has d) a heavy chain variable region containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 19, 20, and 21, and CDR1 containing the amino acid sequences of SEQ ID NOs: 22, 23, and 24, respectively. , CDR2, and light chain variable region containing CDR3.
  • Clone # G46 contains e) a heavy chain variable region containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 25, 26, and 27, respectively, and CDR1 containing the amino acid sequences of SEQ ID NOs: 28, 29, and 30, respectively. , CDR2, and light chain variable region containing CDR3.
  • the antibody or antigen-binding fragment thereof that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention contains a) CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 1, 2, and 3, respectively.
  • the heavy chain variable region and the light chain variable region containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 4, 5, and 6, respectively, are contained, and the heavy chain variable region and the light chain variable region are a). It can include an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequences set forth in SEQ ID NOs: 31 and 32.
  • An antibody or antigen-binding fragment thereof containing an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical is the amino acid according to SEQ ID NO: 31 or 32. Amino acid substitutions, deletions and / or insertions can be in the framework region for the sequence.
  • the antibody or antigen-binding fragment thereof that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention contains b) CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 7, 8 and 9, respectively.
  • the heavy chain variable region and the light chain variable region containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 10, 11, and 12, respectively, are contained, and the heavy chain variable region and the light chain variable region are b), respectively. It can include an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequences set forth in SEQ ID NOs: 33 and 34.
  • An antibody or antigen-binding fragment thereof comprising an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical is the amino acid according to SEQ ID NO: 33 or 34. Amino acid substitutions, deletions and / or insertions can be in the framework region for the sequence.
  • the antibody or antigen-binding fragment thereof that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention contains c) CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 13, 14, and 15, respectively.
  • the heavy chain variable region and the light chain variable region containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 16, 17, and 18, respectively, are contained, and the heavy chain variable region and the light chain variable region are c), respectively. It can include an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequences set forth in SEQ ID NOs: 35 and 36.
  • An antibody or antigen-binding fragment thereof comprising an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical is the amino acid according to SEQ ID NO: 35 or 36. Amino acid substitutions, deletions and / or insertions can be in the framework region for the sequence.
  • the antibody or antigen-binding fragment thereof that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention contains d) CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 19, 20, and 21, respectively.
  • An antibody or antigen-binding fragment thereof containing an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical is the amino acid according to SEQ ID NO: 37 or 38. Amino acid substitutions, deletions and / or insertions can be in the framework region for the sequence.
  • the antibody or antigen-binding fragment thereof that binds to the anti-HIV-1 V3 antibody 1C10 of the present invention is a heavy chain variable region containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 25, 26, and 27, respectively.
  • the light chain variable region containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 28, 29, and 30, respectively, and the heavy chain variable region and the light chain variable region are e) SEQ ID NO: 39 and, respectively. It can include an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence described in 40.
  • An antibody or antigen-binding fragment thereof containing an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical is the amino acid according to SEQ ID NO: 39 or 40. Amino acid substitutions, deletions and / or insertions can be in the framework region for the sequence.
  • Any heavy and light chain variable regions are at least 80%, 85%, 90%, 95%, 96%, 97%, 98 with the amino acid sequences of the heavy and light chain variable regions of the invention.
  • % Or 99% identity is determined using known sequence comparison algorithms or by manual alignment to obtain maximum match between comparison sequences within the comparison window or in a designated area. be able to. For example, using an algorithm based on the CLUSTALW computer program (Thompson Nucl. Acids Res. 2 (1994), 4673-4680) or FASTDB (Brutlag Comp. App. Biosci. 6 (1990), 237-245), between sequences. Percent identity can be determined.
  • BLAST Basic Local Alignment Search Tool
  • BLAST 2.0 algorithm Altschul, 1997, Nucl. Acids Res. 25: 3389-3402; Altschul, 1993 J. Mol. Evol. 36: 290-300; Altschul, 1990, J. Mol . Biol. 215: 403-410) can also be used.
  • the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention may be an isolated antibody.
  • the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention is preferably a monoclonal antibody.
  • the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention may be a full-length IgG antibody.
  • the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention can include a mouse constant region or a human constant region.
  • the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the invention is a chimeric antibody that comprises a mouse variable region and a human constant region. Chimeric antibodies also include their antigen binding fragments.
  • the antigen-binding fragment refers to a fragment of an antibody that binds to anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) and that binds to anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ).
  • a Fab fragment consisting of VL, VH, CL and CH1 regions; an F (ab') 2 fragment consisting of two Fabs linked by a disulfide bond in the hinge region; an Fv fragment consisting of VL and VH; VL and Examples include, but are not limited to, scFv fragments, which are single-chain antibodies in which VH is linked with an artificial polypeptide linker.
  • the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention is preferably an anti-idiotype antibody.
  • an anti-idiotype antibody refers to an antibody that binds to the antigen recognition region of an antibody molecule.
  • Anti-idiotype antibodies also include their antigen-binding fragments.
  • the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention or an antigen-binding fragment thereof can recognize the antigen recognition region of the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ).
  • an antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention may be referred to as an anti-1C10 diotype antibody.
  • epitope mapping For the analysis of the antibody binding site on the antigen (anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ )) of the anti-1C10 idiotype antibody of the present invention, epitope mapping using known techniques and 1C10 (0.5 ⁇ ) variants are used. Can be created and implemented. Specifically, for example, as in the examples below, a 1C10 (0.5 ⁇ ) mutant in which each region of FR1, CDR1, FR2, CDR2, and FR3 of 1C10 (0.5 ⁇ ) is sequenced as an immunoglobulin germline gene sequence is used. It can be prepared and carried out by analyzing the binding activity for each 1C10 (0.5 ⁇ ) mutant.
  • the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) has a three-dimensional structure, it may be a discontinuous epitope depending on the three-dimensional structure, and it is a linear composition composed of a simple linear amino acid sequence. It may also be an epitope.
  • clones # 87, # 102 and # 103 of the anti-1C10 idiotype antibody recognized the antigen binding site containing CDR2 of 1C10 (0.5 ⁇ ), and clone # 92 recognized 1C10 (0.5 ⁇ ).
  • the antigen-binding site containing FR3 and CDR3 was recognized, and clone # G46 was considered to recognize the antigen-binding site containing CDR1 of 1C10 (0.5 ⁇ ).
  • the anti-1C10 idiotype antibodies of the invention are ⁇ 1 ⁇ M, ⁇ 100 nM, ⁇ 10 nM, ⁇ 1 nM, ⁇ 0.5 nM, ⁇ 0.1 nM or ⁇ 0.05 nM (eg, 10 -8 M or less, eg 10). -8 M ⁇ 10 -13 M, for example 10 -9 M ⁇ 10 -12 M) affinity (binding affinity; having K D).
  • K D can be measured using a surface plasmon resonance assay as in the examples below.
  • Biacore® T200 can be used to immobilize biotinylated 1C10 on a Series S Sensor Chip SA (GE Healthcare) and run a diluted anti-idiotype antibody to measure its binding and dissociation. ..
  • the buffer should be HBS-EP buffer (0.01 M HEPES, 0.15 M NaCl, 3 mM EDTA, 0.05% Surfactant P 20, pH 7.4) and analyzed with the Kinetics / Affinity program of Biacore® T200 Evaluation Software. Can be done.
  • the method for producing the anti-1C10 idiotype antibody according to the present invention is not limited, but for example, B cells are isolated from a non-human mammal immunized with the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) or a fragment thereof, and B cells 1
  • An antibody gene is amplified from an individual and expressed in animal cells such as CHO cells and HEK293 cells to evaluate antibody performance.
  • IgG antibody genes are synthesized from the obtained genetic information and expressed in HEK293 cells to obtain antibodies. Can be done.
  • the anti-1C10 idiotype antibody according to the present invention is prepared by a gene recombination method, for example, an appropriate host is transformed with an expression vector containing the nucleic acid according to the present invention, and this transformant is cultured under appropriate conditions.
  • the antibody may be expressed and isolated and purified according to a known method. Examples of the isolation and purification method include an affinity column using protein A and the like, other chromatography columns, filters, ultrafiltration, salting out, and dialysis, which can be appropriately combined.
  • the antigen-binding fragment of the present invention may be produced by the above-mentioned gene recombination method using the DNA encoding the fragment, or may be treated with an enzyme such as papain or pepsin after obtaining a full-length antibody. It may be fragmented.
  • the present invention also includes a nucleic acid encoding an anti-1C10 idiotype antibody or an antigen-binding fragment thereof according to the present invention.
  • the nucleic acid may be a natural nucleic acid or an artificial nucleic acid, and examples thereof include, but are not limited to, DNA, RNA, and a chimera of DNA and RNA.
  • the base sequence of the nucleic acid encoding the anti-1C10 idiotype antibody or its antigen-binding fragment can be determined according to a method known to those skilled in the art, and can be prepared by a known method.
  • nucleic acid encoding the anti-1C10 idiotype antibody or the antigen-binding fragment thereof according to the present invention include, for example.
  • the present invention also includes an expression vector containing a nucleic acid encoding the anti-1C10 idiotype antibody of the present invention or an antigen-binding fragment thereof.
  • the expression vector can be appropriately selected according to the host cell used.
  • a nucleic acid encoding the anti-1C10 idiotype antibody of the present invention or an antigen-binding fragment thereof can be inserted into these expression vectors by a known method (method using a restriction enzyme, etc.).
  • the expression vector according to the present invention can further contain a promoter that regulates the expression of the antibody gene, an origin of replication, a selectable marker gene, and the like. The promoter and origin of replication can be appropriately selected depending on the type of host cell and vector.
  • the present invention includes transformants containing the vectors of the present invention.
  • Transformants can be obtained by transfecting the vector of the invention into a suitable host cell or organism.
  • Host cells include, for example, eukaryotic cells such as mammalian cells (CHO cells, COS cells, myeloma cells, HeLa cells, Vero cells, HEK293, etc.), insect cells, plant cells, fungal cells (Saccharomyces, Aspergillus, etc.). , E. coli, protozoal cells such as Bacillus subtilis can be used.
  • the host organism for example, silk moth can be used.
  • the present invention can provide a pharmaceutical composition containing any of the above anti-1C10 idiotype antibodies or antigen-binding fragments thereof.
  • the pharmaceutical compositions of the present invention can include pharmaceutically acceptable carriers and excipients.
  • the pharmaceutical composition of the present invention can be used for diagnosis and treatment of HIV-1 infection.
  • the present invention provides a detection agent for anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ), which comprises either an antibody that binds to the above anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) or an antigen-binding fragment thereof. Can be done.
  • the detection agent of the present invention can further include a label. Labels include, but are not limited to, fluorescent labels, enzyme labels, biotin, magnetic beads, agarose beads, magnetic agarose beads, colloidal gold, and rare earth fluorescent complexes. The label may be used alone or in combination of two or more.
  • labels include, but are not limited to, fluorescein isothiocyanate (FITC), Alexa Fluor® dyes, low molecular weight fluorescent dyes such as Cy dyes, phycoerythrin (PE), allophicocyanin (APC).
  • FITC fluorescein isothiocyanate
  • Alexa Fluor® dyes Alexa Fluor® dyes
  • Cy dyes Cy dyes
  • PE phycoerythrin
  • API allophicocyanin
  • Fluorescent proteins such as horseradish peroxidase (HRP) (coloring substrates are TMB, OPD, ABTS, etc.), alkaline phosphatase (AP) (coloring substrates are BCIP / NBT, pPNPP, etc.), enzyme labeling, biotin / avidin, immunoprecipitation Examples thereof include magnetic beads used in methods, agarose beads, magnetic agarose bead labels, gold colloid labels used for immunoelectron microscopy, and rare earth fluorescent complex labels such as ruthenium complex (sulfo-tag).
  • radioactive isotopes 32 P, 14 C, 125 I, 3 H and 131 I can be used for labeling.
  • the detection agent comprises a labeled anti-1C10 idiotype antibody or antigen-binding fragment thereof.
  • the present invention is a method for detecting anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a sample.
  • a method can be provided that comprises the step of detecting the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) bound to the antigen-binding fragment.
  • the anti-HIV-1 V3 antibody 1C10 when the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) is present in the sample, it can be detected by using the anti-1C10 idiotype antibody of the present invention or an antigen-binding fragment thereof.
  • This detection can be performed by any conventional immunological measurement method.
  • the detection method of the present invention can be performed in vitro or ex vivo.
  • blood or a fraction or processed product thereof for example, plasma or serum
  • serum is preferable.
  • human HIV-1 infected cases there are cases in which anti-HIV-1 V3 antibodies other than 1C10 (0.5 ⁇ ) are induced, but the antibody that binds to the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) of the present invention.
  • the antigen-binding fragment thereof can specifically bind to 1C10 (0.5 ⁇ ), it can be used for the detection of 1C10 (0.5 ⁇ ) in a human-derived sample.
  • the anti-1C10 idiotype antibody or its antigen-binding fragment can be labeled with the above-mentioned label.
  • the anti-1C10 idiotype antibody or its antigen-binding fragment can be used in a soluble state in which no other antibody is bound, but it may be bound to the solid phase.
  • the "solid phase” includes plates (eg, microwell plates), tubes, beads (eg, plastic beads, magnetic beads), chromatographic carriers (eg, water-absorbent substrates such as nitrocellulose membranes, Sepharose), membranes. Examples include nitrocellulose membranes, PVDF membranes, gels (eg polyacrylamide gels), metal membranes (eg gold membranes) and the like.
  • detection of the anti-HIV-1 V3 antibody 1C10 can be performed by detecting a labeled anti-HIV-1 Idiotype antibody or antigen-binding fragment thereof by a direct method. ..
  • an anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) is immobilized on a microplate or the like, and an enzyme-labeled anti-HIV-1 Idiotype antibody or an antigen-binding fragment thereof is reacted with the enzyme that remains on the microplate after washing. It can be carried out by detecting the activity.
  • the detection of anti-HIV-1 V3 antibody 1C10 can be carried out by a sandwich assay (sandwich immunoassay).
  • sandwich assay is a method that uses two antibodies that bind to different epitopes on an antigen.
  • the capture antibody which has high binding specificity for the antigen of interest, binds to a solid phase or solid surface.
  • the sample containing the antigen is added, and then the detection antibody is added.
  • the detection antibody binds to an epitope different from the capture antibody.
  • any one of the anti-1C10 idiotype antibody or its antigen-binding fragment may be used in combination with the anti-human IgG antibody, or any 2 of the anti-1C10 idiotype antibody or its antigen-binding fragment.
  • the type may be used.
  • As a specific detection method when one type of anti-1C10 idiotype antibody or an antigen-binding fragment thereof is used for example, any one of the antigen-binding fragments of the anti-1C10 idiotype antibody is immobilized on a plate or the like. A sample is added and bound 1C10 can be detected with a detectably labeled anti-human IgG antibody.
  • the detection method can be any known method, and for example, an enzyme-linked immunosorbent assay (ELISA), an electrochemical luminescence assay (ECL), a surface plasmon resonance (SPR), or the like can be used, and ELISA or electricity can be used. It is preferred to use a chemiluminescence assay.
  • ELISA is performed, for example, by immobilizing an anti-1C10 idiotype antibody on a microplate, reacting it with an anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ), and then reacting it with another enzyme-labeled anti-1C10 idiotype antibody and washing it. Later, the enzyme activity remaining on the microplate can be detected.
  • ECL like ELISA, can respond to sandwich assays, immobilizing an anti-1C10 idiotype antibody on a microplate, reacting with an anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ), followed by labeling with a ruthenium complex.
  • Another anti-1C10 idiotype antibody can be reacted to cause an electrochemical stimulation on the electrode of the microplate to cause the ruthenium complex to emit light for detection.
  • the capture antibody of the sandwich assay can be any of the anti-1C10 idiotype antibody and its antigen-binding fragment
  • the detection antibody of the sandwich assay can be any of the anti-1C10 idiotype antibody and its antigen-binding fragment. ..
  • the capture antibody and the detection antibody of the sandwich assay may be different types of anti-1C10 idiotype antibodies or may be the same type of anti-1C10 idiotype antibodies.
  • the sandwich assay is a method in which two antibodies that bind to different epitopes on an antigen are used as a capture antibody and a detection antibody, respectively.
  • the anti-1C10 idiotype antibody of the present invention is a divalent antibody, anti-HIV-1.
  • the V3 antibody 1C10 (0.5 ⁇ ) is the target and has the same type of epitope at two sites, the same type of anti-1C10 idiotype antibody can be used as the capture antibody and the detection antibody.
  • the capture antibody and the detection antibody of the sandwich assay of the present invention it is preferable to use different types of anti-1C10 idiotype antibodies for the capture antibody and the detection antibody of the sandwich assay of the present invention. This is because the capture antibody and the detection antibody recognize different types of epitopes of the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ), which enhances the specificity of detection.
  • the above-mentioned capture antibody is used.
  • An antibody or an antigen-binding fragment thereof containing a light chain variable region containing The above detection antibody a) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 1, 2, and 3, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 4, 5, and 6, respectively.
  • the above capture antibody a) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 1, 2, and 3, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 4, 5, and 6, respectively.
  • the above detection antibody a) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 1, 2, and 3, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 4, 5, and 6, respectively.
  • It can be an antibody or an antigen-binding fragment thereof containing a light chain variable region containing.
  • the capture antibody a) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 1, 2, and 3, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 4, 5, and 6, respectively.
  • the above detection antibody b) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 7, 8 and 9, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 10, 11, and 12, respectively. It can be an antibody or an antigen-binding fragment thereof containing a light chain variable region containing.
  • the capture antibody b) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 7, 8 and 9, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 10, 11, and 12, respectively.
  • the above detection antibody a) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 1, 2, and 3, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 4, 5, and 6, respectively. It can be an antibody or an antigen-binding fragment thereof containing a light chain variable region containing.
  • the capture antibody may be a full-length IgG antibody of the anti-1C10 idiotype antibody, an antigen-binding fragment thereof, and similarly, the detection antibody may be a full-length IgG antibody thereof.
  • the antigen-binding fragment may be used. Examples of the antigen-binding fragment include, but are not limited to, the Fab fragment, F (ab') 2 fragment, Fv fragment, and scFv fragment described above. Which form of the full-length IgG antibody or the antigen-binding fragment is selected for the capture antibody and the detection antibody can be appropriately determined depending on the type of sandwich assay (ELISA, ECL, etc.), the type of label, and the like.
  • the capture antibody may be an antigen binding fragment and the detection antibody may be a full length IgG antibody. In another embodiment, both the capture antibody and the detection antibody may be antigen-binding fragments. In yet another embodiment, the capture antibody may be a full-length IgG antibody and the detection antibody may be an antigen-binding fragment. In yet another embodiment, both the capture antibody and the detection antibody may be full-length IgG antibodies.
  • the capture antibody b) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 7, 8 and 9, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 10, 11, and 12, respectively.
  • An antigen-binding fragment of an antibody containing a light chain variable region containing The above detection antibody a) Heavy chain variable regions containing CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 1, 2, and 3, respectively, and CDR1, CDR2, and CDR3 containing the amino acid sequences of SEQ ID NOs: 4, 5, and 6, respectively.
  • the anti-idiotype antibody of the present invention can be divided into three groups of 1) # 87, # 102, # 103; 2) # 92; and 3) # G46 according to the difference in epitope.
  • the capture and detection antibodies in the sandwich assay are preferably selected from different groups. Examples of capture and detection antibody combinations in sandwich assays are # 87 and # 92, # 87 and # G46, # 102 and # 92, # 102 and # G46, # 103 and The combination of # 92, the combination of # 103 and # G46, and the combination of # 92 and # G46 can be mentioned, and one of the combinations can be used as a capture antibody and the other as a detection antibody.
  • 1C10 (0.5 ⁇ ) can be detected even when the concentration of 1C10 (0.5 ⁇ ) in the sample is 0.1 ⁇ g / mL or less, 0.05 ⁇ g / mL or less, or 0.01 ⁇ g / mL or less. .. In the examples described below, 1C10 was detected even at 0.01 ⁇ g / mL or less when coated with Fab # 92.
  • the detection sensitivity of the conventional ELISA using the V3 peptide is about 10 ⁇ g / mL, but according to the present invention, the detection can be performed with higher sensitivity than the conventional one.
  • the present invention is a method for determining the concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a sample.
  • the method of detecting the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in the sample can be used to provide a method comprising the step of determining the concentration of the anti-HIV-1 V3 antibody 1C10 in the sample.
  • Determining the concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a sample is an anti-HIV-1 V3 bound to an antibody that binds to anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) or an antigen-binding fragment thereof. Includes measuring the amount of antibody 1C10 (0.5 ⁇ ) and calculating the concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in the sample. To calculate the concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in the sample, perform 2-point measurement or 3-point measurement for both the sample and the standard substance for the standard curve, create a standard curve, and use this standard curve. This can be done by reading the concentration of the sample from the absorbance of the sample.
  • the present invention is a method for judging or monitoring the effectiveness of treatment with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a subject suffering from HIV-1 infection.
  • Steps to determine antibody 1C10 (0.5 ⁇ ) levels and compare anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels in control samples with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels in subject-derived samples Methods can be provided that include steps.
  • a level means an index regarding a quantified abundance, and includes, for example, an index that can be used as a concentration, a quantity, or an alternative. Therefore, the level may be a measured value such as fluorescence intensity itself, or may be a value converted into a concentration. Further, the level may be an absolute numerical value (abundance amount, abundance amount per unit area, etc.), or may be a relative numerical value compared with a comparison control set as necessary. ..
  • One embodiment of the invention is a method of providing data for determining or monitoring the effectiveness of treatment with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in a subject suffering from HIV-1 infection.
  • the anti-HIV- Steps to determine 1 V3 antibody 1C10 (0.5 ⁇ ) levels, and anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels in control samples and anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels in subject-derived samples.
  • the above sample can be a blood sample, and a serum sample is particularly preferable.
  • the subject is a mammal, preferably a human.
  • the difference between the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) level in the control sample and the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) level in the sample derived from the subject is that the subject is the anti-HIV-1 V3 antibody 1C10. It is an indicator of whether or not to respond to treatment with (0.5 ⁇ ).
  • anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels in control samples are known to respond to treatment with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) (eg, anti-HIV-1 V3 antibody 1C10 (eg, anti-HIV-1 V3 antibody 1C10) It may be a level in HIV patients) whose neutralizing effect has been confirmed after administration of 0.5 ⁇ ), or it may be a level standardized among such multiple patients.
  • anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) eg, anti-HIV-1 V3 antibody 1C10 (eg, anti-HIV-1 V3 antibody 1C10) It may be a level in HIV patients) whose neutralizing effect has been confirmed after administration of 0.5 ⁇ ), or it may be a level standardized among such multiple patients.
  • patients whose anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels in control samples have been found to be unresponsive to treatment with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) (eg, anti-HIV- It may be the level in HIV patients who have not been confirmed to have a neutralizing effect after administration of 1 V3 antibody 1C10 (0.5 ⁇ ), or it may be a level standardized among such multiple patients.
  • anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) eg, anti-HIV- It may be the level in HIV patients who have not been confirmed to have a neutralizing effect after administration of 1 V3 antibody 1C10 (0.5 ⁇ ), or it may be a level standardized among such multiple patients.
  • Subjects with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels equal to or higher than the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels in the above responsive control samples are anti-HIV-1 V3 antibodies. It can be judged that there is a high possibility that a therapeutic effect can be obtained by 1C10 (0.5 ⁇ ).
  • Subjects with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels equal to or less than the anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels in the non-responsive control sample are anti-HIV-1 V3. It can be judged that the therapeutic effect is unlikely to be obtained by the antibody 1C10 (0.5 ⁇ ).
  • the effectiveness of treatment with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) is, for example, at one or more time points after administration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ), anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ). ) It can be monitored by determining the level. Monitoring anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels is important to enhance the overall efficacy of treatment with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ). For example, in patients who are responsive to anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ), anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) levels fall below a certain level. Supplementation with 1C10 (0.5 ⁇ ) is thought to enhance the therapeutic effect.
  • the neutralizing effect of anti-HIV-1 V3 antibody 1C10 was found to correlate with its blood concentration, so anti-HIV-1 V3 was also found in human clinical studies. It is important to measure the blood concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) in patients who received antibody 1C10 (0.5 ⁇ ). According to the present invention, the blood concentration of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) can be specifically quantified, and HIV- using anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) as a neutralizing antibody. 1 It is useful for developing treatments for infectious diseases, determining whether HIV-1 infected patients respond to this neutralizing antibody, or monitoring the course of treatment.
  • Example 1 Separation of anti-idiotype antibody ⁇ Method> 1) Immunization of mice with anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) and isolation of anti-idiotype antibody-producing B cells 200 ⁇ g of anti-V3 antibody 1C10 (0.5 ⁇ ) was commercially available in 6-week-old BALB / C mice. Administered subcutaneously with the adjuvant TiterMax® Gold Adjuvant liquid (Sigma-Aldrich, MO, US), followed by equal doses of 1C10 and adjuvant 4 times by tail intravenous injection every 2 weeks, for a total of 5 times. It was administered. Two to three days after the last (8th week) administration of 1C10, the mice were slaughtered and the spleen was collected.
  • the adjuvant TiterMax® Gold Adjuvant liquid Sigma-Aldrich, MO, US
  • Table 1 shows the reagents used for RT-PCR.
  • the above single-cell sorted cells were lysed in guanidine thiocyanate, the remaining reagents in Table 1 were added, and reverse transcription was performed at 42 ° C for 10 minutes, 25 ° C for 10 minutes, 50 ° C for 60 minutes, and 94 ° C for 5 minutes. ..
  • Primers are described in T Tiller et al. J Immunol Methods. 2009 (https://doi.org/10.1016/j.jim.2009.08.009), the entire description of which is incorporated herein by reference. I used the one.
  • variable regions (VH and VL) of the immunoglobulin heavy chain (HC) and light chain (LC) of the synthesized cDNA were amplified by nested PCR, respectively.
  • the reagents shown in Table 2 are mixed and heated at 95 ° C for 5 minutes, then 94 ° C for 30 seconds, 62 ° C for 30 seconds, and 72 ° C for 45 seconds as one cycle for 50 cycles (annealing temperature up to 25 cycles-.
  • the reagents shown in Table 3 are mixed, heated at 95 ° C for 5 minutes, and then 94 ° C for 10 seconds, 55 ° C for 10 seconds (HC 55 ° C, LC 65 ° C), and 72 ° C for 15 seconds as one cycle.
  • 50 cycles (HC: -0.2 ° C / cycle up to 25 cycles, 50 ° C after the 26th cycle; LC: -0.4 ° C / cycle up to the 25th cycle, 55 ° C after the 26th cycle ), And by heating at 72 ° C for 4 minutes.
  • the expression vector is a human IgG expression vector.
  • One Shot TOP10 Chemically Competent E. coli (Invitrogen, NY, US) was transformed with recombinant DNA, and HC and LC expression plasmids were cloned. Purify the plasmid cloned with the GenElute TM plasmid Miniprep Kit (Sigma-Aldrich, MO, US), mix 500 ng each of HC and LC plasmids with 1.5 ⁇ L of FectPRO (PolyPlus, Illkirch, France) and transfect to HEK293T cells. did. The 1C10 binding inhibitory activity of the supernatant obtained after 48 hours was measured by ELISA as follows, and the clone having the 1C10 binding inhibitory activity was used as an anti-1C10 idiotype antibody for the subsequent analysis.
  • % Azide PBS pH7.2
  • block at 37 ° C for 30 minutes wash twice and then anti-1C10 idiotype antibody samples such as culture supernatant and purified IgG (# 87, # 92, # 102, # 103, or Add 50 ⁇ L of # G46) to each well and incubate at 37 ° C for 30 minutes.
  • biotinylated 1C10 0.025 ⁇ g was added and incubated at 37 ° C for 60 minutes, then Streptavidin (SA) -Peroxidase (Sigma-Aldrich, MO, US) 0.02 ⁇ g (in 100 ⁇ L of ELISA buffer) was added and left at room temperature for 60 minutes.
  • SA Streptavidin
  • MO Sigma-Aldrich
  • the OD value was measured by ELISA Reader.
  • the 1C10 binding inhibitory activity of the five anti-1C10 idiotype antibody samples obtained in this example was shown by a decrease in the relative OD value compared to the wells containing no anti-1C10 idiotype antibody sample.
  • Anti-HIV-1 V3 antibodies other than 1C10, KD-247, 5G2, 1D9, 717G2, and 19F8, were also biotinylated and anti-1C10 idiotype antibody samples (# 87, # 92, # 102, # 103). Or, the binding inhibitory activity by # G46) was measured.
  • Anti-HIV-1 V3 antibody 1C10 was immunized into mice, and 5 clones (# 87, # 92, # 102, # 103 and # G46) of anti-HIV-1 Idiotype antibody were isolated by single cell sorting and cloning of the antibody gene (# 87, # 92, # 102, # 103 and # G46). Figures 1 and 2). These anti-1C10 idiotype antibodies did not show cross-activity to the 5 antibodies of KD-247, 5G2, 1D9, 717G2, and 19F8, which are anti-HIV-1 V3 antibodies other than 1C10, and were specific to 1C10. It was very expensive (Fig. 3B).
  • Example 2 Epitope analysis of anti-idiotype antibody ⁇ Method> 1) Preparation of 1C10 mutants (1C10 germline reverted mutants reverted mutants) Using the 1C10 HC expression vector as a template, the regions other than CDR3 of VH were amplified by overlapping PCR using the primers shown in Table 4, and FR1 and CDR1 of 1C10 were amplified. , FR2, CDR2, and FR3 regions were used as immunoglobulin germline gene sequences to prepare 1C10 mutants.
  • FIG. 4A shows the positions of the primers in the overlap PCR.
  • 2X SapphireAmp Fast PCR Master Mix (TAKARA, Shiga, Japan) 10 ⁇ L, nuclease-free water 7.5 ⁇ L, 10 ⁇ M F primer 0.4 ⁇ L, 10 ⁇ M R primer 0.4 ⁇ L, and template 1 ⁇ L were mixed and heated at 95 ° C for 5 minutes. After that, 94 ° C for 5 seconds, 54 ° C for 5 seconds, and 72 ° C for 5 seconds were set as one cycle for 30 cycles, 72 ° C for 4 minutes, and then at 4 ° C. The PCR product was gel-translated, extracted with the QIAquick Gel Extraction Kit (QIAGEN, Hilden Germany), and incorporated into pIgGH.
  • QIAquick Gel Extraction Kit QIAGEN, Hilden Germany
  • FR1-reverted mutant FR1-R
  • CDR1-reverted mutant CDR1-R
  • FR2-R CDR2-reverted mutant
  • CDR2-R CDR2-reverted mutant
  • FR3-R Inferred germline 1C10
  • IG Inferred germline 1C10
  • PPN polyglobin-N
  • SA-Peroxidase was added and reacted at room temperature for 1 hour.
  • 100 ⁇ L of ABTS solution was added and the absorbance at OD 405 nm was measured with a luminometer. The measured OD value was calculated as a relative value to 1C10 and compared.
  • a 1C10 mutant was prepared by changing the amino acid sequence of the VH region of 1C10 to the sequence of VH3-30, which is an immunoglobulin germline gene of 1C10, for each region of FR1, CDR1, FR2, CDR2, and FR3 (Fig. 4).
  • the binding of anti-idiotype antibody to the 1C10 mutant was measured by ELISA (Fig. 5). Binding to the 1C10 mutant IG, which had the entire region from FR1 to FR3 sequenced as an immunoglobulin germline gene sequence, was not observed in all five anti-idiotype antibodies.
  • the anti-idiotype antibodies # 87, # 102, and # 103 had a marked decrease in the binding activity to the mutant CDR2-R.
  • # 92 showed a decrease in binding activity to FR3-R
  • # G46 showed a decrease in binding activity to CDR1-R.
  • the region where the binding is remarkably dropped is considered to be involved in the binding, and the region containing these regions and CDR3 and the like is considered to be an epitope.
  • the antigen-binding site of 1C10, which is greatly affected by the mutation of FR3, is CDR3, so it is considered that CDR3 is largely involved in the epitope of # 92. From this, it was considered that the 5-cloned anti-idiotype antibodies could be divided into 3 groups based on the difference in epitopes.
  • Example 3 Preparation of 1C10 detection system using anti-idiotype antibody ⁇ Method> 1) Preparation and purification of Fab The PCR product in which the VH region was amplified was incorporated into the Fab heavy chain expression vector and cloned by the same procedure as in the preparation of IgG. After transfecting the Fab heavy chain expression vector and the light chain expression vector into HEK293A cells, Fab-producing cell lines were selected with G418 sulfate and hygromycin and cultured for a long period of time. Fab was purified from the obtained culture supernatant with His 60 Ni Superflow Resin (TAKARA, Shiga, Japan), and the eluate was replaced with PBS by dialysis.
  • TAKARA His 60 Ni Superflow Resin
  • FIG. 7 shows a schematic diagram of the sandwich ELISA.
  • Example 4 Measurement of binding activity of anti-idiotype antibody ⁇ Method>
  • SPR surface plasmon resonance
  • the buffer used was HBS-EP buffer (0.01 M HEPES, 0.15 M NaCl, 3 mM EDTA, 0.05% Surfactant P 20, pH 7.4) and was analyzed by the Kinetics / Affinity program of Biacore® T200 Evaluation Software. ..
  • SEQ ID NOs: 1-40 Amino acids of anti-idiotype antibodies # 87, # 92, # 102, # 103, or # G46
  • SEQ ID NOs: 41-42 Heavy and light chains of anti-HIV-1 V3 antibody 1C10 (0.5 ⁇ ) Chain amino acid sequence
  • SEQ ID NO: 43 HIV-1 JR-FL strain V3 peptide NNT20 amino acid sequence
  • SEQ ID NO: 44-56 Primer sequence

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明の課題は、抗HIV-1 V3抗体1C10(0.5γ)に対する抗体、及び抗HIV-1 V3抗体1C10(0.5γ)を特異的に検出するための方法を提供することである。本発明によれば、抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体又はその抗原結合断片が提供される。本発明によれば、抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体又はその抗原結合断片を含む、抗HIV-1 V3抗体1C10(0.5γ)の検出薬が提供される。本発明によれば、試料中の抗HIV-1 V3抗体1C10(0.5γ)を検出する方法が提供される。本発明によれば、試料中の抗HIV-1 V3抗体1C10(0.5γ)の濃度を決定する方法が提供される。本発明によれば、HIV患者における、抗HIV-1 V3抗体1C10(0.5γ)による治療の有効性を判断又は監視するための方法が提供される。

Description

抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体及びその抗原結合断片並びにその応用
 本発明は、抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体及びその抗原結合断片に関する。本発明は、抗HIV-1 V3抗体1C10(0.5γ)の検出薬に関する。本発明は、試料中の抗HIV-1 V3抗体1C10(0.5γ)を検出する方法に関する。本発明は、試料中の抗HIV-1 V3抗体1C10(0.5γ)の濃度を決定する方法に関する。本発明は、更にHIV-1感染症を患っている対象における、抗HIV-1 V3抗体1C10(0.5γ)による治療の有効性を判断又は監視するための方法に関する。
関連出願の相互参照
 本出願は、2019年9月30日出願の日本特願2019-180305の優先権を主張し、その全記載は、ここに特に開示として援用される。
 ヒト免疫不全ウイルス(Human Immunodeficiency virus-1; HIV-1)は、CD4陽性のリンパ球等に感染し、これを徐々に破壊していくことにより、後天性免疫不全症候群 (Acquired Immunodeficiency Syndrome) /HIV-1感染症を引き起こす。抗ウイルス療法(例えば、多剤併用療法(Combination Antiretroviral Therapy: cART))の進歩により、HIV-1感染症の予後は顕著に改善したが、治癒は得られず、抗ウイルス療法は一生続けなければならない治療法のままである。
 一方、中和抗体を用いたHIV-1感染症の治療法の開発が行われている。HIV-1感染に対する免疫応答の中で、HIV-1特異的な抗体が産生され、このような抗体の有無により、HIV-1感染症を診断することができる。HIV-1特異的な抗体の中には、ウイルス粒子に結合してウイルス感染能を阻害することができる中和抗体が含まれる。例えば、Matsushita S, et al (Passive transfer of neutralizing mAb KD-247 reduces plasma viral load in patients chronically infected with HIV-1. AIDS 29 : 453―462, 2015)(その全記載は、参照により本明細書に援用される)は、臨床試験で、ヒト化抗HIV-1モノクローナル抗体KD-247が慢性HIV-1感染症患者のウイルス量を減少させ、そのまま安定したウイルス量を維持する症例を報告する。
 これまでに分離された様々な中和抗体のほとんどは、特定のHIV-1は中和できるが、アミノ酸配列が異なる別のHIV-1は中和できないという、株特異的なものであった。一方で、広範囲のHIV-1を中和できる抗体も知られており、このような中和抗体は、ウイルスエンベロープのV3ループ、CD4結合部位などを認識する。WO2009/066702(特許第5526386号公報)(その全記載は、参照により本明細書に援用される)は、HIV-1ウイルスのエンペロープ糖たんぱく質のV3ループを認識するモノクローナル抗体1C10(0.5γ)を開示しており、この1C10(0.5γ)は、KD-247よりも広範囲のHIV-1ウイルス株を中和する抗体であることが報告されている(Ramirez, K, et al: Complementary and synergistic activities of anti-V3, CD4bs and CD4i antibodies derived from a single individual can cover a wide range of HIV-1 strains. Virology, 475, 187-203, 2015.doi:10.1016/j.virol.2014.11.011)(その全記載は、参照により本明細書に援用される)。
 抗HIV-1 V3抗体1C10(0.5γ)については、大量発現系が確立されており、その有効性を実証するためのPOC(Proof of concept)試験が非ヒト霊長類において開始されている。抗HIV-1 V3抗体1C10(0.5γ)をHIV-1感染症の治療薬として用いたPOC試験ではSHIV(simian-human immunodeficiency virus)感染個体における中和作用と抗HIV-1 V3抗体1C10(0.5γ)の血中濃度に相関が認められており、ヒトでの治療効果が期待されている。
 非ヒト霊長類モデルにおいて、抗HIV-1 V3抗体1C10(0.5γ)の中和作用がその血中濃度に相関することが明らかになったため、ヒトでの臨床試験においても、抗HIV-1 V3抗体1C10(0.5γ)を投与した患者における抗HIV-1 V3抗体1C10(0.5γ)の血中濃度の測定が重要になると考えられる。現在、抗HIV-1 V3抗体1C10(0.5γ)の血中濃度測定は、V3ペプチドを抗原としてEIA(enzyme immunoassay:酵素免疫抗体法)で行われている。しかし、非ヒト霊長類モデルでは、抗HIV-1 V3抗体が誘導されないため、上記の方法で抗HIV-1 V3抗体1C10(0.5γ)の血中濃度を測定可能だが、ヒトのHIV-1感染例では、1C10(0.5γ)以外の抗HIV-1 V3抗体が誘導される症例が存在するため、抗HIV-1 V3抗体1C10(0.5γ)の血中濃度を正確に測定するには上記の方法では不十分であるという課題がある。
 よって、本発明は、抗HIV-1 V3抗体1C10(0.5γ)に対する抗体、及び抗HIV-1 V3抗体1C10(0.5γ)を特異的に検出するための方法を提供することを解決すべき課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、抗HIV-1 V3抗体1C10(0.5γ)に対する抗イディオタイプ抗体を複数開発し、更にこの抗イディオタイプ抗体を用いて、抗HIV-1 V3抗体1C10(0.5γ)を特異的に検出することに成功した。本発明は、上記の知見に基づいて完成したものである。
 本発明によれば以下の発明が提供される。
[1] 抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体(抗1C10(0.5γ)抗体)又はその抗原結合断片であって、
a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
c)配列番号13、14、及び15のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号16、17、及び18のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
d)配列番号19、20、及び21のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号22、23、及び24のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;又は
e)配列番号25、26、及び27のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号28、29、及び30のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含み、
上記抗HIV-1 V3抗体1C10(0.5γ)が、配列番号41及び42のアミノ酸配列をそれぞれ含む重鎖可変領域及び軽鎖可変領域を含む、抗1C10(0.5γ)抗体又はその抗原結合断片。
[2] 上記抗1C10(0.5γ)抗体の上記重鎖可変領域及び軽鎖可変領域が、
a) 配列番号31及び32、
b) 配列番号33及び34、
c)配列番号35及び36、
d)配列番号37及び38、又は
e)配列番号39及び40
に記載のアミノ酸配列と少なくとも80%同一であるアミノ酸配列をそれぞれ含む、[1]に記載の抗1C10(0.5γ)抗体又はその抗原結合断片。
[3] 上記抗1C10(0.5γ)抗体が全長IgG抗体である、[1]又は[2]に記載の抗1C10(0.5γ)抗体又はその抗原結合断片。
[4] 上記抗原結合断片が、Fab断片、F(ab’)断片、Fv断片、又はscFv断片である、[1]~[3]の何れか一に記載の抗1C10(0.5γ)抗体又はその抗原結合断片。
[5] 抗HIV-1 V3抗体1C10(0.5γ)の抗原認識領域を認識する、[1]~[4]の何れか一に記載の抗1C10(0.5γ)抗体又はその抗原結合断片。
[6] [1]~[5]の何れか一に記載の抗1C10(0.5γ)抗体又はその抗原結合断片の何れかをコードする核酸。
[7] [6]に記載の核酸を含む発現ベクター。
[8] [7]に記載の発現ベクターを含む形質転換体。
[9] [1]~[5]の何れか一に記載の抗1C10(0.5γ)抗体又はその抗原結合断片の何れかを含む、抗HIV-1 V3抗体1C10(0.5γ)の検出薬。
[10] 試料中の抗HIV-1 V3抗体1C10(0.5γ)を検出する方法であって、
上記試料を、[1]~[5]の何れか一に記載の抗1C10(0.5γ)抗体又はその抗原結合断片の何れかと接触させる工程、及び
上記[1]~[5]の何れか一に記載の抗1C10(0.5γ)抗体又はその抗原結合断片に結合した抗HIV-1 V3抗体1C10(0.5γ)を検出する工程を
含む、方法。
[11] サンドイッチアッセイにより検出される、[10]に記載の方法。
[12] 酵素結合免疫吸着アッセイ(ELISA)又は電気化学発光アッセイにより検出される、[10]又は[11]に記載の方法。
[13] 上記サンドイッチアッセイの捕捉抗体が[1]~[5]の何れか一に記載の抗1C10(0.5γ)抗体及びその抗原結合断片の何れかであり、上記サンドイッチアッセイの検出抗体が[1]~[5]の何れか一に記載の抗1C10(0.5γ)抗体及びその抗原結合断片の何れかである、[11]又は[12]に記載の方法。
[14] 上記捕捉抗体が
a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;又は
b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
を含む抗体又はその抗原結合断片であり、
上記検出抗体が
a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;又は
b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
を含む抗体又はその抗原結合断片である、
[13]に記載の方法。
[15] 試料中の抗HIV-1 V3抗体1C10(0.5γ)の濃度を決定する方法であって、
[10]~[14]の何れか一に記載の検出方法を用いて、試料中の抗HIV-1 V3抗体1C10(0.5γ)の濃度を決定する工程
を含む、方法。
[16] HIV-1感染症を患っている対象における、抗HIV-1 V3抗体1C10(0.5γ)による治療の有効性を判断又は監視するための方法であって、
[10]~[14]の何れか一に記載の検出方法を用いて、予め抗HIV-1 V3抗体1C10(0.5γ)が投与された対象由来の試料において、抗HIV-1 V3抗体1C10(0.5γ)レベルを決定する工程、及び
対照試料における抗HIV-1 V3抗体1C10(0.5γ)レベルと、対象由来の試料における抗HIV-1 V3抗体1C10(0.5γ)レベルを比較する工程を含む、方法。
 本発明によれば、抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体及びその抗原結合断片を提供することができる。本発明によれば、抗HIV-1 V3抗体1C10(0.5γ)の検出薬を提供することができる。本発明は、試料中の抗HIV-1 V3抗体1C10(0.5γ)を検出する方法を提供することができる。本発明によれば、試料中の抗HIV-1 V3抗体1C10(0.5γ)の濃度を決定する方法を提供することができる。本発明によれば、HIV患者における、抗HIV-1 V3抗体1C10(0.5γ)による治療の有効性を判断又は監視するための方法を提供することができる。
図1は、抗1C10イディオタイプ抗体5クローン(#87、#92、#102、#103及び#G46)の重鎖アミノ酸配列(配列番号31, 33, 35, 37及び39)を示す。 図2は、抗1C10イディオタイプ抗体5クローン(#87、#92、#102、#103及び#G46)の軽鎖アミノ酸配列(配列番号32, 34, 36, 38及び40)を示す。 図3Aは、抗1C10イディオタイプ抗体(Anti-Id Abs)による、V3ペプチド(JRFL NNT20)への1C10の結合抑制活性を測定するためのELISAの説明図である。 図3BはELISAによる1C10結合抑制活性の測定の結果を示す。抗1C10イディオタイプ抗体(#87、#92、#102、#103及び#G46)は、1C10以外の抗HIV-1 V3抗体であるKD-247、5G2、1D9、717G2、及び19F8の5抗体への交差活性はみられなかった。グラフ中の「□」(白四角)は、非標識の1C10で、ビオチン化1C10(図3A中の1C10-biotin)又は他のビオチン化抗HIV-1 V3抗体の結合を阻害する陽性コントロールを示す。 図4Aは、1C10変異体(1C10 germline reverted mutants)作製のためのオーバーラップPCRのプライマーの位置を示す。 図4Bは、1C10変異体(1C10 germline reverted mutants)の模式図である。 図5は、ELISAによる抗イディオタイプ抗体の1C10変異体への結合活性の解析の結果を示す。 図6は、実施例におけるELISA用マイクロプレートを用いたサンプルの希釈方法の例を示す。 図7は、サンドイッチELISAの模式図である。 図8は、抗イディオタイプ抗体のFabとIgGを使用したサンドイッチELISAによる1C10の検出結果を示す。 図9は、5種類の抗イディオタイプ抗体の何れかのFabを固相抗体(捕捉抗体)としてマイクロプレート上にコーティングし、抗イディオタイプ抗体#87のビオチン化IgGを検出抗体として使用した、1C10検出結果を示す。 図10は、固相抗体として#92Fab及び検出抗体として#87のビオチン化IgGを使用した1C10検出結果;固相抗体として#87Fab及び検出抗体として#87のビオチン化IgGを使用した1C10検出結果;固相抗体として#87Fab及び検出抗体として#92のビオチン化IgGを使用した1C10検出結果を示す。 図11Aは、抗1C10イディオタイプ抗体#87の1C10への結合活性を評価するための、Biacore(登録商標)の解析結果(センサーグラム)を示す。 図11Bは、抗1C10イディオタイプ抗体#92の1C10への結合活性を評価するための、Biacore(登録商標)の解析結果(センサーグラム)を示す。 図11Cは、抗1C10イディオタイプ抗体#102の1C10への結合活性を評価するための、Biacore(登録商標)の解析結果(センサーグラム)を示す。 図11Dは、抗1C10イディオタイプ抗体#G46の1C10への結合活性を評価するための、Biacore(登録商標)の解析結果(センサーグラム)を示す。 図12は、HIV-1ウイルスのエンペロープ糖たんぱく質のV3ループを認識する、抗HIV-1 V3抗体1C10(0.5γ)の重鎖可変領域(配列番号41)及び軽鎖可変領域(配列番号42)を示す。
 以下に記載する本発明の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
(抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体又はその抗原結合断片)
 抗HIV-1 V3抗体1C10(0.5γ)は、日本国特許第5526386号公報に開示されており、HIV-1ウイルスのエンペロープ糖たんぱく質のV3ループを認識する抗体であり、配列番号41及び42のアミノ酸配列をそれぞれ含む重鎖可変領域及び軽鎖可変領域を含む(図12)。抗HIV-1 V3抗体としては、1C10(0.5γ)の他にも、日本国特許第5526386号公報に開示のKD247及び5G2、Ramirez, K, et al., 2015(上掲)に記載の1D9及び717G2、並びにMohammad Mamun Alam et al., (2019). Synergistic inhibition of cell-to-cell HIV-1 infection by combinations of single chain variable fragments and fusion inhibitors. Biochemistry and biophysics reports. 20. 100687. 10.1016/j.bbrep.2019.100687.(その全記載は、参照により本明細書に援用される)に記載の19F8等がある。
 本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体は、抗HIV-1 V3抗体1C10(0.5γ)を特異的に認識する抗体であり、特に1C10(0.5γ)の抗原認識領域を認識することができる。本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体を用いて、抗HIV-1 V3抗体1C10(0.5γ)を特異的に検出することができる。本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体を用いて、抗HIV-1 V3抗体1C10(0.5γ)を特異的に定量検出することができる。
 本明細書において抗体は、2本の重鎖(H鎖)と2本の軽鎖(L鎖)が結合した構造をとる。この軽鎖と重鎖がジスルフィド結合(SS結合)で結びついてヘテロダイマーを形成し、さらにこのヘテロダイマーが2つ結合して Y字型のヘテロテトラマーを形成する。重鎖は、重鎖可変領域VH、重鎖定常領域CH1、CH2、CH3、及びCH1とCH2の間に位置するヒンジ領域からなり、軽鎖は、軽鎖可変領域VLと軽鎖定常領域CLとからなる。可変領域は、相補性決定領域(complementarity-determining region: CDR)とフレームワーク領域(framework region: FR)を含む。軽鎖と重鎖の可変領域には、それぞれ3つのCDR(重鎖CDR1~3、及び軽鎖CDR1~3)と、それぞれ4つのFR(重鎖FR1~4、及び軽鎖FR1~4)が存在する。CDRを同定するための方法は公知であり、例えば、IMGT/V-QUEST Search page(http://www.imgt.org/IMGT_vquest/input)、Brochet, X. et al., Nucl. Acids Res. 36, W503-508 (2008)(その全記載は、参照により本明細書に援用される)など。参考文献: Giudicelli, V., Brochet, X., Lefranc, M.-P., Cold Spring Harb Protoc. 2011 Jun 1;2011(6). pii: pdb.prot5633. doi: 10.1101/pdb.prot5633. PMID: 21632778)、その全記載は、参照により本明細書に援用される)を利用することができる。また、同様の結果が得られる限り当該分野で公知の任意の他の手段も利用できる(Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md.; Chothia et al., Nature (1989) 342: 877、その全記載は、参照により本明細書に援用される)。
 本発明の、抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体又はその抗原結合断片は、
a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
c)配列番号13、14、及び15のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号16、17、及び18のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
d)配列番号19、20、及び21のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号22、23、及び24のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;又は
e)配列番号25、26、及び27のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号28、29、及び30のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
を含む。
 本発明の一実施態様では、抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体又はその抗原結合断片は、a) 配列番号31及び32、b) 配列番号33及び34、c)配列番号35及び36、d)配列番号37及び38、又はe)配列番号39及び40に記載のアミノ酸配列をそれぞれ含む重鎖可変領域及び軽鎖可変領域を含む。
 本発明の抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体は、実施例で取得した1C10結合抑制活性のある5クローン#87、#92、#102、#103、及び#G46に基づく。これら5クローンは、V3ペプチドを標的とした結合抑制試験で、1C10(0.5γ)以外の抗HIV-1 V3抗体であるKD-247、5G2、1D9、717G2、及び19F8の5抗体への交差活性がみられず、抗HIV-1 V3抗体1C10(0.5γ)への特異性が非常に高かった。
 クローン#87は、a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含む。クローン#92は、b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含む。クローン#102は、c)配列番号13、14、及び15のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号16、17、及び18のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含む。クローン#103は、d)配列番号19、20、及び21のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号22、23、及び24のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含む。クローン#G46は、e)配列番号25、26、及び27のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号28、29、及び30のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含む。
 本発明の、抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体又はその抗原結合断片は、a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含み、上記重鎖可変領域及び軽鎖可変領域が、それぞれa) 配列番号31及び32に記載のアミノ酸配列と少なくとも80%、85%、90%、95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含むことができる。上記少なくとも80%、85%、90%、95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含む抗体又はその抗原結合断片は、配列番号31又は32に記載のアミノ酸配列に対して、アミノ酸置換、欠失及び/又は挿入をフレームワーク領域に有することができる。
 本発明の、抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体又はその抗原結合断片は、b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含み、上記重鎖可変領域及び軽鎖可変領域が、それぞれb) 配列番号33及び34に記載のアミノ酸配列と少なくとも80%、85%、90%、95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含むことができる。上記少なくとも80%、85%、90%、95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含む抗体又はその抗原結合断片は、配列番号33又は34に記載のアミノ酸配列に対して、アミノ酸置換、欠失及び/又は挿入をフレームワーク領域に有することができる。
 本発明の、抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体又はその抗原結合断片は、c)配列番号13、14、及び15のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号16、17、及び18のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含み、上記重鎖可変領域及び軽鎖可変領域が、それぞれc)配列番号35及び36に記載のアミノ酸配列と少なくとも80%、85%、90%、95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含むことができる。上記少なくとも80%、85%、90%、95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含む抗体又はその抗原結合断片は、配列番号35又は36に記載のアミノ酸配列に対して、アミノ酸置換、欠失及び/又は挿入をフレームワーク領域に有することができる。
 本発明の、抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体又はその抗原結合断片は、d)配列番号19、20、及び21のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号22、23、及び24のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含み、上記重鎖可変領域及び軽鎖可変領域が、それぞれd)配列番号37及び38に記載のアミノ酸配列と少なくとも80%、85%、90%、95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含むことができる。上記少なくとも80%、85%、90%、95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含む抗体又はその抗原結合断片は、配列番号37又は38に記載のアミノ酸配列に対して、アミノ酸置換、欠失及び/又は挿入をフレームワーク領域に有することができる。
 本発明の、抗HIV-1 V3抗体1C10に結合する抗体又はその抗原結合断片は、e)配列番号25、26、及び27のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号28、29、及び30のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含み、上記重鎖可変領域及び軽鎖可変領域が、それぞれe)配列番号39及び40に記載のアミノ酸配列と少なくとも80%、85%、90%、95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含むことができる。上記少なくとも80%、85%、90%、95%、96%、97%、98%、又は99%同一であるアミノ酸配列を含む抗体又はその抗原結合断片は、配列番号39又は40に記載のアミノ酸配列に対して、アミノ酸置換、欠失及び/又は挿入をフレームワーク領域に有することができる。
 任意のある重鎖可変領域及び軽鎖可変領域が、本発明の重鎖可変領域及び軽鎖可変領域のアミノ酸配列と少なくとも80%、85%、90%、95%、96%、97%、98%、又は99%同一であるか否かは、公知の配列比較アルゴリズムを使用して、又は手作業アラインメントにより、比較のウインドウ内又は指定領域において比較配列間で最大一致が得られるように決定することができる。例えばCLUSTALWコンピュータープログラム(Thompson Nucl. Acids Res. 2 (1994), 4673-4680)又はFASTDB (Brutlag Comp. App. Biosci. 6 (1990), 237-245)に基づくアルゴリズムを使用して、配列間のパーセント同一性を決定することができる。BLAST (Basic Local Alignment Search Tool)及びBLAST 2.0アルゴリズム(Altschul, 1997, Nucl. Acids Res. 25:3389-3402; Altschul, 1993 J. Mol. Evol. 36:290-300; Altschul, 1990, J. Mol. Biol. 215:403-410)を利用することもできる。
 本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体は、単離された抗体であってもよい。本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体は、モノクローナル抗体であることが好ましい。本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体は、全長IgG抗体であってもよい。
 本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体は、マウス定常領域又はヒト定常領域を含むことができる。本発明の一実施態様では、本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体は、マウス可変領域及びヒト定常領域を含む、キメラ抗体である。キメラ抗体は、その抗原結合断片も含む。
 本明細書において抗原結合断片は、抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体の断片であって、抗HIV-1 V3抗体1C10(0.5γ) に結合する断片をいう。具体的には、VL、VH、CL及びCH1領域からなるFab断片;2つのFabがヒンジ領域でジスルフィド結合によって連結されているF(ab')2断片;VL及びVHからなるFv断片;VL及びVHを人工のポリペプチドリンカーで連結した一本鎖抗体であるscFv断片等が挙げられるが、これらに限定されない。
 本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体は、抗イディオタイプ抗体であることが好ましい。本明細書において抗イディオタイプ抗体は、抗体分子の抗原認識領域に結合する抗体をいう。抗イディオタイプ抗体は、その抗原結合断片も含む。本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体又はその抗原結合断片は、抗HIV-1 V3抗体1C10(0.5γ)の抗原認識領域を認識することができる。以下の本明細書において、本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体を抗1C10イディオタイプ抗体という場合がある。
(エピトープ)
 本発明の抗1C10イディオタイプ抗体の、抗原(抗HIV-1 V3抗体1C10(0.5γ))上の抗体結合部位の解析は、公知技術を利用したエピトープマッピングや1C10(0.5γ)の変異体を作成して実施することができる。具体的には、例えば、後記の実施例のように、1C10(0.5γ)のFR1、CDR1、FR2、CDR2、FR3の各領域を免疫グロブリン生殖系列遺伝子配列にした1C10(0.5γ)変異体を作製して、各1C10(0.5γ)変異体に対する結合活性を解析することにより実施することができる。抗HIV-1 V3抗体1C10(0.5γ)は三次元の立体構造を持つため、立体構造に依存した不連続エピトープである可能性もあるし、単純な直鎖状アミノ酸配列によって構成される線状エピトープである可能性もある。
 後記の実施例の結果から、抗1C10イディオタイプ抗体のクローン#87、#102及び#103は、1C10(0.5γ)のCDR2を含む抗原結合部位を認識し、クローン#92は、1C10(0.5γ)のFR3及びCDR3を含む抗原結合部位を認識し、クローン#G46は、1C10(0.5γ)のCDR1を含む抗原結合部位を認識すると考えられた。
 (アフィニティー)
 特定の実施態様において、本発明の抗1C10イディオタイプ抗体は、≦1μM、≦100nM、≦10nM、≦1nM、≦0.5nM、≦0.1nM又は≦0.05nM(例えば、10-8M以下、例えば10-8M~10-13M、例えば10-9M~10-12M)のアフィニティー(結合親和性;KD) を有する。
 KDは、後記の実施例のように表面プラズモン共鳴アッセイを用いて測定することができる。例えば、Biacore(登録商標)T200を用いて、Series S Sensor Chip SA (GE Healthcare)にビオチン化した1C10を固定し、希釈した抗イディオタイプ抗体を流して、その結合と解離を測定することができる。バッファーはHBS-EPバッファー (0.01 M HEPES, 0.15 M NaCl, 3 mM EDTA, 0.05 % Surfactant P 20, pH7.4)を用い、Biacore(登録商標) T200 Evaluation SoftwareのKinetics/Affinityプログラムで解析を行うことができる。
(抗1C10イディオタイプ抗体の製造方法)
 本発明に係る抗1C10イディオタイプ抗体の製造方法は限定されないが、例えば、抗HIV-1 V3抗体1C10(0.5γ)又はその断片で免疫した非ヒト哺乳動物からB細胞を単離し、B細胞1個から抗体遺伝子を増幅し、CHO細胞やHEK293細胞のような動物細胞で発現させ抗体性能評価を行い、得られた遺伝子情報からIgG抗体遺伝子を合成し、HEK293細胞等で発現させ抗体を得ることができる。上記免疫した非ヒト哺乳動物から単離した抗体産生細胞を骨髄腫細胞等と融合させてハイブリドーマを作製し、このハイブリドーマが産生した抗体を精製することによって得ることもできる。
 本発明に係る抗1C10イディオタイプ抗体を遺伝子組換え法で作製する場合、例えば、本発明に係る核酸を含む発現ベクターで適当な宿主を形質転換し、この形質転換体を適当な条件で培養して抗体を発現させ、公知の方法に従って単離精製すればよい。単離精製方法としては、例えば、プロテインA等を用いたアフィニティカラム、その他のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析が挙げられ、これらを適宜組み合わせることができる。
 本発明の抗原結合断片は、当該断片をコードするDNAを用いて上述の遺伝子組換え法で製造してもよいし、また、全長の抗体を得てからパパイン、ペプシン等の酵素で処理して断片化してもよい。
(核酸)
 本発明は、本発明に係る抗1C10イディオタイプ抗体又はその抗原結合断片をコードする核酸も包含する。核酸は、天然の核酸であっても人工の核酸であってもよく、例えば、DNA、RNA、DNAとRNAのキメラが挙げられるがこれらに限定されない。抗1C10イディオタイプ抗体又はその抗原結合断片をコードする核酸の塩基配列は、当業者が公知の方法に従って決定することができ、公知の方法で調製することができる。
 本発明に係る抗1C10イディオタイプ抗体又はその抗原結合断片をコードする核酸としては、例えば、
配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖をコードするDNA、
配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖をコードするDNA、
配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖をコードするDNA、
配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖をコードするDNA、
配列番号13、14、及び15のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖をコードするDNA、
配列番号16、17、及び18のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖をコードするDNA、
配列番号19、20、及び21のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖をコードするDNA、
配列番号22、23、及び24のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖をコードするDNA、
配列番号25、26、及び27のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖をコードするDNA、及び
配列番号28、29、及び30のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖をコードするDNAが挙げられるがこれらに限定されない。
(発現ベクター)
 本発明は、本発明の抗1C10イディオタイプ抗体又はその抗原結合断片をコードする核酸を含む発現ベクターも包含する。発現ベクターは、使用する宿主細胞にあわせて適宜選択することができる。これらの発現ベクターには、公知の方法(制限酵素を利用する方法等)で、本発明の抗1C10イディオタイプ抗体又はその抗原結合断片をコードする核酸を挿入することができる。本発明に係る発現ベクターは、さらに、抗体遺伝子の発現を調節するプロモーター、複製起点、選択マーカー遺伝子等を含むことができる。プロモーター及び複製起点は、宿主細胞とベクターの種類によって適宜選択することができる。
(形質転換体)
 本発明は、本発明のベクターを含む形質転換体を包含する。形質転換体は、本発明のベクターを適切な宿主細胞や宿主生物にトランスフェクトすることによって得ることができる。宿主細胞としては、例えば、哺乳類細胞(CHO細胞、COS細胞、ミエローマ細胞、HeLa細胞、Vero細胞、HEK293等)、昆虫細胞、植物細胞、真菌細胞(サッカロミセス属、アスペルギルス属等)といった真核細胞や、大腸菌(E.coli)、枯草菌などの原核細胞を用いることができる。宿主生物としては、例えば、カイコを用いることができる。
 本発明は、上記の抗1C10イディオタイプ抗体又はその抗原結合断片の何れかを含む、医薬組成物を提供することができる。本発明の医薬組成物は、薬学的に許容可能な担体や賦形剤を含むことができる。本発明の医薬組成物は、HIV-1感染症の診断や治療に用いることができる。
(抗HIV-1 V3抗体1C10(0.5γ)の検出薬)
 本発明は、上記の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体又はその抗原結合断片の何れかを含む、抗HIV-1 V3抗体1C10(0.5γ)の検出薬を提供することができる。本発明の検出薬は、更に標識を含むことができる。標識は、蛍光標識、酵素標識、ビオチン、磁気ビーズ、アガロースビーズ、磁気アガロースビーズ、金コロイド、希土類蛍光錯体を含むが、これらに限定されない。標識は、1種類、又は複数種類を組み合わせて用いることができる。
 標識の例としては、これらに限定されるものではないが、フルオレセインイソチオシアネート(FITC)、Alexa Fluor(登録商標)色素、Cy色素などの低分子蛍光色素、フィコエリトリン(PE)、アロフィコシアニン(APC)などの蛍光タンパク質、西洋ワサビペルオキシダーゼ(HRP)(発色基質はTMB、OPDやABTS等)、アルカリホスファターゼ(AP)(発色基質はBCIP/NBTやpPNPP等)などの酵素標識、ビオチン/アビジン、免疫沈降法などに用いる磁気ビーズ、アガロースビーズ、磁気アガロースビーズ標識、免疫電顕等に用いる金コロイド標識、ルテニウム錯体(sulfo-tag)などの希土類蛍光錯体標識などを挙げることができる。そのほか、放射性同位体32P、14C、125I、3H及び131Iを標識に用いることもできる。一実施態様において、上記検出薬は、標識された抗1C10イディオタイプ抗体又はその抗原結合断片を含む。
(抗HIV-1 V3抗体1C10(0.5γ)の検出方法)
 本発明は、試料中の抗HIV-1 V3抗体1C10(0.5γ)を検出する方法であって、
上記試料を、上記抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体又はその抗原結合断片の何れかと接触させる工程、及び上記抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体又はその抗原結合断片に結合した抗HIV-1 V3抗体1C10(0.5γ)を検出する工程を含む、方法を提供することができる。
 上記の検出方法では、本発明の抗1C10イディオタイプ抗体又はその抗原結合断片を用いて、抗HIV-1 V3抗体1C10(0.5γ)が試料中に存在する場合には、検出することができる。この検出は、従来の任意の免疫学的測定方法により行うことができる。本発明の検出方法はin vitro又はex vivoで行うことができる。
 上記試料としては、血液又はその分画物若しくは処理物(例えば、血漿又は血清)を用いることができ、血清が好ましい。ヒトのHIV-1感染例では、1C10(0.5γ)以外の抗HIV-1 V3抗体が誘導される症例が存在するが、本発明の抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体又はその抗原結合断片は、1C10(0.5γ)に特異的に結合することができるため、ヒト由来の試料での1C10(0.5γ)の検出に用いることができる。
 上記の検出方法では、抗1C10イディオタイプ抗体又はその抗原結合断片は、上述の標識でラベルすることができる。
 上記の検出方法では、抗1C10イディオタイプ抗体又はその抗原結合断片は、他に結合していない可溶性の状態で用いることも可能であるが、固相に結合していてもよい。「固相」としては、プレート(例、マイクロウェルプレート)、チューブ、ビーズ(例、プラスチックビーズ、磁気ビーズ)、クロマトグラフィー用担体(例、ニトロセルロースメンブレンなどの吸水性基材、Sepharose)、メンブレン(例、ニトロセルロースメンブレン、PVDF膜)、ゲル(例、ポリアクリルアミドゲル)、金属膜(例、金膜)などが挙げられる。
 本発明の一実施態様では、抗HIV-1 V3抗体1C10(0.5γ)の検出は、直接法により、標識された抗1C10イディオタイプ抗体又はその抗原結合断片を検出することにより実施することができる。例えば、マイクロプレート等に抗HIV-1 V3抗体1C10(0.5γ)を固相化し、酵素等で標識された抗1C10イディオタイプ抗体又はその抗原結合断片を反応させ、洗浄後、マイクロプレートに残る酵素活性を検出することにより、実施することができる。
 本発明の別の実施態様では、抗HIV-1 V3抗体1C10(0.5γ)の検出は、サンドイッチアッセイ(サンドイッチイムノアッセイ)により、実施することができる。サンドイッチアッセイは、抗原上の別々のエピトープに結合する2つの抗体を使用する方法である。目的の抗原に対して高い結合特異性を有する捕捉抗体は、固相又は固体表面に結合している。次に抗原を含む試料を添加し、続いて検出抗体を添加する。検出抗体は捕捉抗体とは別のエピトープに結合する。
 本発明のサンドイッチアッセイでは、抗1C10イディオタイプ抗体又はその抗原結合断片の何れか1種類を抗ヒトIgG抗体と組み合わせて用いてもよいし、抗1C10イディオタイプ抗体又はその抗原結合断片の何れか2種類を用いてもよい。1種類の抗1C10イディオタイプ抗体又はその抗原結合断片を使用する場合の具体的な検出方法としては、例えば、抗1C10イディオタイプ抗体の抗原結合断片の何れか1種類をプレート等に固相化して試料を加え、結合した1C10を検出可能に標識した抗ヒトIgG抗体で検出することができる。
 検出方法は、公知の任意の方法で行うことができ、例えば、酵素結合免疫吸着アッセイ(ELISA)、電気化学発光アッセイ(ECL)、表面プラズモン共鳴(SPR)等を用いることができ、ELISA又は電気化学発光アッセイを用いることが好ましい。ELISAは、例えば、マイクロプレートに抗1C10イディオタイプ抗体を固相化し、抗HIV-1 V3抗体1C10(0.5γ)を反応させ、続いて酵素標識した別の抗1C10イディオタイプ抗体を反応させ、洗浄後、マイクロプレートに残る酵素活性を検出することができる。ECLも、ELISAと同様にサンドイッチアッセイに応答することができ、マイクロプレートに抗1C10イディオタイプ抗体を固相化し、抗HIV-1 V3抗体1C10(0.5γ)を反応させ、続いてルテニウム錯体で標識した別の抗1C10イディオタイプ抗体を反応させ、マイクロプレートの電極上で電気化学的刺激を起こし、ルテニウム錯体を発光させて検出することができる。
 上記サンドイッチアッセイの捕捉抗体が上記抗1C10イディオタイプ抗体及びその抗原結合断片の何れかであり、上記サンドイッチアッセイの検出抗体が上記抗1C10イディオタイプ抗体及びその抗原結合断片の何れかであることができる。サンドイッチアッセイの捕捉抗体と検出抗体は、異なる種類の抗1C10イディオタイプ抗体であってもよいし、同じ種類の抗1C10イディオタイプ抗体であってもよい。サンドイッチアッセイは、抗原上の異なるエピトープに結合する2つの抗体を各々捕捉抗体及び検出抗体として使用する方法であるが、本発明の抗1C10イディオタイプ抗体は、二価の抗体である抗HIV-1 V3抗体1C10(0.5γ)が標的であり同じ種類のエピトープを2箇所に有するので、同じ種類の抗1C10イディオタイプ抗体を捕捉抗体及び検出抗体に用いることが可能である。一方で、検出の特異性を高める目的では、本発明のサンドイッチアッセイの捕捉抗体と検出抗体は、異なる種類の抗1C10イディオタイプ抗体を用いることが好ましい。捕捉抗体と検出抗体が、抗HIV-1 V3抗体1C10(0.5γ)の異なる種類のエピトープを認識することにより、検出の特異性が高まるためである。
 サンドイッチアッセイを用いた本発明の検出方法において、上記捕捉抗体が
a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
c)配列番号13、14、及び15のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号16、17、及び18のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
d)配列番号19、20、及び21のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号22、23、及び24のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;又は
e)配列番号25、26、及び27のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号28、29、及び30のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
を含む抗体又はその抗原結合断片であり、
上記検出抗体が
a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
c)配列番号13、14、及び15のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号16、17、及び18のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
d)配列番号19、20、及び21のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号22、23、及び24のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;又は
e)配列番号25、26、及び27のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号28、29、及び30のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
を含む抗体又はその抗原結合断片であることができる。
 サンドイッチアッセイを用いた本発明の検出方法において、
上記捕捉抗体が
a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;又は
b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
を含む抗体又はその抗原結合断片であり、
上記検出抗体が
a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;又は
b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
を含む抗体又はその抗原結合断片であることができる。
 本発明の特定の実施態様では、上記捕捉抗体が
a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含む抗体又はその抗原結合断片であり、
上記検出抗体が
b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含む抗体又はその抗原結合断片であることができる。
 本発明の特定の実施態様では、上記捕捉抗体が
b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
を含む抗体又はその抗原結合断片であり、
上記検出抗体が
a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
を含む抗体又はその抗原結合断片であることができる。
 サンドイッチアッセイを用いた本発明の検出方法において、捕捉抗体は、上記抗1C10イディオタイプ抗体の全長IgG抗体でもよいし、その抗原結合断片でもよく、同様に、検出抗体は、その全長IgG抗体でもよいし、その抗原結合断片でもよい。抗原結合断片としては、例えば上述のFab断片、F(ab’)断片、Fv断片、又はscFv断片を挙げることができるが、これらに限定されない。捕捉抗体及び検出抗体について全長IgG抗体及び抗原結合断片の何れの形態を選択するかは、サンドイッチアッセイの種類(ELISAやECL等)や標識の種類などに依存して、適宜決定することができる。一実施態様において、捕捉抗体が抗原結合断片であり、検出抗体が全長IgG抗体でもよい。別の実施態様では、捕捉抗体及び検出抗体の両方が抗原結合断片でもよい。更に別の実施態様では、捕捉抗体が全長IgG抗体であり、検出抗体が抗原結合断片でもよい。更に別の実施態様では、捕捉抗体及び検出抗体の両方が全長IgG抗体でもよい。
 本発明の特定の実施態様では、上記捕捉抗体が
b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
を含む抗体の抗原結合断片であり、
上記検出抗体が
a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
を含む抗体であることができる。
 後記の実施例では、捕捉抗体としてFab#92でコートして、検出抗体としてIgG#87で検出する組み合わせが最も1C10検出感度が高く、シグナルが高いことが明らかになっている。
 本発明の抗イディオタイプ抗体はエピトープの違いから1) #87、 #102、 #103; 2) #92; 及び3) #G46の3群に分けられる。サンドイッチアッセイにおける捕捉抗体と検出抗体は、異なる群からそれぞれ選択することが好ましい。サンドイッチアッセイにおける捕捉抗体と検出抗体の組み合わせの例としては、#87と#92の組合せ、#87と#G46の組合せ、#102と#92の組合せ、#102と#G46の組合せ、#103と#92の組合せ、#103と#G46の組合せ、及び#92と#G46の組合せを挙げることができ、組み合わせのうち何れか一方を捕捉抗体とし、他方を検出抗体として用いることができる。
 本発明によれば、試料中の1C10(0.5γ)濃度が、0.1μg/mL以下、0.05μg/mL以下、又は0.01μg/mL以下でも1C10(0.5γ)を検出することができる。後記の実施例では、Fab#92でコートすると0.01μg/mL以下でも1C10が検出された。従来のV3ペプチドを用いたELISAでの検出感度は10μg/mL程度であるが、本発明によれば、従来よりも高感度に検出が可能である。
 本発明によれば、試料中の抗HIV-1 V3抗体1C10(0.5γ)の濃度を決定する方法であって、
上記試料中の抗HIV-1 V3抗体1C10(0.5γ)を検出する方法を用いて、試料中の抗HIV-1 V3抗体1C10の濃度を決定する工程を含む、方法を提供することができる。
 試料中の抗HIV-1 V3抗体1C10(0.5γ)の濃度を決定することは、抗HIV-1 V3抗体1C10(0.5γ) に結合する抗体又はその抗原結合断片に結合した抗HIV-1 V3抗体1C10(0.5γ)の量を測定し、試料中の抗HIV-1 V3抗体1C10(0.5γ)の濃度を算出することを含む。試料中の抗HIV-1 V3抗体1C10(0.5γ)の濃度を算出は、サンプルと標準曲線用標準物質共に、2 点測定又は 3 点測定を行い、標準曲線を作成し、この標準曲線上で試料の吸光度からサンプルの濃度を読み取ることにより行うことができる。
 本発明によれば、HIV-1感染症を患っている対象における、抗HIV-1 V3抗体1C10(0.5γ)による治療の有効性を判断又は監視するための方法であって、
上記試料中の抗HIV-1 V3抗体1C10(0.5γ)を検出する方法を用いて、予め抗HIV-1 V3抗体1C10(0.5γ)が投与された対象由来の試料において、抗HIV-1 V3抗体1C10(0.5γ)レベルを決定する工程、及び
対照試料における抗HIV-1 V3抗体1C10(0.5γ)レベルと、対象由来の試料における抗HIV-1 V3抗体1C10(0.5γ)レベルを比較する工程を含む、方法を提供することができる。
 本明細書においてレベルは、数値化された存在量に関する指標を意味し、例えば、濃度、量あるいはその代わりとして用いることができる指標を含む。よって、レベルは蛍光強度等の測定値そのものであってもよいし、濃度に換算された値であってもよい。また、レベルは、絶対的な数値(存在量、単位面積当たりの存在量など)であっても良いし、又は必要に応じて設定された比較対照と比較した相対的な数値であってもよい。
 本発明の一実施態様では、HIV-1感染症を患っている対象における、抗HIV-1 V3抗体1C10(0.5γ)による治療の有効性を判断又は監視するためのデータを提供する方法であって、上記試料中の抗HIV-1 V3抗体1C10(0.5γ)を検出する方法を用いて、予め抗HIV-1 V3抗体1C10(0.5γ)が投与された対象由来の試料において、抗HIV-1 V3抗体1C10(0.5γ)レベルを決定する工程、及び
対照試料における抗HIV-1 V3抗体1C10(0.5γ)レベルと、対象由来の試料における抗HIV-1 V3抗体1C10(0.5γ)レベルを比較して、それにより抗HIV-1 V3抗体1C10(0.5γ)による治療の有効性を判断又は監視するためのデータを取得する工程を含む、方法を提供することができる。
 上記試料は血液試料であることができ、特に血清試料が好ましい。上記対象は、哺乳動物であり、ヒトであることが好ましい。
 対照試料における抗HIV-1 V3抗体1C10(0.5γ)レベルと、対象由来の試料における抗HIV-1 V3抗体1C10(0.5γ)レベルとの間の差が、対象が抗HIV-1 V3抗体1C10(0.5γ)による治療に応答するかどうかの指標となる。対照試料における抗HIV-1 V3抗体1C10(0.5γ)レベルは、抗HIV-1 V3抗体1C10(0.5γ)による治療に応答することが分かっている患者(例えば、抗HIV-1 V3抗体1C10(0.5γ)の投与後に中和作用が確認されたHIV患者)におけるレベルであってもよいし、そのような複数の患者間で標準化されたレベルであってもよい。あるいは、対照試料における抗HIV-1 V3抗体1C10(0.5γ)レベルは、抗HIV-1 V3抗体1C10(0.5γ)による治療に非応答性であることが分かっている患者(例えば、抗HIV-1 V3抗体1C10(0.5γ)の投与後に中和作用が確認されなかったHIV患者)におけるレベルであってもよいし、そのような複数の患者間で標準化されたレベルであってもよい。
 上記応答性の対照試料における抗HIV-1 V3抗体1C10(0.5γ)レベルと比較して、同等以上の抗HIV-1 V3抗体1C10(0.5γ)レベルを有する対象は、抗HIV-1 V3抗体1C10(0.5γ)により治療効果が得られる可能性が高いと判断することができる。上記非応答性の対照試料における抗HIV-1 V3抗体1C10(0.5γ)レベルと比較して、同等以下の抗HIV-1 V3抗体1C10(0.5γ)レベルを有する対象は、抗HIV-1 V3抗体1C10(0.5γ)により治療効果が得られる可能性が低いと判断することができる。
 抗HIV-1 V3抗体1C10(0.5γ)による治療の有効性は、例えば抗HIV-1 V3抗体1C10(0.5γ)投与後の1つ以上の時点で、抗HIV-1 V3抗体1C10(0.5γ)レベルを決定することにより、監視することができる。抗HIV-1 V3抗体1C10(0.5γ)レベルを監視することは、抗HIV-1 V3抗体1C10(0.5γ)による治療の全体的な有効性を高めるために重要である。例えば、抗HIV-1 V3抗体1C10(0.5γ)に対して応答性の患者において、抗HIV-1 V3抗体1C10(0.5γ)レベルが特定のレベルを下回った場合に、抗HIV-1 V3抗体1C10(0.5γ)を投与により補うことで治療の効果が高まると考えられる。
 非ヒト霊長類モデルにおいて、抗HIV-1 V3抗体1C10(0.5γ)の中和作用がその血中濃度に相関することが明らかになったため、ヒトでの臨床試験においても、抗HIV-1 V3抗体1C10(0.5γ)を投与した患者における抗HIV-1 V3抗体1C10(0.5γ)の血中濃度の測定が重要になる。本発明によれば、抗HIV-1 V3抗体1C10(0.5γ)の血中濃度を特異的に定量することができ、抗HIV-1 V3抗体1C10(0.5γ)を中和抗体として用いるHIV-1感染症の治療法の開発、HIV-1感染症患者がこの中和抗体に応答するか否かの判断、あるいは治療経過の監視に有用である。
 以下の例に基づいて本発明をより具体的に説明するが、本発明はこれらの例に限定されるものではない。なお、本明細書において、特に記載しない限り、「%」等は質量基準であり、数値範囲はその端点を含むものとして記載される。
実施例1:抗イディオタイプ抗体の分離
<方法>
1)抗HIV-1 V3抗体1C10(0.5γ)によるマウスの免疫と抗イディオタイプ抗体産生B細胞の分離
 6週齢のBALB/Cマウスに200μgの抗V3抗体1C10(0.5γ)を市販のアジュバントTiterMax(登録商標) Gold Adjuvant liquid (Sigma-Aldrich, MO, US)と共に皮下注射にて投与し、その後2週間おきに等量の1C10及びアジュバントを尾静脈注射により4回投与し、計5回投与した。最後(8週目)の1C10投与から2-3日後にマウスを殺処分し、脾臓を採取した。脾臓から得られたリンパ球からMojoSort(登録商標) (Biolegend、CA、US)にてB細胞を分離し、抗体染色してFACS Aria(登録商標) IIによりCD19、7-AAD、IgM、IgG、1C10の細胞を96ウェルのプレートにシングルセルソーティングした。1C10による染色は、ビオチン化した1C10で染色後、アロフィコシアニン(APC)でラベルされたストレプトアビジンを二次抗体として用いて行った。
2)RT-PCRによる免疫グロブリン可変領域の増幅
 RT-PCRに使用した試薬を表1に示す。グアニジンチオシアナートに上記シングルセルソーティングした細胞を溶解し、更に表1の残りの試薬を加え、42℃10分、25℃10分、50℃60分、94℃5分で逆転写を行った。プライマーは、T Tiller et al. J Immunol Methods. 2009 (https://doi.org/10.1016/j.jim.2009.08.009)(その全記載は、参照により本明細書に援用される)に記載ものを使用した。
Figure JPOXMLDOC01-appb-T000001
 合成したcDNAの免疫グロブリン重鎖(HC)及び軽鎖(LC)の可変領域(VH及びVL)をそれぞれネスティッド(nested)PCRにより増幅した。第1PCR(1st PCR)及び第2PCR(2ndPCR)に使用した試薬を表3及び表4に示す。第1PCRは、表2に示す試薬を混合し、95℃ 5分で加熱したのち、94℃ 30秒、62℃ 30秒、72℃ 45秒を1サイクルとし50サイクル(アニーリング温度は25サイクルまで-0.4℃/サイクルで低下させ、26cycle目以降は52℃で行った)行い、72℃ 10分加熱することにより行った。第2PCRは、表3に示す試薬を混合し、95℃ 5分で加熱した後、94℃ 10秒、55℃ 10秒(HC 55℃、LC 65℃)、72℃ 15秒を1サイクルとし、50サイクル(HC:25サイクルまで-0.2℃/サイクル、26サイクル目以降は50℃で行った;LC:25サイクルまで-0.4℃/サイクル、26サイクル目以降は55℃で行った)行い、72℃ 4分加熱することにより行った。プライマーは、S Rohatgi et al. J Immunol Methods. 2008(https://doi.org/10.1016/S0022-1759(00)00337-9)(その全記載は、参照により本明細書に援用される)に記載されているものを使用した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
3)IgG発現プラスミドの作製とIgG産生
 RT-PCRによって増幅した免疫グロブリン可変領域を1%アガロース・ゲルで電気泳動し、VH及びVLに相当する長さ400~500bpのDNAをQIAquick(登録商標)Gel Extraction Kit(QIAGEN、Hilden Germany)で抽出した。精製したPCR産物20ngと発現ベクター(HC:pIgGH、LC:pKVA2;Ramirez, K, et al., 2015 (上掲))400ng、Gibson Assembly(登録商標) Master Mix(New England Biolabs、MA, US)を混合し、相同組み換えによりPCR産物をベクターに挿入した。上記発現ベクターは、ヒトIgG発現用ベクターである。組み換えDNAでOne Shot TOP10 Chemically Competent E. coli(Invitrogen、NY、US)をトランスフォームし、HC、LC発現プラスミドをクローニングした。GenEluteTM Plasmid Miniprep Kit (Sigma-Aldrich、MO, US)でクローニングしたプラスミドを精製し、HC、LCプラスミドそれぞれ500ngずつ、FectPRO(PolyPlus, Illkirch, France)1.5μLを混合してHEK293T細胞にトランスフェクトした。48時間後に得られた上清の1C10結合抑制活性を下記のとおりELISAで測定し、1C10結合抑制活性のあるクローンを抗1C10イディオタイプ抗体としてその後の解析に使用した。
4)抗1C10イディオタイプ抗体の精製
 1C10結合抑制活性のある5抗体(#87、#92、#102、#103、#G46)をHEK293A細胞にトランスフェクトし、G418 硫酸塩(MerkMillipore, MA, US) 0.625mg/mL、ハイグロマイシン(Nacalai tesqu, Kyoto, Japan) 0.15mg/mLで選別し、コロニー形成した細胞を選択した。IgG産生量の多い細胞株を長期培養し、回収した上清からHiTrapTMProtein A HP カラム (GE Healthcare、IL、US)によってIgGを精製した。溶出液をSpectra/Por(登録商標) 1 Dialysis Sack, 6~8KD(isher Scientific、Goteborg、Sweden)を用いて透析し、バッファーをPBSに置換した。
5)ELISAによる1C10結合抑制活性の測定
 HIV-1 JR-FL株のV3ペプチドであるNNT20(NNTRKSIHIGPGRAFYTTGE:配列番号43)を1ウェル当たり0.2μgをコートしたNunc MaxiSorpTMflat-bottom (Invitrogen, NY, US)をELISA 洗浄バッファー(Na2HPO470.4mM、KH2PO4 14.6mM、NaCl 1.3M、KCl 26.8mM、NaN3 30.7mM)にて1回洗浄後、FACS バッファー(2% BSA、0.1% azide、PBS pH7.2)を入れ37℃ 30分でブロッキングし、2回洗浄後に培養上清や精製IgGなどの抗1C10イディオタイプ抗体サンプル(#87、#92、#102、#103、又は#G46)を各ウェルに50μL入れ37℃ 30分インキュベートする。その後ビオチン化した1C10 0.025μgを加え37℃ 60分インキュベートした後、Streptavidin(SA)-Peroxidase(Sigma-Aldrich、MO, US)0.02μg(ELISA バッファー 100μL中)を加え室温で60分放置し、HRP基質のABTSによる発色後、ELISA ReaderによってOD値を測定した。本実施例で得た5つの抗1C10イディオタイプ抗体サンプルの1C10結合抑制活性は、抗1C10イディオタイプ抗体サンプルを入れていないウェルと比較した相対的なOD値の減少によって示した。
 1C10以外の抗HIV-1 V3抗体であるKD-247、5G2、1D9、717G2、及び19F8の5抗体についても、ビオチン化し、抗1C10イディオタイプ抗体サンプル(#87、#92、#102、#103、又は#G46)による結合抑制活性について測定した。
6)抗体のビオチン化
 抗体のビオチン化については、精製した抗体をEZ-Link NHS-LC-LC-Biotin(ThermoFisher、MA、US)にて添付プロトコルに従いビオチン化した。すなわち、EZ-Link NHS-LC-LC-Biotin 1mgを175μLのDMSOで溶解し、PBSにて1mg/mLに調整した抗体100μLに1.33μLを加え30分室温にて反応させた。その後、Amicon Ultra 0.5mL遠心液フィルタ 50K (Merk Millipore、 Darmstadt, Germany)にて400μLのPBSを加えて13,000g 4分で遠心し、廃液を捨て洗浄した。同様の操作で計3回洗浄し、余分なビオチン粒子を除去したのちに1.5mLチューブに回収した。
<結果>
 抗HIV-1 V3抗体1C10をマウスへ免疫し、シングルセルソーティングと抗体遺伝子のクローニングによって、抗1C10イディオタイプ抗体を5クローン(#87、#92、#102、#103及び#G46)分離した(図1及び2)。これらの抗1C10イディオタイプ抗体は、1C10以外の抗HIV-1 V3抗体であるKD-247、5G2、1D9、717G2、及び19F8の5抗体への交差活性はみられず、1C10への特異性が非常に高かった(図3B)。
実施例2:抗イディオタイプ抗体のエピトープ解析
<方法>
1)1C10変異体(1C10 germline reverted mutants reverted mutants)の作製
 1C10 HC発現ベクターをテンプレートとして、表4に示すプライマーを用いたオーバーラップPCRによりVHのCDR3以外の領域を増幅し、1C10のFR1、CDR1、FR2、CDR2、FR3の各領域を免疫グロブリン生殖系列遺伝子配列にした1C10変異体の作製を行った。図4Aに、オーバーラップPCRのプライマーの位置を示す。
Figure JPOXMLDOC01-appb-T000004
PCRは2X SapphireAmp Fast PCR Master Mix (TAKARA、Shiga, Japan) 10μL、ヌクレアーゼフリー水 7.5μL、10μM F プライマー 0.4μL、10μM R プライマー 0.4μL、テンプレート1μLを混ぜ、95℃ 5分で加熱したのち、94℃ 5秒、54℃ 5秒、72℃ 5秒を1サイクルとし30サイクル、72℃ 4分、その後4℃で行った。PCR産物をゲル泳動し、QIAquick Gel Extraction Kit(QIAGEN、Hilden Germany)で抽出してpIgGHへ組み込んだ。PCR-mutagenesisによる変異導入の結果、FR1-reverted mutant(FR1-R)、CDR1-reverted mutant(CDR1-R)、FR2-reverted mutant(FR2-R)、CDR2-reverted mutant(CDR2-R)、FR3-reverted mutant(FR3-R)、またこれらのすべての領域を免疫グロブリン生殖系列遺伝子配列にしたInferred germline 1C10 (IG)を作製した(図4B)。これら1C10 HC変異体発現ベクターをLC発現ベクターと共にHEK293細胞にトランスフェクトし、上清より1C10変異体を回収した。
2)ELISAによる抗イディオタイプ抗体の1C10変異体への結合活性の解析
 Nunc MaxiSorp flat-bottomに抗ヒトIgG(γ-鎖特異的)抗体(Sigma-Aldrich、MO, US)を炭酸水素塩緩衝液(64mM Na2CO3、136MmNaHCO3、pH9.6)で1:10,000に希釈し、100μL/ウェルずつ入れ一晩4℃で放置した。ELISA 洗浄バッファーで1回洗浄し、FACS バッファー 200μLを加え37℃ 30分放置した。その後2回洗浄し、1C10変異体及び1C10を加えて37℃で1時間反応させた。1回ELISA 洗浄バッファーにて洗浄したのち、ポリグロビン-N(PGN) 10μg 100μL/ウェルずつ入れ37℃ 30分ブロッキングを行った。2回洗浄後、ビオチン化した抗Id抗体を加えて37℃で1時間反応させた。3回洗浄したのちSA-Peroxidaseを加えて室温で1時間反応させ、3回洗浄後にABTS溶液を100μLずつ加えてルミノメーターにてOD405nmの吸光度を測定した。測定したOD値を1C10に対する相対値として算出し比較を行った。
<結果>
 1C10のVH領域のアミノ酸配列をFR1、CDR1、FR2、CDR2、FR3の各領域ごとに1C10の免疫グロブリン生殖系列遺伝子であるVH3-30の配列に変えた1C10変異体を作成し(図4)、1C10変異体に対する抗イディオタイプ抗体の結合をELISAで測定した(図5)。FR1からFR3までの領域全てを免疫グロブリン生殖系列遺伝子配列にした1C10変異体IGへの結合は、5つの抗イディオタイプ抗体全てでみられなかった。
 図5では、抗イディオタイプ抗体#87、#102、#103は変異体CDR2-Rへの結合活性が顕著に低下した。また、#92はFR3-Rに対し、#G46はCDR1-Rに対する結合活性低下がみられた。図5で結合が顕著に落ちている領域が、結合に関与していると考えられ、これらの領域とCDR3等を含んだ領域がエピトープであると考えられる。#92に関して、FR3の変異に大きく影響を受ける1C10の抗原結合部位はCDR3であるので、#92のエピトープにはCDR3の関与が大きいと考えられる。このことより、5クローンの抗イディオタイプ抗体はエピトープの違いから3群に分けられると考えられた。
実施例3:抗イディオタイプ抗体を用いた1C10検出系の作成
<方法>
1)Fabの作成と精製
 VH領域を増幅したPCR産物をIgGの作成と同様の操作によりFab重鎖発現ベクターに組み込んでクローニングした。Fab重鎖発現ベクターと軽鎖発現ベクターをHEK293A細胞にトランスフェクトしたのち、G418 硫酸塩及びハイグロマイシンにてFab産生細胞株を選択して長期培養した。得られた培養上清からHis60 Ni Superflow Resin (TAKARA、Shiga, Japan)にてFabを精製し、溶出液を透析によりPBSにて置換した。
2)サンドイッチ ELISA
 抗イディオタイプ抗体のFabを1μg(PBS 100μL中)ずつNunc MaxiSorpTM flat-bottomに入れ一晩4℃で放置した。ELISA 洗浄バッファーにてCappWash ELISA Plate Washerを用いて1回プレートを洗浄し、FACS バッファー 200μLを加え37℃ 30分放置した。その後プレートを上記方法にて2回洗浄し、1C10及びPolyglobin-N(PGN)を2列ずつそれぞれ0.25μg 125μL、サンプルを5列目以降のプレートの外周1ウェルずつを除いた6行のうちの最上段のウェルに加え、2~6行目に100μLずつELISA バッファーを加えた。マルチピペッターにて最上段より25μLずつサンプルを2段目に移しピペッティングにより混和したのち、2段目から3段目と次々に同様の作業を繰り返し5倍ずつ3125倍希釈となるまで希釈し、6段目のウェルより25μLの液を吸い出し最下段の空ウェルに捨てた(図6)。37℃で1時間反応後、ELISA 洗浄バッファーにて2回洗浄したのち、ビオチン化した抗イディオタイプ抗体IgGを各ウェルに0.2μg 100μLずつ加え37℃で1時間反応させた。3回洗浄したのちSA-PeroxidaseをELISA バッファーにて5,000倍希釈したものを100μLずつ加え室温で1時間反応させ、3回洗浄後にABTS溶液を100μL加え、ELISA ReaderでOD405nmの吸光度を測定した。図7に、サンドイッチ ELISAの模式図を示す。
<結果>
 抗イディオタイプ抗体のFabとIgGを使用したサンドイッチELISAによって1C10の検出を行なったところ、抗イディオタイプ抗体のFab#87又はFab#103をコートし、ビオチン化IgG#87で検出する組み合わせで最も強いシグナルがみられた(図8)。最もシグナル強度の高かったビオチン化IgG#87による検出系で、1C10の検出感度をコートするFab間で比較したところ、Fab#103、Fab#87でコートすると高濃度の1C10では強いシグナルが検出されたが、0.01μg/mLでは検出できなかった(図9)。一方、Fab#92でコートすると0.01μg/mL以下でも1C10が検出された。
 最も1C10検出感度が高かった抗イディオタイプ抗体#87と#92の組み合わせをより詳細に検討するため、Fab#92とIgG#87、Fab#87とIgG#87、Fab#87とIgG#92の3通りの組み合わせでサンドイッチELISAを行なったところ、Fab#92でコートしてIgG#87で検出する組み合わせが最も1C10検出感度が高く、シグナルも強かった(図10)。
実施例4:抗イディオタイプ抗体の結合活性の測定
<方法>
表面プラズモン共鳴(SPR)法による結合活性測定
 抗イディオタイプ抗体の1C10への結合活性を評価するため、Biacore(登録商標)T200 (GE Healthcare)を用いて1C10へのアフィニティー(結合親和性;KD)を測定した。Series S Sensor Chip SA (GE Healthcare)にビオチン化した1C10を固定し、希釈した抗イディオタイプ抗体を流して、その結合と解離を測定した。バッファーはHBS-EPバッファー (0.01 M HEPES, 0.15 M NaCl, 3 mM EDTA, 0.05 % Surfactant P 20, pH7.4)を用い、Biacore(登録商標) T200 Evaluation SoftwareのKinetics/Affinityプログラムで解析を行った。
<結果>
センサーチップに1C10を固定し、抗イディオタイプ抗体の結合をBiacore(登録商標) T200を用いて解析した。結果を、表5及び図11に示す。
Figure JPOXMLDOC01-appb-T000005
測定した抗イディオタイプ抗体のKD値は0.0343nMから0.327nMと非常に低く、1C10に対する非常に強い親和性を持っていることが示された。特に、#87は0.0343nMという非常に低いKD値であり、この強い親和性がELISAによる1C10の検出において#87がもっとも高感度である理由であると考えられた。
配列番号1~40:抗イディオタイプ抗体#87、#92、#102、#103、又は#G46のアミノ酸配列
配列番号41~42: 抗HIV-1 V3抗体1C10(0.5γ)の重鎖及び軽鎖のアミノ酸配列
配列番号43:HIV-1 JR-FL株のV3ペプチドNNT20のアミノ酸配列
配列番号44~56:プライマーの配列

Claims (16)

  1. 抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体(抗1C10(0.5γ)抗体)又はその抗原結合断片であって、
    a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
    b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
    c)配列番号13、14、及び15のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号16、17、及び18のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;
    d)配列番号19、20、及び21のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号22、23、及び24のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;又は
    e)配列番号25、26、及び27のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号28、29、及び30のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域を含み、
    前記抗HIV-1 V3抗体1C10(0.5γ)が、配列番号41及び42のアミノ酸配列をそれぞれ含む重鎖可変領域及び軽鎖可変領域を含む、抗1C10(0.5γ)抗体又はその抗原結合断片。
  2. 前記抗1C10(0.5γ)抗体の前記重鎖可変領域及び軽鎖可変領域が、
    a) 配列番号31及び32、
    b) 配列番号33及び34、
    c)配列番号35及び36、
    d)配列番号37及び38、又は
    e)配列番号39及び40
    に記載のアミノ酸配列と少なくとも80%同一であるアミノ酸配列をそれぞれ含む、請求項1に記載の抗1C10(0.5γ)抗体又はその抗原結合断片。
  3. 前記抗1C10(0.5γ)抗体が全長IgG抗体である、請求項1又は2に記載の抗1C10(0.5γ)抗体又はその抗原結合断片。
  4. 前記抗原結合断片が、Fab断片、F(ab’)断片、Fv断片、又はscFv断片である、請求項1~3の何れか一項に記載の抗1C10(0.5γ)抗体又はその抗原結合断片。
  5. 抗HIV-1 V3抗体1C10(0.5γ)の抗原認識領域を認識する、請求項1~4の何れか一項に記載の抗1C10(0.5γ)抗体又はその抗原結合断片。
  6. 請求項1~5の何れか一項に記載の抗1C10(0.5γ)抗体又はその抗原結合断片の何れかをコードする核酸。
  7. 請求項6に記載の核酸を含む発現ベクター。
  8. 請求項7に記載の発現ベクターを含む形質転換体。
  9. 請求項1~5の何れか一項に記載の抗1C10(0.5γ)抗体又はその抗原結合断片の何れかを含む、抗HIV-1 V3抗体1C10(0.5γ)の検出薬。
  10. 試料中の抗HIV-1 V3抗体1C10(0.5γ)を検出する方法であって、
    前記試料を、請求項1~5の何れか一項に記載の抗1C10(0.5γ)抗体又はその抗原結合断片の何れかと接触させる工程、及び
    前記請求項1~5の何れか一項に記載の抗1C10(0.5γ)抗体又はその抗原結合断片に結合した抗HIV-1 V3抗体1C10(0.5γ)を検出する工程を
    含む、方法。
  11. サンドイッチアッセイにより検出される、請求項10に記載の方法。
  12. 酵素結合免疫吸着アッセイ(ELISA)又は電気化学発光アッセイにより検出される、請求項10又は11に記載の方法。
  13. 前記サンドイッチアッセイの捕捉抗体が請求項1~5の何れか一項に記載の抗1C10(0.5γ)抗体及びその抗原結合断片の何れかであり、前記サンドイッチアッセイの検出抗体が請求項1~5の何れか一項に記載の抗1C10(0.5γ)抗体及びその抗原結合断片の何れかである、請求項11又は12に記載の方法。
  14. 前記捕捉抗体が
    a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;又は
    b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
    を含む抗体又はその抗原結合断片であり、
    前記検出抗体が
    a)配列番号1、2、及び3のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号4、5、及び6のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域;又は
    b)配列番号7、8、及び9のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む重鎖可変領域、並びに配列番号10、11、及び12のアミノ酸配列をそれぞれ含むCDR1、CDR2、及びCDR3を含む軽鎖可変領域
    を含む抗体又はその抗原結合断片である、
    請求項13に記載の方法。
  15. 試料中の抗HIV-1 V3抗体1C10(0.5γ)の濃度を決定する方法であって、
    請求項10~14の何れか一項に記載の検出方法を用いて、試料中の抗HIV-1 V3抗体1C10(0.5γ)の濃度を決定する工程
    を含む、方法。
  16. HIV-1感染症を患っている対象における、抗HIV-1 V3抗体1C10(0.5γ)による治療の有効性を判断又は監視するための方法であって、
    請求項10~14の何れか一項に記載の検出方法を用いて、予め抗HIV-1 V3抗体1C10(0.5γ)が投与された対象由来の試料において、抗HIV-1 V3抗体1C10(0.5γ)レベルを決定する工程、及び
    対照試料における抗HIV-1 V3抗体1C10(0.5γ)レベルと、対象由来の試料における抗HIV-1 V3抗体1C10(0.5γ)レベルを比較する工程を含む、方法。
PCT/JP2020/036760 2019-09-30 2020-09-29 抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体及びその抗原結合断片並びにその応用 WO2021065846A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551277A JPWO2021065846A1 (ja) 2019-09-30 2020-09-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-180305 2019-09-30
JP2019180305 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065846A1 true WO2021065846A1 (ja) 2021-04-08

Family

ID=75338236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036760 WO2021065846A1 (ja) 2019-09-30 2020-09-29 抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体及びその抗原結合断片並びにその応用

Country Status (2)

Country Link
JP (1) JPWO2021065846A1 (ja)
WO (1) WO2021065846A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3875480A4 (en) * 2018-10-29 2022-07-13 Immuno-Biological Laboratories Co., Ltd. ANTI-HIV ANTIBODIES AND METHODS OF PRODUCTION THEREOF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030100741A1 (en) * 2001-01-11 2003-05-29 Sybille Muller Nucleotide sequences encoding variable regions of heavy and light chains of monoclonal antibody 1F7, an anti-idiotypic antibody reactive with anti-HIV antibodies
JP2005517685A (ja) * 2002-01-17 2005-06-16 ポリマン サイエンティフィック イミューンバイオロジッシュ フォーシュング ゲゼルシャフト ミット ベシュレンクテル ファフツング Hiv−1中和抗体を誘導する抗イディオタイプ抗体
WO2009066702A1 (ja) * 2007-11-19 2009-05-28 Kumamoto University 抗hivモノクローナル抗体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030100741A1 (en) * 2001-01-11 2003-05-29 Sybille Muller Nucleotide sequences encoding variable regions of heavy and light chains of monoclonal antibody 1F7, an anti-idiotypic antibody reactive with anti-HIV antibodies
JP2005517685A (ja) * 2002-01-17 2005-06-16 ポリマン サイエンティフィック イミューンバイオロジッシュ フォーシュング ゲゼルシャフト ミット ベシュレンクテル ファフツング Hiv−1中和抗体を誘導する抗イディオタイプ抗体
WO2009066702A1 (ja) * 2007-11-19 2009-05-28 Kumamoto University 抗hivモノクローナル抗体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DOSENOVIC, P. ET AL.: "Anti-idiotypic antibodies elicit anti-HIV-1-specific B cell responses", JOURNAL OF EXPERIMENTAL MEDICINE, vol. 216, no. 10, 25 July 2019 (2019-07-25), pages 2316 - 2330, XP055815474 *
KAKU, YU: "Examination of anti-V3 neutralized monoclonal antibody-producing B cell isolation method using anti-idiotype antibody", JOURNAL OF AIDS RESEARCH, vol. 20, no. 4, 2018 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3875480A4 (en) * 2018-10-29 2022-07-13 Immuno-Biological Laboratories Co., Ltd. ANTI-HIV ANTIBODIES AND METHODS OF PRODUCTION THEREOF

Also Published As

Publication number Publication date
JPWO2021065846A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
CN111690058B (zh) 针对冠状病毒的具有中和活性的抗体及其用途
US20210324053A1 (en) Neutralizing antibodies to gp120 and their use
US10934345B2 (en) Broadly neutralizing antibodies against HIV-1 and use thereof
WO2017133639A1 (en) Broadly neutralizing antibodies against hiv-1 and use thereof
CN108676091B (zh) Hiv-1的中和抗体及其用途
US11345741B2 (en) Human monoclonal antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
US10273288B2 (en) Neutralizing antibodies to Ebola virus glycoprotein and their use
WO2012158948A1 (en) Human immunodeficiency virus neutralizing antibodies adn methods of use thereof
JP2019516348A (ja) 重症熱性血小板減少症候群ウイルスの外膜糖タンパク質に結合する抗体及びその用途
WO2011046623A2 (en) Hiv-1 antibodies
CN113480641B (zh) 用于治疗乙肝感染及相关疾病的抗体
JP2024506315A (ja) コロナウイルスのスパイクタンパク質を標的とする抗体
JP7171737B2 (ja) Sftsvに結合可能なナノ抗体及びその使用
WO2022069232A1 (en) Single domain antibodies against the nucleoprotein of sars-cov-2
WO2021065846A1 (ja) 抗HIV-1 V3抗体1C10(0.5γ)に結合する抗体及びその抗原結合断片並びにその応用
WO2018053328A1 (en) Bispecific molecules comprising an hiv-1 envelope targeting arm
KR20220055423A (ko) SARS-CoV-2 특이적 신규 항체를 이용한 SARS-CoV-2의 검출방법
US20220089694A1 (en) Ebola virus glycoprotein-specific monoclonal antibodies and uses thereof
RU2803082C2 (ru) Антитела против вируса гепатита в и их применение
US20220251173A1 (en) Anti-hepatitis b virus antibodies and use thereof
US20230331820A1 (en) HSV gE ANTIBODIES
WO2024155907A2 (en) Epitope-scaffold immunogens for pancoronavirus vaccines
WO2024018205A1 (en) Antibodies against sars-cov-2 and uses thereof
WO2023039064A2 (en) Broadly neutralizing antibodies against sars-like viruses
JP2024535249A (ja) 合成ヒト化ラマナノボディライブラリーおよびsars-cov-2中和抗体を同定するためのその使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871961

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021551277

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871961

Country of ref document: EP

Kind code of ref document: A1