WO2021065839A1 - Multilayer body - Google Patents

Multilayer body Download PDF

Info

Publication number
WO2021065839A1
WO2021065839A1 PCT/JP2020/036743 JP2020036743W WO2021065839A1 WO 2021065839 A1 WO2021065839 A1 WO 2021065839A1 JP 2020036743 W JP2020036743 W JP 2020036743W WO 2021065839 A1 WO2021065839 A1 WO 2021065839A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
laminate
glass plate
wavelength
Prior art date
Application number
PCT/JP2020/036743
Other languages
French (fr)
Japanese (ja)
Inventor
正義 片桐
孝洋 中井
秀行 米澤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2021065839A1 publication Critical patent/WO2021065839A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00

Definitions

  • the present invention relates to a laminate.
  • a laminated body that is attached to an article to decorate the article is known.
  • a laminated body for example, a decorative film having electromagnetic wave transmission and metallic luster, in which a base film, a metal layer, an adhesive layer and the like are laminated, is known.
  • Such a film has both a high-class appearance derived from its metallic luster and electromagnetic wave transmission, and is therefore suitably used for decoration of a device that transmits and receives radio waves.
  • a device that transmits and receives radio waves.
  • it is used for housings of mobile phones, smartphones, computers, etc., and decoration of the front part of automobiles.
  • home appliances and household appliances are also equipped with communication functions, and are expected to be applied in a wider range of fields.
  • Patent Document 1 in a transfer film transferred to a molded projectile, a protective layer, a printing layer laminated on the protective layer, and a non-conducting film deposited on the printing layer in an island structure.
  • a non-conductive transfer film having a metallic luster is disclosed, which comprises a metal-deposited layer having a property and an adhesive layer laminated on the metal-deposited layer.
  • a colored appearance may be desired.
  • a method for meeting such needs a method of further laminating an optical adjustment layer as a layer constituting the laminated body can be considered.
  • a configuration having an adhesive layer on the optical adjustment layer for example, a configuration in which a base material, an optical adjustment layer, and an adhesive layer are provided in this order may be desired.
  • a laminate (film) having such a structure is desired.
  • a film having such a structure is attached to the inside of the transparent adherend member, a colored appearance due to the optical adjustment layer can be imparted to the adherend member.
  • the adherend member since the film is located inside the adherend member, it is not easily scratched.
  • the adherend member since the adherend member is located on the outside, the texture of the adherend member can be utilized as it is in the product.
  • the present invention has been made in view of the above, and it is possible to decorate the adherend member to give a colored appearance, and further, the change in appearance due to various factors such as ultraviolet rays, temperature, and humidity is suppressed. It is an object of the present invention to provide a laminated body.
  • the laminate of the present invention that solves the above problems is a laminate that includes a base film, an optical adjustment layer, a barrier layer, and an adhesive layer in this order, and the optical adjustment layer is a metal oxide and a metal nitride.
  • the agent layer is a layer made of a transparent pressure-sensitive adhesive.
  • a metal layer may be further provided between the base film and the optical adjustment layer.
  • the metal layer may include a plurality of portions that are discontinuous with each other, at least in part.
  • an indium oxide-containing layer may be further provided between the base film and the metal layer.
  • the optical conditioning layer may contain Si and / or Nb.
  • the barrier layer may contain SiO 2.
  • the reflection spectrum obtained by laminating the laminate on a glass plate via an adhesive layer and irradiating the laminate with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate.
  • the color difference ⁇ E calculated using the above may be 3 or less.
  • the difference from the minimum wavelength in the obtained reflection spectrum may be 15 nm or less.
  • the laminate of the present invention can decorate the adherend member to give a colored appearance, and can further suppress changes in the appearance due to various factors such as ultraviolet rays, temperature, and humidity.
  • FIG. 1 is a schematic cross-sectional view of a laminated body according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a method of measuring the film thickness of the metal layer of the laminated body according to the embodiment of the present invention.
  • FIG. 1 shows a schematic cross-sectional view of a laminated body according to an embodiment of the present invention.
  • the laminate 1 of the present embodiment includes a base film 10, an optical adjustment layer 13, a barrier layer 14, and an adhesive layer 15 in this order.
  • the base film 10 includes, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP), polystyrene, polypropylene (PP), and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • COP cycloolefin polymer
  • polystyrene polypropylene
  • PP polypropylene
  • a film made of a homopolymer or copolymer such as polyethylene, polycycloolefin, polyurethane, acrylic (PMMA), and ABS can be used. According to these members, it does not affect the brilliance and radio wave transmission described later.
  • the film can withstand high temperatures such as vapor deposition and sputtering. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene naphthalate, and acrylic. , Polycarbonate, cycloolefin polymer, ABS, polypropylene, polyurethane are preferable. Of these, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferable because they have a good balance between heat resistance and cost.
  • the base film 10 may be a single-layer film or a laminated film. From the viewpoint of ease of processing and the like, the thickness is preferably about 6 ⁇ m to 250 ⁇ m, for example. Further, in order to strengthen the adhesive force with the layer formed on the base film 10, plasma treatment, easy adhesion treatment, or the like may be performed. Further, as will be described in detail later, the base film 10 may have a light-shielding property.
  • the base film 10 may be formed with a smooth or antiglare hard coat layer, if necessary.
  • scratch resistance can be improved.
  • the smooth hard coat layer the metallic luster can be improved when the metal layer 12 described later is provided, while by providing the antiglare hard coat layer, glare can be prevented. ..
  • the hard coat layer can be formed by applying a solution containing a curable resin.
  • the curable resin include thermosetting resins, ultraviolet curable resins, and electron beam curable resins.
  • the curable resin examples include various resins such as polyester-based, acrylic-based, urethane-based, acrylic-urethane-based, amide-based, silicone-based, silicate-based, epoxy-based, melamine-based, oxetane-based, and acrylic urethane-based.
  • these curable resins one kind or two or more kinds can be appropriately selected and used.
  • acrylic resins, acrylic urethane resins, and epoxy resins are preferable because they have high hardness, can be cured by ultraviolet rays, and are excellent in productivity.
  • the indium oxide-containing layer 11 may be provided between the base film 10 and the metal layer 12.
  • Indium oxide (In 2 O 3 ) itself can be used as the indium oxide-containing layer 11, and other than indium and indium such as indium tin oxide (ITO) and indium zinc oxide (IZO), for example.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • a composite oxide containing the same metal (second metal) can also be used.
  • ITO and IZO containing a second metal are more preferable because they have high discharge stability in the sputtering process.
  • the indium oxide-containing layer 11 it becomes easy to form the metal layer 12 into an island-shaped discontinuous structure, and aluminum or the like, which has been difficult to form a discontinuous structure in the past, can be easily formed into the metal layer 12. Become applicable.
  • the thickness of the indium oxide-containing layer 11 is usually preferably 1000 nm or less, more preferably 50 nm or less, still more preferably 20 nm or less, from the viewpoint of electromagnetic wave transmission and productivity.
  • the thickness of the indium oxide-containing layer 11 is preferably 1 nm or more, more preferably 2 nm or more, still more preferably 5 nm or more.
  • the laminate 1 may further include a metal layer 12 between the base film 10 and the optical adjustment layer 13.
  • the laminate 1 can be made into a metallic luster film by further including the metal layer 12. With such a configuration, it is possible to give a colored metallic luster-like appearance to the article to be decorated (adhesive member).
  • the metal layer 12 is formed on the base film 10 (on the indium oxide-containing layer 11 when the indium oxide-containing layer 11 is provided).
  • the metal layer 12 preferably includes a plurality of portions 12a that are discontinuous with each other at least in part. These portions 12a are, at least in part, discontinuous with each other, in other words, at least in part, separated by a gap 12b.
  • the "discontinuous state” as used herein means a state in which a plurality of portions 12a are separated from each other by a gap 12b, and as a result, they are electrically insulated from each other. By being electrically insulated, the sheet resistance of the metal layer 12 increases, and radio wave transmission can be obtained. That is, according to the metal layer 12 formed in a discontinuous state, it is possible to secure radio wave transmission while ensuring sufficient brilliance.
  • the discontinuous structure including the plurality of portions 12a and the gap 12b is not particularly limited, and examples thereof include an island structure and a crack structure, but an island structure is preferable from the viewpoint of productivity.
  • the island-like structure is a structure in which the metal particles are independent of each other and are laid out in a state where they are slightly separated from each other or partially in contact with each other.
  • the island-shaped metal layer 12 can be formed, for example, by depositing or sputtering a metal on the base film 10 (on the indium oxide-containing layer 11 when the indium oxide-containing layer 11 is provided).
  • the details of the mechanism by which the metal layer 12 formed by vapor deposition, sputtering, or the like becomes discontinuous on the base film 10 are not necessarily clear, but the ease of forming the discontinuous structure is given by the metal layer 12. It is considered to be related to the surface diffusivity on the substrate.
  • a discontinuous structure is more likely to be formed when the temperature of the substrate is high, the wettability of the metal layer 12 with respect to the substrate is small, and the melting point of the metal constituting the metal layer 12 is low. Therefore, in the following examples, aluminum (Al) is used as the metal constituting the metal layer 12, but other metals such as zinc (Zn), lead (Pb), copper (Cu), and silver (Ag) are used. For metals with a relatively low melting point, it is considered that a discontinuous structure can be formed by the same method. Further, the indium oxide-containing layer 11 makes it easy for the metal layer 12 to have an island-like discontinuous structure because the indium oxide-containing layer 11 improves the surface diffusivity of the metal constituting the metal layer 12. It is believed that there is.
  • the thickness of the metal layer 12 having an island-like structure is not particularly limited, but is preferably 20 nm or more, and more preferably 30 nm or more, from the viewpoint of improving the metallic luster.
  • the thickness of the metal layer 12 having the island-like structure is preferably 100 nm or less, more preferably 70 nm or less.
  • the circle-equivalent diameter of the metal portion 12a in the metal layer 12 having an island-like structure is not particularly limited, but is usually about 10 to 1000 nm.
  • the distance between the portions 12a is not particularly limited, but is usually about 10 to 1000 nm. These can be obtained from, for example, an SEM image.
  • the crack structure is a structure in which a metal thin film is divided by cracks.
  • the metal layer 12 having a crack structure is provided with, for example, a metal thin film layer on the base film 10 (on the indium oxide-containing layer when the indium oxide-containing layer 11 is provided), and is bent and stretched to generate cracks in the metal thin film layer. Can be formed by At this time, the metal layer 12 having a crack structure can be easily formed by providing a brittle layer made of a material having poor elasticity, that is, easily forming cracks by stretching, between the base film 10 and the metal thin film layer. it can.
  • the type of metal constituting the metal layer 12 is not particularly limited, and may be one type of metal or two or more types of metal. As described above, the ease of forming a discontinuous structure is related to the surface diffusivity on the substrate (base film), the temperature of the substrate is high, the wettability of the metal layer to the substrate is small, and the material of the metal layer. From this point of view, the metal layer preferably contains a metal having a relatively low melting point, and is composed of, for example, Al, Zn, Pb, Cu, and Ag. It is preferable to contain at least one metal selected from the group and any of the alloys containing the metal as a main component. In particular, the metal layer is preferably made of Al or an Al alloy for reasons of brilliance, stability, price and the like. When an Al alloy is used, the Al content is preferably 50% by mass or more.
  • the ratio of the thickness of the metal layer 12 to the thickness of the indium oxide-containing layer 11 is 0.1 to.
  • the range of 100 is preferable, and the range of 0.3 to 35 is more preferable.
  • the optical adjustment layer 13 is a layer having a refractive index of 1.75 or more containing at least one selected from the group consisting of metal oxides, metal nitrides, and metal sulfides.
  • the refractive index of the optical adjustment layer 13 is 1.75 or more, a colored appearance can be obtained.
  • the refractive index of the optical adjustment layer 13 is preferably 1.8 or more, and more preferably 1.9 or more.
  • the refractive index of the optical adjustment layer 13 is preferably 3.5 or less, more preferably 3.0 or less.
  • the optical adjustment layer 13 may be a laminated body of layers having different refractive indexes.
  • the material constituting the optical adjustment layer 13 is not particularly limited, and at least one selected from the group consisting of metal oxides, metal nitrides, and metal sulfides can be appropriately used.
  • the metal element contained in the metal oxide, the metal oxide, and the metal sulfide here includes a metalloid element such as Si.
  • at least one selected from the group consisting of metal oxides, metal nitrides, and metal sulfides includes metal acid nitrides, metal acid sulfides, and metal sulfur nitrides.
  • the metal oxide may be an oxide of a single metal element (single oxide) or an oxide of a plurality of metal elements (composite oxide).
  • the metal nitride may be a single metal element nitride (single nitride) or a plurality of metal element nitrides (composite nitride)
  • the metal sulfide may be a single metal sulfide. It may be a sulfide of a metal element (single sulfide) or a sulfide of a plurality of metal elements (composite sulfide). More specifically, as the material of the optical adjustment layer 13, for example, CeO 2 (2.30), Nb 2 O 3 (2.15), Nb 2 O 5 (2.20), SiN x (2.
  • the optical adjustment layer 13 containing Si and / or Nb for example, preferably contains Nb 2 O 5 and / or SiN X, and more preferably consisting of Nb 2 O 5 and / or SiN X ..
  • the thickness of the optical adjustment layer 13 is preferably 10 nm to 1000 nm. From the viewpoint of cost, it is more preferably 800 nm or less, and further preferably 500 nm or less. Further, from the viewpoint of color, it is preferably 15 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more.
  • the barrier layer 14 is a layer containing a metal oxide and / or a metal nitride.
  • the metal oxide and the metal element contained in the metal oxide here include a metalloid element such as Si.
  • the metal oxide and / or the metal nitride includes a metal oxynitride.
  • the metal oxide may be an oxide of a single metal element (single oxide) or an oxide of a plurality of metal elements (composite oxide).
  • the metal nitride may be a single metal element nitride (single nitride) or a plurality of metal element nitrides (composite nitride).
  • the present inventors have changed the appearance of the laminate 1 by exposing the laminate 1 to ultraviolet rays (UV rays) or when the laminate 1 is exposed to a high temperature and high humidity environment, the optical adjustment layer 13 and the pressure-sensitive adhesive layer. It was found that 15 was due to the reaction. Therefore, by providing the barrier layer 14 between the optical adjustment layer 13 and the pressure-sensitive adhesive layer 15 and suppressing these reactions, it is possible to suppress the change in the appearance of the laminated body 1.
  • UV rays ultraviolet rays
  • the material forming the barrier layer 14 is not particularly limited as long as it is transparent and does not react with the pressure-sensitive adhesive layer 15 and the optical adjustment layer 13, but for example, SiO 2 , Al 2 O 3 , AZO and the like are preferable. It preferably contains SiO 2, and more preferably consists of SiO 2.
  • the barrier layer 14 has a small optical absorption.
  • the barrier layer preferably has an absorption rate of light having a wavelength of 550 nm of 20% or less, more preferably 10% or less, and further preferably 5% or less.
  • the absorption rate of the barrier layer can be measured by the method shown below.
  • the laminate 1 is attached to a glass plate via an adhesive layer 15, and the laminate 1 is irradiated with visible light having a wavelength in the range of 380 nm to 780 nm using a spectrophotometer U-4100 manufactured by Hitachi High-Tech.
  • the value obtained by subtracting the reflectance and the transmittance at a wavelength of 550 nm of the reflection spectrum and the transmission spectrum thus obtained from 1 is taken as the absorption rate.
  • the thickness of the barrier layer is preferably 10 nm or more, more preferably 20 nm or more, and particularly preferably 40 nm or more from the viewpoint of suppressing the reaction between the optical adjustment layer 13 and the pressure-sensitive adhesive layer 15.
  • 300 nm or less is preferable, 200 nm or less is more preferable, and 100 nm or less is particularly preferable.
  • the laminated body 1 may be provided with a plurality of barrier layers.
  • a barrier layer may be provided between the base film (the metal layer when the metal layer 12 is provided) and the optical adjustment layer 13.
  • the pressure-sensitive adhesive layer 15 is a layer made of a transparent pressure-sensitive adhesive.
  • the laminate 1 of the present embodiment can decorate the adherend member from the inside by being attached to the inside of the transparent adherend member (opposite the side to be visually recognized) via, for example, the adhesive layer 15. ..
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 15 is not particularly limited as long as it is a transparent pressure-sensitive adhesive.
  • Either the agent and the polyether adhesive can be used alone or in combination of two or more. From the viewpoint of transparency, processability, durability and the like, it is preferable to use an acrylic pressure-sensitive adhesive.
  • the thickness of the pressure-sensitive adhesive layer 15 is not particularly limited, but it is preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, because it is possible to improve visible light transmission, film thickness accuracy, and flatness by making the pressure-sensitive adhesive layer 15 thinner. It is preferably 50 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the total light transmittance of the entire pressure-sensitive adhesive layer 15 is not particularly limited, but the value at an arbitrary visible light wavelength measured according to JIS K7361 is preferably 10% or more, more preferably 30% or more, and 50%. It is more preferably% or more. The higher the total light transmittance of the pressure-sensitive adhesive layer 15, the more preferable.
  • the pressure-sensitive adhesive layer 15 is protected by a release liner until it is attached to the adherend member.
  • the laminate 1 of the present embodiment can be used in addition to the above-mentioned base film 10, indium oxide-containing layer 11, metal layer 12, and adhesive layer 15 as long as the effects of the present invention are exhibited.
  • Other layers may be provided depending on the application.
  • the laminate 1 of the present embodiment may be provided with a light-shielding layer having no visible light transmission on the surface of the base film 10 opposite to the side on which the optical adjustment layer 13 is formed.
  • the material of the light-shielding layer is not particularly limited, and for example, the material exemplified as the material that can be used for the above-mentioned base film 10 can be colored black and used. Further, even in the laminated body not provided with the light-shielding layer, by making the base film 10 light-shielding, the same effect as in the case of providing the light-shielding layer can be obtained.
  • One of the factors for advancing the reaction between the optical adjustment layer 13 and the pressure-sensitive adhesive layer 15 is ultraviolet rays, temperature, and humidity.
  • the reaction between the optical adjustment layer 13 and the pressure-sensitive adhesive layer 15 proceeds even when exposed to ultraviolet rays or a high-temperature and high-humidity environment. Hateful.
  • the laminate 1 of the present embodiment has ultraviolet resistance (difficulty in reacting the optical adjustment layer 13 and the adhesive layer 15 when exposed to ultraviolet rays) and high temperature and high humidity resistance (exposure to a high temperature and high humidity environment).
  • the difficulty of reaction between the optical adjustment layer 13 and the pressure-sensitive adhesive layer 15) can be evaluated using, for example, a reflection spectrum.
  • the reflection spectrum obtained by bonding the laminate 1 to a glass plate via the pressure-sensitive adhesive layer 15 and irradiating the laminate 1 with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate (hereinafter, “initial reflection”).
  • the laminate 1 After exposing the laminate 1 bonded to the glass plate to ultraviolet rays or a high-temperature and high-humidity environment, the laminate 1 is irradiated with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate.
  • reflection spectrum after irradiation with ultraviolet rays and “reflection spectrum after exposure to a high temperature and high humidity environment”
  • ultraviolet resistance and high temperature and humidity resistance can be obtained. Can be evaluated.
  • the laminate is bonded to a glass plate via the pressure-sensitive adhesive layer, and the laminate is irradiated with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate.
  • the obtained reflection spectrum and the laminated body bonded to the glass plate are irradiated with ultraviolet light through the glass plate for 24 hours, and then visible light having a wavelength in the range of 380 nm to 780 nm is emitted through the glass plate. It is preferable that the color difference ⁇ E calculated by using the reflection spectrum obtained by irradiating is 3 or less.
  • the laminate 1 preferably has a color difference ⁇ E of 3 or less, preferably 2.5 or less, calculated using the initial reflection spectrum and the reflection spectrum after irradiation with ultraviolet rays for 24 hours. Is more preferable, and 2 or less is further preferable.
  • the color difference ⁇ E is the L * value in the CIE-L * a * b * display system before and after UV irradiation using the initial reflection spectrum, the reflection spectrum after 24-hour UV irradiation, and the relative spectral distribution of the CIE standard Illuminant D65.
  • the laminate is bonded to a glass plate via the pressure-sensitive adhesive layer, and the laminate is irradiated with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate.
  • visible light having a wavelength in the range of 380 nm to 780 nm is emitted to the glass plate. It is preferable that the difference from the minimum wavelength in the reflection spectrum obtained by irradiating the laminated body through the laminate is 15 nm or less.
  • the laminate 1 is exposed to a minimum wavelength in the initial reflection spectrum (wavelength when the reflectance becomes a minimum value; hereinafter also referred to as “bottom wavelength”) and a high temperature and high humidity environment for 500 hours.
  • the difference from the minimum wavelength in the reflected spectrum after this is preferably 15 nm or less, more preferably 10 nm or less, and further preferably 5 nm or less.
  • the metal layer 12 has a discontinuous structure to improve radio wave transmission as described above.
  • the radio wave transmission property of the laminated body 1 can be evaluated by, for example, the amount of radio wave transmission attenuation. It should be noted that there is a correlation between the amount of radio wave transmission attenuation in the microwave band (5 GHz) and the amount of radio wave transmission attenuation in the frequency band (76 to 80 GHz) of the millimeter wave radar, and the values are relatively close to each other.
  • a laminate (metal glossy film) having excellent radio wave transmission in the wave band is also excellent in radio wave transmission in the frequency band of the millimeter wave radar.
  • the amount of radio wave transmission attenuation in the microwave band (5 GHz) of the laminate 1 of the present embodiment is preferably 10 [ ⁇ dB] or less, more preferably 5 [ ⁇ dB] or less, and 2 [ ⁇ dB]. ] The following is more preferable. If it is larger than 10 [ ⁇ dB], there is a problem that 90% or more of the radio waves are blocked.
  • the sheet resistance of the metal layer 12 (when the indium oxide-containing layer 11 is provided, the sheet resistance of the indium oxide-containing layer 11 and the metal layer 12 as a laminate) also has a correlation with radio wave transmission.
  • the sheet resistance of the metal layer 12 (when the indium oxide-containing layer 11 is provided, the sheet resistance of the indium oxide-containing layer 11 and the metal layer 12 as a laminate) is preferably 100 ⁇ / ⁇ or more, and in this case, microwaves.
  • the amount of radio wave transmission attenuation in the band (5 GHz) is about 10 to 0.01 [ ⁇ dB].
  • the sheet resistance of the metal layer 12 (when the indium oxide-containing layer 11 is provided, the sheet resistance of the indium oxide-containing layer 11 and the metal layer 12 as a laminate) is more preferably 200 ⁇ / ⁇ or more, and more preferably 600 ⁇ / ⁇ or more. Is more preferable, and 1000 ⁇ / ⁇ or more is particularly preferable. Sheet resistance can be measured by eddy current measurement according to JIS-Z2316-1: 2014.
  • the amount of radio wave transmission attenuation and sheet resistance are affected by the material and thickness of the metal layer 12. Further, when the laminate 1 includes the indium oxide-containing layer 11, it is also affected by the material and thickness of the indium oxide-containing layer 11.
  • the surface of the laminate 1 on the pressure-sensitive adhesive layer 15 side preferably has a difference of 30% or more between the maximum value and the minimum value of the reflectance in the wavelength range of 380 nm to 780 nm.
  • the difference between the maximum value and the minimum value of the reflectance is 30% or more, the appearance can be deeply colored. From the viewpoint of coloring intensity, it is more preferably 35% or more, and further preferably 40% or more.
  • the upper limit of the difference between the maximum value and the minimum value of the reflectance is not particularly limited.
  • the method for forming the indium oxide-containing layer 11 on the base film 10 is not particularly limited, and examples thereof include a vacuum vapor deposition method, a sputtering method, and an ion plating method.
  • the sputtering method is preferable because the thickness can be strictly controlled even in a large area.
  • the forming method for forming the metal layer 12 on the base film 10 is not particularly limited, and examples thereof include a vacuum deposition method and a sputtering method. Can be mentioned.
  • the method of forming the optical adjustment layer 13 on the base film 10 is not particularly limited, but for example, a vacuum deposition method, a sputtering method, an ion plating method, and a coating method. And so on.
  • the method of forming the barrier layer 14 on the optical adjustment layer 13 is not particularly limited, and examples thereof include a vacuum deposition method, a sputtering method, an ion plating method, and a coating method.
  • the pressure-sensitive adhesive layer 15 can be formed by applying a pressure-sensitive adhesive composition to the barrier layer 14.
  • the pressure-sensitive adhesive composition can be applied using a conventional coater, for example, a gravure roll coater, a reverse roll coater, a kiss roll coater, a dip roll coater, a bar coater, a knife coater, a spray coater, or the like.
  • the drying temperature is not particularly limited, but is preferably 40 ° C. to 200 ° C., more preferably 50 ° C. to 180 ° C., and particularly preferably 70 ° C. to 120 ° C.
  • the drying time is also not particularly limited, but is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 10 minutes, and particularly preferably 10 seconds to 5 minutes.
  • the laminated body 1 of the present embodiment is used, for example, by being attached to the inner surface (opposite side of the visible side) of the transparent adherend member.
  • the transparent adherend member for example, a member made of glass or plastic can be used, but the transparent member is not limited to this.
  • Applications of the members decorated with the laminate of the present embodiment include, for example, structural parts for vehicles, vehicle-mounted products, housings for electronic devices, housings for home appliances, structural parts, mechanical parts, and various automobile parts. , Electronic equipment parts, furniture, kitchen appliances and other household goods, medical equipment, building material parts, other structural parts and exterior parts. More specifically, in the case of vehicles, instrument panels, console boxes, door knobs, door trims, shift levers, pedals, glove boxes, bumpers, bonnets, fenders, trunks, doors, roofs, pillars, seats, steering wheels. , ECU box, electrical components, engine peripheral parts, drive system / gear peripheral parts, intake / exhaust system parts, cooling system parts, etc.
  • home appliances such as refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, TVs, watches, ventilation fans, projectors, speakers, personal computers, mobile phones , Smartphones, digital cameras, tablet PCs, portable music players, portable game machines, chargers, electronic information devices such as batteries, and the like.
  • a film in which a thermosetting resin having a thickness of 2000 ⁇ m was formed on one surface of a PET film (thickness 50 ⁇ m) manufactured by Mitsubishi Plastics Co., Ltd. was used.
  • an ITO target was attached to a DC magnetron sputtering apparatus, and sputtering was performed while introducing Ar gas to directly form an indium oxide-containing layer (ITO layer) having a thickness of 8 nm along the surface of the base film.
  • the temperature of the base film when forming the ITO layer was set to 130 ° C.
  • an aluminum (Al) target was attached to an AC sputtering apparatus (AC: 40 kHz), and a metal layer (Al layer) having a thickness of 30 nm was formed on the ITO layer by sputtering while introducing Ar gas. ..
  • the obtained Al layer was a discontinuous layer.
  • the temperature of the base film when forming the Al layer was set to 130 ° C. The method of measuring the thickness of the metal layer will be described later.
  • an AC sputtering system (AC: 40 kHz) to attach the aluminum (Al) target, on the Al layer by sputtering while introducing a o 2 gas barrier layer having a thickness of 10nm and (AlO x layer) Formed.
  • the temperature of the base film when forming the AlO x layer was set to 130 ° C.
  • a Si target (AC: 40 kHz) is attached to the AC sputtering device, and sputtering is performed while introducing O 2 gas and N 2 gas to form a 170 nm optical adjustment layer (SiN x layer) on the AlO x layer. Formed.
  • the temperature of the base film when forming the SiN x layer was set to ⁇ 8 ° C.
  • a Si target (AC: 40 kHz) was attached to the AC sputtering apparatus, and sputtering was performed while introducing Ar gas and O 2 gas to form a 20 nm barrier layer (SiO 2 layer) on the SiN x layer. ..
  • the temperature of the base film when forming the SiO 2 layer was set to ⁇ 8 ° C.
  • an adhesive layer transparent adhesive sheet for optics, thickness 25 ⁇ m, manufactured by Nitto Denko KK, trade name “CS9861UAS” was attached onto the SiO 2 layer to obtain the laminate of Example 1.
  • Example 2 the laminates of Examples 2 and 3 were obtained in the same manner as in Example 1 except that the thickness of the SiO 2 layer was changed as shown in Table 1. Further, a laminate of Comparative Example 1 was obtained in the same manner as in Example 1 except that the pressure-sensitive adhesive layer was formed on the SiN x layer without forming the SiO 2 layer.
  • ⁇ Measuring method of metal layer thickness First, as shown in FIG. 2, a square region 3 having a side of 5 cm is appropriately extracted from the laminated body, and the center lines A and B of the vertical and horizontal sides of the square region 3 are divided into four equal parts. A total of five points "a" to "e” were selected as measurement points. Next, a cross-sectional image (transmission electron micrograph (TEM image)) at each of the selected measurement points was measured, and a viewing angle region containing five or more metal particles was extracted from the obtained TEM image. The total cross-sectional area of the metal layer in the viewing angle region extracted at each of the five measurement points divided by the width of the viewing angle region is defined as the film thickness of the metal layer in each viewing angle region. The average value of the film thickness of the metal layer in each viewing angle region was taken as the thickness (nm) of the metal layer.
  • TEM image transmission electron micrograph
  • a spectrocolorimeter was used to irradiate the laminate with visible light having a wavelength in the range of 380 nm to 780 nm at intervals of 5 nm through the glass plate, and the spectral reflectance of the reflected light was measured. ..
  • Table 1 shows the minimum wavelength (bottom wavelength) and the maximum wavelength (peak wavelength) in the reflection spectrum in the wavelength range of 380 nm to 780 nm thus obtained.
  • Comparative Example 1 the bottom wavelength of the reflection spectrum was shifted to the short wavelength side of 20 nm after being left in a high temperature and high humidity environment for 500 hours.
  • Examples 1 to 3 there was no shift in the bottom wavelength and the peak wavelength of the reflection spectrum even after being left in a high temperature and high humidity environment for 500 hours, and the high temperature and high humidity durability was excellent.
  • Example 4 was produced in the same manner as in Example 1 except that an Nb 2 O 5 layer having a diameter of 150 nm was formed instead of the SiN x layer as the optical adjustment layer.
  • the Nb 2 O 5 layer was formed by attaching an Nb target (AC: 40 kHz) to an AC sputtering apparatus and sputtering while introducing Ar gas and O 2 gas.
  • the temperature of the base film when forming the Nb 2 O 5 layer was set to ⁇ 8 ° C.
  • the laminates of Examples 5 and 6 were obtained in the same manner as in Example 4 except that the thickness of the SiO 2 layer was changed as shown in Table 2.
  • Example 7 was obtained in the same manner as in Example 5 except that a 50 ⁇ m SiO 2 layer was further formed between the AlO x layer and the Nb 2 O 5 layer.
  • Table 50/50 "SiO 2 layer thickness" column 2 the thickness of the SiO 2 layer of two layers means that both are 50 [mu] m.
  • a laminate of Comparative Example 2 was obtained in the same manner as in Example 4 except that the pressure-sensitive adhesive layer was formed on the Nb 2 O 5 layer without forming the SiO 2 layer.
  • the present invention it is possible to provide a laminate that can decorate an adherend member to give a colored appearance and further suppress changes in appearance due to various factors such as ultraviolet rays, temperature, and humidity. ..

Abstract

The present invention relates to a multilayer body which is sequentially provided with a base material film, an optical adjustment layer, a barrier layer and an adhesive layer in this order, wherein: the optical adjustment layer has a refractive index of 1.75 or more, while containing at least one substance that is selected from the group consisting of metal oxides, metal nitrides and metal sulfides; the barrier layer contains a metal oxide and/or a metal nitride; and the adhesive layer is formed of a transparent adhesive.

Description

積層体Laminate
 本発明は積層体に関する。 The present invention relates to a laminate.
 従来、物品に貼付して当該物品を装飾する積層体が知られている。このような積層体として、例えば基材フィルム、金属層、粘着剤層などを積層した、電磁波透過性及び金属光沢を有する装飾フィルムが知られている。 Conventionally, a laminated body that is attached to an article to decorate the article is known. As such a laminated body, for example, a decorative film having electromagnetic wave transmission and metallic luster, in which a base film, a metal layer, an adhesive layer and the like are laminated, is known.
 このようなフィルムは、その金属光沢に由来する外観の高級感と、電磁波透過性とを兼ね備えることから、電波を送受信する装置の装飾に好適に用いられている。例えば、携帯電話機やスマートフォン、コンピューター等の筐体や、自動車のフロント部分の装飾等に使用されている。さらに、近年ではIoT技術の発達に伴い、家電製品や生活機器等にも通信機能が備えられ、より幅広い分野での応用も期待される。 Such a film has both a high-class appearance derived from its metallic luster and electromagnetic wave transmission, and is therefore suitably used for decoration of a device that transmits and receives radio waves. For example, it is used for housings of mobile phones, smartphones, computers, etc., and decoration of the front part of automobiles. Furthermore, in recent years, with the development of IoT technology, home appliances and household appliances are also equipped with communication functions, and are expected to be applied in a wider range of fields.
 例えば、特許文献1においては、成形射出物に転写される転写フィルムにおいて、保護層と、前記保護層の上に積層される印刷層と、前記印刷層の上に島構造に蒸着されて非伝導性を有する金属蒸着層と、前記金属蒸着層の上に積層される接着層と、を備えることを特徴とする金属光沢の非伝導性転写フィルムが開示されている。 For example, in Patent Document 1, in a transfer film transferred to a molded projectile, a protective layer, a printing layer laminated on the protective layer, and a non-conducting film deposited on the printing layer in an island structure. A non-conductive transfer film having a metallic luster is disclosed, which comprises a metal-deposited layer having a property and an adhesive layer laminated on the metal-deposited layer.
日本国特表2014-509268号公報Japan Special Table 2014-509268 Gazette
 このような積層体において、着色された外観が望まれる場合がある。このようなニーズにこたえる方法として、積層体を構成する層としてさらに光学調整層を積層する方法が考えられる。
 光学調整層を有する積層体において、光学調整層上に粘着剤層を有する構成、例えば、基材と、光学調整層と、粘着剤層とをこの順に備える構成が望まれる場合がある。例えば被着部材を内側(視認される面の反対側)から装飾するような場合に、このような構成の積層体(フィルム)が望まれる。このような構成のフィルムを透明な被着部材の内側に貼って用いると、光学調整層に起因する着色した外観を被着部材に付与することができる。また、フィルムは被着部材の内側に位置することとなるため傷つきにくい。さらに、被着部材が外側に位置することとなるため、被着部材の質感を製品にそのまま活かすことができる。
In such a laminate, a colored appearance may be desired. As a method for meeting such needs, a method of further laminating an optical adjustment layer as a layer constituting the laminated body can be considered.
In a laminate having an optical adjustment layer, a configuration having an adhesive layer on the optical adjustment layer, for example, a configuration in which a base material, an optical adjustment layer, and an adhesive layer are provided in this order may be desired. For example, when decorating the adherend member from the inside (opposite side of the visible surface), a laminate (film) having such a structure is desired. When a film having such a structure is attached to the inside of the transparent adherend member, a colored appearance due to the optical adjustment layer can be imparted to the adherend member. Further, since the film is located inside the adherend member, it is not easily scratched. Further, since the adherend member is located on the outside, the texture of the adherend member can be utilized as it is in the product.
 しかしながら、このようなフィルムにおいては、紫外線や温度、湿度等の種々の要因により、光学調整層が変質し、その外観が変化してしまうという問題がある。 However, in such a film, there is a problem that the optical adjustment layer is deteriorated due to various factors such as ultraviolet rays, temperature, and humidity, and the appearance thereof is changed.
 本願発明は、上記に鑑みてなされたものであり、被着部材を装飾して着色された外観を付与することができ、さらに紫外線や温度、湿度等の種々の要因による外観の変化が抑制された積層体を提供することを目的とする。 The present invention has been made in view of the above, and it is possible to decorate the adherend member to give a colored appearance, and further, the change in appearance due to various factors such as ultraviolet rays, temperature, and humidity is suppressed. It is an object of the present invention to provide a laminated body.
 上記課題を解決する本発明の積層体は、基材フィルムと、光学調整層と、バリア層と、粘着剤層とをこの順に備える積層体であって、光学調整層は金属酸化物、金属窒化物、及び金属硫化物からなる群より選ばれる少なくとも1種を含有する屈折率1.75以上の層であり、バリア層は、金属酸化物及び/又は金属窒化物を含有する層であり、粘着剤層は透明粘着剤からなる層である。
 本発明の積層体の一態様において、基材フィルムと光学調整層の間に、金属層をさらに備えてもよい。
 本発明の積層体の一態様において、金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含んでもよい。
 本発明の積層体の一態様において、基材フィルムと金属層の間に、酸化インジウム含有層をさらに備えてもよい。
 本発明の積層体の一態様において、光学調整層はSi及び/又はNbを含んでもよい。
 本発明の積層体の一態様において、バリア層はSiOを含有してもよい。
 本発明の積層体の一態様において、積層体を粘着剤層を介してガラス板に貼り合わせ、波長380nm~780nmの範囲の可視光線をガラス板越しに積層体に照射して得られた反射スペクトルと、ガラス板に貼り合わせられた積層体にガラス板越しに紫外光を24時間照射した後に波長380nm~780nmの範囲の可視光線をガラス板越しに積層体に照射して得られた反射スペクトルとを用いて算出される色差ΔEが3以下であってもよい。
 本発明の積層体の一態様において、積層体を粘着剤層を介してガラス板に貼り合わせ、波長380nm~780nmの範囲の可視光線をガラス板越しに積層体に照射して得られた反射スペクトルにおける極小波長と、ガラス板に貼り合わせられた積層体を温度65℃、湿度90%の環境に500時間保持した後に波長380nm~780nmの範囲の可視光線をガラス板越しに積層体に照射して得られた反射スペクトルにおける極小波長との差が15nm以下であってもよい。
The laminate of the present invention that solves the above problems is a laminate that includes a base film, an optical adjustment layer, a barrier layer, and an adhesive layer in this order, and the optical adjustment layer is a metal oxide and a metal nitride. A layer having a refractive index of 1.75 or more containing at least one selected from the group consisting of a substance and a metal sulfide, and the barrier layer is a layer containing a metal oxide and / or a metal nitride and is adhesive. The agent layer is a layer made of a transparent pressure-sensitive adhesive.
In one aspect of the laminate of the present invention, a metal layer may be further provided between the base film and the optical adjustment layer.
In one aspect of the laminate of the present invention, the metal layer may include a plurality of portions that are discontinuous with each other, at least in part.
In one aspect of the laminate of the present invention, an indium oxide-containing layer may be further provided between the base film and the metal layer.
In one aspect of the laminate of the present invention, the optical conditioning layer may contain Si and / or Nb.
In one aspect of the laminate of the present invention, the barrier layer may contain SiO 2.
In one aspect of the laminate of the present invention, the reflection spectrum obtained by laminating the laminate on a glass plate via an adhesive layer and irradiating the laminate with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate. The reflection spectrum obtained by irradiating the laminate bonded to the glass plate with ultraviolet light through the glass plate for 24 hours and then irradiating the laminate with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate. The color difference ΔE calculated using the above may be 3 or less.
In one aspect of the laminate of the present invention, the reflection spectrum obtained by laminating the laminate on a glass plate via an adhesive layer and irradiating the laminate with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate. After holding the laminate bonded to the glass plate at a temperature of 65 ° C. and humidity of 90% for 500 hours, the laminate is irradiated with visible light having a wavelength in the range of 380 nm to 780 nm. The difference from the minimum wavelength in the obtained reflection spectrum may be 15 nm or less.
 本願発明の積層体は、被着部材を装飾して着色された外観を付与することができ、さらに紫外線や温度、湿度等の種々の要因による外観の変化を抑制することができる。 The laminate of the present invention can decorate the adherend member to give a colored appearance, and can further suppress changes in the appearance due to various factors such as ultraviolet rays, temperature, and humidity.
図1は、本発明の一実施形態による積層体の概略断面図である。FIG. 1 is a schematic cross-sectional view of a laminated body according to an embodiment of the present invention. 図2は、本発明の一実施形態による積層体の金属層の膜厚の測定方法を説明するための図である。FIG. 2 is a diagram for explaining a method of measuring the film thickness of the metal layer of the laminated body according to the embodiment of the present invention.
 以下、図面を用いて、本発明を実施するための形態について詳述する。なお、本発明は、以下に説明する実施形態に限定されるものではない。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明することがあり、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、実際のサイズや縮尺を必ずしも正確に表したものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below. Further, in the following drawings, members / parts having the same action may be described with the same reference numerals, and duplicate description may be omitted or simplified. In addition, the embodiments described in the drawings are modeled in order to clearly explain the present invention, and do not necessarily accurately represent the actual size and scale.
[積層体]
 図1に、本発明の一実施形態による積層体の概略断面図を示す。本実施形態の積層体1は、基材フィルム10と、光学調整層13と、バリア層14と粘着剤層15とをこの順に備える。
[Laminate]
FIG. 1 shows a schematic cross-sectional view of a laminated body according to an embodiment of the present invention. The laminate 1 of the present embodiment includes a base film 10, an optical adjustment layer 13, a barrier layer 14, and an adhesive layer 15 in this order.
 <基材フィルム>
 基材フィルム10には、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート、ポリアミド、ポリ塩化ビニル、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリスチレン、ポリプロピレン(PP)、ポリエチレン、ポリシクロオレフィン、ポリウレタン、アクリル(PMMA)、ABSなどの単独重合体や共重合体からなるフィルムを用いることができる。これらの部材によれば、後述の光輝性や電波透過性に影響を与えることもない。但し、後に基材フィルム10上に種々の層を形成するため、蒸着やスパッタ等の高温に耐え得るものであることが好ましく、従って、上記材料の中でも、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル、ポリカーボネート、シクロオレフィンポリマー、ABS、ポリプロピレン、ポリウレタンが好ましい。なかでも、耐熱性とコストとのバランスがよいことからポリエチレンテレフタレートやシクロオレフィンポリマー、ポリカーボネート、アクリルが好ましい。基材フィルム10は、単層フィルムでもよいし積層フィルムでもよい。加工のし易さ等から、厚さは、例えば、6μm~250μm程度が好ましい。また、基材フィルム10上に形成される層との付着力を強くするために、プラズマ処理や易接着処理などが施されてもよい。また、詳細は後述するが、基材フィルム10は遮光性であってもよい。
<Base film>
The base film 10 includes, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate (PC), cycloolefin polymer (COP), polystyrene, polypropylene (PP), and the like. A film made of a homopolymer or copolymer such as polyethylene, polycycloolefin, polyurethane, acrylic (PMMA), and ABS can be used. According to these members, it does not affect the brilliance and radio wave transmission described later. However, since various layers are formed on the base film 10 later, it is preferable that the film can withstand high temperatures such as vapor deposition and sputtering. Therefore, among the above materials, for example, polyethylene terephthalate, polyethylene naphthalate, and acrylic. , Polycarbonate, cycloolefin polymer, ABS, polypropylene, polyurethane are preferable. Of these, polyethylene terephthalate, cycloolefin polymer, polycarbonate, and acrylic are preferable because they have a good balance between heat resistance and cost. The base film 10 may be a single-layer film or a laminated film. From the viewpoint of ease of processing and the like, the thickness is preferably about 6 μm to 250 μm, for example. Further, in order to strengthen the adhesive force with the layer formed on the base film 10, plasma treatment, easy adhesion treatment, or the like may be performed. Further, as will be described in detail later, the base film 10 may have a light-shielding property.
 基材フィルム10には、必要に応じて平滑性、或いは防眩性ハードコート層が形成されていてもよい。ハードコート層が設けられることにより、擦傷性を向上させる事ができる。
 特に平滑性ハードコート層を設けることにより、後述の金属層12を設ける場合においては金属光沢感を向上させることができる、一方、防眩性ハードコート層を設けることによりギラツキを防止することができる。
 ハードコート層は、硬化性樹脂を含有する溶液を塗布する事により形成できる。硬化性樹脂としては、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂等が挙げられる。硬化性樹脂の種類としてはポリエステル系、アクリル系、ウレタン系、アクリルウレタン系、アミド系、シリコーン系、シリケート系、エポキシ系、メラミン系、オキセタン系、アクリルウレタン系等の各種の樹脂があげられる。これら硬化性樹脂は、一種または二種以上を、適宜選択して使用できる。これらの中でも、硬度が高く、紫外線硬化が可能で生産性に優れることから、アクリル系樹脂、アクリルウレタン系樹脂、およびエポキシ系樹脂が好ましい。
The base film 10 may be formed with a smooth or antiglare hard coat layer, if necessary. By providing the hard coat layer, scratch resistance can be improved.
In particular, by providing the smooth hard coat layer, the metallic luster can be improved when the metal layer 12 described later is provided, while by providing the antiglare hard coat layer, glare can be prevented. ..
The hard coat layer can be formed by applying a solution containing a curable resin. Examples of the curable resin include thermosetting resins, ultraviolet curable resins, and electron beam curable resins. Examples of the curable resin include various resins such as polyester-based, acrylic-based, urethane-based, acrylic-urethane-based, amide-based, silicone-based, silicate-based, epoxy-based, melamine-based, oxetane-based, and acrylic urethane-based. As these curable resins, one kind or two or more kinds can be appropriately selected and used. Among these, acrylic resins, acrylic urethane resins, and epoxy resins are preferable because they have high hardness, can be cured by ultraviolet rays, and are excellent in productivity.
<酸化インジウム含有層>
 積層体1が後述の金属層12を備える場合は、基材フィルム10と金属層12との間に酸化インジウム含有層11を備えてもよい。
 酸化インジウム含有層11として、酸化インジウム(In)そのものを使用することもできるし、例えば、インジウム錫酸化物(ITO)や、インジウム亜鉛酸化物(IZO)のような、インジウムとインジウム以外の金属(第二の金属)とを含有する複合酸化物を使用することもできる。但し、第二の金属を含有したITOやIZOの方が、スパッタリング工程での放電安定性が高い点で、より好ましい。詳細は後述するが、酸化インジウム含有層11を用いることにより、金属層12を島状の不連続構造とすることが容易となり、従来不連続構造になりにくかったアルミニウム等も容易に金属層12に適用できるようになる。
<Indium oxide-containing layer>
When the laminate 1 includes the metal layer 12 described later, the indium oxide-containing layer 11 may be provided between the base film 10 and the metal layer 12.
Indium oxide (In 2 O 3 ) itself can be used as the indium oxide-containing layer 11, and other than indium and indium such as indium tin oxide (ITO) and indium zinc oxide (IZO), for example. A composite oxide containing the same metal (second metal) can also be used. However, ITO and IZO containing a second metal are more preferable because they have high discharge stability in the sputtering process. Although the details will be described later, by using the indium oxide-containing layer 11, it becomes easy to form the metal layer 12 into an island-shaped discontinuous structure, and aluminum or the like, which has been difficult to form a discontinuous structure in the past, can be easily formed into the metal layer 12. Become applicable.
 酸化インジウム含有層11としてITOを用いる場合におけるITOに含まれる酸化錫(SnО)の重量比率である含有率(含有率=(SnO/(In+SnO))×100)は特に限定されるものではないが、例えば、2.5wt%~30wt%、より好ましくは、3wt%~10wt%である。 When ITO is used as the indium oxide-containing layer 11, the content rate (content rate = (SnO 2 / (In 2 O 3 + SnO 2 )) × 100), which is the weight ratio of tin oxide (SnО 2) contained in ITO, is particularly high. Although not limited, it is, for example, 2.5 wt% to 30 wt%, more preferably 3 wt% to 10 wt%.
また、酸化インジウム含有層11としてIZOを用いる場合におけるIZOに含まれる酸化亜鉛(ZnO)の重量比率である含有率(含有率=(ZnO/(In+ZnO))×100)は、例えば、2wt%~20wt%である。 Further, when IZO is used as the indium oxide-containing layer 11, the content rate (content rate = (ZnO / (In 2 O 3 + ZnO)) × 100) which is the weight ratio of zinc oxide (ZnO) contained in IZO is, for example. It is 2 wt% to 20 wt%.
 酸化インジウム含有層11の厚さは、電磁波透過性、生産性の観点から、通常1000nm以下が好ましく、50nm以下がより好ましく、20nm以下が更に好ましい。一方、不連続状態の金属層12を形成しやすくするためには、酸化インジウム含有層11の厚さは1nm以上が好ましく、2nm以上がより好ましく、5nm以上が更に好ましい。 The thickness of the indium oxide-containing layer 11 is usually preferably 1000 nm or less, more preferably 50 nm or less, still more preferably 20 nm or less, from the viewpoint of electromagnetic wave transmission and productivity. On the other hand, in order to facilitate the formation of the discontinuous metal layer 12, the thickness of the indium oxide-containing layer 11 is preferably 1 nm or more, more preferably 2 nm or more, still more preferably 5 nm or more.
<金属層>
 積層体1は、基材フィルム10と光学調整層13の間に、金属層12をさらに備えてもよい。積層体1は、金属層12をさらに備えることにより、金属光沢フィルムとすることができる。このような構成とすることにより、装飾される物品(被着部材)に対して着色された金属光沢調の外観を付与することができる。
 積層体1が金属層12を備える場合、金属層12は基材フィルム10上(酸化インジウム含有層11を備える場合は酸化インジウム含有層11上)に形成される。この場合、金属層12は、少なくとも一部において互いに不連続の状態にある複数の部分12aを含むことが好ましい。これらの部分12aは、少なくとも一部において互いに不連続の状態にあり、言い換えれば、少なくとも一部において隙間12bによって隔てられる。複数の部分12aが隙間12bによって隔てられると、積層体1のシート抵抗が大きく、電波との相互作用が小さいため、電波を透過させることができる。
 なお、本明細書でいう「不連続の状態」とは、複数の部分12aが隙間12bによって互いに隔てられており、この結果、互いに電気的に絶縁されている状態を意味する。電気的に絶縁されることにより、金属層12のシート抵抗が大きくなり、電波透過性が得られることになる。すなわち、不連続の状態で形成された金属層12によれば、十分な光輝性を確保しながら、電波透過性も確保することができる。
<Metal layer>
The laminate 1 may further include a metal layer 12 between the base film 10 and the optical adjustment layer 13. The laminate 1 can be made into a metallic luster film by further including the metal layer 12. With such a configuration, it is possible to give a colored metallic luster-like appearance to the article to be decorated (adhesive member).
When the laminate 1 includes the metal layer 12, the metal layer 12 is formed on the base film 10 (on the indium oxide-containing layer 11 when the indium oxide-containing layer 11 is provided). In this case, the metal layer 12 preferably includes a plurality of portions 12a that are discontinuous with each other at least in part. These portions 12a are, at least in part, discontinuous with each other, in other words, at least in part, separated by a gap 12b. When the plurality of portions 12a are separated by the gap 12b, the sheet resistance of the laminated body 1 is large and the interaction with the radio wave is small, so that the radio wave can be transmitted.
The "discontinuous state" as used herein means a state in which a plurality of portions 12a are separated from each other by a gap 12b, and as a result, they are electrically insulated from each other. By being electrically insulated, the sheet resistance of the metal layer 12 increases, and radio wave transmission can be obtained. That is, according to the metal layer 12 formed in a discontinuous state, it is possible to secure radio wave transmission while ensuring sufficient brilliance.
 複数の部分12aと隙間12bを含む不連続構造としては特に限定されず、例えば島状構造やクラック構造が挙げられるが、生産性の観点からは島状構造が好ましい。 The discontinuous structure including the plurality of portions 12a and the gap 12b is not particularly limited, and examples thereof include an island structure and a crack structure, but an island structure is preferable from the viewpoint of productivity.
 島状構造は、金属粒子同士が各々独立し、互いにわずかに離反し、又は一部接触した状態で敷き詰められてなる構造である。
 島状構造の金属層12は、たとえば基材フィルム10上(酸化インジウム含有層11を備える場合は酸化インジウム含有層11上)に金属を蒸着、スパッタ等することにより形成することができる。
 蒸着やスパッタ等により形成された金属層12が基材フィルム10上で不連続状態となるメカニズムの詳細は必ずしも明らかではないが、不連続構造の形成しやすさは、金属層12が付与される基体上での表面拡散性と関連があると考えられる。したがって、基体の温度が高く、基体に対する金属層12の濡れ性が小さく、金属層12を構成する金属の融点が低い方が不連続構造を形成しやすいと考えられる。したがって、以下の実施例では金属層12を構成する金属としてアルミニウム(Al)を使用しているが、他にも亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)などの比較的融点の低い金属については、同様の手法で不連続構造を形成しうると考えられる。
 また、酸化インジウム含有層11により金属層12を島状の不連続構造とすることが容易となるのは、酸化インジウム含有層11により金属層12を構成する金属の表面拡散性が向上するためであると考えられる。
The island-like structure is a structure in which the metal particles are independent of each other and are laid out in a state where they are slightly separated from each other or partially in contact with each other.
The island-shaped metal layer 12 can be formed, for example, by depositing or sputtering a metal on the base film 10 (on the indium oxide-containing layer 11 when the indium oxide-containing layer 11 is provided).
The details of the mechanism by which the metal layer 12 formed by vapor deposition, sputtering, or the like becomes discontinuous on the base film 10 are not necessarily clear, but the ease of forming the discontinuous structure is given by the metal layer 12. It is considered to be related to the surface diffusivity on the substrate. Therefore, it is considered that a discontinuous structure is more likely to be formed when the temperature of the substrate is high, the wettability of the metal layer 12 with respect to the substrate is small, and the melting point of the metal constituting the metal layer 12 is low. Therefore, in the following examples, aluminum (Al) is used as the metal constituting the metal layer 12, but other metals such as zinc (Zn), lead (Pb), copper (Cu), and silver (Ag) are used. For metals with a relatively low melting point, it is considered that a discontinuous structure can be formed by the same method.
Further, the indium oxide-containing layer 11 makes it easy for the metal layer 12 to have an island-like discontinuous structure because the indium oxide-containing layer 11 improves the surface diffusivity of the metal constituting the metal layer 12. It is believed that there is.
 島状構造の金属層12の厚さは特に限定されないが、金属光沢感を向上させる観点から、20nm以上とすることが好ましく、30nm以上とすることがより好ましい。一方、電磁波透過性を向上させる観点から、島状構造の金属層12の厚さは100nm以下とすることが好ましく、70nm以下とすることがより好ましい。
 また、島状構造の金属層12における金属の部分12aの円相当径は特に限定されないが、通常10~1000nm程度である。また、各部分12a同士の距離は特に限定されないが、通常は10~1000nm程度である。
 これらは、例えばSEM像から求めることができる。
The thickness of the metal layer 12 having an island-like structure is not particularly limited, but is preferably 20 nm or more, and more preferably 30 nm or more, from the viewpoint of improving the metallic luster. On the other hand, from the viewpoint of improving the electromagnetic wave transmission, the thickness of the metal layer 12 having the island-like structure is preferably 100 nm or less, more preferably 70 nm or less.
The circle-equivalent diameter of the metal portion 12a in the metal layer 12 having an island-like structure is not particularly limited, but is usually about 10 to 1000 nm. The distance between the portions 12a is not particularly limited, but is usually about 10 to 1000 nm.
These can be obtained from, for example, an SEM image.
 クラック構造は、金属薄膜がクラックにより分断された構造である。
 クラック構造の金属層12は、例えば基材フィルム10上(酸化インジウム含有層11を備える場合は酸化インジウム含有層上)に金属薄膜層を設け、屈曲延伸して金属薄膜層にクラックを生じさせることにより形成することができる。この際、基材フィルム10と金属薄膜層の間に伸縮性に乏しい、即ち延伸によりクラックを生成しやすい素材からなる脆性層を設けることにより、容易にクラック構造の金属層12を形成することができる。
The crack structure is a structure in which a metal thin film is divided by cracks.
The metal layer 12 having a crack structure is provided with, for example, a metal thin film layer on the base film 10 (on the indium oxide-containing layer when the indium oxide-containing layer 11 is provided), and is bent and stretched to generate cracks in the metal thin film layer. Can be formed by At this time, the metal layer 12 having a crack structure can be easily formed by providing a brittle layer made of a material having poor elasticity, that is, easily forming cracks by stretching, between the base film 10 and the metal thin film layer. it can.
 金属層12を構成する金属の種類は特に限定されず、1種類の金属であってもよく、2種類以上の金属であってもよい。
 先述のとおり不連続構造の形成しやすさは、基体(基材フィルム)上での表面拡散性と関連があり、基体の温度が高く、基体に対する金属層の濡れ性が小さく、金属層の材料の融点が低い方が不連続構造を形成しやすいと考えられるため、この観点からは金属層は比較的融点の低い金属を含有することが好ましく、例えばAl、Zn、Pb、Cu、Agからなる群より選ばれる少なくとも1種の金属、および該金属を主成分とする合金のいずれかを含むことが好ましい。特に、光輝性や安定性、価格等の理由から、金属層はAl又はAl合金からなることが好ましい。また、Al合金を用いる場合には、Al含有量を50質量%以上とすることが好ましい。
The type of metal constituting the metal layer 12 is not particularly limited, and may be one type of metal or two or more types of metal.
As described above, the ease of forming a discontinuous structure is related to the surface diffusivity on the substrate (base film), the temperature of the substrate is high, the wettability of the metal layer to the substrate is small, and the material of the metal layer. From this point of view, the metal layer preferably contains a metal having a relatively low melting point, and is composed of, for example, Al, Zn, Pb, Cu, and Ag. It is preferable to contain at least one metal selected from the group and any of the alloys containing the metal as a main component. In particular, the metal layer is preferably made of Al or an Al alloy for reasons of brilliance, stability, price and the like. When an Al alloy is used, the Al content is preferably 50% by mass or more.
 積層体1が酸化インジウム含有層11を備える場合における金属層12の厚さと酸化インジウム含有層11の厚さとの比(金属層の厚さ/酸化インジウム含有層の厚さ)は、0.1~100の範囲が好ましく、0.3~35の範囲がより好ましい。 When the laminate 1 includes the indium oxide-containing layer 11, the ratio of the thickness of the metal layer 12 to the thickness of the indium oxide-containing layer 11 (thickness of the metal layer / thickness of the indium oxide-containing layer) is 0.1 to. The range of 100 is preferable, and the range of 0.3 to 35 is more preferable.
<光学調整層>
 光学調整層13は、金属酸化物、金属窒化物、及び金属硫化物からなる群より選ばれる少なくとも1種を含有する屈折率1.75以上の層である。
 光学調整層13の屈折率が1.75以上であると着色した外観が得られる。より色味の濃い外観を得るには、光学調整層13の屈折率は1.8以上が好ましく、1.9以上がより好ましい。また、厚み制御性の観点から、光学調整層13の屈折率は3.5以下が好ましく、3.0以下がより好ましい。
 また、光学調整層13は屈折率の異なる層の積層体であってもよい。
<Optical adjustment layer>
The optical adjustment layer 13 is a layer having a refractive index of 1.75 or more containing at least one selected from the group consisting of metal oxides, metal nitrides, and metal sulfides.
When the refractive index of the optical adjustment layer 13 is 1.75 or more, a colored appearance can be obtained. In order to obtain a darker appearance, the refractive index of the optical adjustment layer 13 is preferably 1.8 or more, and more preferably 1.9 or more. Further, from the viewpoint of thickness controllability, the refractive index of the optical adjustment layer 13 is preferably 3.5 or less, more preferably 3.0 or less.
Further, the optical adjustment layer 13 may be a laminated body of layers having different refractive indexes.
 光学調整層13を構成する材料は特に限定されず、金属酸化物、金属窒化物、及び金属硫化物からなる群より選ばれる少なくとも1種を適宜使用することができる。なお、ここでいう金属酸化物、金属酸化物、金属硫化物に含有される金属元素には、Si等の半金属元素が包含される。また、金属酸化物、金属窒化物、及び金属硫化物からなる群より選ばれる少なくとも1種には、金属酸窒化物、金属酸硫化物、金属硫窒化物が包含される。また、金属酸化物は、単独の金属元素の酸化物(単独酸化物)であってもよく、複数の金属元素の酸化物(複合酸化物)であってもよい。同様に、金属窒化物は、単独の金属元素の窒化物(単独窒化物)であってもよく、複数の金属元素の窒化物(複合窒化物)であってもよく、金属硫化物は、単独の金属元素の硫化物(単独硫化物)であってもよく、複数の金属元素の硫化物(複合硫化物)であってもよい。
 光学調整層13の材料としては、より具体的には、例えば、CeO(2.30)、Nb(2.15)、Nb(2.20)、SiN(2.03)、Sb(2.10)、TiO(2.35)、Ta(2.10)、ZrO(2.05)、ZnO(2.10)、ZnS(2.30)などが挙げられる〔上記各材料の括弧内の数値は屈折率である〕。
 特に、光学調整層13はSi及び/又はNbを含むことが好ましく、例えばNb及び/又はSiNを含有することが好ましく、Nb及び/又はSiNからなることがより好ましい。
The material constituting the optical adjustment layer 13 is not particularly limited, and at least one selected from the group consisting of metal oxides, metal nitrides, and metal sulfides can be appropriately used. The metal element contained in the metal oxide, the metal oxide, and the metal sulfide here includes a metalloid element such as Si. Further, at least one selected from the group consisting of metal oxides, metal nitrides, and metal sulfides includes metal acid nitrides, metal acid sulfides, and metal sulfur nitrides. Further, the metal oxide may be an oxide of a single metal element (single oxide) or an oxide of a plurality of metal elements (composite oxide). Similarly, the metal nitride may be a single metal element nitride (single nitride) or a plurality of metal element nitrides (composite nitride), and the metal sulfide may be a single metal sulfide. It may be a sulfide of a metal element (single sulfide) or a sulfide of a plurality of metal elements (composite sulfide).
More specifically, as the material of the optical adjustment layer 13, for example, CeO 2 (2.30), Nb 2 O 3 (2.15), Nb 2 O 5 (2.20), SiN x (2. 03), Sb 2 O 3 (2.10), TiO 2 (2.35), Ta 2 O 5 (2.10), ZrO 2 (2.05), ZnO (2.10), ZnS (2. 30) and the like [the numerical value in parentheses of each of the above materials is the refractive index].
In particular, it is preferable that the optical adjustment layer 13 containing Si and / or Nb, for example, preferably contains Nb 2 O 5 and / or SiN X, and more preferably consisting of Nb 2 O 5 and / or SiN X ..
 光学調整層13の厚みは、10nm~1000nmであることが好ましい。コストの観点から、800nm以下であることがより好ましく、500nm以下であることが更に好ましい。また、色味の観点から、15nm以上であることが好ましく、20nm以上であることがより好ましく、30nm以上であることが更に好ましい。 The thickness of the optical adjustment layer 13 is preferably 10 nm to 1000 nm. From the viewpoint of cost, it is more preferably 800 nm or less, and further preferably 500 nm or less. Further, from the viewpoint of color, it is preferably 15 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more.
<バリア層>
 バリア層14は、金属酸化物及び/又は金属窒化物を含有する層である。なお、ここでいう金属酸化物、金属酸化物に含有される金属元素には、Si等の半金属元素が包含される。また、金属酸化物及び/又は金属窒化物には、金属酸窒化物が包含される。また、金属酸化物は、単独の金属元素の酸化物(単独酸化物)であってもよく、複数の金属元素の酸化物(複合酸化物)であってもよい。同様に、金属窒化物は、単独の金属元素の窒化物(単独窒化物)であってもよく、複数の金属元素の窒化物(複合窒化物)であってもよい。
 本発明者らは、積層体1の外観の変化は、積層体1が紫外線(UV線)にさらされたり、高温高湿環境下におかれたりした際に、光学調整層13と粘着剤層15が反応してしまうことによるものであることを見出した。したがって、光学調整層13と粘着剤層15との間にバリア層14を設けてこれらの反応を抑制することで、積層体1の外観の変化を抑制できる。
<Barrier layer>
The barrier layer 14 is a layer containing a metal oxide and / or a metal nitride. The metal oxide and the metal element contained in the metal oxide here include a metalloid element such as Si. Further, the metal oxide and / or the metal nitride includes a metal oxynitride. Further, the metal oxide may be an oxide of a single metal element (single oxide) or an oxide of a plurality of metal elements (composite oxide). Similarly, the metal nitride may be a single metal element nitride (single nitride) or a plurality of metal element nitrides (composite nitride).
The present inventors have changed the appearance of the laminate 1 by exposing the laminate 1 to ultraviolet rays (UV rays) or when the laminate 1 is exposed to a high temperature and high humidity environment, the optical adjustment layer 13 and the pressure-sensitive adhesive layer. It was found that 15 was due to the reaction. Therefore, by providing the barrier layer 14 between the optical adjustment layer 13 and the pressure-sensitive adhesive layer 15 and suppressing these reactions, it is possible to suppress the change in the appearance of the laminated body 1.
 バリア層14を形成する材料は特に限定されず、透明であり、粘着剤層15や光学調整層13と反応しない材料であればよいが、例えばSiO、Al、AZO等が好ましく、SiOを含むことが好ましく、SiOからなることがより好ましい。 The material forming the barrier layer 14 is not particularly limited as long as it is transparent and does not react with the pressure-sensitive adhesive layer 15 and the optical adjustment layer 13, but for example, SiO 2 , Al 2 O 3 , AZO and the like are preferable. It preferably contains SiO 2, and more preferably consists of SiO 2.
 透明性の観点からは、バリア層14は光学的な吸収が小さいことが好ましい。例えばバリア層は、波長550nmの光の吸収率が20%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましい。バリア層の吸収率は、以下に示す方法で測定できる。 From the viewpoint of transparency, it is preferable that the barrier layer 14 has a small optical absorption. For example, the barrier layer preferably has an absorption rate of light having a wavelength of 550 nm of 20% or less, more preferably 10% or less, and further preferably 5% or less. The absorption rate of the barrier layer can be measured by the method shown below.
(吸収率の測定方法)
 積層体1を粘着剤層15を介してガラス板に貼り合わせ、日立ハイテク社製の分光光度計U-4100を用いて波長380nm~780nmの範囲の可視光線をガラス板越しに積層体1に照射して得られる反射スペクトルおよび透過スペクトルの波長550nmにおける反射率と透過率を1から差し引いた値を吸収率とする。
(Measurement method of absorption rate)
The laminate 1 is attached to a glass plate via an adhesive layer 15, and the laminate 1 is irradiated with visible light having a wavelength in the range of 380 nm to 780 nm using a spectrophotometer U-4100 manufactured by Hitachi High-Tech. The value obtained by subtracting the reflectance and the transmittance at a wavelength of 550 nm of the reflection spectrum and the transmission spectrum thus obtained from 1 is taken as the absorption rate.
 バリア層の厚みは、光学調整層13と粘着剤層15との反応を抑制する観点からは10nm以上が好ましく、20nm以上がより好ましく、40nm以上が特に好ましい。一方、屈曲性の観点からは、300nm以下が好ましく、200nm以下がより好ましく、100nm以下が特に好ましい。 The thickness of the barrier layer is preferably 10 nm or more, more preferably 20 nm or more, and particularly preferably 40 nm or more from the viewpoint of suppressing the reaction between the optical adjustment layer 13 and the pressure-sensitive adhesive layer 15. On the other hand, from the viewpoint of flexibility, 300 nm or less is preferable, 200 nm or less is more preferable, and 100 nm or less is particularly preferable.
 なお、積層体1はバリア層を複数層備えてもよい。例えば、基材フィルム(金属層12を備える場合は金属層)と光学調整層13との間にもバリア層を備えてもよい。 The laminated body 1 may be provided with a plurality of barrier layers. For example, a barrier layer may be provided between the base film (the metal layer when the metal layer 12 is provided) and the optical adjustment layer 13.
<粘着剤層>
 粘着剤層15は、透明粘着剤からなる層である。
 本実施形態の積層体1は、例えば粘着剤層15を介して透明な被着部材の内側(視認される側の反対側)に貼付されて用いられることで、被着部材を内側から装飾できる。
<Adhesive layer>
The pressure-sensitive adhesive layer 15 is a layer made of a transparent pressure-sensitive adhesive.
The laminate 1 of the present embodiment can decorate the adherend member from the inside by being attached to the inside of the transparent adherend member (opposite the side to be visually recognized) via, for example, the adhesive layer 15. ..
 粘着剤層15を形成する粘着剤は透明粘着剤であれば特に限定されず、例えばアクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、及びポリエーテル系粘着剤のいずれかを単独で、或いは、2種類以上を組み合わせて使用することができる。透明性、加工性及び耐久性などの観点から、アクリル系粘着剤を用いることが好ましい。 The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 15 is not particularly limited as long as it is a transparent pressure-sensitive adhesive. Either the agent and the polyether adhesive can be used alone or in combination of two or more. From the viewpoint of transparency, processability, durability and the like, it is preferable to use an acrylic pressure-sensitive adhesive.
 粘着剤層15の厚みは特に限定されないが、薄くすることで可視光透過性や膜厚精度、平坦性を向上させることができるため、100μm以下であることが好ましく、75μm以下であることがより好ましく、50μm以下であることがさらに好ましい。 The thickness of the pressure-sensitive adhesive layer 15 is not particularly limited, but it is preferably 100 μm or less, more preferably 75 μm or less, because it is possible to improve visible light transmission, film thickness accuracy, and flatness by making the pressure-sensitive adhesive layer 15 thinner. It is preferably 50 μm or less, and more preferably 50 μm or less.
 粘着剤層15全体の全光線透過率は特に限定はされないが、JIS K7361に従って測定した任意の可視光波長における値で10%以上であることが好ましく、30%以上であることがより好ましく、50%以上であることがさらに好ましい。粘着剤層15の全光線透過率は、高いほど好ましい。 The total light transmittance of the entire pressure-sensitive adhesive layer 15 is not particularly limited, but the value at an arbitrary visible light wavelength measured according to JIS K7361 is preferably 10% or more, more preferably 30% or more, and 50%. It is more preferably% or more. The higher the total light transmittance of the pressure-sensitive adhesive layer 15, the more preferable.
 粘着剤層15は、被着部材に貼付される際まで剥離ライナーにより保護されていることが好ましい。 It is preferable that the pressure-sensitive adhesive layer 15 is protected by a release liner until it is attached to the adherend member.
<その他の層>
 本実施形態の積層体1は、本発明の効果を奏する限りにおいて上述の基材フィルム10、酸化インジウム含有層11、金属層12、光学調整層13、バリア層14、粘着剤層15の他に、用途に応じてその他の層を備えてもよい。
 例えば、本実施形態の積層体1は、基材フィルム10の光学調整層13が形成される側とは反対側の面に、可視光透過性を有さない遮光性層を備えてもよい。遮光性層を備えることで、例えば、本実施形態の積層体1を電子機器の筐体の装飾に用いた場合に、積層体1を通して筐体内部の回路が視認されてしまうことを防ぐことができる。
 遮光性層の材質は特に限定されず、例えば、先述の基材フィルム10に用いることができる材料として例示した材料を黒色に着色して用いることができる。
 また、遮光性層を備えない積層体においても、基材フィルム10を遮光性とすることで、遮光性層を備える場合と同様の効果を奏することができる
<Other layers>
In addition to the above-mentioned base film 10, indium oxide-containing layer 11, metal layer 12, optical adjustment layer 13, barrier layer 14, and adhesive layer 15, the laminate 1 of the present embodiment can be used in addition to the above-mentioned base film 10, indium oxide-containing layer 11, metal layer 12, and adhesive layer 15 as long as the effects of the present invention are exhibited. , Other layers may be provided depending on the application.
For example, the laminate 1 of the present embodiment may be provided with a light-shielding layer having no visible light transmission on the surface of the base film 10 opposite to the side on which the optical adjustment layer 13 is formed. By providing the light-shielding layer, for example, when the laminate 1 of the present embodiment is used for decorating the housing of an electronic device, it is possible to prevent the circuit inside the housing from being visually recognized through the laminate 1. it can.
The material of the light-shielding layer is not particularly limited, and for example, the material exemplified as the material that can be used for the above-mentioned base film 10 can be colored black and used.
Further, even in the laminated body not provided with the light-shielding layer, by making the base film 10 light-shielding, the same effect as in the case of providing the light-shielding layer can be obtained.
<耐紫外線性及び耐高温高湿性>
 光学調整層13と粘着剤層15との反応を進行させる要因の一つとして、紫外線や温度及び湿度が挙げられる。本実施形態の積層体1はバリア層14を備えることにより、紫外線にさらされた場合や高温高湿環境下にさらされた場合においても光学調整層13と粘着剤層15との反応が進行しにくい。本実施形態の積層体1の耐紫外線性(紫外線にさらされた場合の光学調整層13と粘着剤層15との反応しにくさ)や耐高温高湿性(高温高湿環境下にさらされた場合の光学調整層13と粘着剤層15との反応しにくさ)は、例えば反射スペクトルを用いて評価できる。
<UV resistance and high temperature and humidity resistance>
One of the factors for advancing the reaction between the optical adjustment layer 13 and the pressure-sensitive adhesive layer 15 is ultraviolet rays, temperature, and humidity. By providing the barrier layer 14 in the laminate 1 of the present embodiment, the reaction between the optical adjustment layer 13 and the pressure-sensitive adhesive layer 15 proceeds even when exposed to ultraviolet rays or a high-temperature and high-humidity environment. Hateful. The laminate 1 of the present embodiment has ultraviolet resistance (difficulty in reacting the optical adjustment layer 13 and the adhesive layer 15 when exposed to ultraviolet rays) and high temperature and high humidity resistance (exposure to a high temperature and high humidity environment). The difficulty of reaction between the optical adjustment layer 13 and the pressure-sensitive adhesive layer 15) can be evaluated using, for example, a reflection spectrum.
 例えば、積層体1を粘着剤層15を介してガラス板に貼り合わせ、波長380nm~780nmの範囲の可視光線をガラス板越しに積層体1に照射して得られる反射スペクトル(以下において「初期反射スペクトル」ともいう)と、当該ガラス板に貼り合わされた積層体1を紫外線や高温高湿環境下にさらした後に波長380nm~780nmの範囲の可視光線をガラス板越しに積層体1に照射して得られる反射スペクトル(以下において単に「紫外線照射後の反射スペクトル」や「高温高湿環境下にさらされた後の反射スペクトル」ともいう)を比較することにより、耐紫外線性や耐高温高湿性を評価できる。 For example, the reflection spectrum obtained by bonding the laminate 1 to a glass plate via the pressure-sensitive adhesive layer 15 and irradiating the laminate 1 with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate (hereinafter, “initial reflection”). After exposing the laminate 1 bonded to the glass plate to ultraviolet rays or a high-temperature and high-humidity environment, the laminate 1 is irradiated with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate. By comparing the obtained reflection spectra (hereinafter, also simply referred to as "reflection spectrum after irradiation with ultraviolet rays" and "reflection spectrum after exposure to a high temperature and high humidity environment"), ultraviolet resistance and high temperature and humidity resistance can be obtained. Can be evaluated.
 本発明の実施形態に係る積層体は、前記積層体を前記粘着剤層を介してガラス板に貼り合わせ、波長380nm~780nmの範囲の可視光線を前記ガラス板越しに前記積層体に照射して得られた反射スペクトルと、前記ガラス板に貼り合わせられた前記積層体に前記ガラス板越しに紫外光を24時間照射した後に波長380nm~780nmの範囲の可視光線を前記ガラス板越しに前記積層体に照射して得られた反射スペクトルとを用いて算出される色差ΔEが3以下であることが好ましい。
 耐紫外線性の観点から、積層体1は、初期反射スペクトルと、24時間紫外線照射後の反射スペクトルとを用いて算出される色差ΔEが3以下であることが好ましく、2.5以下であることがより好ましく、2以下であることがさらに好ましい。
 色差ΔEは、初期反射スペクトル及び24時間紫外線照射後の反射スペクトルとCIE標準イルミナントD65の相対分光分布とを用いて紫外線照射前及び後のCIE-L表示系におけるL値、a値、及びb値を求め、これらの値を用いて紫外線照射前後の色差ΔL、Δa、及びΔbを求め、これらの色差を用いて以下の式により求められる。
 ΔE={(ΔL+(Δa+(Δb0.5
In the laminate according to the embodiment of the present invention, the laminate is bonded to a glass plate via the pressure-sensitive adhesive layer, and the laminate is irradiated with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate. The obtained reflection spectrum and the laminated body bonded to the glass plate are irradiated with ultraviolet light through the glass plate for 24 hours, and then visible light having a wavelength in the range of 380 nm to 780 nm is emitted through the glass plate. It is preferable that the color difference ΔE calculated by using the reflection spectrum obtained by irradiating is 3 or less.
From the viewpoint of ultraviolet resistance, the laminate 1 preferably has a color difference ΔE of 3 or less, preferably 2.5 or less, calculated using the initial reflection spectrum and the reflection spectrum after irradiation with ultraviolet rays for 24 hours. Is more preferable, and 2 or less is further preferable.
The color difference ΔE is the L * value in the CIE-L * a * b * display system before and after UV irradiation using the initial reflection spectrum, the reflection spectrum after 24-hour UV irradiation, and the relative spectral distribution of the CIE standard Illuminant D65. The a * and b * values are obtained, and the color differences ΔL * , Δa * , and Δb * before and after ultraviolet irradiation are obtained using these values, and these color differences are used to obtain the following formula.
ΔE = {(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 } 0.5
 本発明の実施形態に係る積層体は、前記積層体を前記粘着剤層を介してガラス板に貼り合わせ、波長380nm~780nmの範囲の可視光線を前記ガラス板越しに前記積層体に照射して得られた反射スペクトルにおける極小波長と、前記ガラス板に貼り合わせられた前記積層体を温度65℃、湿度90%の環境に500時間保持した後に波長380nm~780nmの範囲の可視光線を前記ガラス板越しに前記積層体に照射して得られた反射スペクトルにおける極小波長との差が15nm以下であることが好ましい。
 耐高温高湿性の観点から、積層体1は、初期反射スペクトルにおける極小波長(反射率が極小値となる際の波長;以下「ボトム波長」ともいう)と、500時間高温高湿環境下にさらされた後の反射スペクトルにおける極小波長との差が15nm以下であることが好ましく、10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。
In the laminate according to the embodiment of the present invention, the laminate is bonded to a glass plate via the pressure-sensitive adhesive layer, and the laminate is irradiated with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate. After holding the minimum wavelength in the obtained reflection spectrum and the laminate bonded to the glass plate in an environment of a temperature of 65 ° C. and a humidity of 90% for 500 hours, visible light having a wavelength in the range of 380 nm to 780 nm is emitted to the glass plate. It is preferable that the difference from the minimum wavelength in the reflection spectrum obtained by irradiating the laminated body through the laminate is 15 nm or less.
From the viewpoint of high temperature and high humidity resistance, the laminate 1 is exposed to a minimum wavelength in the initial reflection spectrum (wavelength when the reflectance becomes a minimum value; hereinafter also referred to as “bottom wavelength”) and a high temperature and high humidity environment for 500 hours. The difference from the minimum wavelength in the reflected spectrum after this is preferably 15 nm or less, more preferably 10 nm or less, and further preferably 5 nm or less.
<電波透過性>
 積層体1が金属層12を備える場合は、先述の通り金属層12を不連続な構造として電波透過性を向上させることが好ましい。
 積層体1の電波透過性は、例えば電波透過減衰量により評価することができる。
 なお、マイクロ波帯域(5GHz)における電波透過減衰量とミリ波レーダーの周波数帯域(76~80GHz)における電波透過減衰量との間には相関性があり、比較的近い値を示すことから、マイクロ波帯域における電波透過性に優れる積層体(金属光沢フィルム)は、ミリ波レーダーの周波数帯域における電波透過性にも優れる。
 本実施形態の積層体1のマイクロ波帯域(5GHz)における電波透過減衰量は、10[-dB]以下であることが好ましく、5[-dB]以下であるのがより好ましく、2[-dB]以下であることが更に好ましい。10[-dB]より大きいと、90%以上の電波が遮断されるという問題がある。
<Radio wave transparency>
When the laminate 1 includes the metal layer 12, it is preferable that the metal layer 12 has a discontinuous structure to improve radio wave transmission as described above.
The radio wave transmission property of the laminated body 1 can be evaluated by, for example, the amount of radio wave transmission attenuation.
It should be noted that there is a correlation between the amount of radio wave transmission attenuation in the microwave band (5 GHz) and the amount of radio wave transmission attenuation in the frequency band (76 to 80 GHz) of the millimeter wave radar, and the values are relatively close to each other. A laminate (metal glossy film) having excellent radio wave transmission in the wave band is also excellent in radio wave transmission in the frequency band of the millimeter wave radar.
The amount of radio wave transmission attenuation in the microwave band (5 GHz) of the laminate 1 of the present embodiment is preferably 10 [−dB] or less, more preferably 5 [−dB] or less, and 2 [−dB]. ] The following is more preferable. If it is larger than 10 [−dB], there is a problem that 90% or more of the radio waves are blocked.
 金属層12のシート抵抗(酸化インジウム含有層11を備える場合は、酸化インジウム含有層11と金属層12の積層体としてのシート抵抗)も電波透過性と相関を有する。
 金属層12のシート抵抗(酸化インジウム含有層11を備える場合は、酸化インジウム含有層11と金属層12の積層体としてのシート抵抗)は100Ω/□以上であることが好ましく、この場合、マイクロ波帯域(5GHz)における電波透過減衰量は、10~0.01[-dB]程度となる。
 金属層12のシート抵抗(酸化インジウム含有層11を備える場合は、酸化インジウム含有層11と金属層12の積層体としてのシート抵抗)は200Ω/□以上であることがより好ましく、600Ω/□以上であることがさらに好ましく、1000Ω/□以上であることが特に好ましい。
 シート抵抗は、JIS-Z2316-1:2014に従って渦電流測定法により測定することができる。
The sheet resistance of the metal layer 12 (when the indium oxide-containing layer 11 is provided, the sheet resistance of the indium oxide-containing layer 11 and the metal layer 12 as a laminate) also has a correlation with radio wave transmission.
The sheet resistance of the metal layer 12 (when the indium oxide-containing layer 11 is provided, the sheet resistance of the indium oxide-containing layer 11 and the metal layer 12 as a laminate) is preferably 100 Ω / □ or more, and in this case, microwaves. The amount of radio wave transmission attenuation in the band (5 GHz) is about 10 to 0.01 [−dB].
The sheet resistance of the metal layer 12 (when the indium oxide-containing layer 11 is provided, the sheet resistance of the indium oxide-containing layer 11 and the metal layer 12 as a laminate) is more preferably 200 Ω / □ or more, and more preferably 600 Ω / □ or more. Is more preferable, and 1000 Ω / □ or more is particularly preferable.
Sheet resistance can be measured by eddy current measurement according to JIS-Z2316-1: 2014.
 電波透過減衰量及びシート抵抗は、金属層12の材質や厚さ等により影響を受ける。また、積層体1が酸化インジウム含有層11を備える場合には酸化インジウム含有層11の材質や厚さ等によっても影響を受ける。 The amount of radio wave transmission attenuation and sheet resistance are affected by the material and thickness of the metal layer 12. Further, when the laminate 1 includes the indium oxide-containing layer 11, it is also affected by the material and thickness of the indium oxide-containing layer 11.
<反射率の最大値と最小値の差>
 積層体1の粘着剤層15側の面は、波長380nm~780nmの範囲における反射率の最大値と最小値の差が30%以上であることが好ましい。反射率の最大値と最小値の差が30%以上であると、外観の着色を濃いものとすることができる。着色の濃さの観点から、35%以上であることがより好ましく、40%以上であることが更に好ましい。なお、反射率の最大値と最小値の差の上限は特に制限されない。
<Difference between maximum and minimum reflectance>
The surface of the laminate 1 on the pressure-sensitive adhesive layer 15 side preferably has a difference of 30% or more between the maximum value and the minimum value of the reflectance in the wavelength range of 380 nm to 780 nm. When the difference between the maximum value and the minimum value of the reflectance is 30% or more, the appearance can be deeply colored. From the viewpoint of coloring intensity, it is more preferably 35% or more, and further preferably 40% or more. The upper limit of the difference between the maximum value and the minimum value of the reflectance is not particularly limited.
[積層体の製造]
 基材フィルム10上に酸化インジウム含有層11を形成する場合の形成方法は特に限定されないが、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等が挙げられる。大面積でも厚さを厳密に制御できる点から、スパッタリング法が好ましい。
[Manufacturing of laminate]
The method for forming the indium oxide-containing layer 11 on the base film 10 is not particularly limited, and examples thereof include a vacuum vapor deposition method, a sputtering method, and an ion plating method. The sputtering method is preferable because the thickness can be strictly controlled even in a large area.
 基材フィルム10上(酸化インジウム含有層11を形成した場合は酸化インジウム含有層11上)に金属層12を形成する場合の形成方法も特に限定されないが、例えば、真空蒸着法、スパッタリング法等が挙げられる。 The forming method for forming the metal layer 12 on the base film 10 (on the indium oxide-containing layer 11 when the indium oxide-containing layer 11 is formed) is not particularly limited, and examples thereof include a vacuum deposition method and a sputtering method. Can be mentioned.
 基材フィルム10上(金属層12を形成した場合は金属層12上)に光学調整層13を形成する方法も特に限定されないが、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、塗工法等が挙げられる。 The method of forming the optical adjustment layer 13 on the base film 10 (on the metal layer 12 when the metal layer 12 is formed) is not particularly limited, but for example, a vacuum deposition method, a sputtering method, an ion plating method, and a coating method. And so on.
 光学調整層13上にバリア層14を形成する方法も特に限定されないが、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、塗工法等が挙げられる。 The method of forming the barrier layer 14 on the optical adjustment layer 13 is not particularly limited, and examples thereof include a vacuum deposition method, a sputtering method, an ion plating method, and a coating method.
 粘着剤層15は、バリア層14に粘着剤組成物を塗布等することにより形成できる。
 粘着剤組成物の塗布は、慣用のコーター、例えば、グラビヤロールコーター、リバースロールコーター、キスロールコーター、ディップロールコーター、バーコーター、ナイフコーター、スプレーコーターなどを用いて行うことができる。乾燥温度は、特に限定されないが、好ましくは40℃~200℃であり、さらに好ましくは、50℃~180℃であり、特に好ましくは70℃~120℃である。乾燥時間も特に限定されないが、好ましくは5秒~20分、さらに好ましくは5秒~10分、特に好ましくは、10秒~5分である。
The pressure-sensitive adhesive layer 15 can be formed by applying a pressure-sensitive adhesive composition to the barrier layer 14.
The pressure-sensitive adhesive composition can be applied using a conventional coater, for example, a gravure roll coater, a reverse roll coater, a kiss roll coater, a dip roll coater, a bar coater, a knife coater, a spray coater, or the like. The drying temperature is not particularly limited, but is preferably 40 ° C. to 200 ° C., more preferably 50 ° C. to 180 ° C., and particularly preferably 70 ° C. to 120 ° C. The drying time is also not particularly limited, but is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 10 minutes, and particularly preferably 10 seconds to 5 minutes.
[積層体の用途]
 本実施形態の積層体1は、例えば、透明な被着部材の内側(視認される側の反対側)の面に貼付して用いられる。透明な被着部材としては、例えば、ガラスやプラスチックからなる部材を使用することができるが、これに限定されるものではない。
[Use of laminate]
The laminated body 1 of the present embodiment is used, for example, by being attached to the inner surface (opposite side of the visible side) of the transparent adherend member. As the transparent adherend member, for example, a member made of glass or plastic can be used, but the transparent member is not limited to this.
 本実施形態の積層体により装飾された部材の用途としては例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。より具体的には、車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ステアリングホイール、ECUボックス、電装部品、エンジン周辺部品、駆動系・ギア周辺部品、吸気・排気系部品、冷却系部品等が挙げられる。電子機器および家電機器としてより具体的には、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等の家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池等電子情報機器等が挙げられる。 Applications of the members decorated with the laminate of the present embodiment include, for example, structural parts for vehicles, vehicle-mounted products, housings for electronic devices, housings for home appliances, structural parts, mechanical parts, and various automobile parts. , Electronic equipment parts, furniture, kitchen appliances and other household goods, medical equipment, building material parts, other structural parts and exterior parts. More specifically, in the case of vehicles, instrument panels, console boxes, door knobs, door trims, shift levers, pedals, glove boxes, bumpers, bonnets, fenders, trunks, doors, roofs, pillars, seats, steering wheels. , ECU box, electrical components, engine peripheral parts, drive system / gear peripheral parts, intake / exhaust system parts, cooling system parts, etc. More specifically as electronic devices and home appliances, home appliances such as refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, TVs, watches, ventilation fans, projectors, speakers, personal computers, mobile phones , Smartphones, digital cameras, tablet PCs, portable music players, portable game machines, chargers, electronic information devices such as batteries, and the like.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例になんら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
<実施例1~3、及び比較例1の積層体の製造>
 基材フィルムとして、三菱樹脂社製PETフィルム(厚さ50μm)の一方の面に厚み2000μmの熱硬化樹脂を形成したフィルムを用いた。
 先ず、DCマグネトロンスパッタリング装置にITOターゲットを取り付け、Arガスを導入しながらスパッタリングをする事で基材フィルムの面に沿って、8nmの厚さの酸化インジウム含有層(ITO層)を直接形成した。ITO層を形成する際の基材フィルムの温度は、130℃に設定した。ITOに含まれる酸化錫(SnО)の含有率(含有率=(SnO/(In+SnO))×100)は10wt%である。
<Manufacturing of laminates of Examples 1 to 3 and Comparative Example 1>
As the base film, a film in which a thermosetting resin having a thickness of 2000 μm was formed on one surface of a PET film (thickness 50 μm) manufactured by Mitsubishi Plastics Co., Ltd. was used.
First, an ITO target was attached to a DC magnetron sputtering apparatus, and sputtering was performed while introducing Ar gas to directly form an indium oxide-containing layer (ITO layer) having a thickness of 8 nm along the surface of the base film. The temperature of the base film when forming the ITO layer was set to 130 ° C. The content of tin oxide (SnО 2 ) contained in ITO (content rate = (SnO 2 / (In 2 O 3 + SnO 2 )) × 100) is 10 wt%.
 次に、交流スパッタリング装置(AC:40kHz)にアルミニウム(Al)ターゲットを取り付け、Arガスを導入しながらスパッタリングする事でITO層の上に、30nmの厚さの金属層(Al層)を形成した。得られたAl層は不連続層であった。Al層を形成する際の基材フィルムの温度は、130℃に設定した。なお、金属層の厚みの測定方法については後述する。 Next, an aluminum (Al) target was attached to an AC sputtering apparatus (AC: 40 kHz), and a metal layer (Al layer) having a thickness of 30 nm was formed on the ITO layer by sputtering while introducing Ar gas. .. The obtained Al layer was a discontinuous layer. The temperature of the base film when forming the Al layer was set to 130 ° C. The method of measuring the thickness of the metal layer will be described later.
 次に、交流スパッタリング装置(AC:40kHz)にアルミニウム(Al)ターゲットを取り付け、Оガスを導入しながらスパッタリングする事でAl層の上に、10nmの厚さのバリア層(AlO層)を形成した。AlO層を形成する際の基材フィルムの温度は、130℃に設定した。 Then, an AC sputtering system (AC: 40 kHz) to attach the aluminum (Al) target, on the Al layer by sputtering while introducing a o 2 gas barrier layer having a thickness of 10nm and (AlO x layer) Formed. The temperature of the base film when forming the AlO x layer was set to 130 ° C.
 次に、交流スパッタリング装置にSiターゲット(AC:40kHz)を取り付けて、OガスとNガスを導入しながらスパッタリングする事で、AlO層上に170nmの光学調整層(SiN層)を形成した。SiN層を形成する際の基材フィルムの温度は、-8℃に設定した。 Next, a Si target (AC: 40 kHz) is attached to the AC sputtering device, and sputtering is performed while introducing O 2 gas and N 2 gas to form a 170 nm optical adjustment layer (SiN x layer) on the AlO x layer. Formed. The temperature of the base film when forming the SiN x layer was set to −8 ° C.
 次に、交流スパッタリング装置にSiターゲット(AC:40kHz)を取り付けて、ArガスとOガスを導入しながらスパッタリングする事で、SiN層上に20nmのバリア層(SiO層)を形成した。SiO層を形成する際の基材フィルムの温度は、-8℃に設定した。 Next, a Si target (AC: 40 kHz) was attached to the AC sputtering apparatus, and sputtering was performed while introducing Ar gas and O 2 gas to form a 20 nm barrier layer (SiO 2 layer) on the SiN x layer. .. The temperature of the base film when forming the SiO 2 layer was set to −8 ° C.
 次に、SiO層上に粘着剤層(光学用透明粘着シート、厚さ25μm、日東電工株式会社製、商品名「CS9861UAS」)を貼付し、実施例1の積層体を得た。 Next, an adhesive layer (transparent adhesive sheet for optics, thickness 25 μm, manufactured by Nitto Denko KK, trade name “CS9861UAS”) was attached onto the SiO 2 layer to obtain the laminate of Example 1.
 また、SiO層の厚みを表1に示すように変更した点以外は実施例1と同様にして、実施例2及び3の積層体を得た。
 また、SiO層を形成せずに、SiN層上に粘着剤層を形成した点以外は実施例1と同様にして、比較例1の積層体を得た。
Further, the laminates of Examples 2 and 3 were obtained in the same manner as in Example 1 except that the thickness of the SiO 2 layer was changed as shown in Table 1.
Further, a laminate of Comparative Example 1 was obtained in the same manner as in Example 1 except that the pressure-sensitive adhesive layer was formed on the SiN x layer without forming the SiO 2 layer.
<金属層の厚みの測定方法>
 まず、積層体から、図2に示すように一辺5cmの正方形領域3を適当に抽出し、該正方形領域3の縦辺及び横辺それぞれの中心線A、Bをそれぞれ4等分することによって得られる計5箇所の点「a」~「e」を測定箇所として選択した。
 次いで、選択した測定箇所それぞれにおける断面画像(透過型電子顕微鏡写真(TEM画像))を測定し、得られたTEM画像から、5個以上の金属粒子が含まれる視野角領域を抽出した。
 5箇所の測定箇所それぞれにおいて抽出された視野角領域における金属層の総断面積を視野角領域の横幅で割ったものを各視野角領域の金属層の膜厚とし、5箇所の測定箇所それぞれにおける、各視野角領域の金属層の膜厚の平均値を金属層の厚み(nm)とした。
<Measuring method of metal layer thickness>
First, as shown in FIG. 2, a square region 3 having a side of 5 cm is appropriately extracted from the laminated body, and the center lines A and B of the vertical and horizontal sides of the square region 3 are divided into four equal parts. A total of five points "a" to "e" were selected as measurement points.
Next, a cross-sectional image (transmission electron micrograph (TEM image)) at each of the selected measurement points was measured, and a viewing angle region containing five or more metal particles was extracted from the obtained TEM image.
The total cross-sectional area of the metal layer in the viewing angle region extracted at each of the five measurement points divided by the width of the viewing angle region is defined as the film thickness of the metal layer in each viewing angle region. The average value of the film thickness of the metal layer in each viewing angle region was taken as the thickness (nm) of the metal layer.
<シート抵抗の測定>
 実施例1~3、及び比較例1の積層体について、ナプソン社製非接触式抵抗測定装置NC-80MAPを用い、JIS-Z2316に準拠し、渦電流測定法により金属層と酸化インジウム含有層の積層体としてのシート抵抗を測定したところ、いずれも1kΩ以上であった。
<Measurement of sheet resistance>
For the laminates of Examples 1 to 3 and Comparative Example 1, a metal layer and an indium oxide-containing layer were formed by an eddy current measurement method in accordance with JIS-Z2316 using a non-contact resistance measuring device NC-80MAP manufactured by Napuson. When the sheet resistance of the laminated body was measured, it was 1 kΩ or more in each case.
<温度及び湿度に対する耐久性の評価>
 実施例1~3、及び比較例1の積層体を粘着剤層を介してガラス板に貼り合わせた。その後、温度65℃、湿度90%の高温高湿環境におき、500時間保持した。高温高湿環境におく前、高温高湿環境においてから240時間経過した時点、及び500時間経過した時点で、以下のようにして分光反射率を測定した。
 分光反射率の測定においては、分光測色計を用いて、波長380nm~780nmの範囲の可視光線を5nm間隔でガラス板越しに積層体に照射して、反射した光の分光反射率を測定した。
<Evaluation of durability against temperature and humidity>
The laminates of Examples 1 to 3 and Comparative Example 1 were bonded to a glass plate via an adhesive layer. Then, it was placed in a high temperature and high humidity environment with a temperature of 65 ° C. and a humidity of 90%, and kept for 500 hours. The spectral reflectance was measured as follows before being placed in a high-temperature and high-humidity environment, 240 hours after the high-temperature and high-humidity environment, and 500 hours after the lapse.
In the measurement of the spectral reflectance, a spectrocolorimeter was used to irradiate the laminate with visible light having a wavelength in the range of 380 nm to 780 nm at intervals of 5 nm through the glass plate, and the spectral reflectance of the reflected light was measured. ..
 このようにして得られた波長380nm~780nmの範囲の反射スペクトルにおける、極小波長(ボトム波長)及び極大波長(ピーク波長)を表1に示す。 Table 1 shows the minimum wavelength (bottom wavelength) and the maximum wavelength (peak wavelength) in the reflection spectrum in the wavelength range of 380 nm to 780 nm thus obtained.
 また、このようにして得られた波長380nm~780nmの範囲の反射スペクトルと、CIE標準イルミナントD65の相対分光分布を用いて、CIE-L表示系におけるL値、a値、及びb値を計算した。これら計算値を用いて、高温高湿環境におく前(初期値)と、高温高湿環境においてから240時間経過した時点(240h経過後)及び500時間経過した時点(500h経過後)との色差ΔL、Δa、及びΔbを求め、以下の式を用いて色差ΔEを計算した。結果を表1に示す。
 ΔE={(ΔL+(Δa+(Δb0.5
Further, using the reflection spectrum in the wavelength range of 380 nm to 780 nm thus obtained and the relative spectral distribution of the CIE standard illuminant D65, the L * value and the a * value in the CIE-L * a * b * display system are used. , And b * values were calculated. Using these calculated values, the color difference between before being placed in a high-temperature and high-humidity environment (initial value) and when 240 hours have passed (after 240 hours) and 500 hours have passed (after 500 hours) since the high-temperature and high-humidity environment. ΔL * , Δa * , and Δb * were obtained, and the color difference ΔE was calculated using the following formula. The results are shown in Table 1.
ΔE = {(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 } 0.5
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1では、高温高湿環境下に500時間置いた後は、反射スペクトルのボトム波長が20nm短波長側にシフトしていた。
 一方、実施例1~3は高温高湿環境下に500時間置いた後でも、反射スペクトルのボトム波長、及びピーク波長のシフトがなく、高温高湿耐久性に優れるものであった。
In Comparative Example 1, the bottom wavelength of the reflection spectrum was shifted to the short wavelength side of 20 nm after being left in a high temperature and high humidity environment for 500 hours.
On the other hand, in Examples 1 to 3, there was no shift in the bottom wavelength and the peak wavelength of the reflection spectrum even after being left in a high temperature and high humidity environment for 500 hours, and the high temperature and high humidity durability was excellent.
<実施例4~7、及び比較例2の積層体の製造>
 光学調整層としてSiN層にかえて150nmのNb層を形成した点以外は実施例1と同様にして、実施例4の積層体を製造した。なお、Nb層の形成は、交流スパッタリング装置にNbターゲット(AC:40kHz)を取り付けて、ArガスとOガスを導入しながらスパッタリングする事により行った。Nb層を形成する際の基材フィルムの温度は、-8℃に設定した。
 また、SiO層の厚みを表2に示すように変更した点以外は実施例4と同様にして、実施例5及び6の積層体を得た。
 また、AlO層とNb層との間にさらに50μmのSiO層を形成したこと以外は実施例5と同様にして、実施例7の積層体を得た。表2の「SiO層厚み」欄の50/50は、2層のSiO層の厚みがいずれも50μmであることを意味する。
 また、SiO層を形成せずに、Nb層上に粘着剤層を形成した点以外は実施例4と同様にして、比較例2の積層体を得た。
<Manufacturing of Laminates of Examples 4 to 7 and Comparative Example 2>
The laminate of Example 4 was produced in the same manner as in Example 1 except that an Nb 2 O 5 layer having a diameter of 150 nm was formed instead of the SiN x layer as the optical adjustment layer. The Nb 2 O 5 layer was formed by attaching an Nb target (AC: 40 kHz) to an AC sputtering apparatus and sputtering while introducing Ar gas and O 2 gas. The temperature of the base film when forming the Nb 2 O 5 layer was set to −8 ° C.
Further, the laminates of Examples 5 and 6 were obtained in the same manner as in Example 4 except that the thickness of the SiO 2 layer was changed as shown in Table 2.
Further, a laminate of Example 7 was obtained in the same manner as in Example 5 except that a 50 μm SiO 2 layer was further formed between the AlO x layer and the Nb 2 O 5 layer. Table 50/50 "SiO 2 layer thickness" column 2, the thickness of the SiO 2 layer of two layers means that both are 50 [mu] m.
Further, a laminate of Comparative Example 2 was obtained in the same manner as in Example 4 except that the pressure-sensitive adhesive layer was formed on the Nb 2 O 5 layer without forming the SiO 2 layer.
<シート抵抗の測定>
 実施例4~7、及び比較例2の積層体について、実施例1~3、及び比較例1と同様にして、シート抵抗を測定したところ、いずれも1kΩ以上であった。
<Measurement of sheet resistance>
When the sheet resistance of the laminates of Examples 4 to 7 and Comparative Example 2 was measured in the same manner as in Examples 1 to 3 and Comparative Example 1, they were all 1 kΩ or more.
<紫外光に対する耐久性の評価>
 実施例4~7、及び比較例2の積層体を粘着剤層を介してガラス板に貼り合わせた。その後UV試験機に投入し、ガラス板越しに積層体に紫外光を照射しながら500時間保持した。UV試験機に投入する前、UV試験機に投入してから24時間経過した時点、240時間経過した時点、及び500時間経過した時点で、実施例1~3、及び比較例1と同様にして分光反射率を測定し、極小波長(ボトム波長)及び極大波長(ピーク波長)、ΔEを求めた。
 UV試験機に投入する前、UV試験機に投入してから240時間経過した時点、及び500時間経過した時点での極大及び極小波長と、UV試験機に投入してから24時間経過した時点のΔEとを表2に示す。
<Evaluation of durability against ultraviolet light>
The laminates of Examples 4 to 7 and Comparative Example 2 were bonded to a glass plate via an adhesive layer. After that, it was put into a UV tester and held for 500 hours while irradiating the laminate with ultraviolet light through the glass plate. Before putting into the UV testing machine, at the time when 24 hours have passed, 240 hours have passed, and 500 hours have passed since being put into the UV testing machine, in the same manner as in Examples 1 to 3 and Comparative Example 1. The spectral reflectance was measured, and the minimum wavelength (bottom wavelength), maximum wavelength (peak wavelength), and ΔE were determined.
Before putting it in the UV testing machine, at the time when 240 hours have passed since it was put into the UV testing machine, and at the time when 500 hours have passed, the maximum and minimum wavelengths, and at the time when 24 hours have passed since it was put into the UV testing machine. ΔE is shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例2は、紫外光を照射して24時間経過した後のΔEが大きかった。
 一方、実施例4~7は紫外光を照射して24時間経過した後でも、ΔEが小さく、紫外光耐久性に優れるものであった。
In Comparative Example 2, ΔE was large after 24 hours had passed by irradiation with ultraviolet light.
On the other hand, in Examples 4 to 7, ΔE was small and the ultraviolet light durability was excellent even after 24 hours had passed after irradiation with ultraviolet light.
 本発明によれば、被着部材を装飾して着色された外観を付与することができ、さらに紫外線や温度、湿度等の種々の要因による外観の変化を抑制する積層体を提供することができる。 According to the present invention, it is possible to provide a laminate that can decorate an adherend member to give a colored appearance and further suppress changes in appearance due to various factors such as ultraviolet rays, temperature, and humidity. ..
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2019年9月30日出願の日本特許出願(特願2019-179322)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on September 30, 2019 (Japanese Patent Application No. 2019-179322), the contents of which are incorporated herein by reference.
1 積層体
10 基材フィルム
11 酸化インジウム含有層
12 金属層
12a 部分
12b 隙間
13 光学調整層
14 バリア層
15 粘着剤層
1 Laminated body 10 Base film 11 Indium oxide-containing layer 12 Metal layer 12a Part 12b Gap 13 Optical adjustment layer 14 Barrier layer 15 Adhesive layer

Claims (8)

  1.  基材フィルムと、光学調整層と、バリア層と、粘着剤層とをこの順に備える積層体であって、
     前記光学調整層は金属酸化物、金属窒化物、及び金属硫化物からなる群より選ばれる少なくとも1種を含有する屈折率1.75以上の層であり、
     前記バリア層は、金属酸化物及び/又は金属窒化物を含有する層であり、
     前記粘着剤層は透明粘着剤からなる層である、積層体。
    A laminate including a base film, an optical adjustment layer, a barrier layer, and an adhesive layer in this order.
    The optical adjustment layer is a layer having a refractive index of 1.75 or more containing at least one selected from the group consisting of metal oxides, metal nitrides, and metal sulfides.
    The barrier layer is a layer containing a metal oxide and / or a metal nitride.
    The pressure-sensitive adhesive layer is a laminated body which is a layer made of a transparent pressure-sensitive adhesive.
  2.  前記基材フィルムと前記光学調整層の間に、金属層をさらに備える、請求項1に記載の積層体。 The laminate according to claim 1, further comprising a metal layer between the base film and the optical adjustment layer.
  3.  前記金属層は、少なくとも一部において互いに不連続の状態にある複数の部分を含む、請求項2に記載の積層体。 The laminate according to claim 2, wherein the metal layer includes a plurality of portions that are discontinuous with each other at least in part.
  4.  前記基材フィルムと前記金属層の間に、酸化インジウム含有層をさらに備える請求項2または3に記載の積層体。 The laminate according to claim 2 or 3, further comprising an indium oxide-containing layer between the base film and the metal layer.
  5.  前記光学調整層はSi及び/又はNbを含む、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the optical adjustment layer contains Si and / or Nb.
  6.  前記バリア層はSiOを含有する、請求項1~5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the barrier layer contains SiO 2.
  7.  前記積層体を前記粘着剤層を介してガラス板に貼り合わせ、波長380nm~780nmの範囲の可視光線を前記ガラス板越しに前記積層体に照射して得られた反射スペクトルと、前記ガラス板に貼り合わせられた前記積層体に前記ガラス板越しに紫外光を24時間照射した後に波長380nm~780nmの範囲の可視光線を前記ガラス板越しに前記積層体に照射して得られた反射スペクトルとを用いて算出される色差ΔEが3以下である、請求項1~6のいずれか1項に記載の積層体。 The laminate is attached to a glass plate via the pressure-sensitive adhesive layer, and the reflection spectrum obtained by irradiating the laminate with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate and the glass plate. A reflection spectrum obtained by irradiating the laminated body with ultraviolet light through the glass plate for 24 hours and then irradiating the laminated body with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate. The laminate according to any one of claims 1 to 6, wherein the color difference ΔE calculated using the glass is 3 or less.
  8.  前記積層体を前記粘着剤層を介してガラス板に貼り合わせ、波長380nm~780nmの範囲の可視光線を前記ガラス板越しに前記積層体に照射して得られた反射スペクトルにおける極小波長と、前記ガラス板に貼り合わせられた前記積層体を温度65℃、湿度90%の環境に500時間保持した後に波長380nm~780nmの範囲の可視光線を前記ガラス板越しに前記積層体に照射して得られた反射スペクトルにおける極小波長との差が15nm以下である、請求項1~7のいずれか1項に記載の積層体。
     
    The laminated body is attached to a glass plate via the pressure-sensitive adhesive layer, and visible light having a wavelength in the range of 380 nm to 780 nm is irradiated to the laminated body through the glass plate to obtain a minimum wavelength in a reflection spectrum and the above. It is obtained by holding the laminate bonded to the glass plate in an environment of a temperature of 65 ° C. and a humidity of 90% for 500 hours, and then irradiating the laminate with visible light having a wavelength in the range of 380 nm to 780 nm through the glass plate. The laminate according to any one of claims 1 to 7, wherein the difference from the minimum wavelength in the reflection spectrum is 15 nm or less.
PCT/JP2020/036743 2019-09-30 2020-09-28 Multilayer body WO2021065839A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-179322 2019-09-30
JP2019179322 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065839A1 true WO2021065839A1 (en) 2021-04-08

Family

ID=75336925

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/036743 WO2021065839A1 (en) 2019-09-30 2020-09-28 Multilayer body
PCT/JP2020/036745 WO2021065840A1 (en) 2019-09-30 2020-09-28 Laminate and article

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036745 WO2021065840A1 (en) 2019-09-30 2020-09-28 Laminate and article

Country Status (2)

Country Link
TW (2) TW202120323A (en)
WO (2) WO2021065839A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190612A1 (en) * 2022-03-30 2023-10-05 日東電工株式会社 Laminate, light-emitting device, and sensing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509268A (en) * 2011-01-13 2014-04-17 エルジー・ハウシス・リミテッド Metallic non-conductive transfer film
JP2014231199A (en) * 2013-05-30 2014-12-11 住友理工株式会社 Transparent laminate film
JP2017024266A (en) * 2015-07-22 2017-02-02 日東電工株式会社 Laminate and method for producing the same
WO2018079547A1 (en) * 2016-10-24 2018-05-03 日東電工株式会社 Electromagnetic wave-permeable shiny metal member, article using same, and metal thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509268A (en) * 2011-01-13 2014-04-17 エルジー・ハウシス・リミテッド Metallic non-conductive transfer film
JP2014231199A (en) * 2013-05-30 2014-12-11 住友理工株式会社 Transparent laminate film
JP2017024266A (en) * 2015-07-22 2017-02-02 日東電工株式会社 Laminate and method for producing the same
WO2018079547A1 (en) * 2016-10-24 2018-05-03 日東電工株式会社 Electromagnetic wave-permeable shiny metal member, article using same, and metal thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190612A1 (en) * 2022-03-30 2023-10-05 日東電工株式会社 Laminate, light-emitting device, and sensing device

Also Published As

Publication number Publication date
WO2021065840A1 (en) 2021-04-08
TW202120323A (en) 2021-06-01
TW202120324A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
JP7319079B2 (en) Electromagnetic wave permeable metallic luster article and decorative member
WO2019208493A1 (en) Electromagnetic-wave-permeable metallic-luster article, and decorative member
JP7319077B2 (en) Electromagnetic wave transparent metallic luster article and metal thin film
WO2019208499A1 (en) Electromagnetically permeable article with metallic gloss
WO2021065839A1 (en) Multilayer body
WO2021182380A1 (en) Electromagnetic-wave-transmissive laminated member and method for manufacturing same
WO2019208504A1 (en) Electromagnetic wave transparent metallic luster article, and metal thin film
JP7319080B2 (en) Electromagnetic wave transparent metallic luster article and metal thin film
JP7319081B2 (en) Electromagnetic wave permeable metallic luster article
WO2022004670A1 (en) Electromagnetic wave-transmissive member with metallic luster, and decorative member
CN112004664B (en) Electromagnetic wave-transparent metallic glossy article
JP7319078B2 (en) Electromagnetic wave permeable metallic luster article
WO2019208494A1 (en) Electromagnetic wave transmissive metallic luster product and metal thin film
WO2022004671A1 (en) Electromagnetic wave-permeable metallic luster member, and decorative member
JP2023013743A (en) Laminate and decorative member
WO2022181528A1 (en) Electromagnetically permeable member with metallic gloss, and decorative member
WO2019208488A1 (en) Electromagnetic wave transmissive metal luster article
WO2019208490A1 (en) Electromagnetic wave-permeable metal glossy article and method for manufacturing same
WO2021187069A1 (en) Electromagnetic wave transmissive metallic luster member
JP2022102748A (en) Laminate and decorative member
JP2022102747A (en) Laminate and decorative member
JP2022171450A (en) Electromagnetically permeable member with metallic gloss, and decorative member
JP2022131590A (en) Metallic sheen member, decorative member, and manufacturing method of metallic sheen member
WO2019208489A1 (en) Electromagnetic wave-transmitting metallic-luster article
JP2022129029A (en) Electromagnetic wave transmissive metallic sheen member and decorative member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP