WO2021065643A1 - 水性顔料分散体、顔料混練物及び水性顔料分散体の製造方法 - Google Patents
水性顔料分散体、顔料混練物及び水性顔料分散体の製造方法 Download PDFInfo
- Publication number
- WO2021065643A1 WO2021065643A1 PCT/JP2020/035891 JP2020035891W WO2021065643A1 WO 2021065643 A1 WO2021065643 A1 WO 2021065643A1 JP 2020035891 W JP2020035891 W JP 2020035891W WO 2021065643 A1 WO2021065643 A1 WO 2021065643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pigment
- mass
- pigment dispersion
- aqueous
- aqueous pigment
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/08—Treatment with low-molecular-weight non-polymer organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D17/00—Pigment pastes, e.g. for mixing in paints
Definitions
- the present invention relates to an aqueous pigment dispersion that can be used, for example, in the production of ink.
- Aqueous ink for inkjet printing is generally produced by supplying and mixing a binder resin, a water-soluble solvent, an aqueous medium, or the like to an aqueous pigment dispersion in which pigments are dispersed in an aqueous medium in advance, if necessary. Therefore, in order to impart good ejection stability to the ink, it is possible to reduce the generation of coarse particles caused by, for example, pigments, which can cause clogging of the ink ejection nozzles, and the pigments and the like can be used over time. It is important to use an aqueous pigment dispersion that can prevent sedimentation.
- aqueous pigment dispersion capable of reducing the generation of coarse particles and preventing sedimentation of pigments and the like over time
- a mixture containing at least a resin having an anionic group, a pigment, and a basic compound is kneaded in a closed system.
- An aqueous pigment dispersion liquid that is kneaded with an apparatus and uses a solid or semi-solid kneaded product is known (see, for example, Patent Document 1).
- the inkjet printing method By the way, with the expansion of the market for the inkjet printing method, it has begun to be considered to use the printed matter obtained by printing by the inkjet printing method using water-based ink as a packaging material for foods, for example.
- the water-based ink used for producing the printed matter is required to be less likely to cause a problem in safety or the like even when it comes into contact with food. Therefore, the raw materials contained in the water-based ink are also required to have the above-mentioned safety, and for example, the use of the raw materials listed in Switzerland Ordinance Annex 10 and the raw materials satisfying the requirements is being studied.
- triethylene glycol has some concerns about the safety mentioned above. Therefore, although the industry is considering the replacement of triethylene glycol with other solvents, there are various types of solvents, and the change of the solvent has a great influence on the degree of affinity between the pigment and the dispersed resin. Because it may affect the dispersion stability of the pigment in the aqueous pigment dispersion, the storage stability of the ink, etc., a solvent that does not pose a concern in terms of safety is used, and the dispersion stability It has not been possible to find an aqueous pigment dispersion having excellent quality and a low content of coarse particles, or an ink having excellent storage stability.
- the problem to be solved by the present invention is an aqueous pigment dispersion having a small volume average particle size of the dispersion and a small amount of coarse particles and having excellent storage stability, and an aqueous solution that can be used for producing an ink having excellent storage stability. It is to provide a pigment dispersion.
- the present inventor is an aqueous pigment dispersion containing a pigment (A) and a solvent (B) having less than 5 carbon atoms, 2 or more hydroxyl groups, and a molecular weight of less than 100.
- A the ratio of the eluate to toluene [mass of the substance eluted from the pigment (A) to toluene / mass of the pigment (A)] determined by the method specified in ISO 6209: 2009
- E is The above problem was solved by an aqueous pigment dispersion characterized by having an amount of 0.1% by mass or less.
- the aqueous pigment dispersion of the present invention has a small volume average particle size of the dispersion and is excellent in storage stability with few coarse particles, so that it can be used for producing an ink having excellent storage stability.
- the aqueous pigment dispersion of the present invention is an aqueous pigment dispersion containing a pigment (A) and a solvent (B) having less than 5 carbon atoms, 2 or more hydroxyl groups, and a molecular weight of less than 100.
- the pigment (A) is the ratio of the eluate to toluene determined by the method specified in ISO6209: 2009 (E) [Molecular weight of the substance eluted from the pigment (A) to toluene / Pigment (A). The mass] is 0.1% by mass or less.
- the specific pigment (A) and the solvent (B) are used in combination.
- the pigment (A) and the solvent (B) are used in combination.
- Examples of the pigment (A) include inorganic pigments such as iron carbon black and titanium oxide, insoluble azo pigments such as azo pigments (monoazo pigments, disazo pigments and pyrazolone pigments, benzimidazolone pigments, beta naphthol pigments and naphthol AS).
- inorganic pigments such as iron carbon black and titanium oxide
- insoluble azo pigments such as azo pigments (monoazo pigments, disazo pigments and pyrazolone pigments, benzimidazolone pigments, beta naphthol pigments and naphthol AS).
- Pigments, condensed azo pigments, etc.), polycyclic pigments eg, quinacridone pigments, perylene pigments, perinone pigments, anthraquinone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, isoindolin pigments, quinophthalone pigments, diketopyrolo Pyrol pigments, etc.
- phthalocyanine pigments eg, quinacridone pigments, perylene pigments, perinone pigments, anthraquinone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, isoindolin pigments, quinophthalone pigments, diketopyrolo Pyrol pigments, etc.
- phthalocyanine pigments eg, quinacridone pigments, perylene pigments, perinone pigments, anthraquinone pigments, dioxazine pigments
- the pigment (A) is C.I. I. Pigment Yellow 1, 2, 12, 13, 14, 16, 17, 73, 74, 75, 83, 93, 95, 97, 98, 109, 110, 114, 120, 128, 129, 138, 150, 151,
- the yellow pigments such as 154, 155, 174, 180, 185 and the like, those having the ratio of 0.1% by mass or less can be used alone or in combination of two or more.
- the pigment (A) is C.I. I. Pigment Red 5, 7, 12, 48 (Ca), 48 (Mn), 57 (Ca), 57: 1, 112, 122, 123, 146, 149, 150, 168, 176, 184, 185, 202, 209
- magenta pigments such as 213, 269, and 282
- those having the ratio of 0.1% by mass or less can be used alone or in combination of two or more.
- the pigment (A) is C.I. I. Pigment Blue 1, 2, 3, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 63, 66, etc. Those having 0.1% by mass or less can be used alone or in combination of two or more.
- the pigment (A) is C.I. I. Pigment Orange 5, 13, 16, 17, 34, 36, 43, 51, 64, 71 and other orange pigments whose proportion is 0.1% by mass or less are used alone or in combination of two or more. can do.
- the pigment (A) is C.I. I.
- violet pigments such as Pigment Violet 1, 3, 5: 1, 16, 19, 23, 38, those having the above ratio of 0.1% by mass or less can be used alone or in combination of two or more. ..
- the pigment (A) is C.I. I.
- the green pigments such as Pigment Green 1, 4, 7, 8, 10, 17, 18, 36, 50, 58, etc., those having the above ratio of 0.1% by mass or less are used alone or in combination of two or more. can do.
- the solvent (B) glycerin, 1,2-propanediol, 1,2-butanediol or 2-methyl-1,3-propanediol can be used, and the volume average particle size of the dispersion can be used. It is preferable to obtain an aqueous pigment dispersion having a small size and a small amount of coarse particles and excellent storage stability.
- the solvent (B) is preferably used in the range of 20% by mass to 70% by mass with respect to the pigment (A), and the volume average particles of the dispersion are preferably used in the range of 30% by mass to 60% by mass. It is more preferable to obtain an aqueous pigment dispersion having a small diameter and a small number of coarse particles and excellent storage stability.
- the aqueous pigment dispersion of the present invention can be produced, for example, by first producing a pigment kneaded product and then mixing the pigment kneaded product with an aqueous medium or the like.
- the pigment kneaded product is a step of supplying at least the pigment (A), a resin, and a solvent (B) to a container provided in the kneading apparatus [1], and a step of kneading the contents (a1) of the container [2]. ], It can be manufactured.
- the pigment-dispersed resin When a pigment-dispersed resin having an acid value in the above range is used in combination with a water-soluble organic solvent and a basic compound described later in the step [1], the pigment-dispersed resin may be completely or partially dissolved in the water-soluble organic solvent, or may be water-soluble. It is easy to swell with a sex organic solvent, and as a result, it is easy to form a salt (neutralized product) with a basic compound described later. As a result, the hydrophilicity of the pigment to which the resin such as the pigment dispersion resin is adsorbed is remarkably improved, and as a result, the volume average particle size of the dispersion is very small, and coarse particles, pigments and the like are settled over time.
- the monomer having an anionic group is preferably used in the range of 5% by mass to 80% by mass with respect to the total amount of the monomer that can be used for producing the pigment-dispersed resin, and is preferably from 5% by mass to It is more preferable to use it in an amount of 60% by mass, and it is more preferable to use it in an amount of 5% by mass to 50% by mass in order to obtain a radical polymer having an acid value in the predetermined range described above.
- the pigment-dispersed resin includes a polymer having a linear structure formed by radical polymerization of the monomer, a polymer having a branched (grafted) structure, and a polymer having a crosslinked structure. Can be used.
- the monomer sequence is not particularly limited, and a polymer having a random type or a block type sequence can be used.
- the polymer having the crosslinked structure can be produced by using a monomer having a crosslinkable functional group as the monomer.
- Examples of the monomer having a crosslinkable functional group include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and poly (oxyethylene oxypropylene) glycol di (meth).
- Poly (meth) acrylate of polyhydric alcohol such as tri (meth) acrylate of alkylene oxide adduct of acrylate and glycerin; glycidyl (meth) acrylate, divinylbenzene and the like can be used.
- the radical polymerization rate (reaction rate) of each monomer during the radical polymerization is substantially the same, and the usage ratio (preparation ratio) of each monomer constitutes each of the radical polymers. It was considered to be the same as the proportion of structural units derived from the monomer.
- the pigment-dispersed resin it is preferable to use one classified by a mesh-like sieve having an eye size (diameter) of 1 mm or less.
- the weight average molecular weight is a value measured by a GPC (gel permeation chromatography) method, and is a value converted to the molecular weight of polystyrene used as a standard substance.
- a binder can be used as the resin, if necessary.
- the binder the above-mentioned acrylic resin, polyurethane resin, or the like can be used.
- water pure water such as ion-exchanged water, ultra-filtered water, reverse osmosis water, distilled water, or ultrapure water can be used. Further, as the water, water sterilized by ultraviolet irradiation or addition of hydrogen peroxide can be used to prevent the growth of mold or bacteria when the aqueous pigment dispersion or the ink using the aqueous pigment dispersion is stored for a long period of time. It is suitable because it can be used.
- Examples of the other components include basic compounds.
- Known basic compounds can be used, for example, hydroxides of alkali metals such as potassium and sodium, carbonates of alkali metals such as potassium and sodium, and hydroxylation of alkaline earth metals such as calcium and barium.
- Inorganic basic compounds such as carbonates such as substances, calcium and barium, and amino alcohols such as triethanolamine, N, N-dimethanolamine, N-ethylethanolamine, dimethylethanolamine and N-butyldiethanolamine.
- examples thereof include morpholins such as morpholin, N-methylmorpholin and N-ethylmorpholin, piperazine such as N- (2-hydroxyethyl) piperazine and piperazine hexahydrate, and organic basic compounds such as ammonium hydroxide.
- the basic compound has an anionic group as the pigment-dispersed resin
- it is neutralized to use the basic compound in a range in which the neutralization rate of the pigment-dispersed resin is 80% to 120%. It is preferable because the affinity of the pigment dispersion resin with respect to the aqueous medium is increased, and as a result, the dispersion stability of the pigment (A) adsorbed by the dispersion resin in the aqueous medium is improved.
- a pigment derivative can be used as the other component.
- the pigment derivative imparts dispersion stability to the aqueous pigment dispersion and the ink obtained by using them, which makes it possible to prevent the generation of coarse particles over time and the generation of sedimentation of pigments and the like over time. can do.
- a pigment (A) in which a specific functional group described later is introduced can be used.
- the pigment include phthalocyanine pigments, azo pigments, anthraquinone pigments, quinacridone pigments, diketopyrrolopyrrole pigments and the like.
- the functional group include a carboxy group, a sulfo group, an amino group, a nitro group, an acid amide group, a carbonyl group, a carbamoyl group, a phthalimide group, a sulfonyl group and the like.
- the content (a1) one containing the total mass of the pigment (A) and the resin in the range of 10% by mass to 80% by mass with respect to the total amount of the content (a1) shall be used. It is preferable to use one containing in the range of 30% by mass to 50% by mass in order to obtain an aqueous pigment dispersion having a small volume average particle size of the dispersion and a small amount of coarse particles and excellent storage stability. More preferred.
- the mass ratio [solvent (B) / pigment (A)] of the solvent (B) and the pigment (A) contained in the content (a1) is in the range of 0.1 to 1.5. Is preferable, and the range of 0.5 to 1.5 is more preferable, and the range of 0.8 to 1.2 is the storage stability in which the volume average particle size of the dispersion is small and the number of coarse particles is small. It is preferable to obtain an excellent aqueous pigment dispersion.
- the kneading device for example, when a solvent such as the water-soluble organic solvent or water is used in the step [1], it is preferable to use a kneading device capable of closing the inside of the container provided in the kneading device.
- the closure means that the space formed by, for example, the container provided in the kneading device and the lid thereof can be closed, and the use of such a closed kneading device is a solvent such as the water-soluble organic solvent or water. Is preferable in order to prevent the content of the solvent from changing significantly in the step [2].
- the "significant change” refers to a state in which the ratio of the mass of the pigment kneaded product obtained after the completion of the step [2] to the mass of the content (a1) is less than 90% by mass.
- a kneading device for example, a kneading device provided with the container which is a stirring tank and a uniaxial or multiaxial stirring blade can be used, and a closed type kneading device provided with a lid of the container is used. It is preferable to do so.
- the closed kneading device in particular, using a planetary mixer can give a strong shearing force when the content (a1) preferably has a non-volatile content of 50% by mass or more. It is preferable because it is possible to pulverize the agglomerates of the pigment and enhance the ease of adsorbing the resin such as the pigment dispersion resin to the pigment.
- a Henschel mixer for example, a Henschel mixer, a pressurized kneader, a Banbury mixer, a remix, a planetary mixer, a butterfly disper mixer, an intensive mixer, etc. can be used.
- the kneading device for example, when a solvent such as the water-soluble organic solvent or water is used in the step [1], it is preferable to use a kneading device capable of closing the inside of the container provided in the kneading device.
- the closure means that the space formed by, for example, the container provided in the kneading device and the lid thereof can be closed, and the use of such a closed kneading device is a solvent such as the water-soluble organic solvent or water. Is preferable in order to prevent the content of the solvent from changing significantly in the step [2].
- the "significant change” refers to a state in which the ratio of the mass of the pigment kneaded product obtained after the completion of the step [2] to the mass of the content (a1) is less than 90% by mass.
- a kneading device for example, a kneading device provided with the container which is a stirring tank and a uniaxial or multiaxial stirring blade can be used, and a closed type kneading device provided with a lid of the container is used. It is preferable to do so.
- the closed type kneading device it is preferable to use one having two or more stirring blades in order to obtain a high kneading action.
- the closed kneading device in particular, using a planetary mixer can give a strong shearing force when the content (a1) preferably has a non-volatile content of 50% by mass or more. It is preferable because it is possible to pulverize the agglomerates of the pigment and enhance the ease of adsorbing the resin such as the pigment dispersion resin to the pigment.
- the aqueous pigment dispersion can be produced by continuously supplying an aqueous medium described later into the container of the planetary mixer. Therefore, it is also preferable for improving the production efficiency of the aqueous pigment dispersion and the ink.
- the temperature of the content (a1) when the content (a1) is kneaded in the step [2] is appropriately adjusted in consideration of the temperature characteristics such as the glass transition point of the resin such as the pigment dispersion resin. Is preferable.
- the upper limit of the temperature of the content (a1) at the time of kneading is preferably the glass transition temperature (Tg) of the pigment-dispersed resin.
- the lower limit of the temperature of the content (a1) at the time of kneading is preferably a temperature 60 ° C. lower than the glass transition temperature of the pigment-dispersed resin.
- the temperature of the content (a1) may have a different effect on the pigment kneaded product or the like depending on the type of pigment.
- C.I. I. When Pigment Yellow 74 is used, when the temperature exceeds 80 ° C., the volume average particle size of the dispersion immediately after the production of the obtained aqueous pigment dispersion tends to be slightly large. Therefore, as will be described later, water or water-soluble. It is preferable to adjust the temperature by supplying a solvent such as an organic solvent.
- a solvent such as an organic solvent.
- Pigment Black 7 When Pigment Black 7 is used, if the temperature exceeds 120 ° C., the viscosity of the content (a1) tends to decrease, and the shearing force applied to the content (a1) may decrease. It is preferable to adjust the temperature by supplying a solvent such as water or the water-soluble organic solvent.
- the temperature of the content (a1) when the content (a1) is kneaded is maintained in the range of 60 ° C. to 120 ° C., which is further improved by the content (a1). It is more preferable because a sufficient shearing force can be applied, and as a result, the pulverization of the agglomerates of the pigment and the ease of adsorbing the resin such as the pigment-dispersed resin to the pigment can be enhanced.
- the viscosity of the content (a1) may be significantly lowered due to the temperature rise. If the viscosity of the content (a1) decreases, it may not be possible to apply a sufficient shearing force to the content (a1). Therefore, during the kneading, an aqueous medium or the like described later is used during the kneading. It may be added to intentionally cool the content (a1).
- a solvent such as water or the water-soluble organic solvent may be supplied to the content (a1) as necessary so that the temperature of the content (a1) does not fall out of the range.
- the kneading device and the contents (a1) may be cooled by using dry ice, liquid nitrogen, or the like.
- the glass transition temperature (Tg) of the pigment-dispersed resin is a value calculated using the FOX formula based on the glass transition temperature of the homopolymer of each monomer used in the production of the pigment-dispersed resin. Point to.
- the step [2] can be completed when the storage elasticity at an angular frequency of 1 rad / s determined by the dynamic viscoelasticity measurement of the content (a1) at a temperature of 25 ° C. is within the range of 200 kPa to 30,000 kPa.
- the volume average particle size of the dispersion is very small, and it can be used to produce an aqueous pigment dispersion with excellent storage stability that can prevent the occurrence of sedimentation of coarse particles and pigments over time, and can be used in ink over time.
- the pigment kneaded product obtained by the above-mentioned production method of the present invention is semi-solid or solid under normal temperature conditions in which the aggregate of the pigment (A) is crushed and the pigment dispersion resin is adsorbed on the atomized pigment. It is in a state. Therefore, the pigment kneaded product can be easily dispersed in an aqueous medium described later.
- the step [3] is a step of mixing the pigment kneaded product obtained through the steps [1] and [2], the aqueous medium, and other components if necessary.
- an aqueous pigment dispersion in which the pigment kneaded product or the like is dissolved or dispersed in an aqueous medium can be obtained.
- the aqueous medium or the like may be supplied to the pigment kneaded product and mixed, or the pigment kneaded product may be supplied to the aqueous medium or the like and mixed.
- the aqueous pigment can be mixed by supplying the aqueous medium or the like to the container of the kneading device containing the pigment kneaded product. This is preferable for improving the production efficiency of the dispersion.
- a state where the kneading device is in operation that is, a state in which the kneading in the step [2] continues even after the storage elastic modulus of the content (a1) reaches the range of 200 kPa to 30,000 kPa).
- the aqueous medium of the step [3] it is preferable to supply the aqueous medium of the step [3] in order to improve the dispersion efficiency of the pigment kneaded product in the aqueous medium and the production efficiency of the aqueous pigment dispersion.
- the aqueous medium it is preferable to use water at 25 ° C. to 65 ° C. in order to suppress a significant decrease in the temperature of the pigment kneaded product.
- a method of supplying the aqueous medium to the pigment kneaded product a method of supplying all at once, a method of supplying the pigment kneaded product continuously or intermittently, and the like can be mentioned.
- the pigment kneaded product can be efficiently dispersed in the aqueous medium, and the aqueous pigment dispersion can be produced. This is preferable because the time required can be shortened.
- aqueous medium for example, water, a water-soluble organic solvent that easily mixes with water, or a mixture of water and a water-soluble organic solvent can be used.
- water-soluble organic solvent one or a combination of two or more of the same as those exemplified as those that can be used in the step [2] can be used.
- the pigment (A) to which a resin such as the pigment dispersion resin is adsorbed is dispersed in an aqueous medium.
- the volume average particle size of the dispersion is very small, the number of coarse particles is small, the generation of coarse particles can be prevented over time, and the dispersion stability that can prevent the generation of sedimentation of the pigment (A) and the like over time is achieved. It is in the form of a liquid.
- the non-volatile content of the aqueous pigment dispersion is preferably 10% by mass to 30% by mass, more preferably 12% by mass to 25% by mass, based on the total amount of the aqueous pigment dispersion.
- the aqueous pigment dispersion obtained in the step [3]. may be subjected to the dispersion treatment using a dispersion device before the centrifugation treatment in the step [4] described later.
- a paint shaker for example, a paint shaker, a ball mill, an attritor, a basket mill, a sand mill, a sand grinder, a dyno mill, a dispermat, an SC mill, a spike mill, an agitator mill or the like can be used as a media. It is possible to use an ultrasonic homogenizer, a nanomizer, a dissolver, a disper, a high-speed impeller disperser, a high-pressure homogenizer, or the like as those that do not use media.
- the aqueous pigment dispersion obtained in the step [3] is centrifuged in the step [4] described later. If necessary, it is preferable to carry out a treatment for removing impurities using a chelating resin or the like.
- the piezo method and the thermal method are known as the inkjet printing method.
- the thermal method due to a rapid temperature rise inside the nozzle when ejecting ink, agglomerates of resin such as pigment dispersion resin and polyvalent metal ions and the polyvalent metal are formed on the surface of the heat generation resistance element inside the nozzle.
- a phenomenon called cogation in which aggregates such as ion-derived polyvalent metal salts are deposited may occur. Since the agglomerates cause poor ink ejection, it is strongly desired to reduce polyvalent metal ions in ink jet printing inks.
- Examples of the method for reducing the polyvalent metal ion include a method of contacting a water-based pigment ink or a water-based pigment dispersion with particles having a chelate-forming group or a fibrous resin to remove the polyvalent metal.
- the aqueous pigment dispersion obtained through at least the steps [1], [2] and [3] is further centrifuged in the range of 30 ° C. to 70 ° C. (step [4]. ]) Is preferable.
- the aqueous pigment dispersion obtained in the step [3] (that is, the aqueous pigment dispersion not undergoing the step [4]) is substantially free of coarse particles that impair the initial ejection stability. However, coarse particles are formed over time, such as an uncrushed product of the pigment (A), an undissolved product of a resin such as the pigment-dispersed resin, and a pigment (A) to which the pigment-dispersed resin is not sufficiently adsorbed. A very small amount of sustainable ingredients may remain.
- the components capable of forming coarse particles over time are efficiently produced by undergoing the step [4] of centrifugation under predetermined conditions.
- the coarse particles referred to in the present invention refer to particles having a particle size (particle diameter) of 0.5 ⁇ m or more measured using a particle size distribution meter (Accuser 780 APS) manufactured by Particle Size Systems Co., Ltd. by a number counting method. ..
- the temperature refers to the temperature of the aqueous pigment dispersion centrifuged in the step [4].
- the temperature of the aqueous pigment dispersion before the centrifugation may be adjusted to 30 ° C. to 70 ° C. in advance using, for example, a heat exchange device before being supplied to the centrifugation device, and the water-based pigment dispersion may be centrifuged.
- a heat exchange device before being supplied to the centrifugation device, and the water-based pigment dispersion may be centrifuged.
- a device having a temperature setting function it may be adjusted to the above temperature range after being supplied to the centrifuge device.
- the centrifugation efficiency is improved and coarse particles can be efficiently removed. Further, by controlling the aqueous pigment dispersion in the above temperature range, it is less likely to be affected by the outside air temperature, and an aqueous pigment dispersion having few coarse particles can be stably produced.
- aqueous pigment dispersion before the centrifugation treatment it is possible to use a dispersion having a viscosity at 25 ° C. of 13 mPa ⁇ s or less so that coarse particles can be more efficiently removed from the aqueous pigment dispersion. It is preferable because it can be sufficiently removed in practical use.
- the aqueous pigment dispersion before the centrifugation has a viscosity at 25 ° C. of 10.5 mPa ⁇ s or less. It is preferably 2 mPa ⁇ s to 10.5 mPa ⁇ s because coarse particles can be removed more efficiently and practically sufficiently.
- the centrifuge it is effective to use a centrifuge having a cylindrical rotor shape to reduce the centrifugation efficiency due to the accumulation of clay-like sludge containing the coarse particles in the rotor. It is preferable because it can be suppressed.
- the pigment is applied to the aqueous pigment dispersion obtained through the steps [1], [2] and [3] (that is, the aqueous pigment dispersion not undergoing the step [4]).
- Coarse particles of various sizes such as the coarse particles of the above, the unground product of the pigment, or the undissolved product of the resin such as the pigment dispersion resin, are likely to be contained.
- the coarse particles can be efficiently and continuously removed without impairing productivity, and as a result, the coarse particles over time can be removed. It is possible to obtain excellent dispersion stability that can both suppress the generation of particles and prevent the generation of sedimentation of pigments and the like over time.
- the aqueous pigment dispersion obtained in the step [3] is supplied to the rotor provided in the cylindrical centrifuge, and the temperature of the aqueous pigment dispersion is set to 30 ° C. to 70 ° C.
- the temperature of the aqueous pigment dispersion is set to 30 ° C. to 70 ° C.
- Rotor volume] ⁇ 100 is 1000% to 8000%, which can suppress the removal of components such as pigments that are not coarse particles, while the aqueous pigment dispersion obtained in the step [3]. It is preferable because coarse particles can be removed from the body more efficiently.
- the centrifugal acceleration of the centrifuge is in the range of 8000G to 20000G, which can prevent the pigment-dispersed resin from being peeled off from the pigment (A), and the aqueous solution obtained in the step [3]. It is preferable because coarse particles can be efficiently removed from the pigment dispersion.
- the centrifugal acceleration means a relative centrifugal acceleration and is defined by the following formula.
- Relative centrifugal acceleration (G) r ⁇ (2 ⁇ N / 60) 2 / g (In the formula, N is the number of revolutions per minute (rpm), r is the radius of gyration (m), g is the gravitational acceleration (9.8 m / s 2 ), and ⁇ is the pi)
- a kneaded product is produced by kneading a composition containing at least the pigment (A) and a resin and having a non-volatile content of 50% by mass or more, which has not undergone the steps [1] to [3].
- Step [X] at least the step of producing a composition by mixing the kneaded product and the aqueous medium [Y], and the composition obtained in the step [Y] within the range of 30 ° C. to 70 ° C.
- aqueous pigment dispersion for producing an aqueous pigment dispersion by a method having a step of centrifuging in the above step [Z], it is possible to prevent the generation of coarse particles over time and prevent the generation of precipitation of pigments and the like over time. It is also possible to obtain an aqueous pigment dispersion which has dispersion stability and can be used for producing an ink having excellent ink ejection stability.
- the raw materials and production conditions that can be used in the present invention are the same as those described in the above step [4] and the like.
- the volume average particle size of the dispersion is very small, and in particular, it has excellent storage stability that can prevent the occurrence of sedimentation of coarse particles and pigment (A) over time, and coarse particles and pigments over time in the ink.
- Excellent initial ejection stability that does not cause clogging of the ink ejection nozzle at the initial stage of ink ejection, and remarkably excellent that does not cause clogging of the ink ejection nozzle over time. It can be used in the production of inks with aging stability.
- the aqueous pigment dispersion can be used as an ink by diluting it to a desired concentration.
- the ink examples include paints for automobiles and building materials, printing inks such as offset inks, gravure inks, flexographic inks, and silk screen inks, inks for inkjet printing, and the like.
- the ink When the ink is used as an ink for inkjet printing, it is preferable to use the ink having a pigment concentration of 1% by mass to 10% by mass with respect to the total amount of the ink.
- the ink contains the aqueous pigment dispersion of the present invention, a solvent such as a water-soluble organic solvent or water as required, a binder such as the acrylic resin or the polyurethane resin described above, a drying inhibitor, a penetrant, and a surfactant. It can be produced by mixing with additives such as activators, preservatives, viscosity regulators, pH regulators, chelating agents, plasticizers, antioxidants, and UV absorbers. The ink may be subjected to a centrifugation treatment or a filtration treatment after being produced by the above method.
- the water-soluble organic solvent can be used to prevent the ink from drying and to adjust the viscosity and concentration of the ink within a suitable range.
- the same solvent as those exemplified as those that can be used in the step [1] of the aqueous pigment dispersion can be used.
- the water-soluble organic solvent in order to enhance the permeability of the ink into the recording medium, for example, lower alcohols such as ethanol and isopropyl alcohol; ethylene oxide adducts of alkyl alcohols such as ethylene glycol hexyl ether and diethylene glycol butyl ether; Examples thereof include propylene oxide adducts of alkyl alcohols such as propylene glycol propyl ether.
- the same ones as those exemplified as those that can be used in [1] can be used.
- glycerin ethylene glycol, diethylene glycol, triethylene glycol, triethylene glycol mono-n-butyl ether, polyethylene glycol having a molecular weight of 2000 or less, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propylene glycol, isopropylene glycol.
- Isobutylene glycol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, mesoerythritol, pentaerythritol, etc. should be used if they are FDA or PIM compliant products. Can be done.
- the same compound as the water-soluble organic solvent used in the aqueous pigment dispersion can be used. Therefore, when a water-soluble organic solvent is already used in the aqueous pigment dispersion, it can also serve as a drying inhibitor.
- the penetrant can be used for the purpose of improving the permeability to the recording medium and adjusting the dot diameter on the recording medium.
- penetrant examples include lower alcohols such as ethanol and isopropyl alcohol; and glycol monoethers of alkyl alcohols such as ethylene glycol hexyl ether, diethylene glycol butyl ether and propylene glycol propyl ether.
- the surfactant can be used to adjust ink characteristics such as surface tension.
- examples of the surfactant include various anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, etc. Among these, anionic surfactants and nonionic surfactants. Agents are preferred.
- anionic surfactant examples include alkylbenzene sulfonate, alkylphenyl sulfonate, alkylnaphthalene sulfonate, higher fatty acid salt, sulfate ester salt of higher fatty acid ester, sulfonate of higher fatty acid ester, and higher alcohol ether. Sulfate ester salts and sulfonates, higher alkyl sulfosuccinates, polyoxyethylene alkyl ether carboxylates, polyoxyethylene alkyl ether sulfates, alkyl phosphates, polyoxyethylene alkyl ether phosphates, etc.
- dodecylbenzene sulfonate isopropylnaphthalene sulfonate, monobutylphenylphenol monosulfonate, monobutylbiphenylsulfonate, dibutylphenylphenol disulfonate and the like can be used.
- nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and glycerin fatty acid ester.
- Polyoxyethylene glycerin fatty acid ester Polyglycerin fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene alkylamine, polyoxyethylene fatty acid amide, fatty acid alkylolamide, alkylalkanolamide, acetylene glycol, oxyethylene adduct of acetylene glycol, Examples thereof include polyethylene glycol polypropylene glycol block copolymers, among which polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene dodecylphenyl ether, polyoxyethylene alkyl ether, and polyoxyethylene fatty acid ester.
- Solbitan fatty acid ester polyoxyethylene sorbitan fatty acid ester, fatty acid alkylolamide, acetylene glycol, oxyethylene adduct of acetylene glycol, polyethylene glycol polypropylene glycol block copolymer and the like can be used.
- surfactants include silicone-based surfactants such as polysiloxane oxyethylene adducts; fluorine-based surfactants such as perfluoroalkyl carboxylic acid salts, perfluoroalkyl sulfonates, and oxyethylene perfluoroalkyl ethers.
- Biosurfactants such as spicrysporic acid, ramnolipide, lysolecithin and the like can be used.
- the surfactant can be used alone or in combination of two or more kinds.
- the ink obtained by the above method can be suitably used as an ink for inkjet printing.
- Inkjet printing is generally a single-pass inkjet printing method using a line head, which is more likely to cause deterioration in image quality due to clogging of the ink ejection nozzles, etc., compared to the multi-pass method (scan method) inkjet printing method.
- a printing method or a printed matter manufacturing method in which a method is selected and used in combination with the ink of the present invention is less likely to cause deterioration of image quality due to clogging of an ink ejection nozzle or the like, and a printed matter in which streaks and the like are suppressed is suppressed. It is preferable to obtain it.
- Pigment dispersion resin A As the pigment dispersion resin A, a polymer of 77 parts by mass of styrene, 10 parts by mass of acrylic acid, and 13 parts by mass of methacrylic acid (weight average molecular weight 8800, acid value 154 mgKOH / g, calculated glass transition temperature (Tg) calculated from the following formula). 113 ° C.) was used.
- Example 1 Preparation of aqueous pigment dispersion (A-1)
- a mixture having the following composition was charged into a planetary mixer (Aikosha Seisakusho ACM04LVTJ-B), and kneaded at a jacket temperature of 80 ° C. and a stirring blade rotation speed of 25 rpm (revolution speed of 80 rpm) for 60 minutes.
- Carbon black HIBLACK 600LB manufactured by Orion Co., Ltd.
- 50 parts by mass Pigment dispersion resin A 20 parts by mass Basic compound (38% by mass potassium hydroxide aqueous solution): 8.94 parts by mass
- the obtained kneaded product was put into a household mixer (healthy mix manufactured by Zojirushi Mahobin), 227 parts by mass of ion-exchanged water was added, and the mixture was sealed and dissolved by stirring for 15 minutes to obtain 333 parts by mass of an aqueous pigment dispersion. ..
- a centrifuge Kokusan Co., Ltd.
- 100 parts by mass of the aqueous pigment dispersion was centrifuged at 100,000 rpm for 5 minutes to obtain an aqueous pigment dispersion (A-1) having a pigment concentration of 13% by mass.
- A-1 aqueous pigment dispersion having a pigment concentration of 13% by mass.
- Example 2 (Preparation of aqueous pigment dispersion (A-2)) Volume average particle size 65 nm, coarse particle number (0.5 ⁇ m or more) 1245 in the same manner as in Example 1 except that 50 parts by mass of 2-methyl-1,3-propanediol was used instead of glycerin. An aqueous pigment dispersion (A-2) having a pigment concentration of 13% by mass of ⁇ 10 6 particles / ml was obtained.
- Example 3 Preparation of aqueous pigment dispersion (A-3)
- glycerol instead of glycerol, except for using 49 parts by weight of 1,2-propanediol, in the same manner as in Example 1, the volume average particle diameter of 67 nm, the number of coarse particles (0.5 [mu] m or more) 1321 ⁇ 10 6 cells
- An aqueous pigment dispersion (A-3) having a / ml pigment concentration of 13% by mass was obtained.
- Example 4 Preparation of aqueous pigment dispersion (A-4)
- glycerol instead of glycerol, except for using 50 parts by mass of 1,2-butanediol, in the same manner as in Example 1, the volume average particle diameter of 68 nm, the number of coarse particles (0.5 [mu] m or more) 1067 ⁇ 10 6 cells
- Example 5 (Preparation of aqueous pigment dispersion (A-5))
- HIBLACK 890B (manufactured by Orion Co., Ltd., carbon black) was used instead of HIBLACK 600LB (manufactured by Orion Co., Ltd., carbon black).
- Example 6 (Preparation of aqueous pigment dispersion (A-6)) Volume average particle size 90 nm, coarse particle number (0.5 ⁇ m or more) 548 in the same manner as in Example 5 except that 50 parts by mass of 2-methyl-1,3-propanediol was used instead of glycerin. An aqueous pigment dispersion (A-6) having x10 6 pieces / ml and a pigment concentration of 13% by mass was obtained.
- Example 7 Preparation of aqueous pigment dispersion (A-7)
- glycerol instead of glycerol, except for using 49 parts by weight of 1,2-propanediol, in the same manner as in Example 5, the volume average particle diameter of 91 nm, the number of coarse particles (0.5 [mu] m or more) 872 ⁇ 10 6 cells
- Example 8 Preparation of aqueous pigment dispersion (A-8)
- glycerol instead of glycerol, except for using 50 parts by mass of 1,2-butanediol, in the same manner as in Example 5, the volume average particle diameter of 94 nm, the number of coarse particles (0.5 [mu] m or more) 345 ⁇ 10 6 cells
- Example 9 Preparation of aqueous pigment dispersion (A-9)
- the volume average particle diameter is 90 nm and the number of coarse particles is the same as in Example 1 except that HIBLACK F890B (manufactured by Orion Co., Ltd., carbon black) is used instead of HIBLACK 600LB (manufactured by Orion Co., Ltd., carbon black).
- HIBLACK F890B manufactured by Orion Co., Ltd., carbon black
- HIBLACK 600LB manufactured by Orion Co., Ltd., carbon black
- Example 10 (Preparation of aqueous pigment dispersion (A-10)) Volume average particle size 92 nm, coarse particle number (0.5 ⁇ m or more) 310 in the same manner as in Example 9 except that 55 parts by mass of 2-methyl-1,3-propanediol was used instead of glycerin. An aqueous pigment dispersion (A-10) having x10 6 pieces / ml and a pigment concentration of 13% by mass was obtained.
- Example 11 Preparation of aqueous pigment dispersion (A-11)
- glycerol instead of glycerol, except for using 55 parts by mass of 1,2-propanediol, in the same manner as in Example 9, the volume average particle diameter of 94 nm, the number of coarse particles (0.5 [mu] m or more) 453 ⁇ 10 6 cells
- Example 12 Preparation of aqueous pigment dispersion (A-12)
- glycerol instead of glycerol, except that 1,2-butanediol was used 55 parts by weight, in the same manner as in Example 9, the volume average particle diameter of 91 nm, the number of coarse particles (0.5 [mu] m or more) 283 ⁇ 10 6 cells
- Example 13 (Preparation of aqueous pigment dispersion (A-13)) Volume average particle size 131 nm, coarse, in the same manner as in Example 1 except that PRINTEX F80 BEADS (Carbon Black, manufactured by Orion Co., Ltd.) was used instead of HIBLACK 600LB (Carbon Black, manufactured by Orion Co., Ltd.). to obtain the number of particles (more than 0.5 ⁇ m) 1540 ⁇ 10 6 cells / ml, a pigment concentration of 13 wt% of the aqueous pigment dispersion (a-13).
- PRINTEX F80 BEADS Carbon Black, manufactured by Orion Co., Ltd.
- HIBLACK 600LB Carbon Black, manufactured by Orion Co., Ltd.
- Example 14 (Preparation of aqueous pigment dispersion (A-14)) Volume average particle size 133 nm, coarse particle number (0.5 ⁇ m or more) 1732 in the same manner as in Example 13 except that 55 parts by mass of 2-methyl-1,3-propanediol was used instead of glycerin. ⁇ 10 6 / ml Aqueous pigment dispersion (A-14) having a pigment concentration of 13% by mass was obtained.
- Example 15 Preparation of aqueous pigment dispersion (A-15)
- glycerol instead of glycerol, except for using 55 parts by mass of 1,2-propanediol, in the same manner as in Example 13, the volume average particle diameter of 134 nm, the number of coarse particles (0.5 [mu] m or more) 1803 ⁇ 10 6 cells
- Example 16 Preparation of aqueous pigment dispersion (A-16)
- glycerol instead of glycerol, except that 1,2-butanediol was used 55 parts by weight, in the same manner as in Example 13, the volume average particle diameter of 132 nm, the number of coarse particles (0.5 [mu] m or more) 1702 ⁇ 10 6 cells
- Example 17 (Preparation of aqueous pigment dispersion (A-17))
- HIBLACK 600LB made by Orion Co., Ltd., carbon black
- BLACK PEARLS 880 made by Cabot Specialty Chemicals, Inc., carbon black
- Aqueous pigment dispersion (A-17) having a volume average particle diameter of 105 nm, a coarse particle number (0.5 ⁇ m or more) of 1630 ⁇ 10 6 particles / ml, and a pigment concentration of 13% by mass in the same manner as in Example 1 except for the above. ) was obtained.
- Example 19 Preparation of aqueous pigment dispersion (A-19)
- glycerol instead of glycerol, except for using 55 parts by mass of 1,2-propanediol, in the same manner as in Example 17, the volume average particle diameter of 106 nm, the number of coarse particles (0.5 [mu] m or more) 2352 ⁇ 10 6 cells
- Example 20 Preparation of aqueous pigment dispersion (A-20)
- glycerol instead of glycerol, except that 1,2-butanediol was used 55 parts by weight, in the same manner as in Example 17, the volume average particle diameter of 102 nm, the number of coarse particles (0.5 [mu] m or more) 2256 ⁇ 10 6 cells
- Example 21 (Preparation of aqueous pigment dispersion (A-21))
- BLACK PEARLS 4750 manufactured by Cabot Specialty Chemicals, Inc.
- HIBLACK 600LB manufactured by Orion Co., Ltd., carbon black
- the amount of glycerin used was changed from 50 parts by mass to 68 parts by mass.
- Example 22 (Preparation of aqueous pigment dispersion (A-22)) Volume average particle size 122 nm, coarse particle number (0.5 ⁇ m or more) 3320 in the same manner as in Example 21 except that 62 parts by mass of 2-methyl-1,3-propanediol was used instead of glycerin. ⁇ 10 6 cells / ml, to give a pigment concentration of 13 wt% of the aqueous pigment dispersion (a-22).
- Example 23 (Preparation of aqueous pigment dispersion (A-23)) Instead of glycerol, except for using 59 parts by weight of 1,2-propanediol, in the same manner as in Example 21, the volume average particle diameter of 121 nm, the number of coarse particles (0.5 [mu] m or more) 3490 ⁇ 10 6 cells An aqueous pigment dispersion (A-23) having a pigment concentration of 13% by mass at / ml was obtained.
- Example 24 Preparation of aqueous pigment dispersion (A-24)
- glycerol instead of glycerol, except for using 59 parts by mass of 1,2-butanediol, in the same manner as in Example 21, the volume average particle diameter of 123 nm, the number of coarse particles (0.5 [mu] m or more) 3823 ⁇ 10 6 cells
- Example 1 (Preparation of aqueous pigment dispersion (B-1)) Volume average particle size 192 nm, coarse particle number (0.5 ⁇ m or more) 11247 x 10 6 particles / ml, in the same manner as in Example 1 except that 65 parts by mass of 1-octanol was used instead of glycerin. An aqueous pigment dispersion (B-1) having a pigment concentration of 13% by mass was obtained.
- Example 2 Preparation of aqueous pigment dispersion (B-2)
- glycerol instead of glycerol, except for using 65 parts by weight of 1-hexanol in the same manner as in Example 1, the volume average particle diameter of 194 nm, the number of coarse particles (0.5 [mu] m or more) 12761 ⁇ 10 6 cells / ml, An aqueous pigment dispersion (B-2) having a pigment concentration of 13% by mass was obtained.
- Comparative Example 3 (Preparation of aqueous pigment dispersion (B-3)) Volume average particle diameter 79 nm, coarse particle number (0.5 ⁇ m or more) 8123 ⁇ 10 6 particles / ml, pigment concentration in the same manner as in Example 1 except that 60 parts by mass of diethylene glycol was used instead of glycerin. A 13% by mass aqueous pigment dispersion (B-3) was obtained.
- Example 4 (Preparation of aqueous pigment dispersion (B-4)) Volume average particle size 80 nm, coarse particle number (0.5 ⁇ m or more) 7819 ⁇ 10 6 particles / ml, in the same manner as in Example 1 except that 63 parts by mass of triethylene glycol was used instead of glycerin. An aqueous pigment dispersion (B-4) having a pigment concentration of 13% by mass was obtained.
- Example 5 (Preparation of aqueous pigment dispersion (B-5)) Instead of glycerol, except for using 66 parts by weight of 1-octanol in the same manner as in Example 5, the volume average particle diameter of 235 nm, the number of coarse particles (0.5 [mu] m or more) 12547 ⁇ 10 6 cells / ml, An aqueous pigment dispersion (B-5) having a pigment concentration of 13% by mass was obtained.
- Example 6 Preparation of aqueous pigment dispersion (B-6)
- glycerol instead of glycerol, except for using 65 parts by weight of 1-hexanol in the same manner as in Example 5, the volume average particle diameter of 257 nm, the number of coarse particles (0.5 [mu] m or more) 13653 ⁇ 10 6 cells / ml, An aqueous pigment dispersion (B-6) having a pigment concentration of 13% by mass was obtained.
- Comparative Example 7 (Preparation of aqueous pigment dispersion (B-7)) Instead of glycerol, a except for using 66 parts by weight of diethylene glycol, in the same manner as in Example 5, the volume average particle diameter of 104 nm, the number of coarse particles (0.5 [mu] m or more) 6579 ⁇ 10 6 cells / ml, pigment concentration A 13 mass% aqueous pigment dispersion (B-7) was obtained.
- Example 8 (Preparation of aqueous pigment dispersion (B-8)) Instead of glycerol, except for using 67 parts by mass of triethylene glycol, in the same manner as in Example 5, the volume average particle diameter of 105 nm, the number of coarse particles (0.5 [mu] m or more) 8848 ⁇ 10 6 cells / ml, An aqueous pigment dispersion (B-8) having a pigment concentration of 13% by mass was obtained.
- Example 10 (Preparation of aqueous pigment dispersion (B-10)) Volume average particle size 156 nm, coarse particle number (0.5 ⁇ m or more) 6790 ⁇ 10 6 particles / ml, in the same manner as in Example 9 except that 65 parts by mass of 1-hexanol was used instead of glycerin. An aqueous pigment dispersion (B-10) having a pigment concentration of 13% by mass was obtained.
- Example 13 (Preparation of aqueous pigment dispersion (B-13)) Volume average particle size 258 nm, coarse particle number (0.5 ⁇ m or more) 15925 ⁇ 10 6 particles / ml, in the same manner as in Example 13 except that 66 parts by mass of 1-octanol was used instead of glycerin. An aqueous pigment dispersion (B-13) having a pigment concentration of 13% by mass was obtained.
- Comparative Example 15 (Preparation of aqueous pigment dispersion (B-15)) Volume average particle size 148 nm, coarse particle number (0.5 ⁇ m or more) 6302 ⁇ 10 6 particles / ml, pigment concentration in the same manner as in Example 13 except that 65 parts by mass of diethylene glycol was used instead of glycerin. A 13 mass% aqueous pigment dispersion (B-15) was obtained.
- Example 17 (Preparation of aqueous pigment dispersion (B-17)) Volume average particle size 214 nm, coarse particle number (0.5 ⁇ m or more) 9530 ⁇ 10 6 particles / ml, in the same manner as in Example 17, except that 66 parts by mass of 1-octanol was used instead of glycerin. An aqueous pigment dispersion (B-17) having a pigment concentration of 13% by mass was obtained.
- Comparative Example 22 (Preparation of aqueous pigment dispersion (B-22)) Volume average particle size 278 nm, coarse particle number (0.5 ⁇ m or more) 10478 ⁇ 10 6 particles / ml, in the same manner as in Example 21, except that 65 parts by mass of 1-hexanol was used instead of glycerin. An aqueous pigment dispersion (B-22) having a pigment concentration of 13% by mass was obtained.
- Example 24 (Preparation of aqueous pigment dispersion (B-24)) Volume average particle size 130 nm, coarse particle number (0.5 ⁇ m or more) 5604 ⁇ 10 6 particles / ml, in the same manner as in Example 21, except that 66 parts by mass of triethylene glycol was used instead of glycerin. An aqueous pigment dispersion (B-24) having a pigment concentration of 13% by mass was obtained.
- Comparative Example 25 (Preparation of aqueous pigment dispersion (B-25)) Volume average particle size 325 nm in the same manner as in Comparative Example 1 except that 65 parts by mass of PRINTEX L6 (Carbon Black manufactured by Orion Co., Ltd.) was used instead of HIBLACK 600LB (Carbon Black manufactured by Orion Co., Ltd.). to give a coarse particle number (0.5 [mu] m or more) 18950 ⁇ 10 6 cells / ml, a pigment concentration of 13 wt% of the aqueous pigment dispersion (B-25).
- PRINTEX L6 Carbon Black manufactured by Orion Co., Ltd.
- HIBLACK 600LB Carbon Black manufactured by Orion Co., Ltd.
- Comparative Example 26 (Preparation of aqueous pigment dispersion (B-26))
- the volume average particle diameter was 343 nm and the number of coarse particles (0.5 ⁇ m or more) was 19543 ⁇ 10 6 particles /
- An aqueous pigment dispersion (B-26) having a pigment concentration of 13% by mass was obtained in ml.
- Comparative Example 27 (Preparation of aqueous pigment dispersion (B-27)) Volume average particle size 182 nm, coarse particle number (0.5 ⁇ m or more) 8432 ⁇ 10 6 particles / ml, in the same manner as in Comparative Example 25, except that 65 parts by mass of diethylene glycol was used instead of 1-octanol. An aqueous pigment dispersion (B-27) having a pigment concentration of 13% by mass was obtained.
- Comparative Example 28 (Preparation of aqueous pigment dispersion (B-28)) Instead of 1-octanol, except for using 66 parts by mass of triethylene glycol, in the same manner as in Comparative Example 25, the volume average particle diameter of 179 nm, the number of coarse particles (0.5 [mu] m or more) 6784 ⁇ 10 6 cells / An aqueous pigment dispersion (B-28) having a pigment concentration of 13% by mass was obtained in ml.
- Comparative Example 29 (Preparation of aqueous pigment dispersion (B-29)) Instead of 1-octanol, a except for using 67 parts by weight of glycerin in the same manner as in Comparative Example 25, the volume average particle diameter of 168 nm, the number of coarse particles (0.5 [mu] m or more) 4302 ⁇ 10 6 cells / ml, An aqueous pigment dispersion (B-29) having a pigment concentration of 13% by mass was obtained.
- Comparative Example 30 (Preparation of aqueous pigment dispersion (B-30))
- the volume average particle diameter was 172 nm and the number of coarse particles (0.5 ⁇ m or more).
- an aqueous pigment dispersion (B-30) having a pigment concentration of 13% by mass was obtained.
- Comparative Example 31 (Preparation of aqueous pigment dispersion (B-31)) Volume average particle size 173 nm, coarse particle number (0.5 ⁇ m or more) 7012 ⁇ 10 6 in the same manner as in Comparative Example 25, except that 61 parts of 1,2-propanediol was used instead of 1-octanol. An aqueous pigment dispersion (B-31) having a particle size of 13% by mass and a pigment concentration of 13% by mass was obtained.
- Comparative Example 32 (Preparation of aqueous pigment dispersion (B-32)) Volume average particle size 174 nm, coarse particle number (0.5 ⁇ m or more) 7057 ⁇ 10 6 in the same manner as in Comparative Example 25, except that 62 parts of 1,2-butanediol was used instead of 1-octanol.
- the measurement conditions of the volume average particle size of the dispersion of the aqueous pigment dispersion obtained by using the same pigment were made the same.
- the "particle size" in the table refers to the volume average particle size of the dispersion measured by this measurement method.
- the aqueous pigment dispersions obtained in Examples and Comparative Examples were diluted with ion-exchanged water and used as a measurement sample.
- the number of coarse particles having a diameter of 0.5 ⁇ m or more contained in the measurement sample was measured using a number counting type particle size distribution meter (manufactured by Particle Sigmas Systems: Accuser 780 APS).
- the dilution ratio of the aqueous pigment dispersion was such that the number of coarse particles having a particle size (diameter) of 0.5 ⁇ m or more passing through the detector per second was 1000 to 4000 particles / ml.
- the number of coarse particles having a particle size of 0.5 ⁇ m or more contained in the aqueous pigment dispersion immediately after production was measured by the above method.
- the aqueous pigment dispersion was sealed in a polypropylene container and allowed to stand for 4 weeks under the condition of being heated to 60 ° C.
- the number of coarse particles having a particle size of 0.5 ⁇ m or more contained in the aqueous pigment dispersion after being heated and allowed to stand for 4 weeks was measured by the above method.
- the rate of change (%) of the number of coarse particles having a particle size of 0.5 ⁇ m or more before and after the heating and standing for 4 weeks is determined by [((included in the aqueous pigment dispersion before and after the heating and standing for 4 weeks). (Number of coarse particles with a particle size of 0.5 ⁇ m or more)-(Number of coarse particles with a particle size of 0.5 ⁇ m or more contained in the aqueous pigment dispersion immediately after production)) / (Particle size contained in the aqueous pigment dispersion immediately after production) It was calculated based on the number of coarse particles of 0.5 ⁇ m or more)] ⁇ 100, and evaluated according to the following criteria. Those having the above evaluation of ⁇ were evaluated as having sufficient storage stability for practical use. ⁇ The rate of change is less than 10% ⁇ The rate of change is 10 to 50% ⁇ The rate of change is 50% or more
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
本発明が解決しようとする課題は、分散物の体積平均粒子径が小さく、粗大粒子が少ない保存安定性に優れた水性顔料分散体や、保存安定性に優れたインクの製造に使用可能な水性顔料分散体を提供することである。本発明は顔料(A)と、炭素原子数5個未満及び水酸基2個以上、100未満の分子量を有する溶媒(B)とを含有する水性顔料分散体であって、前記顔料(A)は、前記顔料(A)とトルエンとの混合物を用いISO6209:2009(E)に規定された方法で求められたトルエンへの溶出物の割合[顔料(A)からトルエンに溶出された物質の質量/顔料(A)の質量]が0.1質量%以下であることを特徴とする水性顔料分散体に関するものである。
Description
本発明は、例えばインクの製造に使用可能な水性顔料分散体に関するものである。
インクジェット印刷用水性インクは、一般に、予め顔料が水性媒体に分散された水性顔料分散体に、必要に応じてバインダー樹脂や水溶性溶剤や水性媒体等を供給し混合することによって製造される。そのため、前記インクに良好な吐出安定性を付与するためには、前記インク吐出ノズルの目詰まりの原因となりうる、例えば顔料に起因する粗大粒子の発生を低減でき、また、顔料等の経時的な沈降を防止可能な水性顔料分散体を使用することが重要である。
前記粗大粒子の発生を低減でき、顔料等の経時的な沈降を防止可能な水性顔料分散体としては、例えば少なくともアニオン性基を有する樹脂、顔料、及び塩基性化合物を含む混合物を閉鎖系の混練装置で混練し、固体もしくは半固体状の混練物を用いた水性顔料分散液が知られている(例えば特許文献1参照。)。
ところで、インクジェット印刷法の市場拡大に伴って、水性インクを用いインクジェット印刷法で印刷して得られた印刷物を、例えば食品等の包装材料に使用することが検討され始めている。その際、前記印刷物の製造に使用する水性インクには、食品に接触した場合であっても安全性等に問題を生じにくいことが求められている。そのため、前記水性インクに含まれる原料にも、前記安全性が求められており、例えばSwiss Ordinance Annex 10に挙げられた原料や要件を満たす原料の使用が検討されている。
一方、前記顔料以外の成分についても、より一層安全性の高い材料への変更が検討されており、そのひとつとしては、顔料と分散樹脂との馴染みやすさを向上させるために使用される溶剤が挙げられる。前記溶剤としては、従来、トリエチレングリコールを使用する場合があった。
しかし、トリエチレングリコールは前記した安全性の点でやや懸念がある。そこで、産業界ではトリエチレングリコールからその他の溶剤への代替が検討されているものの、溶剤の種類は多岐に及び、また、前記溶剤の変更は顔料と分散樹脂との親和性の程度に大きな影響を与え、それが水性顔料分散体中における顔料の分散安定性やインクの保存安定性等に影響を与える可能性があるため、安全性の点で懸念がない溶剤を用い、かつ、分散安定性に優れ、粗大粒子の含有量が少ない水性顔料分散体や、保存安定性に優れたインクを見出すには至っていなかった。
本発明が解決しようとする課題は、分散物の体積平均粒子径が小さく、粗大粒子が少ない保存安定性に優れた水性顔料分散体や、保存安定性に優れたインクの製造に使用可能な水性顔料分散体を提供することである。
本発明者は、顔料(A)と、炭素原子数が5個未満、水酸基が2個以上、及び、分子量が100未満の溶媒(B)とを含有する水性顔料分散体であって、前記顔料(A)は、ISO6209:2009(E)に規定された方法で求められたトルエンへの溶出物の割合[顔料(A)からトルエンに溶出された物質の質量/顔料(A)の質量]が0.1質量%以下であることを特徴とする水性顔料分散体によって、前記課題を解決した。
本発明の水性顔料分散体は、分散物の体積平均粒子径が小さく、粗大粒子が少ない保存安定性に優れることから、保存安定性に優れたインクの製造に使用可能である。
本発明の水性顔料分散体は、顔料(A)と、炭素原子数が5個未満、水酸基が2個以上、及び、分子量が100未満の溶媒(B)とを含有する水性顔料分散体であって、前記顔料(A)は、ISO6209:2009(E)に規定された方法で求められたトルエンへの溶出物の割合[顔料(A)からトルエンに溶出された物質の質量/顔料(A)の質量]が0.1質量%以下であることを特徴とする。
本発明では前記特定の顔料(A)と前記溶媒(B)とを組み合わせ使用する。前記顔料(A)と前記溶媒(B)とを組み合わせ使用することによって、分散物の体積平均粒子径が小さく、粗大粒子が少ない保存安定性に優れた水性顔料分散体を得ることができる。
前記顔料(A)としては、一般に販売されている顔料をISO6209:2009(E)に規定された方法で求められるトルエンへの溶出物の割合[顔料(A)からトルエンに溶出された物質の質量/顔料(A)の質量]が0.1質量%以下となるよう精製したもの、または、予め前記割合が0.1質量%以下になるよう調整され販売されているものを使用する。
前記顔料(A)としては、例えば、酸化鉄カーボンブラック、酸化チタン等の無機顔料、アゾ顔料(モノアゾ顔料、ジスアゾ顔料、ピラゾロン顔料等の不溶性アゾ顔料やベンズイミダゾロン顔料、ベータナフトール顔料、ナフトールAS顔料、縮合アゾ顔料などを含む)、多環式顔料(例えば、キナクリドン顔料、ペリレン顔料、ペリノン顔料、アントラキノン顔料、ジオキサジン顔料、チオインジゴ顔料、イソインドリノン顔料、イソインドリン顔料、キノフタロン顔料、ジケトピロロピロール顔料など)、フタロシアニン顔料、染料キレート(例えば、塩基性染料型キレート、酸性染料型キレートなど)、ニトロ顔料、ニトロソ顔料、アニリンブラックなど有機顔料等のうち、前記割合が0.1質量%以下であるものを、単独または2種以上組み合わせ使用することができる。
前記顔料(A)としては、C.I.ピグメントイエロー1、2、12、13、14、16、17、73、74、75、83、93、95、97、98、109、110、114、120、128、129、138、150、151、154、155、174、180、185等のイエロー顔料等のうち、前記割合が0.1質量%以下であるものを、単独または2種以上組み合わせ使用することができる。
前記顔料(A)としては、C.I.ピグメントレッド5、7、12、48(Ca)、48(Mn)、57(Ca)、57:1、112、122、123、146、149、150、168、176、184、185、202、209、213、269、282等のマゼンタ顔料等のうち、前記割合が0.1質量%以下であるものを、単独または2種以上組み合わせ使用することができる。
前記顔料(A)としては、C.I.ピグメントブルー1、2、3、15、15:1、15:2、15:3、15:4、15:6、16、22、60、63、66等のシアン顔料等のうち、前記割合が0.1質量%以下であるものを、単独または2種以上組み合わせ使用することができる。
前記顔料(A)としては、C.I.ピグメントオレンジ5、13、16、17、34、36、43、51、64、71等のオレンジ顔料等のうち、前記割合が0.1質量%以下であるものを、単独または2種以上組み合わせ使用することができる。
前記顔料(A)としては、C.I.ピグメントバイオレット1、3、5:1、16、19、23、38等のバイオレット顔料等のうち、前記割合が0.1質量%以下であるものを、単独または2種以上組み合わせ使用することができる。
前記顔料(A)としては、C.I.ピグメントグリーン1、4、7、8、10、17、18、36、50、58等のグリーン顔料等のうち、前記割合が0.1質量%以下であるものを、単独または2種以上組み合わせ使用することができる。
前記顔料としては、カーボンブラックであれば三菱ケミカル株式会社製の#2300、#980、#960、#900、#52、#45L、#45、#40、#33、MA100、MA8、MA7等、キャボット社製のRegalシリーズ、Monarchシリーズ、BLACK PEARLSシリーズ、オリオン・エンジニアドカーボンズ株式会社製のColor Black FW1、Color Blackシリーズ、Printexシリーズ、Hi Blackシリーズ、Special Blackシリーズ、NIPEXシリーズ等のうち、前記割合が0.1質量%以下であるものを、単独または2種以上組み合わせ使用することができる。
前記顔料(A)としては、ドライパウダーの状態のものや、ウェットケーキの状態のものを使用することができる。前記顔料(A)としては、2種以上を含む混合物や固溶体を使用することができる。
前記顔料(A)としては、一次粒子径が1.0μm以下であるものを使用することが好ましく、0.01μm~0.5μmであるものを使用することがより好ましい。前記した範囲内の一次粒子径を有する顔料(A)を使用することによって、顔料(A)の経時的な沈降をより一層効果的に抑制することができる。
前記溶媒(B)としては、炭素原子数が5個未満、水酸基が2個以上、及び、分子量が100未満の溶媒を使用する。前記炭素原子数は1個以上5個未満であることが好ましい。前記水酸基は2個以上5個以下であることが好ましい。前記分子量は50以上100未満であることが好ましい。
前記溶媒(B)としては、例えばグリセリン、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、2-メチル-2,3-ブタンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、2,3-ジメチル-2,3-ブタンジオールなど使用できる。
なかでも、前記溶媒(B)としては、グリセリン、1,2-プロパンジオール、1,2-ブタンジオールまたは2-メチル-1,3-プロパンジオールを使用することが、分散物の体積平均粒子径が小さく、粗大粒子が少ない保存安定性に優れた水性顔料分散体を得るうえで好ましい。
前記溶媒(B)は、前記顔料(A)に対して20質量%~70質量%の範囲で使用することが好ましく30質量%~60質量%の範囲で使用することが分散物の体積平均粒子径が小さく、粗大粒子が少ない保存安定性に優れた水性顔料分散体を得るうえでより好ましい。
本発明の水性顔料分散体は、例えば、はじめに顔料混練物を製造し、前記顔料混練物と水性媒体などとを混合することによって製造することができる。
はじめに、前記顔料混練物の製造方法を説明する。
前記顔料混練物は、混練装置が備える容器に、少なくとも顔料(A)と樹脂と溶媒(B)とを供給する工程[1]、及び、前記容器の内容物(a1)を混練する工程[2]を経ることによって製造することができる。
前記工程[1]では、前記混練装置が備える容器に、例えば前記顔料(A)、前記樹脂、前記溶媒(B)必要に応じて、前記水溶性溶剤や水、塩基性化合物等を任意の順番で供給することができる。前記樹脂等の前記容器への供給方法としては、例えば一括して供給する方法、分割して供給する方法等が挙げられる。
前記樹脂としては、例えば顔料分散樹脂やバインダー樹脂等を使用することができる。前記顔料分散樹脂としては、従来知られたものを使用できるが、例えばラジカル重合体を使用することができ、芳香族環式構造または複素環式構造を有するラジカル重合体を使用することが、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得るうえで特に好ましい。
前記顔料分散樹脂等の樹脂としてアニオン性基を有するラジカル重合体を使用する場合には、前記アニオン性基の一部または全部が塩基性化合物によって中和されたもの(中和物)を使用することが、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得るうえで特に好ましい。
前記芳香族環式構造または複素環式構造としては、後述する芳香族環式構造を有する単量体または複素環式構造を有する単量体を使用することによって前記ラジカル重合体に導入された環式構造が挙げられる。
前記芳香族環式構造としては、ベンゼン環構造を使用することが好ましく、スチレン由来の構造であることがより好ましい。
前記芳香族環式構造または複素環式構造を有するラジカル重合体である顔料分散樹脂を使用することによって、前記顔料分散樹脂の前記顔料への吸着性を高めることができ、その結果、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を効率よく得ることが可能となる。
また、前記顔料分散樹脂等の樹脂としては、酸価60~300mgKOH/gのものを使用することが好ましく、80~250mgKOH/gの範囲であることがより好ましく、100~200mgKOH/gの範囲であることが、前記顔料分散樹脂等の樹脂の前記顔料への吸着性を向上でき、その結果、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得ることができるため特に好ましい。
前記範囲の酸価を有する顔料分散樹脂は、前記工程[1]において後述する水溶性有機溶剤及び塩基性化合物を組み合わせ使用する場合に、水溶性有機溶剤に全部溶解または一部溶解したり、水溶性有機溶剤によって膨潤しやすく、その結果、後述する塩基性化合物と塩(中和物)を形成しやすい。これにより、前記顔料分散樹脂等の樹脂が吸着した前記顔料の親水性が著しく向上し、その結果、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得ることができる。
前記酸価は、カルボキシ基、スルホ基、リン酸基等のアニオン性基に由来する酸価であることが好ましい。また、前記酸価は、溶剤の代わりにテトラヒドロフランを用いること以外は、日本工業規格「K0070:1992. 化学製品の酸価、けん化価、エステル価、よう素価、水酸基価及び不けん化物の試験方法」にしたがって測定された数値であり、樹脂1gを完全に中和するのに必要な水酸化カリウムの量(mg)を指す。
前記顔料分散樹脂として使用可能な前記ラジカル重合体としては、例えば各種単量体をラジカル重合することによって得られた重合体を使用することができる。
前記単量体としては、前記顔料分散樹脂に芳香族環式構造を導入する場合であれば芳香族環式構造を有する単量体を使用することができ、複素環式構造を導入する場合であれば複素環式構造を有する単量体を使用することができる。
前記芳香族環式構造を有する単量体としては、例えばスチレン、p-tert-ブチルジメチルシロキシスチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、p-tert-ブトキシスチレン、m-tert-ブトキシスチレン、p-tert-(1-エトキシメチル)スチレン、m-クロロスチレン、p-クロロスチレン、p-フロロスチレン、α-メチルスチレン、p-メチル-α-メチルスチレン、ビニルナフタレン、ビニルアントラセン等を使用することができる。
前記複素環式構造を有する単量体としては、例えば2-ビニルピリジン、4-ビニルピリジン等のビニルピリジン系単量体を使用することができる。
前記ラジカル重合体として芳香族環式構造及び複素環式構造の両方を有するものを使用する場合、前記単量体として、芳香族環式構造を有する単量体及び複素環式構造を有する単量体を組合せ使用することができる。
本発明では、前記顔料分散樹脂として芳香族環式構造を有するラジカル重合体を使用することが好ましいことから、前記単量体としても芳香族環式構造を有する単量体を使用することが好ましく、スチレン、α-メチルスチレン、tert-ブチルスチレンを使用することがより好ましい。
前記芳香族環式構造または複素環式構造を有する単量体は、前記顔料分散樹脂の前記顔料への吸着性をより一層高めるうえで、前記単量体の全量に対して20質量%以上使用することが好ましく、40質量%以上使用することがより好ましく、50質量%以上95質量%以下の範囲で使用することがさらに好ましい。
また、前記顔料分散樹脂としては、前記した特定範囲の酸価を有するラジカル重合体を製造するうえで、前記単量体としてアニオン性基を有する単量体を使用することができる。
前記アニオン基を有する単量体としては、例えばカルボキシ基、スルホ基またはリン酸基等のアニオン性基を有する単量体を使用することができる。
前記アニオン基を有する単量体としては、入手しやすく、カルボキシ基を有する単量体を使用することが、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得るうえで好ましく、アクリル酸またはメタクリル酸を使用することがより好ましい。
前記アニオン性基を有する単量体は、前記顔料分散樹脂の製造に使用可能な前記単量体の全量に対して5質量%~80質量%の範囲で使用することが好ましく、5質量%~60質量%で使用することより好ましく、5質量%~50質量%で使用することが、前記した所定範囲の酸価を有するラジカル重合体を得るうえでさらに好ましい。
また、前記顔料分散樹脂の製造に使用可能な単量体としては、前記したもの以外に、必要に応じてその他の単量体を使用することができる。
前記その他の単量体としては、例えばメチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルブチル(メタ)アクリレート、1,3-ジメチルブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-メチルブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、3-エトキシプロピル(メタ)アクリレート、3-エトキシブチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、エチル-α-(ヒドロキシメチル)(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルエチル(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、トリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、グリセリン(メタ)アクリレート、ビスフェノールA(メタ)アクリレート、マレイン酸ジメチル、マレイン酸ジエチル、酢酸ビニル等を単独または2種以上組合せ使用することができる。なお、上記「(メタ)アクリレート」とは、アクリレートまたはメタクリレートを指す。前記その他の単量体としては、このようなアクリレートまたはメタクリレートを単独で用いても良いし、アクリレートとメタクリレートとを組み合わせて用いても良い。
また、前記顔料分散樹脂としては、前記単量体のラジカル重合によって形成される構造が線状(リニア)である重合体、分岐(グラフト)した構造を有する重合体、架橋した構造を有する重合体を使用することができる。それぞれの重合体において、モノマー配列は特に限定することはなく、ランダム型やブロック型配列の重合体を使用することができる。
前記架橋構造を有する重合体は、前記単量体として架橋性官能基を有する単量体を使用することによって製造することができる。
前記架橋性官能基を有する単量体としては、例えばエチレングリコールジ(メタ)アクリレート、プロピレングルコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリ(オキシエチレンオキシプロピレン)グリコールジ(メタ)アクリレート、グリセリンのアルキレンオキシド付加物のトリ(メタ)アクリレート等の多価アルコールのポリ(メタ)アクリレート;グリシジル(メタ)アクリレート、ジビニルベンゼン等を使用することができる。
本発明で使用する前記顔料分散樹脂としては、前記した単量体の重合体を使用できるが、アニオン性基を有する単量体及び芳香族環式構造または複素環式構造を有する単量体のみを重合して得られる重合体を使用することが好ましい。
前記顔料分散樹脂としては、前記したなかでも、スチレン-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸系エステル-(メタ)アクリル酸重合体等のスチレン構造単位と(メタ)アクリル酸構造単位とを有する重合体を使用することが好ましく、それらのうち、前記した好ましい範囲の酸価を有するものを使用することが、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得るうえで特に好ましい。
前記スチレン-(メタ)アクリル酸共重合体としては、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-アクリル酸-メタクリル酸共重合体のいずれも使用できるが、スチレン-アクリル酸-メタクリル酸共重合体を使用することが、前記単量体の共重合性が向上して、その結果、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得るうえで好ましい。
前記スチレン-(メタ)アクリル酸共重合体としては、その製造に使用する単量体の全量に対するスチレンとアクリル酸とメタクリル酸との合計量が80質量%~100質量%であるものを使用することが好ましく、90質量%~100質量%のものを使用することがさらに好ましい。
なお、本発明では、前記ラジカル重合の際の各単量体のラジカル重合率(反応率)は、ほぼ同一とし、各単量体の使用割合(仕込み割合)が、ラジカル重合体を構成する各単量体由来の構造単位の割合と同一であるとみなした。
前記ラジカル重合体は、例えば前記した単量体を、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の方法でラジカル重合することによって製造することができる。
前記ラジカル重合体を製造する際には、必要に応じて公知慣用の重合開始剤、連鎖移動剤(重合度調整剤)、界面活性剤及び消泡剤を使用することができる。
前記重合開始剤としては、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、ベンゾイルパーオキサイド、ジブチルパーオキサイド、ブチルパーオキシベンゾエート等が挙げられる。前記重合開始剤は、前記ラジカル重合体の製造に使用する単量体の全量に対して0.1質量%~10質量%の範囲で使用することが好ましい。
前記顔料分散樹脂として前記溶液重合法で得られたラジカル重合体を使用する場合、前記顔料分散樹脂としては、前記溶液重合法で得られたラジカル重合体溶液に含まれる溶媒を除去した後、乾燥、粉砕し微粒子化したものを使用することができる。
前記微粒子化されたラジカル重合体である顔料分散樹脂は、前記工程[2]において後述する水溶性有機溶剤及び塩基性化合物を組み合わせ使用する場合に、水溶性有機溶剤に全部溶解または一部溶解したり、水溶性有機溶剤によって膨潤しやすい。これにより、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得るうえできる。
前記顔料分散樹脂としては、目の大きさ(直径)が1mm以下のメッシュ状のふるいにより分級したものを使用することが好ましい。
前記顔料分散樹脂等の樹脂としては、その重量平均分子量が2000~40000の範囲内であるものを使用することが好ましく、5000~30000の範囲内にあることがより好ましく、5000~25000範囲内にあることが、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得るうえで好ましい。
なお、前記重量平均分子量とはGPC(ゲル浸透クロマトグラフィー)法で測定される値であり、標準物質として使用するポリスチレンの分子量に換算した値である。
また、前記樹脂としては、前記顔料分散樹脂のほかに、必要に応じてバインダーを使用することができる。前記バインダーとしては、前記したようなアクリル系樹脂や、ポリウレタン系樹脂などを使用することができる。
前記工程[1]では、前記容器内に、前記顔料(A)と樹脂と溶媒(B)の他に、さらに水を供給することが、分散物の体積平均粒子径が小さく、粗大粒子が少ない保存安定性に優れた水性顔料分散体を得るうえで好ましい。前記工程[1]では、前記溶媒(B)と水との質量割合[溶媒(B)/水]が1~50の範囲となるようにそれぞれを容器に供給し後述する内容物(a1)を得ることが、分散物の体積平均粒子径が小さく、粗大粒子が少ない保存安定性に優れた水性顔料分散体を得るうえで好ましく、1~30の範囲となるようにそれぞれを容器に供給することがより好ましい。
前記水としては、イオン交換水、限外濾過水、逆浸透水、蒸留水等の純水、または超純水を用いることができる。また、前記水としては、紫外線照射または過酸化水素添加等によって滅菌された水を用いることが、水性顔料分散体やそれを使用したインク等を長期保存する場合に、カビまたはバクテリアの発生を防止することができるため好適である。
また、前記工程[1]では、前記顔料(A)と樹脂と溶媒(B)等の他に、必要に応じてその他の成分を供給し内容物(a1)を得ることができる。
前記その他の成分としては、塩基性化合物が挙げられる。
前記塩基性化合物は、前記顔料分散樹脂がアニオン基を有する場合に、そのアニオン基を中和する。前記顔料分散樹脂が前記塩基性化合物によって中和されることで、後述する工程[3]において、前記顔料分散樹脂が吸着した前記顔料(A)の水性媒体への親和性が高まる。その結果、分散物の体積平均粒子径が非常に小さく、粗大粒子が少なく、前記水性顔料分散体中の顔料粒子の分散状態がより安定となり、経時的な粗大粒子の発生をより効果的に防止でき、かつ、顔料等の経時的な沈降の発生をより一層効果的に防止することができる。
前記塩基性化合物としては、例えば無機系塩基性化合物、有機系塩基性化合物を使用することができる。
前記塩基性化合物としては、公知のものを使用でき、例えばカリウム、ナトリウム等のアルカリ金属の水酸化物、カリウム、ナトリウム等のアルカリ金属の炭酸塩、カルシウム、バリウム等のアルカリ土類金属の水酸化物、カルシウム、バリウム等の炭酸塩等の無機系塩基性化合物や、トリエタノールアミン、N,N-ジメタノールアミン、N-エチルエタノールアミン、ジメチルエタノールアミン、N-ブチルジエタノールアミン等のアミノアルコール類、モルホリン、N-メチルモルホリン、N-エチルモルホリン等のモルホリン類、N-(2-ヒドロキシエチル)ピペラジン、ピペラジンヘキサハイドレート等のピペラジン、水酸化アンモニウム等の有機系塩基性化合物が挙げられる。なかでも、前記塩基性化合物としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウムに代表されるアルカリ金属水酸化物を使用することが、前記顔料分散樹脂等の樹脂の中和効率に優れるため、前記顔料分散樹脂が吸着した前記顔料(A)の水性媒体に対する分散安定性が向上するため好ましく、特に水酸化カリウムが好ましい。
前記塩基性化合物は、前記顔料分散樹脂としてアニオン基を有するものを使用する場合であれば、前記顔料分散樹脂の中和率が80%~120%となる範囲で使用することが、中和された前記顔料分散樹脂の水性媒体に対する親和性を高め、その結果、前記分散樹脂が吸着した顔料(A)の水性媒体中での分散安定性が向上するため好ましい。
中和率(%)=((塩基性化合物の質量(g)×56×1000)/(顔料分散樹脂の酸価×塩基性化合物の当量×顔料分散樹脂の質量(g)))×100
また、前記その他の成分としては顔料誘導体を使用することができる。
前記顔料誘導体は、前記水性顔料分散体及びそれらを用いて得られたインクに、経時的な粗大粒子の発生防止と、顔料等の経時的な沈降の発生防止を可能にする分散安定性を付与することができる。
前記顔料誘導体としては、顔料(A)に後述する特定の官能基を導入したものを使用することができる。前記顔料としては、フタロシアニン系顔料、アゾ系顔料、アントラキノン系顔料、キナクリドン系顔料、ジケトピロロピロール系顔料等が挙げられる。前記官能基としては、カルボキシ基、スルホ基、アミノ基、ニトロ基、酸アミド基、カルボニル基、カルバモイル基、フタルイミド基、スルホニル基等が挙げられる。
また、前記その他の成分としては水溶性有機溶剤を使用することができる。
前記水溶性有機溶剤は、工程[2]において、前記顔料分散樹脂等の樹脂の一部もしくは全部を溶解または膨潤させやすく、その結果、前記顔料分散樹脂等の樹脂が顔料(A)に吸着しやすくなる。これにより、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得ることができる。
前記工程[2]は、前記顔料(A)と樹脂と溶媒(B)とを含有する内容物(a1)を、混練装置で混練する工程である。
前記内容物(a1)は、前記内容物(a1)の全量に対して前記顔料(A)を10質量%~80質量%の範囲で含有するものを使用することが好ましく、30質量%~50質量%の範囲で含有するものを使用することが、工程[2]において混練されている前記内容物(a1)の粘度を適度に保ち、混練装置から前記内容物(a1)にかかるシェアを大きくすることで、前記顔料(A)の凝集物の粉砕と、前記樹脂の前記顔料(A)への吸着とを効率よく並行して進行させることができ、その結果、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得るうえで特に好ましい。
また、前記内容物(a1)は、前記内容物(a1)の全量に対して前記顔料(A)と樹脂との合計質量が10質量%~80質量%の範囲で含有するものを使用することが好ましく、30質量%~50質量%の範囲で含有するものを使用することが、分散物の体積平均粒子径が小さく、粗大粒子が少ない保存安定性に優れた水性顔料分散体を得るうえでより好ましい。
また、前記内容物(a1)としては、前記顔料(A)に対する前記顔料分散樹脂等の樹脂の質量比率が、5質量%~200質量%の範囲であるものを使用することが好ましく、10質量%~100質量%の範囲であるものを使用することがより好ましい。これにより、前記工程[2]において、前記内容物(a1)を適正な粘度で混練することができる。また、前記顔料分散樹脂等の樹脂が前記顔料(A)に吸着しやすくなることで、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得ることができる。
また、前記内容物(a1)に含まれる前記溶媒(B)と顔料(A)との質量割合[溶媒(B)/顔料(A)]は、0.1~1.5の範囲であることが好ましく、0.5~1.5の範囲であることがより好ましく、0.8~1.2の範囲であることが、分散物の体積平均粒子径が小さく、粗大粒子が少ない保存安定性に優れた水性顔料分散体を得るうえで好ましい。
前記混練装置としては、例えばヘンシェルミキサー、加圧ニーダー、バンバリーミキサー、トリミックス、プラネタリーミキサー、バタフライディスパーミキサー、インテンシブミキサー等を使用することができる。
前記混練装置としては、例えば前記工程[1]において前記水溶性有機溶剤や水等の溶媒を使用する場合であれば、前記混練装置が備える容器の内部を閉鎖できるものを使用することが好ましい。前記閉鎖とは、例えば混練装置が備える容器とその蓋部とによって構成される空間を閉鎖できることを指し、このような閉鎖型混練装置を使用することが、前記水溶性有機溶剤や水等の溶媒の含有量が前記工程[2]において著しく変化することを防止うえで好ましい。
なお、前記「著しく変化」とは、前記内容物(a1)の質量に対する、工程[2]終了後に得られた前記顔料混練物の質量の割合が90質量%未満となる状態を指す。
前記混練装置としては、例えば撹拌槽である前記容器と、一軸または多軸の撹拌羽根とを備えた混練装置を使用することができ、さらに前記容器の蓋部を備えた閉鎖型混練装置を使用することが好ましい。
前記閉鎖型混練装置としては、高い混練作用を得るうえで、二つ以上の攪拌羽根を有するものを使用することが好ましい。
前記閉鎖型混練装置としては、特にプラネタリーミキサーを使用することが、前記内容物(a1)として好ましくは不揮発分50質量%以上のものを使用した場合に強い剪断力を与えることができ、前記顔料の凝集物の粉砕と、前記顔料分散樹脂等の樹脂の前記顔料への吸着のしやすさを高めることができるため好ましい。
混練装置としては、例えばヘンシェルミキサー、加圧ニーダー、バンバリーミキサー、トリミックス、プラネタリーミキサー、バタフライディスパーミキサー、インテンシブミキサー等を使用することができる。
前記混練装置としては、例えば前記工程[1]において前記水溶性有機溶剤や水等の溶媒を使用する場合であれば、前記混練装置が備える容器の内部を閉鎖できるものを使用することが好ましい。前記閉鎖とは、例えば混練装置が備える容器とその蓋部とによって構成される空間を閉鎖できることを指し、このような閉鎖型混練装置を使用することが、前記水溶性有機溶剤や水等の溶媒の含有量が前記工程[2]において著しく変化することを防止うえで好ましい。
なお、前記「著しく変化」とは、前記内容物(a1)の質量に対する、工程[2]終了後に得られた前記顔料混練物の質量の割合が90質量%未満となる状態を指す。
前記混練装置としては、例えば撹拌槽である前記容器と、一軸または多軸の撹拌羽根とを備えた混練装置を使用することができ、さらに前記容器の蓋部を備えた閉鎖型混練装置を使用することが好ましい。
前記閉鎖型混練装置としては、高い混練作用を得るうえで、二つ以上の攪拌羽根を有するものを使用することが好ましい。
前記閉鎖型混練装置としては、特にプラネタリーミキサーを使用することが、前記内容物(a1)として好ましくは不揮発分50質量%以上のものを使用した場合に強い剪断力を与えることができ、前記顔料の凝集物の粉砕と、前記顔料分散樹脂等の樹脂の前記顔料への吸着のしやすさを高めることができるため好ましい。
また、前記プラネタリーミキサーは、前記内容物(a1)の粘度が広範なものであっても、前記顔料の凝集物の粉砕と、前記顔料分散樹脂等の樹脂の前記顔料への吸着のしやすさを高めることができるため好ましい。
また、前記プラネタリーミキサーを使用する場合であれば、前記工程[2]の終了後、引き続きプラネタリーミキサーの容器内に後述する水性媒体を供給するなどして水性顔料分散体を製造することができるため、水性顔料分散体やインクの生産効率を向上するうえでも好ましい。
前記工程[2]において前記内容物(a1)を混練する際の前記内容物(a1)の温度は、前記顔料分散樹脂等の樹脂のガラス転移点等の温度特性を考慮して適宜調整することが好ましい。具体的には、前記混練する際の前記内容物(a1)の温度の上限は、好ましくは前記顔料分散樹脂のガラス転移温度(Tg)である。一方、前記混練する際の前記内容物(a1)の温度の下限は、好ましくは前記顔料分散樹脂のガラス転移温度よりも60℃低い温度である。前記内容物(a1)の混練を前記温度範囲内で行うことによって、前記組成物(a1)に十分なせん断力を与えることが可能となり、その結果、前記顔料の凝集物の粉砕と、前記顔料分散樹脂の前記顔料への吸着のしやすさを高めることができるため好ましい。
また、前記内容物(a1)の前記温度は、顔料の種類によって、顔料混練物等に異なる影響を与える場合がある。例えばイエロー顔料であるC.I.ピグメントイエロー74を使用する場合、前記温度が80℃を超えると、得られる水性顔料分散体の製造直後の分散物の体積平均粒子径が若干大きくなる傾向にあるため、後述するように水や水溶性有機溶剤等の溶媒を供給することで、前記温度を調整することが好ましい。一方、ブラック顔料であるC.I.ピグメントブラック7を使用する場合、前記温度が120℃を超えると前記内容物(a1)の粘度が低下する傾向にあり、内容物(a1)に加えられる剪断力が小さくなる場合があるため、後述するように水や前記水溶性有機溶剤等の溶媒を供給することで、前記温度を調整することが好ましい。
前記内容物(a1)を混練する際の前記内容物(a1)の温度は、具体的には60℃~120℃の範囲内を維持した状態で行うことが、前記内容物(a1)により一層十分な剪断力を与え、その結果、前記顔料の凝集物の粉砕と、前記顔料分散樹脂等の樹脂の前記顔料への吸着のしやすさを高めることができるためより好ましい。
また、前記混練の際には、前記内容物(a1)の温度上昇による著しい粘度の低下を引き起こす場合がある。前記内容物(a1)の粘度が低下すると、前記内容物(a1)に十分なせん断力を加えることができない場合があるため、前記混練の際には、その途中で、後述する水性媒体等を添加し、意図的に前記内容物(a1)を冷却してもよい。
前記工程[2]の途中で前記内容物(a1)の温度が前記範囲外にならないよう、必要に応じて前記内容物(a1)に水や前記水溶性有機溶剤等の溶媒を供給したり、ドライアイスや液体窒素などを用いて前記混練装置及び内容物(a1)を冷却してもよい。
なお、前記顔料分散樹脂のガラス転移温度(Tg)は、前記顔料分散樹脂の製造に使用された各単量体の単独重合体のガラス転移温度に基づきFOXの式を用いて算出された値を指す。
1/Tg=W1/Tg1+W2/Tg2+W3/Tg3・・・・・+Wn/Tgn
(式中、Tgnは前記顔料分散樹脂の製造に使用された各単量体の単独重合体のガラス転移温度(絶対温度:K)、Wnは単量体の質量分率)
(式中、Tgnは前記顔料分散樹脂の製造に使用された各単量体の単独重合体のガラス転移温度(絶対温度:K)、Wnは単量体の質量分率)
前記工程[2]内容物(a1)の温度25℃での動的粘弾性測定で求められる角周波数1rad/sにおける貯蔵弾性率が、200kPa~30000kPaの範囲内になった時点で終了することが、分散物の体積平均粒子径が非常に小さく、経時的に粗大粒子や顔料等の沈降の発生を防止可能な保存安定性に優れた水性顔料分散体の製造に使用可能で、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない優れた経時吐出安定性とを備えたインクの製造に使用可能な顔料混練物を得るうえで好ましい。
前記した本発明の製造方法で得られた顔料混練物は、顔料(A)の凝集体が解砕され、微粒化した前記顔料に前記顔料分散樹脂が吸着した、常温条件下で半固形または固形状態のものである。そのため、前記顔料混練物は、後述する水性媒体に対して容易に分散することができる。
次に、前記方法で得られた顔料混練物と水性媒体とを混合する工程[3]について説明する。
前記工程[3]は、前記工程[1]及び[2]を経て得られた顔料混練物と、前記水性媒体と、必要に応じてその他の成分とを混合する工程である。前記工程[3]を経ることによって、前記顔料混練物等が水性媒体に溶解または分散した水性顔料分散体を得ることができる。
前記工程[3]では、前記顔料混練物に前記水性媒体等を供給し混合してもよく、前記水性媒体等に前記顔料混練物を供給し混合してもよい。
前記工程[2]においてプラネタリーミキサー等の閉鎖型混練装置を用いた場合には、前記顔料混練物を含む前記混練装置の前記容器に、前記水性媒体等を供給し混合することが、水性顔料分散体の製造効率を向上するうえで好ましい。この場合、前記混練装置が稼動した状態(すなわち、前記内容物(a1)の前記貯蔵弾性率が200kPa~30000kPaの範囲内に達した後も、前記工程[2]の混練が継続した状態)で、前記工程[3]の水性媒体の供給を行うことが、前記顔料混練物の前記水性媒体中への分散効率と前記水性顔料分散体の生産効率を向上させるうえで好ましい。前記水性媒体としては、前記顔料混練物の温度の著しい低下を抑制するうえで、25℃~65℃の水を使用することが好ましい。
また、前記顔料混練物に前記水性媒体を供給する方法としては、一括して供給する方法や、連続的または断続的に供給する方法等が挙げられる。前記水性媒体を供給する方法としては、連続的または断続的に供給する方法を採用することが、前記水性媒体への前記顔料混練物の分散を効率的に行え、前記水性顔料分散体の製造に要する時間を短縮できるため好ましい。
前記工程[3]で使用可能な水性媒体としては、例えば水、水と容易に混ざり合う水溶性有機溶剤、または、水と水溶性有機溶剤との混合物を使用することができる。前記水溶性有機溶剤としては、前記工程[2]で使用可能なものとして例示したものと同様のものを1種または2種以上組み合わせ使用することができる。
前記工程[1]、[2]及び[3]を経ることによって得られた水性顔料分散体は、前記顔料分散樹脂等の樹脂が吸着した前記顔料(A)が水性媒体中に分散して、分散物の体積平均粒子径が非常に小さく、粗大粒子が少なく、経時的に粗大粒子の発生を防止でき、かつ、顔料(A)等の経時的な沈降の発生を防止可能な分散安定性を備えた液体状のものである。
前記水性顔料分散体は、前記水性顔料分散体の全量に対する不揮発分が10質量%~30質量%であることが好ましく、12質量%~25質量%であることがより好ましい。
本発明では、前記水性顔料分散体の経時的な粗大粒子の発生または顔料等の経時的な沈降の発生をより一層抑えることを目的として、前記工程[3]で得られた前記水性顔料分散体を、後述する工程[4]で遠心分離処理する前に、必要に応じて、分散装置を用いて分散処理を行ってもよい。
前記分散装置としては、例えば、メディアを用いたものとして、ペイントシェーカー、ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、SCミル、スパイクミル、アジテーターミル等を使用することができ、メディアを用いないものとして超音波ホモジナイザー、ナノマイザー、ディゾルバー、ディスパー、高速インペラー分散機、高圧ホモジナイザー等を使用することができる。
また、前記水性顔料分散体に多価金属イオン等の不純物が含まれる場合、本発明では、前記工程[3]で得られた前記水性顔料分散体を、後述する工程[4]で遠心分離処理する前に、必要に応じて、キレート樹脂等を用いて不純物を除去する処理を行うことが好ましい。
インクジェット印刷方式としては、ピエゾ方式とサーマル方式とが知られている。特にサーマル方式では、インクを吐出する際のノズル内部の急激な温度上昇により、ノズル内部の発熱抵抗素子表面に、顔料分散樹脂等の樹脂と多価金属イオンとの凝集物や、前記多価金属イオン由来の多価金属塩などの凝集物が堆積するコゲーションという現象が発生する場合がある。前記凝集物は、インクの吐出不良の原因となるため、インクジェット印刷用インクには、多価金属イオンの低減が強く望まれている。
前記多価金属イオンを低減する方法としては、例えば、水性顔料インクや水性顔料分散体にキレート形成基を持つ粒子又は繊維状樹脂を接触させて多価金属を取り除く方法等が挙げられる。
本発明では、少なくとも前記工程[1]、工程[2]及び工程[3]を経ることによって得られた水性顔料分散体を、さらに30℃~70℃の範囲内で遠心分離処理(工程[4])することが好ましい。
前記工程[3]で得られた水性顔料分散体(すなわち、前記工程[4]を経ていない水性顔料分散体)には、初期の吐出安定性を損なうような粗大粒子が実質的に含まれないものの、前記顔料(A)の未粉砕物や前記顔料分散樹脂等の樹脂の未溶解物や、前記顔料分散樹脂が十分吸着していない顔料(A)等の、経時的に粗大粒子を形成しうる成分が、ごくわずかに残留する場合がある。
これらの成分は、経時的に凝集することで粗大粒子を形成し、インク吐出ノズルの詰まりを引き起こす場合がある。
本発明では、前記工程[3]で水性顔料分散体を製造した後に、所定の条件下で遠心分離処理する工程[4]を経ることによって、経時的に粗大粒子を形成し得る成分を効率よく的確に分離することで、微細化され、高密度化されたインク吐出ノズルの目詰まり等を引き起こさないインクの製造に使用可能な経時吐出安定性に優れた水性顔料分散体やインクを製造することが可能である。
なお、本発明でいう粗大粒子は、Particle Sizing Systems社製の個数カウント方式による粒度分布計(Accusizer 780 APS)を用いて測定された粒子径(粒子の直径)が0.5μm以上のものを指す。
前記工程[4]では、単に遠心分離処理をすればよいわけではなく、30℃~70℃の範囲で遠心分離処理することが好ましく、40℃~65℃の範囲で遠心分離処理することが、効率よく、かつ、実用上十分に粗大粒子を除去するうえでより好ましい。なお、前記温度は、工程[4]で遠心分離される水性顔料分散体の温度を指す。
前記遠心分離処理される前の前記水性顔料分散体は、遠心分離装置に供給される前に、例えば熱交換装置等を用いて予め30℃~70℃に温度調整されていてもよく、遠心分離装置として温度設定機能を有するものを使用する場合には、遠心分離装置に供給された後、前記温度範囲に調整されてもよい。
加温された前記水性顔料分散体は、低粘度化されることによって、遠心分離効率が向上し、効率良く粗大粒子を取り除くことができる。また、前記水性顔料分散体を上記の温度範囲で制御することにより、外気温による影響が受けにくくなり、粗大粒子の少ない水性顔料分散体を安定的に製造することができる。
前記遠心分離処理される前の前記水性顔料分散体としては、25℃での粘度が13mPa・s以下であるものを使用することが、前記水性顔料分散体から粗大粒子を一層効率よく、かつ、実用上十分に取り除くことができるため好ましい。
とりわけ、遠心分離装置として、後述する円筒型の遠心分離装置を使用する場合には、前記遠心分離処理される前の前記水性顔料分散体として、25℃での粘度が10.5mPa・s以下であることが好ましく、2mPa・s~10.5mPa・sであるものことが、粗大粒子をより一層効率よく、かつ、実用上十分に取り除くことができるためより好ましい。
前記遠心分離装置としては、ローターの形状が円筒型の遠心分離装置を使用することが、前記粗大粒子を含む粘土状のスラッジがローター内に堆積したことに起因する遠心分離効率の低下を効果的に抑制できるため好ましい。
前記工程[1]、工程[2]及び工程[3]を経て得られた前記水性顔料分散体(すなわち、前記工程[4]を経ていない水性顔料分散体)には、前記したとおり、前記顔料の粗大粒子、前記顔料の未粉砕物、または前記顔料分散樹脂等の樹脂の未溶解物等のさまざまな大きさの粗大粒子が含まれやすい。前記円筒型遠心分離装置を用いて前記工程[4]を行うことによって、生産性を損ねることなく、上記の粗大粒子を効率よく、かつ、継続的に除去でき、その結果、経時的な粗大粒子の発生抑止と、顔料等の経時的な沈降発生の防止とを両立可能な優れた分散安定性を得ることができる。
また、前記工程[4]は、前記円筒型遠心分離機が備えるローターに、前記工程[3]で得られた前記水性顔料分散体を供給し、前記水性顔料分散体の温度を30℃~70℃の範囲内に維持した状態で行う工程であることが、安定的に好適な遠心分離効率を長期間維持でき、前記工程[3]で得られた前記水性顔料分散体から粗大粒子をより一層効率的かつ十分に取り除くことができるため好ましい。その際、前記ローターの容積に対する前記工程[3]で得られた前記水性顔料分散体の供給量(体積)の比率[前記工程[3]で得られた水性顔料分散体の供給量(体積)/ローターの容積]×100は、1000%~8000%であることが、粗大粒子ではない顔料等の成分が取り除かれることを抑制できる一方で、前記工程[3]で得られた前記水性顔料分散体から粗大粒子をより一層効率的に取り除くことができため好ましい。
前記遠心分離装置の遠心加速度は、8000G~20000Gの範囲であることが、前記顔料分散樹脂が顔料(A)から引き剥がされることを防止でき、かつ、前記工程[3]で得られた前記水性顔料分散体から粗大粒子を効率良く取り除くことができるため好ましい。
なお、前記遠心加速度は、相対遠心加速度を意味し、下記式により定義される。
相対遠心加速度(G)=r×(2πN/60)2/g
(式中、Nは1分間当たりの回転数(rpm)、rは回転半径(m)、gは重力加速度(9.8m/s2)、πは円周率を指す)
(式中、Nは1分間当たりの回転数(rpm)、rは回転半径(m)、gは重力加速度(9.8m/s2)、πは円周率を指す)
また、本発明では、前記工程[1]~工程[3]を経ていない、少なくとも顔料(A)と樹脂とを含有する不揮発分50質量%以上の組成物を、混練することによって混練物を製造する工程[X]、少なくとも前記混練物と水性媒体とを混合することによって組成物を製造する工程[Y]、及び、前記工程[Y]で得た組成物を30℃~70℃の範囲内で遠心分離処理する工程[Z]を有する方法によって水性顔料分散体を製造する本発明によって、経時的な粗大粒子の発生を防止でき、かつ、顔料等の経時的な沈降の発生を防止可能な分散安定性を備え、かつ、優れたインク吐出安定性を備えたインクの製造に使用可能な水性顔料分散体を得ることもできる。この発明において使用可能な原料や製造条件は、前記工程[4]等で説明したものと同一である。
以上のとおり、少なくとも前記工程[1]、前記工程[2]及び前記工程[3]で得られた水性顔料分散体、さらには前記工程[4]を経ることによって得られた水性顔料分散体は、分散物の体積平均粒子径が非常に小さく、とりわけ、経時的に粗大粒子や顔料(A)等の沈降の発生を防止可能な保存安定性に優れ、インク中に経時的な粗大粒子や顔料等の沈降の発生を防止可能で、インク吐出初期におけるインク吐出ノズルの目詰まり等を引き起こすことがない優れた初期吐出安定性と、経時的なインク吐出ノズルの目詰まり等を引き起こさない顕著に優れた経時吐出安定性とを備えたインクの製造に使用可能である。
前記水性顔料分散体は、所望の濃度に希釈することによってインクとして使用することができる。
前記インクとしては、例えば自動車や建材用の塗料や、オフセットインキ、グラビアインキ、フレキソインキ、シルクスクリーンインキ等の印刷インキまたはインクジェット印刷用インク等が挙げられる。
前記インクをインクジェット印刷用インクとして使用する場合、前記インクとしては、インク全量に対する顔料の濃度が1質量%~10質量%であるものを使用することが好ましい。
前記インクは、本発明の水性顔料分散体と、必要に応じて水溶性有機溶剤や水等の溶媒と、前記したアクリル系樹脂やポリウレタン系樹脂等のバインダーと、乾燥抑止剤、浸透剤、界面活性剤、防腐剤、粘度調整剤、pH調整剤、キレート剤、可塑剤、酸化防止剤、紫外線吸収剤等の添加剤とを混合することによって製造することができる。前記インクは、前記方法で製造した後に、遠心分離処理やろ過処理を施してもよい。
前記水溶性有機溶剤は、前記インクの乾燥を防止し、インクの粘度や濃度を好適な範囲に調整するうえで使用することができる。
前記水溶性有機溶剤としては、前記水性顔料分散体の前記工程[1]で使用可能なものとして例示したものと同様のものを使用することができる。なかでも、水溶性有機溶剤としては、被記録媒体へのインクの浸透性を高めるうえで、例えばエタノール、イソプロピルアルコールなどの低級アルコール;エチレングリコールヘキシルエーテル、ジエチレングリコールブチルエーテルなどのアルキルアルコールのエチレンオキシド付加物;プロピレングリコールプロピルエーテルなどのアルキルアルコールのプロピレンオキシド付加物などが挙げられる。
前記乾燥防止剤としては、[1]で使用可能なものとして例示したものと同様のものを使用することができる。例えば、グリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、トリエチレングリコールモノ-n-ブチルエーテル、分子量2000以下のポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロピレングリコール、イソプロピレングリコール、イソブチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、メソエリスリトール、ペンタエリスリトール等がFDAまたはPIM準拠品であれば使用することができる。
なお、前記乾燥防止剤は、水性顔料分散体で使用する前記の水溶性有機溶剤と同じ化合物を使用することができる。従って水性顔料分散体に既に水溶性有機溶剤を使用している場合、乾燥防止剤としての役割を兼ねることできる。
前記浸透剤は、記録媒体への浸透性改良や記録媒体上でのドット径調整を目的として使用することができる。
浸透剤としては、例えばエタノール、イソプロピルアルコール等の低級アルコール;エチレングリコールヘキシルエーテル、ジエチレングリコールブチルエーテル、プロピレングリコールプロピルエーテル等のアルキルアルコールのグリコールモノエーテルが挙げられる。
前記界面活性剤は、表面張力等のインク特性を調整するために使用することができる。界面活性剤としては、各種のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤などが挙げられ、これらの中では、アニオン性界面活性剤、ノニオン性界面活性剤が好ましい。
アニオン性界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキルフェニルスルホン酸塩、アルキルナフタレンスルホン酸塩、高級脂肪酸塩、高級脂肪酸エステルの硫酸エステル塩、高級脂肪酸エステルのスルホン酸塩、高級アルコールエーテルの硫酸エステル塩及びスルホン酸塩、高級アルキルスルホコハク酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩等が挙げられ、これらの具体例として、ドデシルベンゼンスルホン酸塩、イソプロピルナフタレンスルホン酸塩、モノブチルフェニルフェノールモノスルホン酸塩、モノブチルビフェニルスルホン酸塩、ジブチルフェニルフェノールジスルホン酸塩等を使用することができる。
ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、脂肪酸アルキロールアミド、アルキルアルカノールアミド、アセチレングリコール、アセチレングリコールのオキシエチレン付加物、ポリエチレングリコールポリプロピレングリコールブロックコポリマー等を挙げることができ、これらの中では、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルキロールアミド、アセチレングリコール、アセチレングリコールのオキシエチレン付加物、ポリエチレングリコールポリプロピレングリコールブロックコポリマー等を使用することができる。
その他の界面活性剤として、ポリシロキサンオキシエチレン付加物のようなシリコーン系界面活性剤;パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、オキシエチレンパーフルオロアルキルエーテルのようなフッ素系界面活性剤;スピクリスポール酸、ラムノリピド、リゾレシチンのようなバイオサーファクタント等を使用することができる。
また、前記界面活性剤は、単独または2種類以上を組み合わせ使用することができる。
上記方法で得られたインクは、インクジェット印刷用インクとして好適に用いることができる。インクジェット印刷方式としては、一般に、マルチパス方式(スキャン方式)のインクジェット印刷法と比較してインク吐出ノズルの目詰まり等に起因した画像品質の低下を引き起こしやすいラインヘッドによるシングルパス方式でのインクジェット印刷方式を選択し、本発明のインクと組み合わせ使用する印刷方法や印刷物の製造方法が、インク吐出ノズルの目詰まり等に起因した画像品質の低下を引き起こしにくく、スジ等の発生が抑制された印刷物を得るうえで好ましい。
以下、本発明を実施例により具体的に説明する。
(顔料分散樹脂A)
顔料分散樹脂Aとして、スチレン77質量部とアクリル酸10質量部とメタクリル酸13質量部との重合体(重量平均分子量8800、酸価154mgKOH/g、下記式から算出した計算ガラス転移温度(Tg)113℃)を使用した。
顔料分散樹脂Aとして、スチレン77質量部とアクリル酸10質量部とメタクリル酸13質量部との重合体(重量平均分子量8800、酸価154mgKOH/g、下記式から算出した計算ガラス転移温度(Tg)113℃)を使用した。
〔トルエンへの溶出物の測定方法〕
抽出器として市販のソックスレー抽出器、円筒ろ紙としてADVANTEC社製THINBLE FILTER 86R,抽出溶剤として関東化学(株)製トルエンPrimepure(M)、抽出液の濃縮工程でロータリーエバポレーターを用い、ISO6209:2009(E)に準じて、顔料からトルエンに溶出する成分を抽出する作業を行い、トルエン溶出率[顔料(A)からトルエンに溶出された物質の質量/顔料(A)の質量]を算出した。
(実施例1)
(水性顔料分散体(A-1)の調製)
下記組成の混合物をプラネタリーミキサー(愛工舎製作所ACM04LVTJ-B)に仕込み、ジャケット温度80℃、攪拌羽根回転数25rpm(公転数80rpm)にて60分間混練を行なった。
カーボンブラック(オリオン株式会社製HIBLACK 600LB):50質量部
顔料分散樹脂A:20質量部
塩基性化合物(38質量%水酸化カリウム水溶液):8.94質量部
水性媒体(グリセリン):50量部
抽出器として市販のソックスレー抽出器、円筒ろ紙としてADVANTEC社製THINBLE FILTER 86R,抽出溶剤として関東化学(株)製トルエンPrimepure(M)、抽出液の濃縮工程でロータリーエバポレーターを用い、ISO6209:2009(E)に準じて、顔料からトルエンに溶出する成分を抽出する作業を行い、トルエン溶出率[顔料(A)からトルエンに溶出された物質の質量/顔料(A)の質量]を算出した。
(実施例1)
(水性顔料分散体(A-1)の調製)
下記組成の混合物をプラネタリーミキサー(愛工舎製作所ACM04LVTJ-B)に仕込み、ジャケット温度80℃、攪拌羽根回転数25rpm(公転数80rpm)にて60分間混練を行なった。
カーボンブラック(オリオン株式会社製HIBLACK 600LB):50質量部
顔料分散樹脂A:20質量部
塩基性化合物(38質量%水酸化カリウム水溶液):8.94質量部
水性媒体(グリセリン):50量部
次に、得られた混練物を家庭用ミキサー(象印マホービン社製ヘルシーミックス)に投入し、イオン交換水227質量部を加え密栓し15分間撹拌溶解し、水性顔料分散体を333質量部得た。遠心装置(株式会社コクサン)を用い、100質量部の水性顔料分散体を、10万回転で5分間遠心処理を行い、顔料濃度13質量%の水性顔料分散体(A-1)とした。体積平均粒子径69nm、粗大粒子数(0.5μm以上)2176 × 106個/mlの水性顔料分散体(A-1)を得た。
(実施例2)
(水性顔料分散体(A-2)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを50質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径65nm、粗大粒子数(0.5μm以上)1245 × 106個/mlの顔料濃度13質量%の水性顔料分散体(A-2)を得た。
(水性顔料分散体(A-2)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを50質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径65nm、粗大粒子数(0.5μm以上)1245 × 106個/mlの顔料濃度13質量%の水性顔料分散体(A-2)を得た。
(実施例3)
(水性顔料分散体(A-3)の調製)
グリセリンの代わりに、1,2-プロパンジオールを49質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径67nm、粗大粒子数(0.5μm以上)1321 × 106個/ml顔料濃度13質量%の水性顔料分散体(A-3)を得た。
(水性顔料分散体(A-3)の調製)
グリセリンの代わりに、1,2-プロパンジオールを49質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径67nm、粗大粒子数(0.5μm以上)1321 × 106個/ml顔料濃度13質量%の水性顔料分散体(A-3)を得た。
(実施例4)
(水性顔料分散体(A-4)の調製)
グリセリンの代わりに、1,2-ブタンジオールを50質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径68nm、粗大粒子数(0.5μm以上)1067 × 106個/ml顔料濃度13質量%の水性顔料分散体(A-4)を得た。
(水性顔料分散体(A-4)の調製)
グリセリンの代わりに、1,2-ブタンジオールを50質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径68nm、粗大粒子数(0.5μm以上)1067 × 106個/ml顔料濃度13質量%の水性顔料分散体(A-4)を得た。
(実施例5)
(水性顔料分散体(A-5)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりにHIBLACK 890B(オリオン株式会社製、カーボンブラック)使用したこと以外は、実施例1と同様の方法で、体積平均粒子径93nm、粗大粒子数(0.5μm以上)284 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-5)を得た。
(水性顔料分散体(A-5)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりにHIBLACK 890B(オリオン株式会社製、カーボンブラック)使用したこと以外は、実施例1と同様の方法で、体積平均粒子径93nm、粗大粒子数(0.5μm以上)284 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-5)を得た。
(実施例6)
(水性顔料分散体(A-6)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを50質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径90nm、粗大粒子数(0.5μm以上)548 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-6)を得た。
(水性顔料分散体(A-6)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを50質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径90nm、粗大粒子数(0.5μm以上)548 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-6)を得た。
(実施例7)
(水性顔料分散体(A-7)の調製)
グリセリンの代わりに、1,2-プロパンジオールを49質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径91nm、粗大粒子数(0.5μm以上)872 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-7)を得た。
(水性顔料分散体(A-7)の調製)
グリセリンの代わりに、1,2-プロパンジオールを49質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径91nm、粗大粒子数(0.5μm以上)872 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-7)を得た。
(実施例8)
(水性顔料分散体(A-8)の調製)
グリセリンの代わりに、1,2-ブタンジオールを50質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径94nm、粗大粒子数(0.5μm以上)345 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-8)を得た。
(水性顔料分散体(A-8)の調製)
グリセリンの代わりに、1,2-ブタンジオールを50質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径94nm、粗大粒子数(0.5μm以上)345 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-8)を得た。
(実施例9)
(水性顔料分散体(A-9)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりに、HIBLACK F890B(オリオン株式会社製、カーボンブラック)使用したこと以外は、実施例1と同様の方法で、体積平均粒子径90nm、粗大粒子数(0.5μm以上)31 × 106個/ml顔料濃度13質量%の水性顔料分散体(A-9)を得た。
(水性顔料分散体(A-9)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりに、HIBLACK F890B(オリオン株式会社製、カーボンブラック)使用したこと以外は、実施例1と同様の方法で、体積平均粒子径90nm、粗大粒子数(0.5μm以上)31 × 106個/ml顔料濃度13質量%の水性顔料分散体(A-9)を得た。
(実施例10)
(水性顔料分散体(A-10)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを55質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径92nm、粗大粒子数(0.5μm以上)310 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-10)を得た。
(水性顔料分散体(A-10)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを55質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径92nm、粗大粒子数(0.5μm以上)310 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-10)を得た。
(実施例11)
(水性顔料分散体(A-11)の調製)
グリセリンの代わりに、1,2-プロパンジオールを55質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径94nm、粗大粒子数(0.5μm以上)453 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-11)を得た。
(水性顔料分散体(A-11)の調製)
グリセリンの代わりに、1,2-プロパンジオールを55質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径94nm、粗大粒子数(0.5μm以上)453 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-11)を得た。
(実施例12)
(水性顔料分散体(A-12)の調製)
グリセリンの代わりに、1,2-ブタンジオールを55質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径91nm、粗大粒子数(0.5μm以上)283 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-12)を得た。
(水性顔料分散体(A-12)の調製)
グリセリンの代わりに、1,2-ブタンジオールを55質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径91nm、粗大粒子数(0.5μm以上)283 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-12)を得た。
(実施例13)
(水性顔料分散体(A-13)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりに、PRINTEX F80 BEADS(オリオン株式会社製、カーボンブラック)を使用したこと以外は、実施例1と同様の方法で、体積平均粒子径131nm、粗大粒子数(0.5μm以上)1540 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-13)を得た。
(水性顔料分散体(A-13)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりに、PRINTEX F80 BEADS(オリオン株式会社製、カーボンブラック)を使用したこと以外は、実施例1と同様の方法で、体積平均粒子径131nm、粗大粒子数(0.5μm以上)1540 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-13)を得た。
(実施例14)
(水性顔料分散体(A-14)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを55質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径133nm、粗大粒子数(0.5μm以上)1732 × 106個/ml顔料濃度13質量%の水性顔料分散体(A-14)を得た。
(水性顔料分散体(A-14)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを55質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径133nm、粗大粒子数(0.5μm以上)1732 × 106個/ml顔料濃度13質量%の水性顔料分散体(A-14)を得た。
(実施例15)
(水性顔料分散体(A-15)の調製)
グリセリンの代わりに、1,2-プロパンジオールを55質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径134nm、粗大粒子数(0.5μm以上)1803 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-15)を得た。
(水性顔料分散体(A-15)の調製)
グリセリンの代わりに、1,2-プロパンジオールを55質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径134nm、粗大粒子数(0.5μm以上)1803 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-15)を得た。
(実施例16)
(水性顔料分散体(A-16)の調製)
グリセリンの代わりに、1,2-ブタンジオールを55質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径132nm、粗大粒子数(0.5μm以上)1702 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-16)を得た。
(水性顔料分散体(A-16)の調製)
グリセリンの代わりに、1,2-ブタンジオールを55質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径132nm、粗大粒子数(0.5μm以上)1702 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-16)を得た。
(実施例17)
(水性顔料分散体(A-17)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりに、BLACK PEARLS 880(キャボット・スペシャルティ・ケミカルズ・インク製、カーボンブラック)を使用し、グリセリンの使用量を50質量部から55質量部に変更したこと以外は、実施例1と同様の方法で、体積平均粒子径105nm、粗大粒子数(0.5μm以上)1630 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-17)を得た。
(水性顔料分散体(A-17)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりに、BLACK PEARLS 880(キャボット・スペシャルティ・ケミカルズ・インク製、カーボンブラック)を使用し、グリセリンの使用量を50質量部から55質量部に変更したこと以外は、実施例1と同様の方法で、体積平均粒子径105nm、粗大粒子数(0.5μm以上)1630 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-17)を得た。
(実施例18)
(水性顔料分散体(A-18)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを55質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径104nm、粗大粒子数(0.5μm以上)2235 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-18)を得た。
(水性顔料分散体(A-18)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを55質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径104nm、粗大粒子数(0.5μm以上)2235 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-18)を得た。
(実施例19)
(水性顔料分散体(A-19)の調製)
グリセリンの代わりに、1,2-プロパンジオールを55質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径106nm、粗大粒子数(0.5μm以上)2352 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-19)を得た。
(水性顔料分散体(A-19)の調製)
グリセリンの代わりに、1,2-プロパンジオールを55質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径106nm、粗大粒子数(0.5μm以上)2352 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-19)を得た。
(実施例20)
(水性顔料分散体(A-20)の調製)
グリセリンの代わりに、1,2-ブタンジオールを55質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径102nm、粗大粒子数(0.5μm以上)2256 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-20)を得た。
(水性顔料分散体(A-20)の調製)
グリセリンの代わりに、1,2-ブタンジオールを55質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径102nm、粗大粒子数(0.5μm以上)2256 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-20)を得た。
(実施例21)
(水性顔料分散体(A-21)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりに、BLACK PEARLS 4750(キャボット・スペシャルティ・ケミカルズ・インク製)を使用し、グリセリンの使用量を50質量部から68質量部に変更したこと以外は、実施例1と同様の方法で、体積平均粒子径120nm、粗大粒子数(0.5μm以上)2686 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-21)を得た。
(水性顔料分散体(A-21)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりに、BLACK PEARLS 4750(キャボット・スペシャルティ・ケミカルズ・インク製)を使用し、グリセリンの使用量を50質量部から68質量部に変更したこと以外は、実施例1と同様の方法で、体積平均粒子径120nm、粗大粒子数(0.5μm以上)2686 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-21)を得た。
(実施例22)
(水性顔料分散体(A-22)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを62質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径122nm、粗大粒子数(0.5μm以上)3320 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-22)を得た。
(水性顔料分散体(A-22)の調製)
グリセリンの代わりに、2-メチル-1,3-プロパンジオールを62質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径122nm、粗大粒子数(0.5μm以上)3320 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-22)を得た。
(実施例23)
(水性顔料分散体(A-23)の調製)
グリセリンの代わりに、1,2-プロパンジオールを59質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径121nm、粗大粒子数(0.5μm以上)3490 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-23)を得た。
(水性顔料分散体(A-23)の調製)
グリセリンの代わりに、1,2-プロパンジオールを59質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径121nm、粗大粒子数(0.5μm以上)3490 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-23)を得た。
(実施例24)
(水性顔料分散体(A-24)の調製)
グリセリンの代わりに、1,2-ブタンジオールを59質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径123nm、粗大粒子数(0.5μm以上)3823 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-24)を得た。
(水性顔料分散体(A-24)の調製)
グリセリンの代わりに、1,2-ブタンジオールを59質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径123nm、粗大粒子数(0.5μm以上)3823 × 106個/ml、顔料濃度13質量%の水性顔料分散体(A-24)を得た。
(比較例1)
(水性顔料分散体(B-1)の調製)
グリセリンの代わりに、1-オクタノールを65質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径192nm、粗大粒子数(0.5μm以上)11247 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-1)を得た。
(水性顔料分散体(B-1)の調製)
グリセリンの代わりに、1-オクタノールを65質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径192nm、粗大粒子数(0.5μm以上)11247 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-1)を得た。
(比較例2)
(水性顔料分散体(B-2)の調製)
グリセリンの代わりに、1-ヘキサノールを65質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径194nm、粗大粒子数(0.5μm以上)12761 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-2)を得た。
(水性顔料分散体(B-2)の調製)
グリセリンの代わりに、1-ヘキサノールを65質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径194nm、粗大粒子数(0.5μm以上)12761 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-2)を得た。
(比較例3)
(水性顔料分散体(B-3)の調製)
グリセリンの代わりに、ジエチレングリコールを60質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径79nm、粗大粒子数(0.5μm以上)8123 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-3)を得た。
(水性顔料分散体(B-3)の調製)
グリセリンの代わりに、ジエチレングリコールを60質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径79nm、粗大粒子数(0.5μm以上)8123 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-3)を得た。
(比較例4)
(水性顔料分散体(B-4)の調製)
グリセリンの代わりに、トリエチレングリコールを63質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径80nm、粗大粒子数(0.5μm以上)7819 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-4)を得た。
(水性顔料分散体(B-4)の調製)
グリセリンの代わりに、トリエチレングリコールを63質量部使用したこと以外は、実施例1と同様の方法で、体積平均粒子径80nm、粗大粒子数(0.5μm以上)7819 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-4)を得た。
(比較例5)
(水性顔料分散体(B-5)の調製)
グリセリンの代わりに、1-オクタノールを66質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径235nm、粗大粒子数(0.5μm以上)12547 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-5)を得た。
(水性顔料分散体(B-5)の調製)
グリセリンの代わりに、1-オクタノールを66質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径235nm、粗大粒子数(0.5μm以上)12547 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-5)を得た。
(比較例6)
(水性顔料分散体(B-6)の調製)
グリセリンの代わりに、1-ヘキサノールを65質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径257nm、粗大粒子数(0.5μm以上)13653 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-6)を得た。
(水性顔料分散体(B-6)の調製)
グリセリンの代わりに、1-ヘキサノールを65質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径257nm、粗大粒子数(0.5μm以上)13653 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-6)を得た。
(比較例7)
(水性顔料分散体(B-7)の調製)
グリセリンの代わりに、ジエチレングリコールを66質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径104nm、粗大粒子数(0.5μm以上)6579 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-7)を得た。
(水性顔料分散体(B-7)の調製)
グリセリンの代わりに、ジエチレングリコールを66質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径104nm、粗大粒子数(0.5μm以上)6579 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-7)を得た。
(比較例8)
(水性顔料分散体(B-8)の調製)
グリセリンの代わりに、トリエチレングリコールを67質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径105nm、粗大粒子数(0.5μm以上)8848 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-8)を得た。
(水性顔料分散体(B-8)の調製)
グリセリンの代わりに、トリエチレングリコールを67質量部使用したこと以外は、実施例5と同様の方法で、体積平均粒子径105nm、粗大粒子数(0.5μm以上)8848 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-8)を得た。
(比較例9)
(水性顔料分散体(B-9)の調製)
グリセリンの代わりに、1-オクタノールを66質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径187nm、粗大粒子数(0.5μm以上)8054 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-9)を得た。
(水性顔料分散体(B-9)の調製)
グリセリンの代わりに、1-オクタノールを66質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径187nm、粗大粒子数(0.5μm以上)8054 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-9)を得た。
(比較例10)
(水性顔料分散体(B-10)の調製)
グリセリンの代わりに、1-ヘキサノールを65質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径156nm、粗大粒子数(0.5μm以上)6790 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-10)を得た。
(水性顔料分散体(B-10)の調製)
グリセリンの代わりに、1-ヘキサノールを65質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径156nm、粗大粒子数(0.5μm以上)6790 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-10)を得た。
(比較例11)
(水性顔料分散体(B-11)の調製)
グリセリンの代わりに、ジエチレングリコールを66質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径101nm、粗大粒子数(0.5μm以上)5383 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-11)を得た。
(水性顔料分散体(B-11)の調製)
グリセリンの代わりに、ジエチレングリコールを66質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径101nm、粗大粒子数(0.5μm以上)5383 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-11)を得た。
(比較例12)
(水性顔料分散体(B-12)の調製)
グリセリンの代わりに、トリエチレングリコールを65質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径100nm、粗大粒子数(0.5μm以上)4987 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-12)を得た。
(水性顔料分散体(B-12)の調製)
グリセリンの代わりに、トリエチレングリコールを65質量部使用したこと以外は、実施例9と同様の方法で、体積平均粒子径100nm、粗大粒子数(0.5μm以上)4987 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-12)を得た。
(比較例13)
(水性顔料分散体(B-13)の調製)
グリセリンの代わりに、1-オクタノールを66質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径258nm、粗大粒子数(0.5μm以上)15925 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-13)を得た。
(水性顔料分散体(B-13)の調製)
グリセリンの代わりに、1-オクタノールを66質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径258nm、粗大粒子数(0.5μm以上)15925 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-13)を得た。
(比較例14)
(水性顔料分散体(B-14)の調製)
グリセリンの代わりに、1-ヘキサンノールを63質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径243nm、粗大粒子数(0.5μm以上)14842 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-14)を得た。
(水性顔料分散体(B-14)の調製)
グリセリンの代わりに、1-ヘキサンノールを63質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径243nm、粗大粒子数(0.5μm以上)14842 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-14)を得た。
(比較例15)
(水性顔料分散体(B-15)の調製)
グリセリンの代わりに、ジエチレングリコールを65質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径148nm、粗大粒子数(0.5μm以上)6302 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-15)を得た。
(水性顔料分散体(B-15)の調製)
グリセリンの代わりに、ジエチレングリコールを65質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径148nm、粗大粒子数(0.5μm以上)6302 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-15)を得た。
(比較例16)
(水性顔料分散体(B-16)の調製)
グリセリンの代わりに、トリエチレングリコールを67質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径142nm、粗大粒子数(0.5μm以上)5203 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-16)を得た。
(水性顔料分散体(B-16)の調製)
グリセリンの代わりに、トリエチレングリコールを67質量部使用したこと以外は、実施例13と同様の方法で、体積平均粒子径142nm、粗大粒子数(0.5μm以上)5203 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-16)を得た。
(比較例17)
(水性顔料分散体(B-17)の調製)
グリセリンの代わりに、1-オクタノールを66質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径214nm、粗大粒子数(0.5μm以上)9530 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-17)を得た。
(水性顔料分散体(B-17)の調製)
グリセリンの代わりに、1-オクタノールを66質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径214nm、粗大粒子数(0.5μm以上)9530 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-17)を得た。
(比較例18)
(水性顔料分散体(B-18)の調製)
グリセリンの代わりに、1-ヘキサノールを66質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径232nm、粗大粒子数(0.5μm以上)8761 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-18)を得た。
(水性顔料分散体(B-18)の調製)
グリセリンの代わりに、1-ヘキサノールを66質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径232nm、粗大粒子数(0.5μm以上)8761 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-18)を得た。
(比較例19)
(水性顔料分散体(B-19)の調製)
グリセリンの代わりに、ジエチレングリコールを65質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径115nm、粗大粒子数(0.5μm以上)5760 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-19)を得た。
(水性顔料分散体(B-19)の調製)
グリセリンの代わりに、ジエチレングリコールを65質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径115nm、粗大粒子数(0.5μm以上)5760 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-19)を得た。
(比較例20)
(水性顔料分散体(B-20)の調製)
グリセリンの代わりに、トリエチレングリコールを67質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径117nm、粗大粒子数(0.5μm以上)5420 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-20)を得た。
(水性顔料分散体(B-20)の調製)
グリセリンの代わりに、トリエチレングリコールを67質量部使用したこと以外は、実施例17と同様の方法で、体積平均粒子径117nm、粗大粒子数(0.5μm以上)5420 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-20)を得た。
(比較例21)
(水性顔料分散体(B-21)の調製)
グリセリンの代わりに、1-オクタノールを66質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径289nm、粗大粒子数(0.5μm以上)11243 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-21)を得た。
(水性顔料分散体(B-21)の調製)
グリセリンの代わりに、1-オクタノールを66質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径289nm、粗大粒子数(0.5μm以上)11243 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-21)を得た。
(比較例22)
(水性顔料分散体(B-22)の調製)
グリセリンの代わりに、1-ヘキサノールを65質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径278nm、粗大粒子数(0.5μm以上)10478 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-22)を得た。
(水性顔料分散体(B-22)の調製)
グリセリンの代わりに、1-ヘキサノールを65質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径278nm、粗大粒子数(0.5μm以上)10478 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-22)を得た。
(比較例23)
(水性顔料分散体(B-23)の調製)
グリセリンの代わりに、ジエチレングリコールを65質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径131nm、粗大粒子数(0.5μm以上)6133 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-23)を得た。
(水性顔料分散体(B-23)の調製)
グリセリンの代わりに、ジエチレングリコールを65質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径131nm、粗大粒子数(0.5μm以上)6133 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-23)を得た。
(比較例24)
(水性顔料分散体(B-24)の調製)
グリセリンの代わりに、トリエチレングリコールを66質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径130nm、粗大粒子数(0.5μm以上)5604 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-24)を得た。
(水性顔料分散体(B-24)の調製)
グリセリンの代わりに、トリエチレングリコールを66質量部使用したこと以外は、実施例21と同様の方法で、体積平均粒子径130nm、粗大粒子数(0.5μm以上)5604 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-24)を得た。
(比較例25)
(水性顔料分散体(B-25)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりに、PRINTEX L6(オリオン株式会社製、カーボンブラック)を65質量部使用したこと以外は、比較例1と同様の方法で、体積平均粒子径325nm、粗大粒子数(0.5μm以上)18950 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-25)を得た。
(水性顔料分散体(B-25)の調製)
HIBLACK 600LB(オリオン株式会社製、カーボンブラック)の代わりに、PRINTEX L6(オリオン株式会社製、カーボンブラック)を65質量部使用したこと以外は、比較例1と同様の方法で、体積平均粒子径325nm、粗大粒子数(0.5μm以上)18950 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-25)を得た。
(比較例26)
(水性顔料分散体(B-26)の調製)
1-オクタノールの代わりに、1-ヘキサノールを64質量部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径343nm、粗大粒子数(0.5μm以上)19543 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-26)を得た。
(水性顔料分散体(B-26)の調製)
1-オクタノールの代わりに、1-ヘキサノールを64質量部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径343nm、粗大粒子数(0.5μm以上)19543 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-26)を得た。
(比較例27)
(水性顔料分散体(B-27)の調製)
1-オクタノールの代わりに、ジエチレングリコールを65質量部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径182nm、粗大粒子数(0.5μm以上)8432 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-27)を得た。
(水性顔料分散体(B-27)の調製)
1-オクタノールの代わりに、ジエチレングリコールを65質量部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径182nm、粗大粒子数(0.5μm以上)8432 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-27)を得た。
(比較例28)
(水性顔料分散体(B-28)の調製)
1-オクタノールの代わりに、トリエチレングリコールを66質量部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径179nm、粗大粒子数(0.5μm以上)6784 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-28)を得た。
(水性顔料分散体(B-28)の調製)
1-オクタノールの代わりに、トリエチレングリコールを66質量部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径179nm、粗大粒子数(0.5μm以上)6784 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-28)を得た。
(比較例29)
(水性顔料分散体(B-29)の調製)
1-オクタノールの代わりに、グリセリンを67質量部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径168nm、粗大粒子数(0.5μm以上)4302 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-29)を得た。
(水性顔料分散体(B-29)の調製)
1-オクタノールの代わりに、グリセリンを67質量部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径168nm、粗大粒子数(0.5μm以上)4302 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-29)を得た。
(比較例30)
(水性顔料分散体(B-30)の調製)
1-オクタノールの代わりに、2-メチル-1,3-プロパンジオールを63質量部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径172nm、粗大粒子数(0.5μm以上)6943 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-30)を得た。
(水性顔料分散体(B-30)の調製)
1-オクタノールの代わりに、2-メチル-1,3-プロパンジオールを63質量部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径172nm、粗大粒子数(0.5μm以上)6943 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-30)を得た。
(比較例31)
(水性顔料分散体(B-31)の調製)
1-オクタノールの代わりに、1,2-プロパンジオールを61部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径173nm、粗大粒子数(0.5μm以上)7012 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-31)を得た。
(水性顔料分散体(B-31)の調製)
1-オクタノールの代わりに、1,2-プロパンジオールを61部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径173nm、粗大粒子数(0.5μm以上)7012 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-31)を得た。
(比較例32)
(水性顔料分散体(B-32)の調製)
1-オクタノールの代わりに、1,2-ブタンジオールを62部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径174nm、粗大粒子数(0.5μm以上)7057 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-32)を得た。
(水性顔料分散体(B-32)の調製)
1-オクタノールの代わりに、1,2-ブタンジオールを62部使用したこと以外は、比較例25と同様の方法で、体積平均粒子径174nm、粗大粒子数(0.5μm以上)7057 × 106個/ml、顔料濃度13質量%の水性顔料分散体(B-32)を得た。
〔体積平均粒子径の測定方法〕
実施例、比較例及び参考例で得られた製造直後の水性顔料分散体をイオン交換水で下記の倍率で希釈したものを測定試料とし、下記の測定条件で測定した。前記測定試料の25℃における分散物の体積平均粒子径の評価を、粒度分布測定装置(日機装株式会社製:Microtracモデル名Nanotrac-UPA150)を用いて測定した。前記測定の際、前記粒度分布測定装置の設定条件(「透過性」「形状」「溶媒屈折率」「密度」)は、下記のとおり設定した。すなわち、同一の顔料を用いて得た水性顔料分散体の分散物の体積平均粒子径の測定条件が同一となるようにした。なお、表中の「粒径」が本測定方法で測定された分散物の体積平均粒子径を指す。
実施例、比較例及び参考例で得られた製造直後の水性顔料分散体をイオン交換水で下記の倍率で希釈したものを測定試料とし、下記の測定条件で測定した。前記測定試料の25℃における分散物の体積平均粒子径の評価を、粒度分布測定装置(日機装株式会社製:Microtracモデル名Nanotrac-UPA150)を用いて測定した。前記測定の際、前記粒度分布測定装置の設定条件(「透過性」「形状」「溶媒屈折率」「密度」)は、下記のとおり設定した。すなわち、同一の顔料を用いて得た水性顔料分散体の分散物の体積平均粒子径の測定条件が同一となるようにした。なお、表中の「粒径」が本測定方法で測定された分散物の体積平均粒子径を指す。
〔粗大粒子数の測定方法〕
実施例、比較例で得られた水性顔料分散体をイオン交換水で希釈したものを測定試料とした。前記測定試料に含まれる直径0.5μm以上の粗大粒子の数を、個数カウント方式粒度分布計(Particle Sizing Systems社製:アキュサイザー780APS)を用いて測定した。前記方法で測定された粗大粒子の数に、前記希釈倍率を乗じることによって、実施例及び比較例の水性顔料分散体1mLに含まれる粗大粒子数を算出した。なお、水性顔料分散体の希釈倍率は、1秒当たりに検出器を通過する粒子径(直径)0.5μm以上の粗大粒子数が1000~4000個/mlとなるように希釈を行った。
実施例、比較例で得られた水性顔料分散体をイオン交換水で希釈したものを測定試料とした。前記測定試料に含まれる直径0.5μm以上の粗大粒子の数を、個数カウント方式粒度分布計(Particle Sizing Systems社製:アキュサイザー780APS)を用いて測定した。前記方法で測定された粗大粒子の数に、前記希釈倍率を乗じることによって、実施例及び比較例の水性顔料分散体1mLに含まれる粗大粒子数を算出した。なお、水性顔料分散体の希釈倍率は、1秒当たりに検出器を通過する粒子径(直径)0.5μm以上の粗大粒子数が1000~4000個/mlとなるように希釈を行った。
〔粒子径0.5μm以上の粗大粒子数の評価方法〕
○ 4000×106個/ml 未満
△ 4000×106個/ml以上10000×106個/ml未満
× 10000×106個/ml 以上
○ 4000×106個/ml 未満
△ 4000×106個/ml以上10000×106個/ml未満
× 10000×106個/ml 以上
〔インクジェット印刷用水性顔料分散体の経時的な粒子径0.5μm以上の粗大粒子の発生の有無の評価方法(保存安定性)〕
製造直後の水性顔料分散体に含まれる粒子径0.5μm以上の粗大粒子の数を、上記した方法で測定した。
次に、前記水性顔料分散体をポリプロピレン容器に密封し60℃に加温した条件下で4週間静置した。
次に、前記4週間の加温静置後の水性顔料分散体に含まれる粒子径0.5μm以上の粗大粒子の数を、上記した方法で測定した。
次に、前記4週間の加温静置前後の粒子径0.5μm以上の粗大粒子数の変化率(%)を、[((前記4週間の加温静置前後の水性顔料分散体に含まれる粒子径0.5μm以上の粗大粒子数)-(製造直後の水性顔料分散体に含まれる粒子径0.5μm以上の粗大粒子数))/(製造直後の水性顔料分散体に含まれる粒子径0.5μm以上の粗大粒子数)]×100に基づき算出し、下記基準にしたがって評価した。前記評価が○であったものを実用上十分な保存安定性を有するものと評価した。
○ 前記変化率が10%未満
△ 前記変化率が10~50%
× 前記変化率が50%以上
製造直後の水性顔料分散体に含まれる粒子径0.5μm以上の粗大粒子の数を、上記した方法で測定した。
次に、前記水性顔料分散体をポリプロピレン容器に密封し60℃に加温した条件下で4週間静置した。
次に、前記4週間の加温静置後の水性顔料分散体に含まれる粒子径0.5μm以上の粗大粒子の数を、上記した方法で測定した。
次に、前記4週間の加温静置前後の粒子径0.5μm以上の粗大粒子数の変化率(%)を、[((前記4週間の加温静置前後の水性顔料分散体に含まれる粒子径0.5μm以上の粗大粒子数)-(製造直後の水性顔料分散体に含まれる粒子径0.5μm以上の粗大粒子数))/(製造直後の水性顔料分散体に含まれる粒子径0.5μm以上の粗大粒子数)]×100に基づき算出し、下記基準にしたがって評価した。前記評価が○であったものを実用上十分な保存安定性を有するものと評価した。
○ 前記変化率が10%未満
△ 前記変化率が10~50%
× 前記変化率が50%以上
Claims (13)
- 顔料(A)と、炭素原子数が5個未満、水酸基が2個以上、及び、分子量が100未満の溶媒(B)とを含有する水性顔料分散体であって、前記顔料(A)は、ISO6209:2009(E)に規定された方法で求められたトルエンへの溶出物の割合[顔料(A)からトルエンに溶出された物質の質量/顔料(A)の質量]が0.1質量%以下であることを特徴とする水性顔料分散体。
- 前記溶媒(B)が、グリセリン、1,2-プロパンジオール、1,2-ブタンジオールまたは2-メチル-1,3-プロパンジオールを含有するものである請求項1に記載の水性顔料分散体。
- 混練装置が備える容器に、少なくとも顔料(A)と樹脂と溶媒(B)とを供給する工程[1]、及び、前記容器の内容物(a1)を混練する工程[2]を有する顔料混練物の製造方法であって、前記顔料(A)は、ISO6209:2009(E)に規定された方法で求められたトルエンへの溶出物の割合[顔料(A)からトルエンに溶出された物質の質量/顔料(A)の質量]が0.1質量%以下であり、前記溶媒(B)は炭素原子数が5個未満、水酸基が2個以上、及び、分子量が100未満の溶媒(B)であることを特徴とする顔料混練物の製造方法。
- 前記内容物(a1)の全量に対する前記顔料(A)と樹脂との合計質量が30質量%~50質量%である請求項3に記載の顔料混練物の製造方法。
- 前記溶媒(B)が、グリセリン、1,2-プロパンジオール、1,2-ブタンジオールまたは2-メチル-1,3-プロパンジオールを含有するものである請求項3または4に記載の顔料混練物の製造方法。
- 前記工程[1]がさらに水を供給する工程であって、前記溶媒(B)と水との質量割合[溶媒(B)/水]が5~50の範囲である請求項3~5のいずれか1項に記載の顔料混練物の製造方法。
- 前記内容物(a1)に含まれる前記溶媒(B)と顔料(A)との質量割合[溶媒(B)/顔料(A)]が0.1~1.5の範囲である請求項3~6のいずれか1項に記載の顔料混練物の製造方法。
- 前記工程[2]は、前記内容物(a1)の温度を60℃~120℃の範囲内に維持した状態で行う工程である請求項3~7のいずれか1項に記載の顔料混練物の製造方法。
- 前記混練装置が閉鎖型混練装置である請求項3~8のいずれか1項に記載の顔料混練物の製造方法。
- 前記混練装置がプラネタリーミキサーである請求項3~8のいずれか1項に記載の顔料混練物の製造方法。
- 請求項3~10のいずれか1項に記載の製造方法で得られた顔料混練物と、水性媒体とを混合する工程[3]を含む水性顔料分散体の製造方法。
- 前記工程[3]は、前記顔料混練物に対して前記水性媒体を供給することによって水性顔料分散体の不揮発分を10質量%~30質量%の範囲に調整する工程である請求項11に記載の水性顔料分散体の製造方法。
- さらに、前記工程[3]で得られた水性顔料分散体を、30℃~70℃の範囲内で遠心分離処理する工程[4]を含む請求項12に記載の水性顔料分散体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021550006A JP7040679B2 (ja) | 2019-10-01 | 2020-09-24 | 水性顔料分散体、顔料混練物及び水性顔料分散体の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-181377 | 2019-10-01 | ||
JP2019181377 | 2019-10-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021065643A1 true WO2021065643A1 (ja) | 2021-04-08 |
Family
ID=75337300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/035891 WO2021065643A1 (ja) | 2019-10-01 | 2020-09-24 | 水性顔料分散体、顔料混練物及び水性顔料分散体の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7040679B2 (ja) |
WO (1) | WO2021065643A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004018759A (ja) * | 2002-06-19 | 2004-01-22 | Sony Corp | 有機顔料分散体の製造方法、有機顔料分散体及びインクジェットインク |
JP2004143316A (ja) * | 2002-10-25 | 2004-05-20 | Dainippon Ink & Chem Inc | 水性顔料分散液用混練物およびこれを用いた水性顔料分散液とインク組成物の製造方法 |
JP2016199653A (ja) * | 2015-04-09 | 2016-12-01 | 東洋インキScホールディングス株式会社 | 顔料組成物およびその製造方法、並びにインクジェットインキ |
JP2016204516A (ja) * | 2015-04-22 | 2016-12-08 | Dic株式会社 | 水性顔料分散体の製造方法及びインクジェット記録用水性インク |
JP2018002798A (ja) * | 2016-06-29 | 2018-01-11 | Dic株式会社 | 水性顔料分散液およびインクジェット記録用水性インクの製造方法 |
WO2018168486A1 (ja) * | 2017-03-14 | 2018-09-20 | Dic株式会社 | 水性顔料分散体及び水性顔料分散体の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006008751A (ja) | 2004-06-22 | 2006-01-12 | Canon Inc | インク組成物、それを用いたインクジェット記録装置、インクジェット記録方法、及びインクジェット記録画像 |
WO2010024332A1 (ja) | 2008-08-29 | 2010-03-04 | 東洋インキ製造株式会社 | 水性ネイルエナメル用分散体の製造法 |
JP2011162581A (ja) | 2010-02-04 | 2011-08-25 | Canon Inc | インクジェット用インク |
JP6520063B2 (ja) | 2013-12-05 | 2019-05-29 | 東洋インキScホールディングス株式会社 | 顔料組成物およびその製造方法、並びにカラーフィルタ用顔料組成物 |
-
2020
- 2020-09-24 JP JP2021550006A patent/JP7040679B2/ja active Active
- 2020-09-24 WO PCT/JP2020/035891 patent/WO2021065643A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004018759A (ja) * | 2002-06-19 | 2004-01-22 | Sony Corp | 有機顔料分散体の製造方法、有機顔料分散体及びインクジェットインク |
JP2004143316A (ja) * | 2002-10-25 | 2004-05-20 | Dainippon Ink & Chem Inc | 水性顔料分散液用混練物およびこれを用いた水性顔料分散液とインク組成物の製造方法 |
JP2016199653A (ja) * | 2015-04-09 | 2016-12-01 | 東洋インキScホールディングス株式会社 | 顔料組成物およびその製造方法、並びにインクジェットインキ |
JP2016204516A (ja) * | 2015-04-22 | 2016-12-08 | Dic株式会社 | 水性顔料分散体の製造方法及びインクジェット記録用水性インク |
JP2018002798A (ja) * | 2016-06-29 | 2018-01-11 | Dic株式会社 | 水性顔料分散液およびインクジェット記録用水性インクの製造方法 |
WO2018168486A1 (ja) * | 2017-03-14 | 2018-09-20 | Dic株式会社 | 水性顔料分散体及び水性顔料分散体の製造方法 |
Non-Patent Citations (2)
Title |
---|
NOGUCHI, HIROMICHI: "Fine particle dispersion of pigment for ink-jet ink", JOURNAL OF THE JAPAN SOCIETY OF COLOUR MATERIAL, vol. 69, no. 12, 1996, pages 855 - 866 * |
OKADA, KYOICHI: "The state of industrial organic pigment for ink jet.", JOURNAL OF IMAGING SOCIETY OF JAPAN, vol. 49, no. 1, 2010, pages 40 - 47 * |
Also Published As
Publication number | Publication date |
---|---|
JP7040679B2 (ja) | 2022-03-23 |
JPWO2021065643A1 (ja) | 2021-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2659685C (en) | Process for producing aqueous pigment liquid dispersion and ink-jet recording ink | |
US9783680B2 (en) | Production method for fine organic pigment | |
US9752033B2 (en) | Production method for fine organic pigment | |
KR101323984B1 (ko) | 수성 안료 분산액 및 잉크 젯 기록용 잉크, 및 수성 안료 분산액의 제조 방법 | |
JP6519835B2 (ja) | 水性顔料分散体及び水性顔料分散体の製造方法 | |
WO2005012443A1 (ja) | インクジェット記録用水性顔料分散液、インクジェット記録用インク組成物およびその製造方法 | |
WO2020105441A1 (ja) | 水性顔料分散体の製造方法 | |
WO2021075333A1 (ja) | 顔料組成物の製造方法 | |
JP7318278B2 (ja) | 水性顔料分散体及びその製造方法 | |
JP7040679B2 (ja) | 水性顔料分散体、顔料混練物及び水性顔料分散体の製造方法 | |
JP6863399B2 (ja) | 顔料混練物及び水性顔料分散体の製造方法 | |
CN112074575A (zh) | 颜料混炼物和水性颜料分散体的制造方法 | |
JP7346803B2 (ja) | 水性顔料分散体及び水性顔料分散体の製造方法 | |
JP7395969B2 (ja) | 顔料混練物の製造方法及び水性顔料分散体の製造方法 | |
JP6769513B2 (ja) | 水性顔料分散体の製造方法 | |
JP7404830B2 (ja) | 水性顔料分散体及び水性顔料分散体の製造方法 | |
JP7363290B2 (ja) | 水性顔料分散体及び水性顔料分散体の製造方法 | |
JP7423175B2 (ja) | 水性顔料分散体及び水性顔料分散体の製造方法 | |
JP2022014582A (ja) | 顔料組成物 | |
JP2022014583A (ja) | 顔料組成物の製造方法 | |
JP2019108480A (ja) | 水性顔料分散体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20871679 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021550006 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20871679 Country of ref document: EP Kind code of ref document: A1 |