WO2021065459A1 - High-frequency shield structure - Google Patents
High-frequency shield structure Download PDFInfo
- Publication number
- WO2021065459A1 WO2021065459A1 PCT/JP2020/034847 JP2020034847W WO2021065459A1 WO 2021065459 A1 WO2021065459 A1 WO 2021065459A1 JP 2020034847 W JP2020034847 W JP 2020034847W WO 2021065459 A1 WO2021065459 A1 WO 2021065459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shield structure
- connector
- frequency shield
- folded
- high frequency
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
Definitions
- the present invention relates to a high frequency shield structure that shields the connector terminal of a coaxial connector connected to a substrate at a high frequency.
- Patent Document 1 discloses a shield structure of a connector terminal which is a signal line conductor of a connector connected to a substrate.
- the connector terminals exposed from the substrate are covered with FPC (Flexible Printed Circuits) which is a shielding material, and the contact portion of the FPC with the substrate is soldered. This eliminates the need for screw holes, screws, washers, and nuts to attach the FPC to the board, which saves space and is easy to install.
- FPC Flexible Printed Circuits
- Patent Document 1 since an additional component such as FPC is required to shield the connector terminal, there is room for improvement in providing a shield structure while further simplifying the structure. There is.
- the present disclosure provides a high-frequency shield structure capable of realizing a shield of a connector terminal with a simple configuration.
- the present disclosure includes a flexible substrate and a coaxial connector connected to the flexible substrate.
- the flexible substrate is provided with a connector terminal which is a signal line conductor of the coaxial connector as well as being connected to the coaxial connector.
- the connector connection part which is the board area
- a folded portion which is a board area in which the end portion of the flexible substrate is folded back toward the connector connecting portion side so as to cover the connector terminal, and a ground conductor provided at the connector connecting portion and the folded portion and covering the connector terminal.
- a high-frequency shield structure including a ground conductor provided on the connector connecting portion side and a ground conductor for electrically connecting the grounding conductor covering the folded-back portion side.
- FIG. 3 is a plan view of the high frequency shield structure of FIG. 3 in the XZ plane. It is sectional drawing of the high frequency shield structure which concerns on embodiment of this invention.
- FIG. 5 is a plan view of the high frequency shield structure shown in FIG. 5 in an XZ plane.
- FIG. 7 is a view of the high frequency shield structure shown in FIG. 7 in a plan view on an XZ plane. It is sectional drawing of the 4th modification of the high frequency shield structure which concerns on embodiment of this invention.
- 9 is a view of the high frequency shield structure shown in FIG. 9 in a plan view on an XZ plane. It is sectional drawing of the 5th modification of the high frequency shield structure which concerns on embodiment of this invention. It is a figure which looked at the 6th modification of the high frequency shield structure which concerns on embodiment of this invention in the XZ plane. It is a perspective view of the flexible substrate which concerns on 6th modification.
- FIG. 15A It is a figure which shows an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 15A. It is a figure which shows an example of the simulation result of the electric power radiated from the high frequency shield structure of FIG. 15A. It is a figure which shows an example of the simulation result of the antenna gain when the high frequency shield structure of FIG. 15A is used. It is a perspective view of the model for demonstrating the 2nd effect by the high frequency shield structure which concerns on embodiment of this invention. It is a figure which shows an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 16A. It is a figure which shows an example of the simulation result of the electric power radiated from the high frequency shield structure of FIG. 16A.
- FIG. 17A is a plan view of the high frequency shield structure of FIG. 17A in the XY plane. It is a figure which shows an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 17A. It is a figure which shows an example of the simulation result of the electric power radiated from the high frequency shield structure of FIG. 17A. It is a figure which shows an example of the simulation result of the antenna gain when the high frequency shield structure of FIG. 17A is used.
- FIG. 18A is a plan view of the high frequency shield structure of FIG. 18A in the XY plane. It is a figure which shows an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 18A. It is a figure which shows an example of the simulation result of the electric power radiated from the high frequency shield structure of FIG. 18A. It is a figure which shows an example of the simulation result of the antenna gain when the high frequency shield structure of FIG. 18A is used.
- the X-axis direction, the Y-axis direction, and the Z-axis direction represent a direction parallel to the X-axis, a direction parallel to the Y-axis, and a direction parallel to the Z-axis, respectively.
- the X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to each other.
- the XY plane, YZ plane, and ZX plane are a virtual plane parallel to the X-axis direction and the Y-axis direction, a virtual plane parallel to the Y-axis direction and the Z-axis direction, and a virtual plane parallel to the Z-axis direction and the X-axis direction, respectively.
- the direction indicated by the arrow is the plus X-axis direction
- the direction opposite to the direction is the minus X-axis direction
- the direction indicated by the arrow is the plus Y-axis direction
- the direction opposite to the direction is the minus Y-axis direction.
- the direction indicated by the arrow is the plus Z-axis direction
- the direction opposite to the direction is the minus Z-axis direction.
- the same or similar parts are designated by the same or similar reference numerals.
- the drawings are schematic, and the relationship between the thickness and the plane dimension, the ratio of the thickness of each layer, etc. are different from the actual ones. Therefore, there are parts in which the relations and ratios of the dimensions of the drawings are different from each other.
- the embodiments shown below exemplify a structure for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, structure, arrangement, etc. of the component parts. Is not specified as the following.
- the technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.
- FIG. 1 is a cross-sectional view of a high frequency shield structure according to an embodiment of the present invention.
- FIG. 2A is a plan view of the high frequency shield structure of FIG. 1 in the XZ plane.
- FIG. 2B is a diagram for explaining the state of the flexible substrate before and after the bent portion is formed.
- FIG. 2C is a perspective view of the flexible substrate after the bent portion shown in FIG. 2B is formed.
- the high frequency shield structure 100 includes a flexible substrate 1 and a coaxial connector 7 connected to the flexible substrate 1.
- the flexible substrate 1 includes a connector connecting portion 11, a folded-back portion 12, a ground conductor 2, and a ground conductor 9 for conduction.
- the flexible substrate 1 is a substrate that has flexibility that allows it to be bent, can be repeatedly deformed with a weak force, and has the property of maintaining its electrical characteristics even when deformed.
- the flexible substrate 1 is thinner than a general rigid substrate (total thickness 300 ⁇ m to 1,600 ⁇ m) and has excellent workability, so that it is possible to process a complicated shape.
- the flexible substrate 1 has a structure in which, for example, a ground conductor 2 (for example, a conductor foil) having a thickness of 12 ⁇ m to 300 ⁇ m is bonded to a thin-film dielectric 1a having a thickness of 12 ⁇ m to 300 ⁇ m.
- the dielectric 1a a material called solder resist (resist / photoresist) or coverlay (Coverlay), polyimide, polyester, or the like is used.
- As the material of the conductor foil for example, gold, silver, copper, aluminum, platinum, chromium and the like are used.
- the dielectric 1a preferably has a dielectric loss tangent (so-called tan ⁇ ) of 0.01 or less, particularly 0.01 or less, at, for example, 28 GHz.
- the dielectric loss tangent at 28 GHz is an example of an index at a frequency in the GHz band.
- the signal line conductor 4 is a conductive signal line connected to an antenna element (not shown), and is provided, for example, on the end face of the connector connecting portion 11 of the flexible substrate 1 in the plus Y-axis direction. As shown in FIG. 2A, a through hole 4a1 communicating with the through hole 11d of FIG. 1 is provided at the end portion 4a of the signal line conductor 4 in the minus Z-axis direction.
- the through hole 11d is a hole formed in the connector connecting portion 11 and penetrating the connector connecting portion 11 in the Y-axis direction.
- the antenna element is provided, for example, on the plus Z axis direction side of the signal line conductor 4 in FIG. 2A.
- the antenna element is suitable for transmitting and receiving radio waves in a high frequency band (for example, over 1 GHz to 300 GHz) such as microwaves and millimeter waves.
- the antenna element can be applied to, for example, a V2X communication system, a 5th generation mobile communication system (so-called 5G), an in-vehicle radar system, and the like, but the applicable system is not limited to these.
- ITS Intelligent Transport Systems
- 5 G 28 GHz band, 3.6 to 6 GHz band, 39 GHz band
- Wi-Fi 2.4 GHz, It may be for 5 GHz).
- the connector connection portion 11 is a board area to which the coaxial connector 7 is connected in the entire flexible board 1.
- the main body 7c of the coaxial connector 7 is provided on the end surface side of the connector connection portion 11 in the minus Y-axis direction.
- the connector terminal 7a extends from the main body 7c of the coaxial connector 7 in the plus Y-axis direction.
- the connector terminal 7a is a signal line conductor for transmitting a high frequency signal.
- the connector terminal 7a is inserted into the through hole 11d formed in the connector connection portion 11, and further inserted into the through hole 4a1 formed in the end portion 4a of the signal line conductor 4.
- the folded-back portion 12 is formed by folding back the region 13 side of the end portion 13 (the region shown by the broken line) of the flexible substrate 1 developed in a plate shape in the direction of the arrow A. That is, the folded-back portion 12 is formed by folding back the region on the end portion 13 side of the flexible substrate 1 toward the connector connecting portion 11 side so as to cover the connector terminal 7a.
- the end face 12a of the folded-back portion 12 in the minus Y-axis direction faces the end face 11a of the connector connecting portion 11 in the plus Y-axis direction in the Y-axis direction. Then, the tip portion of the folded-back portion 12 in the minus X-axis direction (corresponding to the end portion 13 of the flexible substrate 1) comes into contact with the connector connecting portion 11, so that a package is formed. A space 8 is formed inside the package formed by the connector connecting portion 11 and the folded portion 12.
- the ground conductor 2 is a ground conductor provided at the connector connecting portion 11 and the folded portion 12 and covering the connector terminal 7a.
- the ground conductor 2 is provided so as to cover the outside of the envelope when the connector connecting portion 11 and the folded portion 12 are viewed in a plan view on an XY plane.
- the grounding conductor 2 may be a conductor pattern formed on the flexible substrate 1, or may be a conductor sheet, a conductor substrate, or the like which is manufactured in advance separately from the flexible substrate 1 and then arranged on the flexible substrate 1.
- the thickness of the ground conductor 2 is preferably 0.09 ⁇ m or more, more preferably 0.35 ⁇ m or more.
- the thickness of the ground conductor 2 is preferably 110 ⁇ m or less.
- the ground conductor 9 is a conductor for ground, and is provided at the connector connecting portion 11 and the folded portion 12 which are in contact with each other.
- the ground conductor 9 is preferably a solid or hollow columnar conductor that electrically connects the ground conductor 2 on the connector connecting portion 11 side and the ground conductor 2 on the folded portion 12 side.
- a closed-loop ground is formed by the ground conductor 9 extending from the ground conductor 2 on the connector connection portion 11 side toward the ground conductor 2 on the folded-back portion 12 side, and the ground conductor 2.
- the length L shown in FIG. 1 corresponds to the maximum dimension inside the ground conductor 2 covering the envelope.
- the length L is set to a value of 1/2 wavelength or less of the wavelength at the center frequency of the frequency band in which unnecessary radiation is suppressed.
- the tip of the connector terminal 7a protrudes into the space 8 through the through hole 4a1 of the signal line conductor 4.
- the connector terminal 7a is electrically connected to the signal line conductor 4.
- the connector terminal 7a is arranged in a region where the end surface 12a of the folded-back portion 12 and the end surface 11a of the connector connecting portion 11 face each other.
- the folded-back portion 12 extends from the virtual line VL extending the connector terminal 7a in the Y-axis direction to the plus X-axis direction. It covers up to a certain distance (for example, several mm to several tens of mm) in the minus X-axis direction, and also a certain distance (for example, several mm to several tens) in the plus Z-axis direction and minus Z-axis direction from the virtual line VL. mm) Arranged so as to cover up to a distant position.
- a certain distance for example, several mm to several tens of mm
- a certain distance for example, several mm to several tens
- the shortest distance from the end surface 12a of the folded-back portion 12 to the end surface 11a of the connector connecting portion 11 is, for example, preferably 1 mm or less, more preferably 500 um or less.
- the direction of the open portion of the connector terminal 7a is the direction of the radiation pattern of the antenna connected to the tip of the open portion of the connector terminal 7a, that is, the direction in which the connector terminal 7a extends is the direction of the main lobe of the antenna. In the same case, it is unlikely to affect the important radiation pattern of this antenna.
- the radiation pattern is the range used in communication and radar.
- the connector terminal 7a is electrically connected to an RF module (not shown) via a cable 7b provided in the main body 7c.
- An RF module is a component on which a device with various functions is mounted. Generally, an amplifier, a phase controller, a mixer, a signal source, a filter, a switch, a circulator, and an AD / DA (Analog to Digital / Digital to Analog) converter. , Etc. are mounted, and the input / output interface is provided with an RF connector and a power / control connector.
- a shield structure covering the connector terminal 7a can be configured by bending one flexible substrate 1.
- a component for example, a rectangular shield member
- the structure is simplified and a highly reliable high frequency shield structure 100 can be obtained.
- a quadrangular shielding member it is necessary to fix the four sides of the shielding member, whereas in the present invention, one side of the flexible substrate 1, that is, the end portion of the flexible substrate 1.
- the high frequency shield structure 100 can be obtained only by fixing the 13 to the connector connection portion 11, the amount of work involved in fixing is reduced, the man-hours for assembling the high frequency shield structure 100 are reduced, and the high frequency shield structure 100 is manufactured at low cost. it can.
- the shield structure covering the connector terminal 7a reduces unnecessary radiation, and the influence of noise on the equipment provided around the high frequency shield structure 100 can be reduced. Further, even when the device existing around the high-frequency shield structure 100 exists near the high-frequency shield structure 100, the connector terminal 7a is covered with the folded-back portion 12, so that it becomes difficult for the connector terminal 7a and the device to be capacitively coupled. , The influence on the antenna characteristics can be reduced.
- FIG. 3 is a cross-sectional view of a first modification of the high frequency shield structure according to the embodiment of the present invention.
- FIG. 4 is a plan view of the high frequency shield structure of FIG. 3 in the XZ plane.
- the description of the same configuration and effect as the high frequency shield structure 100 will be omitted or simplified by referring to the above description.
- the high-frequency shield structure 100A of the first modification includes a coaxial connector 7A instead of the coaxial connector 7.
- the coaxial connector 7A is arranged in the space 8 inside the package formed by the connector connecting portion 11 and the folded portion 12.
- the coaxial connector 7A is installed, for example, on the end surface 11a side of the connector connection portion 11 in the plus Y-axis direction, and is electrically connected to the ground conductor 10.
- the ground conductor 10 is a conductor for grounding the coaxial connector 7A.
- the ground conductor 10 includes a planar terminal 10b and a plurality of columnar terminals 10a provided in the connector connecting portion 11.
- the planar terminal 10b is provided on the end surface 11a of the connector connection portion 11 in the plus Y-axis direction so as to cover the periphery of the end portion of the connector terminal 7a.
- a coaxial connector 7A is installed on the surface of the planar terminal 10b in the positive Y-axis direction.
- the surface of the planar terminal 10b in the minus Y-axis direction is connected to one end of the columnar terminal 10a.
- the columnar terminal 10a extends from the planar terminal 10b toward the ground conductor 2 in the minus Y-axis direction of the connector connecting portion 11, and the other end of the columnar terminal 10a is connected to the ground conductor 2.
- the coaxial connector 7A is electrically connected to the ground conductor 2.
- the cable 7b of the coaxial connector 7A is drawn out of the space 8 from, for example, an opening formed in the minus Z-axis direction of the space 8.
- the coaxial connector 7A exists on the minus Y-axis direction side of the connector connecting portion 11.
- the overall size of the high-frequency shield structure 100A can be reduced by the amount that does not occur. Therefore, the degree of freedom in installing the high-frequency shield structure 100A is increased, and the antenna provided with the high-frequency shield structure 100A can be miniaturized.
- FIG. 5 is a cross-sectional view of a second modification of the high frequency shield structure according to the embodiment of the present invention.
- FIG. 6 is a plan view of the high frequency shield structure shown in FIG. 5 in the XZ plane.
- the description of the same configuration and effect as the high frequency shield structure 100 will be omitted or simplified by referring to the above description.
- the high frequency shield structure 100B of the second modification includes the coaxial connector 7B instead of the coaxial connector 7A.
- the coaxial connector 7B is arranged in the recess 11b formed at the end portion 11c of the connector connection portion 11 in the minus Z-axis direction.
- the recess 11b is a portion in which a part of the end portion 11c of the connector connecting portion 11 in the minus Z-axis direction is recessed in a protruding shape in the plus Z-axis direction.
- the connector terminal 7a of the coaxial connector 7B is connected to the signal line conductor 4 on the connector connection portion 11 in a state where the main body portion 7c of the coaxial connector 7B is in contact with the bottom portion 11b1 of the recess 11b.
- the connector terminal 7a of the coaxial connector 7B connected to the signal line conductor 4 is arranged in a region where the end surface 12a of the folded-back portion 12 and the end surface 11a of the connector connecting portion 11 face each other.
- the folded-back portion 12 When the grounding conductor 2 provided on the folded-back portion 12 is viewed in a plan view on the XZ plane, the folded-back portion 12 extends from the virtual line VL extending the connector terminal 7a in the Y-axis direction in the plus X-axis direction and the minus X-axis direction. They are arranged so as to cover up to a position separated by a certain distance from each other and to cover a certain distance from the virtual line VL in the plus Z-axis direction and the minus Z-axis direction, respectively.
- the length of the main body 7c of the coaxial connector 7B in the Z-axis direction is preferably shorter than the depth of the recess 11b in the Z-axis direction. As a result, the entire main body 7c of the coaxial connector 7B can enter the recess 11b, and the amount of the main body 7c of the coaxial connector 7B protruding from the end 11c of the connector connection 11 in the minus Z-axis direction can be reduced.
- the high-frequency shield structure 100B by providing the coaxial connector 7B in the recess 11b formed in the connector connection portion 11, the amount of the coaxial connector 7B protruding toward the minus Y-axis direction of the connector connection portion 11 is reduced, and the high-frequency shield The overall dimensions of the structure 100B can be reduced.
- the space 8 formed inside the package formed by the connector connecting portion 11 and the folded-back portion 12 is narrowed, and the space 8 is formed as in the first modification. Even if the entire coaxial connector 7B cannot be installed, the coaxial connector 7B can be installed by effectively utilizing a part of the space 8. Therefore, the degree of freedom in designing the package formed by the connector connecting portion 11 and the folded portion 12 is increased, and the antenna having the high frequency shield structure 100B can be miniaturized.
- FIG. 7 is a cross-sectional view of the high frequency shield structure according to the embodiment of the present invention.
- FIG. 8 is a plan view of the high frequency shield structure shown in FIG. 7 in the XZ plane.
- the description of the same configuration and effect as the high frequency shield structure 100 will be omitted or simplified by referring to the above description.
- the high frequency shield structure 100C of the third modification includes a SIW200 and a coaxial-SIW (Substrate Integrated Waveguide) converter 6.
- the SIW200 is a substrate-integrated waveguide that is formed in the connector connection portion 11 and has a shield structure that shields electromagnetic waves and transmits signals in a waveguide mode.
- SIW200 may be referred to as a substrate built-in waveguide or a post-wall waveguide.
- the SIW 200 is provided on the dielectric 1a, the conductor layer 21 provided on the positive Y-axis direction surface of the dielectric 1a, the conductor layer 22 provided on the negative Y-axis direction surface of the dielectric 1a, and the dielectric 1a. It is composed of a plurality of conductor columns 20.
- the connector terminal 7a of the coaxial connector 7 is connected to the SIW200 via the coaxial-SIW converter 6.
- the conductor column 20 is a solid or hollow columnar conductor that extends from the conductor layer 21 toward the conductor layer 22 and electrically connects the conductor layer 21 and the conductor layer 22.
- a plurality of conductor columns 20 are arranged at intervals so that high-frequency signals propagating in SIW 200 do not leak to the outside.
- each of the conductor layer 21 and the conductor layer 22 is preferably 0.09 ⁇ m or more, more preferably 0.35 ⁇ m or more.
- the thickness of each of the conductor layer 21 and the conductor layer 22 is preferably 110 ⁇ m or less.
- a plurality of conductor columns 23 and a conductor layer 24 are formed at the end portion 13 of the folded portion 12.
- the conductor layer 24 is provided on the surface of the folded-back portion 12 opposite to the ground conductor 2 side.
- the conductor layer 24 is provided at a position facing the conductor layer 21 of the connector connecting portion 11, and is in contact with the conductor layer 21.
- the conductor column 23 is a solid or hollow columnar conductor that extends from the ground conductor 2 toward the conductor layer 24 and electrically connects the ground conductor 2 and the conductor layer 24.
- a closed loop ground is formed by the grounding conductor 2, the conductor column 23, the conductor layer 24, the conductor layer 21, the conductor column 20, and the conductor layer 22 of the connector connecting portion 11.
- a fastening member 27 is used to maintain the contact state between the conductor layer 24 and the conductor layer 21 forming the ground of the closed loop.
- the fastening member 27 may be, for example, a combination of a screw penetrating from the folded-back portion 12 toward the connector connecting portion 11 and a nut into which the screw is tightened. By using the fastening member 27, the conductor layer 24 of the folded-back portion 12 comes into close contact with the conductor layer 21 of the connector connecting portion 11.
- SIW200 can be used to provide a closed loop gland on the envelope formed by the connector connecting portion 11 and the folded portion 12. Since the conventional flexible board on which the coaxial-SIW converter 6 is formed does not have the folded-back portion 12, the frequency used for the signal transmitted to the coaxial-SIW converter 6 or the like is around the flexible board. In addition, in the conventional flexible substrate, there is a risk of affecting the devices existing in the surroundings due to unnecessary radiated power at the operating frequency. In addition, there is concern about the influence of surrounding devices. On the other hand, since the high frequency shield structure 100C is provided with the folded-back portion 12, such a problem can be solved.
- the high-frequency shield structure 100C by connecting the conductor layer 24 of the folded-back portion 12 to the conductor layer 21 of the SIW200, a closed loop ground can be formed, so that the antenna connected to the tip of the open portion of the connector terminal 7a It is difficult to affect the radiation pattern of.
- the configuration of the high frequency shield structure 100C can also be combined with the high frequency shield structure 100A and the high frequency shield structure 100B.
- FIG. 9 is a cross-sectional view of a fourth modification of the high frequency shield structure according to the embodiment of the present invention.
- FIG. 10 is a plan view of the high frequency shield structure shown in FIG. 9 in the XZ plane. The description of the same configuration and effect as the high frequency shield structure 100C will be omitted or simplified by referring to the above description.
- solder 26 is used instead of the fastening member 27 in the high frequency shield structure 100D of the fourth modification.
- a plurality of holes 25 are formed in the region near the end of the folded-back portion 12. Each of the plurality of holes 25 penetrates from the ground conductor 2 on the folded-back portion 12 side toward the conductor layer 24. By providing the solder 26 in the hole 25, the ground conductor 2 on the folded-back portion 12 side is electrically connected to the conductor layer 24. A closed loop ground is formed by the grounding conductor 2, the solder 26, the conductor layer 24, the conductor layer 21, and the conductor column 20.
- the same effect as that of the high frequency shield structure 100C can be obtained, and since the fastening member 27 is unnecessary, the configuration is simplified and the reliability of the high frequency shield structure 100D is improved. Further, since the fastening member 27 is not used, for example, retightening of the fastening member 27 becomes unnecessary, and an increase in maintenance cost can be suppressed.
- FIG. 11 is a cross-sectional view of a fifth modification of the high frequency shield structure according to the embodiment of the present invention.
- the description of the same configuration and effect as the high frequency shield structure 100C will be omitted or simplified by referring to the above description.
- the folded-back portion 30 is formed in the region of the folded-back portion 12 near the end portion 13.
- the folded-back portion 30 is formed by folding back the region of the folded-back portion 12 near the end portion 13 in the direction of the arrow B. That is, the end portion 13 of the folded-back portion 12 is folded back so that the grounding conductor 2 provided on the outside of the folded-back portion 12 is in contact with the conductor layer 21 provided on the connector connecting portion 11. As a result, a part of the grounding conductor 2 provided in the folded-back portion 12 comes into contact with the conductor layer 21, and a closed loop ground is formed.
- a closed-loop ground can be provided without providing the conductor column 23 or the like shown in FIG. 7, and the structure is simplified and reliability is improved.
- FIG. 12A is a plan view of a sixth modification of the high frequency shield structure according to the embodiment of the present invention in the XZ plane.
- FIG. 12B is a perspective view of the flexible substrate according to the sixth modification.
- the description of the same configuration and effect as the high frequency shield structure 100C will be omitted or simplified by referring to the above description.
- the high-frequency shield structure 100F of the sixth modification includes two closing members 51 in addition to the configuration of the high-frequency shield structure 100C.
- the closing member 51 is a member for closing the opening 50 in the Z-axis direction of the space 8 inside the package formed by the connector connecting portion 11 and the folded portion 12.
- the closing member 51 includes a grounding conductor similar to the grounding conductor 2 included in the flexible substrate 1.
- the closing member 51 can utilize, for example, a part of the flexible substrate 1, and extends from the folded-back portion 12 in the Z-axis direction, for example.
- FIG. 12B shows a state before the closing member 51 formed integrally with the folded-back portion 12 is bent.
- the high frequency shield structure 100F shown in FIG. 12A is formed by bending the closing member 51 in the direction of the arrow C so that the opening 50 is closed.
- the bent closing member 51 is fixed to the housing of the device to which the high-frequency shield structure 100F is attached by, for example, the fastening member 40.
- the closing member 51 may be configured to close a part of the opening 50, or may be configured to close the entire opening 50.
- the dimension of the gap between the opening 50 and the closing member 51 is preferably set to a value equal to or less than the length L described above. Further, as the closing member 51, a member separate from the flexible substrate 1 may be prepared and this member may be used.
- the high-frequency shield structure 100F According to the high-frequency shield structure 100F, at least a part of the opening 50 formed in the Z-axis direction of the package formed by the connector connecting portion 11 and the folded portion 12 is closed, so that unnecessary radiation is further suppressed. Will be done.
- a member separate from the flexible substrate 1 is used as the closing member 51, it is necessary to fix the four sides of the member to the flexible substrate 1.
- the high-frequency shield structure 100F by using the closing member 51 integrally formed with the folded-back portion 12, for example, only three sides of the closing member 51 are fixed to the flexible substrate 1 to obtain a high frequency. A shield structure 100F can be obtained. Therefore, the amount of work required for fixing is reduced, the number of man-hours for assembling the high-frequency shield structure 100F is reduced, and the high-frequency shield structure 100F can be manufactured at low cost.
- the closed structure of the high frequency shield structure 100F can be combined with the high frequency shield structure 100 to the high frequency shield structure 100D.
- FIG. 13 is a cross-sectional view of a seventh modification of the high frequency shield structure according to the embodiment of the present invention.
- the description of the same configuration and effect as the high frequency shield structure 100D will be omitted or simplified by referring to the above description.
- the high-frequency shield structure 100G of the seventh modification includes a radio wave absorber 52 in addition to the configuration of the high-frequency shield structure 100D.
- the radio wave absorber 52 is fixed to, for example, the end surface 12a of the folded-back portion 12 on the virtual line VL extending the connector terminal 7a in the Y-axis direction.
- the radio wave absorber for example, Ecosorb (registered trademark) can be exemplified.
- FIG. 14A is a perspective view of a housing model of a comparative example for explaining the effect of the high frequency shield structure according to the embodiment of the present invention.
- the housing model 100'(comparative example) is, for example, a high-frequency shield structure in which the folded-back portion 12 is omitted from the high-frequency shield structure 100C of FIG.
- the set values of the model of FIG. 14A are shown in FIG. Length of connector connection 11 in the Z-axis direction L 1 : 22 mm Relative permittivity of dielectric 1a: 2.0 Thickness of conductor layer 21: 43 ⁇ m Thickness of conductor layer 22: 43 ⁇ m Thickness of ground conductor 2: 43 ⁇ m The thickness of the signal line conductor 4 was set to 43 ⁇ m.
- FIG. 14B is a diagram showing an example of the simulation result of the S parameter by the model of FIG. 14A.
- the vertical axis is the S parameter, and the horizontal axis is the frequency.
- the S parameter represents the ratio of the power reflected from the coaxial connector to the coaxial connector to the power flowing out from the microstrip line to the SIW.
- the solid line S11 represents the power reflected from the coaxial connector to the coaxial connector, and the broken line S21 represents the power passing from the coaxial connector to the SIW. From FIG. 14B, it can be seen that the reflected power is small and the passing power passes at about 0 dB in the vicinity of the frequency of 28 GHz.
- FIG. 14C is a diagram showing an example of a simulation result of electric power radiated from the high frequency shield structure of the model of FIG. 14A.
- the vertical axis is the total power radiated from the high frequency shield structure, and the horizontal axis is the frequency.
- the folded-back portion 12 since the folded-back portion 12 is not provided, it does not function as a coaxial-SIW converter and does not radiate in the region of 20 GHz or less, but it radiates in the high region of 20 GHz or more.
- FIG. 14D is a diagram showing an example of the simulation result of the antenna gain when the high frequency shield structure of the model of FIG. 14A is used.
- the vertical axis represents the antenna gain at a specific angle at 28 GHz
- the horizontal axis represents the angle of the spherical coordinate system.
- the solid line is a plot of the antenna gain at the angle of the YZ plane from the minus Y axis direction to the plus Y axis direction.
- the broken line is a plot of the antenna gain at the angle of the XY plane from the minus X axis direction to the plus X axis direction.
- FIG. 15A is a perspective view of a model for explaining the first effect of the high frequency shield structure according to the embodiment of the present invention.
- FIG. 15A schematically shows the high frequency shield structure 100C of FIG.
- the high-frequency shield structure of FIG. 15A is obtained by adding a folded portion 12 to the model of FIG. 14A.
- the length L is longer than 1/2 wavelength of the wavelength at the center frequency of the frequency band in which unnecessary radiation is suppressed.
- the set value of the high frequency shield structure of FIG. 15A is Length of connector connection 11 in the Z-axis direction L 1 : 22 mm Length of folded portion 12 in the X-axis direction L 2 : 8.5 mm Height of folded portion 12 in the Y-axis direction L 3 : 2 mm Relative permittivity of dielectric 1a: 2.0 Thickness of conductor layer 21: 43 ⁇ m Thickness of conductor layer 22: 43 ⁇ m Thickness of ground conductor 2: 43 ⁇ m The thickness of the signal line conductor 4 was set to 43 ⁇ m.
- FIG. 15B is a diagram showing an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 15A.
- FIG. 15B shows S-parameters, similar to FIG. 14B. From FIG. 15B, since the same simulation result as in FIG. 14B can be obtained, it can be seen that there is no influence due to the provision of the folded portion 12.
- FIG. 15C is a diagram showing an example of a simulation result of electric power radiated from the high frequency shield structure of FIG. 15A.
- FIG. 15C shows the total radiated power value as in FIG. 14C.
- radio waves are radiated from the openings formed by the connector connecting portion 11 and the folded-back portion 12, so that the total radiated power value is the same simulation result as in FIG. 14C.
- FIG. 15D is a diagram showing an example of an antenna gain simulation result when the high frequency shield structure of FIG. 15A is used.
- FIG. 15D shows the total radiated power value as in FIG. 14D.
- FIG. 16A is a perspective view of a model for explaining the second effect of the high frequency shield structure according to the embodiment of the present invention.
- FIG. 16A schematically shows the high frequency shield structure 100F of FIG. 12A.
- the high-frequency shield structure of FIG. 16A is obtained by adding the closing member 51 to the model of FIG. 15A.
- the length L is longer than 1/2 wavelength of the wavelength at the center frequency of the frequency band in which unnecessary radiation is suppressed, as in the model of FIG. 15A.
- the set value of the high frequency shield structure of FIG. 16A is Length of connector connection 11 in the Z-axis direction L 1 : 22 mm Length of folded portion 12 in the X-axis direction L 2 : 8.5 mm Height of folded portion 12 in the Y-axis direction L 3 : 2 mm Relative permittivity of dielectric 1a: 2.0 Thickness of conductor layer 21: 43 ⁇ m Thickness of conductor layer 22: 43 ⁇ m Thickness of ground conductor 2: 43 ⁇ m The thickness of the signal line conductor 4 was set to 43 ⁇ m.
- FIG. 16B is a diagram showing an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 16A. From FIG. 16B, the same simulation result as in FIG. 15B can be obtained.
- FIG. 16C is a diagram showing an example of a simulation result of electric power radiated from the high frequency shield structure of FIG. 16A.
- the closing member 51 since the closing member 51 is added, the radiated radio wave from the opening is suppressed, so that the total radiated power value is significantly suppressed.
- FIG. 16D is a diagram showing an example of an antenna gain simulation result when the high frequency shield structure of FIG. 16A is used.
- the closing member 51 since the closing member 51 is added, unnecessary radio waves radiated in the extending direction of the virtual line VL extending the connector terminal 7a in the Y-axis direction, that is, in the 0 ° direction are suppressed, and further. Since unnecessary radio waves radiated in directions other than that direction are also suppressed, the antenna gain in all directions is significantly reduced.
- FIG. 17A is a perspective view of a first model for explaining a third effect of the high frequency shield structure according to the embodiment of the present invention.
- FIG. 17B is a plan view of the high frequency shield structure of FIG. 17A in the XY plane. 17A and 17B show a high frequency shield structure for explaining the effect of the length L described above.
- the high-frequency shield structure of FIG. 17A is obtained by moving the position of the coaxial connector in the counterclockwise direction by 90 ° to deform the shape of the folded-back portion 12.
- the length L is longer than 1/2 wavelength of the wavelength at the center frequency of the frequency band in which unnecessary radiation is suppressed. Further, the high frequency shield structure is not provided with the closing member 51.
- the set value of the high frequency shield structure is Length of connector connection 11 in the Z-axis direction L 1 : 22 mm Length of folded portion 12 in the X-axis direction L 2 : 4 mm Height of the folded-back portion 12 in the Y-axis direction L 3 : 8.5 mm
- Relative permittivity of dielectric 1a 2.0 Thickness of conductor layer 21: 43 ⁇ m
- Thickness of conductor layer 22 43 ⁇ m
- Thickness of ground conductor 2 43 ⁇ m
- the thickness of the signal line conductor 4 was set to 43 ⁇ m.
- FIG. 17C is a diagram showing an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 17A.
- FIG. 17D is a diagram showing an example of a simulation result of electric power radiated from the high frequency shield structure of FIG. 17A.
- FIG. 17E is a diagram showing an example of an antenna gain simulation result when the high frequency shield structure of FIG. 17A is used. From FIGS. 17C, 17D and 17E, simulation results similar to those of FIGS. 15B, 15C and 15D can be obtained.
- FIG. 18A is a perspective view of a second model for explaining the third effect of the high frequency shield structure according to the embodiment of the present invention.
- FIG. 18B is a plan view of the high frequency shield structure of FIG. 18A in the XY plane.
- 18A and 18B show a high-frequency shield structure in which L 3 in FIG. 17B is shortened so that the length L is less than 1/2 of the wavelength at the center frequency of the frequency band in which unnecessary radiation is suppressed. Is done.
- the set value of the high frequency shield structure is Length of connector connection 11 in the Z-axis direction L 1 : 22 mm Length of folded portion 12 in the X-axis direction L 2 : 4 mm Height of folded-back portion 12 in the Y-axis direction L 3 : 4.5 mm
- Relative permittivity of dielectric 1a 2.0 Thickness of conductor layer 21: 43 ⁇ m
- Thickness of conductor layer 22 43 ⁇ m
- Thickness of ground conductor 2 43 ⁇ m
- the thickness of the signal line conductor 4 was set to 43 ⁇ m.
- FIG. 18C is a diagram showing an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 18A.
- FIG. 18D is a diagram showing an example of a simulation result of electric power radiated from the high frequency shield structure of FIG. 18A.
- FIG. 18E is a diagram showing an example of a simulation result of the antenna gain when the high frequency shield structure of FIG. 18A is used.
- the simulation result of FIG. 18C is the same as that of FIG. 17C, but it can be seen from FIGS. 18D and 18E that the total power value and the antenna gain are significantly reduced by shortening the length L.
- the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Structure Of Printed Boards (AREA)
Abstract
A high-frequency shield structure according to the present invention is provided with: a flexible substrate; and a coaxial connector connected to the flexible substrate. The flexible substrate is provided with: a connector-connecting section to which the coaxial connector is connected and that is a substrate region in which a connector terminal serving as a signal line conductor of the coaxial connector is provided; a foldback section serving as a substrate region in which an end section of the flexible substrate is folded back towards the connector-connecting section so as to cover the connector terminal; grounding conductors that are provided in the connector-connecting section and the foldback section and that cover the connector terminal; and a ground conductor that electrically connects the grounding conductor provided on the connector-connecting section side and the grounding conductor covering the foldback section side.
Description
本発明は、基板に接続された同軸コネクタのコネクタ端子を高周波的にシールドする高周波シールド構造に関する。
The present invention relates to a high frequency shield structure that shields the connector terminal of a coaxial connector connected to a substrate at a high frequency.
特許文献1には、基板に接続されたコネクタの信号線導体であるコネクタ端子のシールド構造が開示される。特許文献1のシールド構造では、基板から露出するコネクタ端子をシールド材であるFPC(Flexible Printed Circuits)で覆い、FPCの基板への接触部分にはんだ付けが行われる。これにより、基板へのFPCの取り付けのために、FPCや基板にねじ穴を施して、ねじ、ワッシャ、及びナットを取り付けるなどの措置が不要になり、省スペースでありながら、取り付けが容易なシールド構造が得られる。
Patent Document 1 discloses a shield structure of a connector terminal which is a signal line conductor of a connector connected to a substrate. In the shield structure of Patent Document 1, the connector terminals exposed from the substrate are covered with FPC (Flexible Printed Circuits) which is a shielding material, and the contact portion of the FPC with the substrate is soldered. This eliminates the need for screw holes, screws, washers, and nuts to attach the FPC to the board, which saves space and is easy to install. The structure is obtained.
しかしながら、特許文献1に示される従来技術では、コネクタ端子をシールドするために、追加の部品であるFPCなどが必要なため、構造をより一層簡素化しながらシールド構造を提供する上での改善の余地がある。
However, in the prior art shown in Patent Document 1, since an additional component such as FPC is required to shield the connector terminal, there is room for improvement in providing a shield structure while further simplifying the structure. There is.
そこで、本開示は、コネクタ端子のシールドを簡易な構成で実現できる高周波シールド構造を提供する。
Therefore, the present disclosure provides a high-frequency shield structure capable of realizing a shield of a connector terminal with a simple configuration.
本開示は、フレキシブル基板と、前記フレキシブル基板に接続された同軸コネクタと、を備え、前記フレキシブル基板は、前記同軸コネクタが接続されると共に、前記同軸コネクタの信号線導体であるコネクタ端子が設けられる基板領域であるコネクタ接続部と、
前記コネクタ端子を覆うように、前記フレキシブル基板の端部が前記コネクタ接続部側に折り返される基板領域である折り返し部と、前記コネクタ接続部及び前記折り返し部に設けられ、前記コネクタ端子を覆う接地導体と、前記コネクタ接続部側に設けられる前記接地導体と、前記折り返し部側を覆う前記接地導体とを、電気的に接続するグランド導体と、を備える高周波シールド構造を提供する。 The present disclosure includes a flexible substrate and a coaxial connector connected to the flexible substrate. The flexible substrate is provided with a connector terminal which is a signal line conductor of the coaxial connector as well as being connected to the coaxial connector. The connector connection part, which is the board area,
A folded portion, which is a board area in which the end portion of the flexible substrate is folded back toward the connector connecting portion side so as to cover the connector terminal, and a ground conductor provided at the connector connecting portion and the folded portion and covering the connector terminal. Provided is a high-frequency shield structure including a ground conductor provided on the connector connecting portion side and a ground conductor for electrically connecting the grounding conductor covering the folded-back portion side.
前記コネクタ端子を覆うように、前記フレキシブル基板の端部が前記コネクタ接続部側に折り返される基板領域である折り返し部と、前記コネクタ接続部及び前記折り返し部に設けられ、前記コネクタ端子を覆う接地導体と、前記コネクタ接続部側に設けられる前記接地導体と、前記折り返し部側を覆う前記接地導体とを、電気的に接続するグランド導体と、を備える高周波シールド構造を提供する。 The present disclosure includes a flexible substrate and a coaxial connector connected to the flexible substrate. The flexible substrate is provided with a connector terminal which is a signal line conductor of the coaxial connector as well as being connected to the coaxial connector. The connector connection part, which is the board area,
A folded portion, which is a board area in which the end portion of the flexible substrate is folded back toward the connector connecting portion side so as to cover the connector terminal, and a ground conductor provided at the connector connecting portion and the folded portion and covering the connector terminal. Provided is a high-frequency shield structure including a ground conductor provided on the connector connecting portion side and a ground conductor for electrically connecting the grounding conductor covering the folded-back portion side.
本開示の技術によれば、コネクタ端子のシールドを簡易な構成で実現できる高周波シールド構造を提供できる。
According to the technology of the present disclosure, it is possible to provide a high frequency shield structure capable of realizing a shield of a connector terminal with a simple configuration.
以下、図面を参照して、本開示に係る実施形態について説明する。なお、平行、直角、直交、水平、垂直、上下、左右などの方向には、例えばアンテナが設置される筐体が曲面で構成されている場合など、本発明の効果を損なわない程度のずれが許容される。また、X軸方向、Y軸方向、Z軸方向は、それぞれ、X軸に平行な方向、Y軸に平行な方向、Z軸に平行な方向を表す。X軸方向とY軸方向とZ軸方向は、互いに直交する。XY平面、YZ平面、ZX平面は、それぞれ、X軸方向及びY軸方向に平行な仮想平面、Y軸方向及びZ軸方向に平行な仮想平面、Z軸方向及びX軸方向に平行な仮想平面を表す。以下の図面において、X軸方向のうち、矢印で示す方向はプラスX軸方向とし、当該方向とは逆の方向はマイナスX軸方向とする。Y軸方向のうち、矢印で示す方向はプラスY軸方向とし、当該方向とは逆の方向はマイナスY軸方向とする。Z軸方向のうち、矢印で示す方向はプラスZ軸方向とし、当該方向とは逆の方向はマイナスZ軸方向とする。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。従って、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、以下に示す実施の形態は、本発明の技術的思想を具体化するための構造を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. In the directions of parallel, right angle, orthogonal, horizontal, vertical, up and down, left and right, etc., there is a deviation that does not impair the effect of the present invention, for example, when the housing in which the antenna is installed is composed of a curved surface. Permissible. Further, the X-axis direction, the Y-axis direction, and the Z-axis direction represent a direction parallel to the X-axis, a direction parallel to the Y-axis, and a direction parallel to the Z-axis, respectively. The X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to each other. The XY plane, YZ plane, and ZX plane are a virtual plane parallel to the X-axis direction and the Y-axis direction, a virtual plane parallel to the Y-axis direction and the Z-axis direction, and a virtual plane parallel to the Z-axis direction and the X-axis direction, respectively. Represents. In the following drawings, of the X-axis directions, the direction indicated by the arrow is the plus X-axis direction, and the direction opposite to the direction is the minus X-axis direction. Of the Y-axis directions, the direction indicated by the arrow is the plus Y-axis direction, and the direction opposite to the direction is the minus Y-axis direction. Of the Z-axis directions, the direction indicated by the arrow is the plus Z-axis direction, and the direction opposite to the direction is the minus Z-axis direction. Further, in the description of the following drawings, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimension, the ratio of the thickness of each layer, etc. are different from the actual ones. Therefore, there are parts in which the relations and ratios of the dimensions of the drawings are different from each other. Further, the embodiments shown below exemplify a structure for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, structure, arrangement, etc. of the component parts. Is not specified as the following. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.
図1は本発明の実施の形態に係る高周波シールド構造の断面図である。図2Aは図1の高周波シールド構造をXZ平面で平面視した図である。図2Bは折り曲げ部が形成される前後のフレキシブル基板の状態を説明するための図である。図2Cは図2Bに示す折り曲げ部が形成された後のフレキシブル基板の斜視図である。
FIG. 1 is a cross-sectional view of a high frequency shield structure according to an embodiment of the present invention. FIG. 2A is a plan view of the high frequency shield structure of FIG. 1 in the XZ plane. FIG. 2B is a diagram for explaining the state of the flexible substrate before and after the bent portion is formed. FIG. 2C is a perspective view of the flexible substrate after the bent portion shown in FIG. 2B is formed.
高周波シールド構造100は、フレキシブル基板1と、フレキシブル基板1に接続された同軸コネクタ7と、を備える。
The high frequency shield structure 100 includes a flexible substrate 1 and a coaxial connector 7 connected to the flexible substrate 1.
フレキシブル基板1は、コネクタ接続部11と、折り返し部12と、接地導体2と、導通用のグランド導体9とを備える。
The flexible substrate 1 includes a connector connecting portion 11, a folded-back portion 12, a ground conductor 2, and a ground conductor 9 for conduction.
フレキシブル基板1は、曲げることが可能な柔軟性を有し、弱い力で繰り返し変形させることが可能であり、変形した場合にもその電気的特性を維持する特性をもつ基板である。フレキシブル基板1は、一般的なリジッド基板(総厚300μm~1,600μm)と比較して薄く、加工性に優れるため、複雑な形状加工が可能である。フレキシブル基板1は、例えば、厚み12μmから300μmの薄膜状の誘電体1aに、厚みが12μm~300μmの接地導体2(例えば、導体箔など)が張り合わされた構造である。
The flexible substrate 1 is a substrate that has flexibility that allows it to be bent, can be repeatedly deformed with a weak force, and has the property of maintaining its electrical characteristics even when deformed. The flexible substrate 1 is thinner than a general rigid substrate (total thickness 300 μm to 1,600 μm) and has excellent workability, so that it is possible to process a complicated shape. The flexible substrate 1 has a structure in which, for example, a ground conductor 2 (for example, a conductor foil) having a thickness of 12 μm to 300 μm is bonded to a thin-film dielectric 1a having a thickness of 12 μm to 300 μm.
誘電体1aには、ソルダーレジスト(レジスト/フォトレジスト)、カバーレイ(Coverlay)と呼ばれる材料で、ポリイミド、ポリエステルなどが使用される。導体箔の材料には、例えば、金、銀、銅、アルミニウム、白金、クロムなどが用いられる。誘電体1aは、例えば28GHzにおける誘電正接(いわゆる、tanδ)が0.01以下、特に0.01以下であることが好ましい。なお、28GHzにおける誘電正接は、GHz帯の周波数における指標の例である。そのため、28GHzにおける誘電正接が0.01以下であれば、例えば、1GHz~100GHzにおいても信号線導体4の伝送損失が抑制されるので、28GHz近傍に限らず、1GHz~100GHzにおけるアンテナ素子のアンテナ利得を向上できる。信号線導体4は、不図示のアンテナ素子に接続される導電性の信号線であり、例えば、フレキシブル基板1のコネクタ接続部11のプラスY軸方向の端面に設けられる。図2Aに示すように、信号線導体4のマイナスZ軸方向の端部4aには、図1の貫通孔11dと連通する貫通孔4a1が設けられている。貫通孔11dは、コネクタ接続部11に形成され、Y軸方向にコネクタ接続部11を貫通する穴である。
For the dielectric 1a, a material called solder resist (resist / photoresist) or coverlay (Coverlay), polyimide, polyester, or the like is used. As the material of the conductor foil, for example, gold, silver, copper, aluminum, platinum, chromium and the like are used. The dielectric 1a preferably has a dielectric loss tangent (so-called tan δ) of 0.01 or less, particularly 0.01 or less, at, for example, 28 GHz. The dielectric loss tangent at 28 GHz is an example of an index at a frequency in the GHz band. Therefore, if the dielectric loss tangent at 28 GHz is 0.01 or less, the transmission loss of the signal line conductor 4 is suppressed even at 1 GHz to 100 GHz, so that the antenna gain of the antenna element at 1 GHz to 100 GHz is not limited to around 28 GHz. Can be improved. The signal line conductor 4 is a conductive signal line connected to an antenna element (not shown), and is provided, for example, on the end face of the connector connecting portion 11 of the flexible substrate 1 in the plus Y-axis direction. As shown in FIG. 2A, a through hole 4a1 communicating with the through hole 11d of FIG. 1 is provided at the end portion 4a of the signal line conductor 4 in the minus Z-axis direction. The through hole 11d is a hole formed in the connector connecting portion 11 and penetrating the connector connecting portion 11 in the Y-axis direction.
アンテナ素子は、例えば図2Aの信号線導体4のプラスZ軸方向側に設けられている。アンテナ素子は、マイクロ波やミリ波等の高周波帯(例えば、1GHz超~300GHz)の電波の送受に好適である。アンテナ素子は、例えば、V2X通信システム、第5世代移動通信システム(いわゆる、5G)、車載レーダーシステムなどに適用可能であるが、適用可能なシステムはこれらに限られない。周波数域としては、例えばITS(Intelligent Transport Systems:高度道路交通システム)(5.89GHz)用や、5G(28GHz帯、3.6から6GHz帯、39GHz帯)用、Wi-Fi(2.4GHz、5GHz)用であってよい。
The antenna element is provided, for example, on the plus Z axis direction side of the signal line conductor 4 in FIG. 2A. The antenna element is suitable for transmitting and receiving radio waves in a high frequency band (for example, over 1 GHz to 300 GHz) such as microwaves and millimeter waves. The antenna element can be applied to, for example, a V2X communication system, a 5th generation mobile communication system (so-called 5G), an in-vehicle radar system, and the like, but the applicable system is not limited to these. As the frequency range, for example, for ITS (Intelligent Transport Systems) (5.89 GHz), for 5 G (28 GHz band, 3.6 to 6 GHz band, 39 GHz band), Wi-Fi (2.4 GHz, It may be for 5 GHz).
コネクタ接続部11は、フレキシブル基板1全体の内、同軸コネクタ7が接続される基板領域である。コネクタ接続部11のマイナスY軸方向の端面側に、同軸コネクタ7の本体部7cが設けられる。同軸コネクタ7の本体部7cからプラスY軸方向に、コネクタ端子7aが伸びる。
The connector connection portion 11 is a board area to which the coaxial connector 7 is connected in the entire flexible board 1. The main body 7c of the coaxial connector 7 is provided on the end surface side of the connector connection portion 11 in the minus Y-axis direction. The connector terminal 7a extends from the main body 7c of the coaxial connector 7 in the plus Y-axis direction.
コネクタ端子7aは、高周波信号を伝送するための信号線導体である。コネクタ端子7aは、コネクタ接続部11に形成される貫通孔11dに挿入され、さらに、信号線導体4の端部4aに形成される貫通孔4a1に挿入される。
The connector terminal 7a is a signal line conductor for transmitting a high frequency signal. The connector terminal 7a is inserted into the through hole 11d formed in the connector connection portion 11, and further inserted into the through hole 4a1 formed in the end portion 4a of the signal line conductor 4.
図2Bに示すように、板状に展開したフレキシブル基板1の端部13側の領域(破線で示される領域)を、矢印Aの方向に折り返すことにより、折り返し部12が形成される。すなわち、フレキシブル基板1の端部13側の領域を、コネクタ端子7aを覆うように、コネクタ接続部11側に折り返されることにより、折り返し部12が形成される。
As shown in FIG. 2B, the folded-back portion 12 is formed by folding back the region 13 side of the end portion 13 (the region shown by the broken line) of the flexible substrate 1 developed in a plate shape in the direction of the arrow A. That is, the folded-back portion 12 is formed by folding back the region on the end portion 13 side of the flexible substrate 1 toward the connector connecting portion 11 side so as to cover the connector terminal 7a.
折り返し部12のマイナスY軸方向の端面12aは、コネクタ接続部11のプラスY軸方向の端面11aとY軸方向において、対向する。そして、折り返し部12のマイナスX軸方向の先端部(フレキシブル基板1の端部13に相当)が、コネクタ接続部11に接することにより、包状体が形成される。コネクタ接続部11及び折り返し部12によって形成される包状体の内側には、空間8が形成される。
The end face 12a of the folded-back portion 12 in the minus Y-axis direction faces the end face 11a of the connector connecting portion 11 in the plus Y-axis direction in the Y-axis direction. Then, the tip portion of the folded-back portion 12 in the minus X-axis direction (corresponding to the end portion 13 of the flexible substrate 1) comes into contact with the connector connecting portion 11, so that a package is formed. A space 8 is formed inside the package formed by the connector connecting portion 11 and the folded portion 12.
接地導体2は、コネクタ接続部11及び折り返し部12に設けられ、コネクタ端子7aを覆うグラウンド用導体である。接地導体2は、コネクタ接続部11及び折り返し部12をXY平面で平面視したときに、上記の包状体の外側を覆うように設けられる。
The ground conductor 2 is a ground conductor provided at the connector connecting portion 11 and the folded portion 12 and covering the connector terminal 7a. The ground conductor 2 is provided so as to cover the outside of the envelope when the connector connecting portion 11 and the folded portion 12 are viewed in a plan view on an XY plane.
接地導体2は、フレキシブル基板1に形成される導体パターンでもよいし、フレキシブル基板1とは別に予め製造された後にフレキシブル基板1に配置される導体シート、導体基板などでもよい。接地導体2の材料には、例えば、金、銀、銅、アルミニウム、白金、クロムなどが用いられる。接地導体2の厚さは、0.09μm以上が好ましく、0.35μm以上がより好ましい。また、接地導体2の厚さは、110μm以下が好ましい。
The grounding conductor 2 may be a conductor pattern formed on the flexible substrate 1, or may be a conductor sheet, a conductor substrate, or the like which is manufactured in advance separately from the flexible substrate 1 and then arranged on the flexible substrate 1. As the material of the ground conductor 2, for example, gold, silver, copper, aluminum, platinum, chromium and the like are used. The thickness of the ground conductor 2 is preferably 0.09 μm or more, more preferably 0.35 μm or more. The thickness of the ground conductor 2 is preferably 110 μm or less.
グランド導体9は、グランド用の導体であり、互いに接触するコネクタ接続部11及び折り返し部12に設けられる。グランド導体9は、コネクタ接続部11側の接地導体2と折り返し部12側の接地導体2とを、電気的に接続する中実又は中空の柱状導電体であることが好ましい。
The ground conductor 9 is a conductor for ground, and is provided at the connector connecting portion 11 and the folded portion 12 which are in contact with each other. The ground conductor 9 is preferably a solid or hollow columnar conductor that electrically connects the ground conductor 2 on the connector connecting portion 11 side and the ground conductor 2 on the folded portion 12 side.
コネクタ接続部11側の接地導体2から、折り返し部12側の接地導体2に向かって伸びるグランド導体9と、接地導体2とによって、閉ループのグランドが形成される。
A closed-loop ground is formed by the ground conductor 9 extending from the ground conductor 2 on the connector connection portion 11 side toward the ground conductor 2 on the folded-back portion 12 side, and the ground conductor 2.
図1に示す長さLは、包状体を覆う接地導体2の内側の最大寸法に相当する。長さLは、不要放射を抑圧した周波数帯の中心周波数での波長の1/2波長以下の値に設定される。包状体を覆う接地導体2の内側の最大寸法をこの値に設定することにより、不要放射がより一層小さくなり、高周波シールド構造100の周囲に設けられる機器へ与えるノイズの影響をより小さくできる。
The length L shown in FIG. 1 corresponds to the maximum dimension inside the ground conductor 2 covering the envelope. The length L is set to a value of 1/2 wavelength or less of the wavelength at the center frequency of the frequency band in which unnecessary radiation is suppressed. By setting the maximum dimension inside the grounding conductor 2 that covers the package to this value, unnecessary radiation can be further reduced, and the influence of noise on the equipment provided around the high-frequency shield structure 100 can be further reduced.
コネクタ端子7aの先端は、信号線導体4の貫通孔4a1を介して、空間8に突き出る。コネクタ端子7aに、はんだ5が設けられることにより、コネクタ端子7aが信号線導体4と電気的に接続される。コネクタ端子7aは、折り返し部12の端面12aとコネクタ接続部11の端面11aとが対向する領域に配置される。
The tip of the connector terminal 7a protrudes into the space 8 through the through hole 4a1 of the signal line conductor 4. By providing the solder 5 on the connector terminal 7a, the connector terminal 7a is electrically connected to the signal line conductor 4. The connector terminal 7a is arranged in a region where the end surface 12a of the folded-back portion 12 and the end surface 11a of the connector connecting portion 11 face each other.
具体的には、折り返し部12に設けられた接地導体2を、XZ平面で平面視したとき、折り返し部12は、コネクタ端子7aをY軸方向に延長した仮想線VLから、プラスX軸方向とマイナスX軸方向へそれぞれ一定距離(例えば数mmから数十mm)離れた位置まで覆うと共に、当該仮想線VLから、プラスZ軸方向とマイナスZ軸方向へそれぞれ一定距離(例えば数mmから数十mm)離れた位置まで覆うように、配置される。折り返し部12が形成されたとき、折り返し部12の端面12aからコネクタ接続部11の端面11aまでの最短距離は、例えば1mm以下が好ましく、500um以下がより好ましい。なお、コネクタ端子7aの開放部の方向が、コネクタ端子7aの開放部の先に接続されるアンテナの放射パターンの方向に向いている場合、すなわちコネクタ端子7aが伸びる方向がアンテナのメインローブの方向と同じ場合、このアンテナの大事な放射パターンに影響を与え難い。放射パターンは、通信やレーダで使用する範囲である。
Specifically, when the grounding conductor 2 provided in the folded-back portion 12 is viewed in a plan view in the XZ plane, the folded-back portion 12 extends from the virtual line VL extending the connector terminal 7a in the Y-axis direction to the plus X-axis direction. It covers up to a certain distance (for example, several mm to several tens of mm) in the minus X-axis direction, and also a certain distance (for example, several mm to several tens) in the plus Z-axis direction and minus Z-axis direction from the virtual line VL. mm) Arranged so as to cover up to a distant position. When the folded-back portion 12 is formed, the shortest distance from the end surface 12a of the folded-back portion 12 to the end surface 11a of the connector connecting portion 11 is, for example, preferably 1 mm or less, more preferably 500 um or less. When the direction of the open portion of the connector terminal 7a is the direction of the radiation pattern of the antenna connected to the tip of the open portion of the connector terminal 7a, that is, the direction in which the connector terminal 7a extends is the direction of the main lobe of the antenna. In the same case, it is unlikely to affect the important radiation pattern of this antenna. The radiation pattern is the range used in communication and radar.
コネクタ端子7aは、本体部7cに設けられるケーブル7bを介して、不図示のRFモジュールと電気的に接続される。RFモジュールは、各種機能を持つデバイスが実装された部品であり、一般的には増幅器、位相器、ミキサ、信号源、フィルタ、スイッチ、サーキュレータ、AD/DA(Analog to Digital / Digital to Analog)コンバータ、などのデバイスが実装され、入出力インターフェースにRFコネクタ及び電源/制御コネクタが設けられたものである。
The connector terminal 7a is electrically connected to an RF module (not shown) via a cable 7b provided in the main body 7c. An RF module is a component on which a device with various functions is mounted. Generally, an amplifier, a phase controller, a mixer, a signal source, a filter, a switch, a circulator, and an AD / DA (Analog to Digital / Digital to Analog) converter. , Etc. are mounted, and the input / output interface is provided with an RF connector and a power / control connector.
本実施の形態に係る高周波シールド構造100によれば、1つのフレキシブル基板1を折り曲げることで、コネクタ端子7aを覆うシールド構造を構成できる。これにより、フレキシブル基板1とは別の部品(例えば四角形状のシールド用部材)を追加する必要がなく、構造が簡素化されて信頼性が高い高周波シールド構造100を得ることができる。また、四角形状のシールド用部材を利用した場合、シールド用部材の4つの辺を固定する必要があるのに対して、本発明では、フレキシブル基板1の1つの辺、すなわちフレキシブル基板1の端部13をコネクタ接続部11に固定するだけで高周波シールド構造100を得ることができるため、固定に伴う作業量が少なくなり、高周波シールド構造100の組立工数が減り、高周波シールド構造100を低コストに製造できる。
According to the high-frequency shield structure 100 according to the present embodiment, a shield structure covering the connector terminal 7a can be configured by bending one flexible substrate 1. As a result, it is not necessary to add a component (for example, a rectangular shield member) different from the flexible substrate 1, and the structure is simplified and a highly reliable high frequency shield structure 100 can be obtained. Further, when a quadrangular shielding member is used, it is necessary to fix the four sides of the shielding member, whereas in the present invention, one side of the flexible substrate 1, that is, the end portion of the flexible substrate 1. Since the high frequency shield structure 100 can be obtained only by fixing the 13 to the connector connection portion 11, the amount of work involved in fixing is reduced, the man-hours for assembling the high frequency shield structure 100 are reduced, and the high frequency shield structure 100 is manufactured at low cost. it can.
また、コネクタ端子7aを覆うシールド構造により、不要放射が小さくなり、高周波シールド構造100の周囲に設けられる機器へ与えるノイズの影響を小さくできる。また、高周波シールド構造100の周囲に存在する機器が高周波シールド構造100の近くに存在する場合でも、コネクタ端子7aが折り返し部12に覆われるため、コネクタ端子7aと当該機器とが容量結合し難くなり、アンテナ特性への影響を軽減できる。
Further, the shield structure covering the connector terminal 7a reduces unnecessary radiation, and the influence of noise on the equipment provided around the high frequency shield structure 100 can be reduced. Further, even when the device existing around the high-frequency shield structure 100 exists near the high-frequency shield structure 100, the connector terminal 7a is covered with the folded-back portion 12, so that it becomes difficult for the connector terminal 7a and the device to be capacitively coupled. , The influence on the antenna characteristics can be reduced.
図3は本発明の実施の形態に係る高周波シールド構造の第1変形例の断面図である。図4は図3の高周波シールド構造をXZ平面で平面視した図である。高周波シールド構造100と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。第1変形例の高周波シールド構造100Aは、同軸コネクタ7に代えて、同軸コネクタ7Aを備える。
FIG. 3 is a cross-sectional view of a first modification of the high frequency shield structure according to the embodiment of the present invention. FIG. 4 is a plan view of the high frequency shield structure of FIG. 3 in the XZ plane. The description of the same configuration and effect as the high frequency shield structure 100 will be omitted or simplified by referring to the above description. The high-frequency shield structure 100A of the first modification includes a coaxial connector 7A instead of the coaxial connector 7.
同軸コネクタ7Aは、コネクタ接続部11及び折り返し部12によって形成される包状体の内側の空間8に配置される。同軸コネクタ7Aは、例えば、コネクタ接続部11のプラスY軸方向の端面11a側に設置され、グランド導体10と電気的に接続される。
The coaxial connector 7A is arranged in the space 8 inside the package formed by the connector connecting portion 11 and the folded portion 12. The coaxial connector 7A is installed, for example, on the end surface 11a side of the connector connection portion 11 in the plus Y-axis direction, and is electrically connected to the ground conductor 10.
グランド導体10は、同軸コネクタ7Aのグランド用の導体である。グランド導体10は、面状端子10bと、コネクタ接続部11に設けられる複数の柱状端子10aとを備える。
The ground conductor 10 is a conductor for grounding the coaxial connector 7A. The ground conductor 10 includes a planar terminal 10b and a plurality of columnar terminals 10a provided in the connector connecting portion 11.
面状端子10bは、コネクタ端子7aの端部の周囲を覆うように、コネクタ接続部11のプラスY軸方向の端面11aに設けられる。面状端子10bのプラスY軸方向の面には、同軸コネクタ7Aが設置される。面状端子10bのマイナスY軸方向の面には、柱状端子10aの一端に接続される。
The planar terminal 10b is provided on the end surface 11a of the connector connection portion 11 in the plus Y-axis direction so as to cover the periphery of the end portion of the connector terminal 7a. A coaxial connector 7A is installed on the surface of the planar terminal 10b in the positive Y-axis direction. The surface of the planar terminal 10b in the minus Y-axis direction is connected to one end of the columnar terminal 10a.
柱状端子10aは、面状端子10bから、コネクタ接続部11のマイナスY軸方向の接地導体2に向かって伸び、柱状端子10aの他端は、接地導体2に接続される。これにより、同軸コネクタ7Aは、接地導体2と電気的に接続される。同軸コネクタ7Aのケーブル7bは、例えば、空間8のマイナスZ軸方向に形成される開口部から、空間8の外部に引き出される。
The columnar terminal 10a extends from the planar terminal 10b toward the ground conductor 2 in the minus Y-axis direction of the connector connecting portion 11, and the other end of the columnar terminal 10a is connected to the ground conductor 2. As a result, the coaxial connector 7A is electrically connected to the ground conductor 2. The cable 7b of the coaxial connector 7A is drawn out of the space 8 from, for example, an opening formed in the minus Z-axis direction of the space 8.
高周波シールド構造100Aによれば、コネクタ接続部11及び折り返し部12によって形成される包状体の内側に同軸コネクタ7Aを設けることによって、コネクタ接続部11のマイナスY軸方向側に同軸コネクタ7Aが存在しなくなる分、高周波シールド構造100Aの全体寸法を小さくできる。従って、高周波シールド構造100Aの設置の自由度が増えると共に、高周波シールド構造100Aを備えるアンテナなどの小型化が可能である。
According to the high-frequency shield structure 100A, by providing the coaxial connector 7A inside the package formed by the connector connecting portion 11 and the folded-back portion 12, the coaxial connector 7A exists on the minus Y-axis direction side of the connector connecting portion 11. The overall size of the high-frequency shield structure 100A can be reduced by the amount that does not occur. Therefore, the degree of freedom in installing the high-frequency shield structure 100A is increased, and the antenna provided with the high-frequency shield structure 100A can be miniaturized.
図5は本発明の実施の形態に係る高周波シールド構造の第2変形例の断面図である。図6は図5に示す高周波シールド構造をXZ平面で平面視した図である。高周波シールド構造100と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。第2変形例の高周波シールド構造100Bは、同軸コネクタ7Aに代えて、同軸コネクタ7Bを備える。
FIG. 5 is a cross-sectional view of a second modification of the high frequency shield structure according to the embodiment of the present invention. FIG. 6 is a plan view of the high frequency shield structure shown in FIG. 5 in the XZ plane. The description of the same configuration and effect as the high frequency shield structure 100 will be omitted or simplified by referring to the above description. The high frequency shield structure 100B of the second modification includes the coaxial connector 7B instead of the coaxial connector 7A.
同軸コネクタ7Bは、コネクタ接続部11のマイナスZ軸方向の端部11cに形成される凹部11bに配置される。
The coaxial connector 7B is arranged in the recess 11b formed at the end portion 11c of the connector connection portion 11 in the minus Z-axis direction.
凹部11bは、コネクタ接続部11のマイナスZ軸方向の端部11cの一部が、プラスZ軸方向に向かって突形状に窪む部分である。凹部11bの底部11b1に同軸コネクタ7Bの本体部7cが接した状態で、同軸コネクタ7Bのコネクタ端子7aが、コネクタ接続部11上の信号線導体4に接続される。
The recess 11b is a portion in which a part of the end portion 11c of the connector connecting portion 11 in the minus Z-axis direction is recessed in a protruding shape in the plus Z-axis direction. The connector terminal 7a of the coaxial connector 7B is connected to the signal line conductor 4 on the connector connection portion 11 in a state where the main body portion 7c of the coaxial connector 7B is in contact with the bottom portion 11b1 of the recess 11b.
信号線導体4に接続される同軸コネクタ7Bのコネクタ端子7aは、折り返し部12の端面12aとコネクタ接続部11の端面11aとが対向する領域に配置される。
The connector terminal 7a of the coaxial connector 7B connected to the signal line conductor 4 is arranged in a region where the end surface 12a of the folded-back portion 12 and the end surface 11a of the connector connecting portion 11 face each other.
折り返し部12に設けられた接地導体2を、XZ平面で平面視したとき、折り返し部12は、コネクタ端子7aをY軸方向に延長した仮想線VLから、プラスX軸方向とマイナスX軸方向へそれぞれ一定距離離れた位置まで覆うと共に、当該仮想線VLから、プラスZ軸方向とマイナスZ軸方向へそれぞれ一定距離離れた位置まで覆うように、配置される。
When the grounding conductor 2 provided on the folded-back portion 12 is viewed in a plan view on the XZ plane, the folded-back portion 12 extends from the virtual line VL extending the connector terminal 7a in the Y-axis direction in the plus X-axis direction and the minus X-axis direction. They are arranged so as to cover up to a position separated by a certain distance from each other and to cover a certain distance from the virtual line VL in the plus Z-axis direction and the minus Z-axis direction, respectively.
なお、同軸コネクタ7Bの本体部7cのZ軸方向の長さは、凹部11bのZ軸方向の深さよりも短いことが好ましい。これにより、同軸コネクタ7Bの本体部7cの全体が、凹部11bに入り込み、コネクタ接続部11のマイナスZ軸方向の端部11cから、同軸コネクタ7Bの本体部7cが突き出る量を小さくできる。
The length of the main body 7c of the coaxial connector 7B in the Z-axis direction is preferably shorter than the depth of the recess 11b in the Z-axis direction. As a result, the entire main body 7c of the coaxial connector 7B can enter the recess 11b, and the amount of the main body 7c of the coaxial connector 7B protruding from the end 11c of the connector connection 11 in the minus Z-axis direction can be reduced.
高周波シールド構造100Bによれば、コネクタ接続部11に形成される凹部11bに同軸コネクタ7Bを設けることによって、コネクタ接続部11のマイナスY軸方向側に同軸コネクタ7Bが突き出る量が小さくなり、高周波シールド構造100Bの全体寸法を小さくできる。
According to the high-frequency shield structure 100B, by providing the coaxial connector 7B in the recess 11b formed in the connector connection portion 11, the amount of the coaxial connector 7B protruding toward the minus Y-axis direction of the connector connection portion 11 is reduced, and the high-frequency shield The overall dimensions of the structure 100B can be reduced.
また、高周波シールド構造100Bによれば、例えば、コネクタ接続部11及び折り返し部12によって形成される包状体の内側に形成される空間8が狭くなり、第1変形例のように、空間8に同軸コネクタ7Bの全体を設置できない場合でも、空間8の一部を有効利用して同軸コネクタ7Bを設置できる。従って、コネクタ接続部11及び折り返し部12によって形成される包状体の設計の自由度が増えると共に、高周波シールド構造100Bを備えるアンテナなどの小型化が可能である。
Further, according to the high-frequency shield structure 100B, for example, the space 8 formed inside the package formed by the connector connecting portion 11 and the folded-back portion 12 is narrowed, and the space 8 is formed as in the first modification. Even if the entire coaxial connector 7B cannot be installed, the coaxial connector 7B can be installed by effectively utilizing a part of the space 8. Therefore, the degree of freedom in designing the package formed by the connector connecting portion 11 and the folded portion 12 is increased, and the antenna having the high frequency shield structure 100B can be miniaturized.
図7は本発明の実施の形態に係る高周波シールド構造の断面図である。図8は図7に示す高周波シールド構造をXZ平面で平面視した図である。高周波シールド構造100と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。第3変形例の高周波シールド構造100Cは、SIW200と、同軸-SIW(Substrate Integrated Waveguide)変換器6とを備える。
FIG. 7 is a cross-sectional view of the high frequency shield structure according to the embodiment of the present invention. FIG. 8 is a plan view of the high frequency shield structure shown in FIG. 7 in the XZ plane. The description of the same configuration and effect as the high frequency shield structure 100 will be omitted or simplified by referring to the above description. The high frequency shield structure 100C of the third modification includes a SIW200 and a coaxial-SIW (Substrate Integrated Waveguide) converter 6.
SIW200は、コネクタ接続部11に形成され、電磁波を遮蔽するシールド構造を有し、導波管モードで信号を伝達する基板一体型導波路である。SIW200は、基板内蔵導波路、ポスト壁導波路と称する場合もある。
The SIW200 is a substrate-integrated waveguide that is formed in the connector connection portion 11 and has a shield structure that shields electromagnetic waves and transmits signals in a waveguide mode. SIW200 may be referred to as a substrate built-in waveguide or a post-wall waveguide.
SIW200は、誘電体1aと、誘電体1aのプラスY軸方向の面に設けられる導体層21と、誘電体1aのマイナスY軸方向の面に設けられる導体層22と、誘電体1aに設けられる複数の導体柱20とによって構成される。同軸コネクタ7のコネクタ端子7aは、同軸-SIW変換器6を介して、SIW200に接続される。
The SIW 200 is provided on the dielectric 1a, the conductor layer 21 provided on the positive Y-axis direction surface of the dielectric 1a, the conductor layer 22 provided on the negative Y-axis direction surface of the dielectric 1a, and the dielectric 1a. It is composed of a plurality of conductor columns 20. The connector terminal 7a of the coaxial connector 7 is connected to the SIW200 via the coaxial-SIW converter 6.
導体柱20は、導体層21から導体層22に向かって伸びて、導体層21及び導体層22を電気的に接続する中実又は中空の柱状導電体である。導体柱20は、SIW200中を伝搬する高周波信号が外部に漏洩しない間隔で複数配列されている。
The conductor column 20 is a solid or hollow columnar conductor that extends from the conductor layer 21 toward the conductor layer 22 and electrically connects the conductor layer 21 and the conductor layer 22. A plurality of conductor columns 20 are arranged at intervals so that high-frequency signals propagating in SIW 200 do not leak to the outside.
導体層21及び導体層22の材料には、例えば、金、銀、銅、アルミニウム、白金、クロムなどが用いられる。導体層21及び導体層22のそれぞれの厚さは、0.09μm以上が好ましく、0.35μm以上がより好ましい。また、導体層21及び導体層22のそれぞれの厚さは、110μm以下が好ましい。導体層21及び導体層22のそれぞれの厚さが上記範囲内であれば、アンテナ素子のアンテナ利得を高めることができる。
As the material of the conductor layer 21 and the conductor layer 22, for example, gold, silver, copper, aluminum, platinum, chromium and the like are used. The thickness of each of the conductor layer 21 and the conductor layer 22 is preferably 0.09 μm or more, more preferably 0.35 μm or more. The thickness of each of the conductor layer 21 and the conductor layer 22 is preferably 110 μm or less. When the thickness of each of the conductor layer 21 and the conductor layer 22 is within the above range, the antenna gain of the antenna element can be increased.
折り返し部12の端部13には、複数の導体柱23と導体層24とが形成される。導体層24は、折り返し部12の接地導体2側とは反対側の面に設けられる。導体層24は、コネクタ接続部11の導体層21と対向した位置に設けられ、導体層21に接している。導体層24の材料は、例えば、金、銀、銅、アルミニウム、白金、クロムなどが用いられる。
A plurality of conductor columns 23 and a conductor layer 24 are formed at the end portion 13 of the folded portion 12. The conductor layer 24 is provided on the surface of the folded-back portion 12 opposite to the ground conductor 2 side. The conductor layer 24 is provided at a position facing the conductor layer 21 of the connector connecting portion 11, and is in contact with the conductor layer 21. As the material of the conductor layer 24, for example, gold, silver, copper, aluminum, platinum, chromium and the like are used.
導体柱23は、接地導体2から導体層24に向かって伸びて、接地導体2及び導体層24を電気的に接続する中実又は中空の柱状導電体である。
The conductor column 23 is a solid or hollow columnar conductor that extends from the ground conductor 2 toward the conductor layer 24 and electrically connects the ground conductor 2 and the conductor layer 24.
接地導体2と、導体柱23と、導体層24と、導体層21と、導体柱20と、コネクタ接続部11の導体層22とによって、閉ループのグランドが形成される。この閉ループのグランドを構成する導体層24及び導体層21の互いの接触状態を維持するため、締結部材27が用いられる。
A closed loop ground is formed by the grounding conductor 2, the conductor column 23, the conductor layer 24, the conductor layer 21, the conductor column 20, and the conductor layer 22 of the connector connecting portion 11. A fastening member 27 is used to maintain the contact state between the conductor layer 24 and the conductor layer 21 forming the ground of the closed loop.
締結部材27は、例えば、折り返し部12からコネクタ接続部11に向かって貫通するねじと、当該ねじが締め込まれるナットとを組み合わせたものなどを例示できる。締結部材27を用いることにより、折り返し部12の導体層24がコネクタ接続部11の導体層21に密着する。
The fastening member 27 may be, for example, a combination of a screw penetrating from the folded-back portion 12 toward the connector connecting portion 11 and a nut into which the screw is tightened. By using the fastening member 27, the conductor layer 24 of the folded-back portion 12 comes into close contact with the conductor layer 21 of the connector connecting portion 11.
高周波シールド構造100Cによれば、SIW200を利用して、コネクタ接続部11及び折り返し部12によって形成される包状体に、閉ループのグランドを設けることができる。なお、同軸-SIW変換器6が形成された従来のフレキシブル基板では、折り返し部12が設けられていないため、同軸-SIW変換器6などに伝送される信号の使用周波数が、当該フレキシブル基板の周囲に存在する機器に影響を与える虞がある、また、従来のフレキシブル基板では、当該使用周波数における不要な放射電力によって、周囲に存在する機器に影響を与える虞がある。また、周囲に存在する機器による影響も懸念される。これに対して、高周波シールド構造100Cでは折り返し部12が設けられているため、このような問題を解決できる。また、高周波シールド構造100Cによれば、SIW200の導体層21に折り返し部12の導体層24を接続することで、閉ループのグランドを形成できるため、コネクタ端子7aの開放部の先に接続されるアンテナの放射パターンに影響を与え難い。
According to the high frequency shield structure 100C, SIW200 can be used to provide a closed loop gland on the envelope formed by the connector connecting portion 11 and the folded portion 12. Since the conventional flexible board on which the coaxial-SIW converter 6 is formed does not have the folded-back portion 12, the frequency used for the signal transmitted to the coaxial-SIW converter 6 or the like is around the flexible board. In addition, in the conventional flexible substrate, there is a risk of affecting the devices existing in the surroundings due to unnecessary radiated power at the operating frequency. In addition, there is concern about the influence of surrounding devices. On the other hand, since the high frequency shield structure 100C is provided with the folded-back portion 12, such a problem can be solved. Further, according to the high-frequency shield structure 100C, by connecting the conductor layer 24 of the folded-back portion 12 to the conductor layer 21 of the SIW200, a closed loop ground can be formed, so that the antenna connected to the tip of the open portion of the connector terminal 7a It is difficult to affect the radiation pattern of.
なお高周波シールド構造100Cの構成は、高周波シールド構造100A及び高周波シールド構造100Bに組み合わせることも可能である。
The configuration of the high frequency shield structure 100C can also be combined with the high frequency shield structure 100A and the high frequency shield structure 100B.
図9は本発明の実施の形態に係る高周波シールド構造の第4変形例の断面図である。図10は図9に示す高周波シールド構造をXZ平面で平面視した図である。高周波シールド構造100Cと同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。第4変形例の高周波シールド構造100Dは、締結部材27に代えて、はんだ26が用いられる。
FIG. 9 is a cross-sectional view of a fourth modification of the high frequency shield structure according to the embodiment of the present invention. FIG. 10 is a plan view of the high frequency shield structure shown in FIG. 9 in the XZ plane. The description of the same configuration and effect as the high frequency shield structure 100C will be omitted or simplified by referring to the above description. In the high frequency shield structure 100D of the fourth modification, solder 26 is used instead of the fastening member 27.
折り返し部12の端部寄りの領域には、複数の穴25が形成される。複数の穴25のそれぞれは、折り返し部12側の接地導体2から導体層24に向かって貫通する。この穴25に、はんだ26が設けられることにより、折り返し部12側の接地導体2が導体層24と電気的に接続される。接地導体2と、はんだ26と、導体層24と、導体層21と、導体柱20とによって、閉ループのグランドが形成される。
A plurality of holes 25 are formed in the region near the end of the folded-back portion 12. Each of the plurality of holes 25 penetrates from the ground conductor 2 on the folded-back portion 12 side toward the conductor layer 24. By providing the solder 26 in the hole 25, the ground conductor 2 on the folded-back portion 12 side is electrically connected to the conductor layer 24. A closed loop ground is formed by the grounding conductor 2, the solder 26, the conductor layer 24, the conductor layer 21, and the conductor column 20.
高周波シールド構造100Dによれば、高周波シールド構造100Cと同様の効果を得ることができると共に、締結部材27が不要なため、構成が簡素化されて高周波シールド構造100Dを信頼性が向上する。また、締結部材27が利用されないため、例えば締結部材27の増し締めなどが不要になり、メンテナンスコストの上昇を抑制できる。
According to the high frequency shield structure 100D, the same effect as that of the high frequency shield structure 100C can be obtained, and since the fastening member 27 is unnecessary, the configuration is simplified and the reliability of the high frequency shield structure 100D is improved. Further, since the fastening member 27 is not used, for example, retightening of the fastening member 27 becomes unnecessary, and an increase in maintenance cost can be suppressed.
図11は本発明の実施の形態に係る高周波シールド構造の第5変形例の断面図である。高周波シールド構造100Cと同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。第5変形例の高周波シールド構造100Eでは、折り返し部12の端部13寄りの領域に、折り返し部30が形成されている。
FIG. 11 is a cross-sectional view of a fifth modification of the high frequency shield structure according to the embodiment of the present invention. The description of the same configuration and effect as the high frequency shield structure 100C will be omitted or simplified by referring to the above description. In the high-frequency shield structure 100E of the fifth modification, the folded-back portion 30 is formed in the region of the folded-back portion 12 near the end portion 13.
折り返し部30は、折り返し部12の端部13寄りの領域を、矢印Bの方向に折り返すことにより形成される。すなわち、折り返し部12の外側に設けられる接地導体2が、コネクタ接続部11に設けられる導体層21に接するように、折り返し部12の端部13が折り返される。これにより、折り返し部12に設けられる接地導体2の一部が、導体層21に接することで、閉ループのグランドが形成される。
The folded-back portion 30 is formed by folding back the region of the folded-back portion 12 near the end portion 13 in the direction of the arrow B. That is, the end portion 13 of the folded-back portion 12 is folded back so that the grounding conductor 2 provided on the outside of the folded-back portion 12 is in contact with the conductor layer 21 provided on the connector connecting portion 11. As a result, a part of the grounding conductor 2 provided in the folded-back portion 12 comes into contact with the conductor layer 21, and a closed loop ground is formed.
高周波シールド構造100Eによれば、図7に示す導体柱23などを設けなくても閉ループのグランドを設けることができ、構造が簡素化されて信頼性が向上する。
According to the high-frequency shield structure 100E, a closed-loop ground can be provided without providing the conductor column 23 or the like shown in FIG. 7, and the structure is simplified and reliability is improved.
図12Aは本発明の実施の形態に係る高周波シールド構造の第6変形例をXZ平面で平面視した図である。図12Bは第6変形例に係るフレキシブル基板の斜視図である。高周波シールド構造100Cと同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。第6変形例の高周波シールド構造100Fは、高周波シールド構造100Cの構成に加えて、2つの閉塞部材51を備える。
FIG. 12A is a plan view of a sixth modification of the high frequency shield structure according to the embodiment of the present invention in the XZ plane. FIG. 12B is a perspective view of the flexible substrate according to the sixth modification. The description of the same configuration and effect as the high frequency shield structure 100C will be omitted or simplified by referring to the above description. The high-frequency shield structure 100F of the sixth modification includes two closing members 51 in addition to the configuration of the high-frequency shield structure 100C.
閉塞部材51は、コネクタ接続部11及び折り返し部12によって形成される包状体の内側の空間8のZ軸方向の開口部50を閉塞するための部材である。閉塞部材51は、フレキシブル基板1が備える接地導体2と同様の接地導体を備えるものとする。閉塞部材51は、例えば、フレキシブル基板1の一部を利用することができ、例えば、折り返し部12からZ軸方向に伸びている。
The closing member 51 is a member for closing the opening 50 in the Z-axis direction of the space 8 inside the package formed by the connector connecting portion 11 and the folded portion 12. The closing member 51 includes a grounding conductor similar to the grounding conductor 2 included in the flexible substrate 1. The closing member 51 can utilize, for example, a part of the flexible substrate 1, and extends from the folded-back portion 12 in the Z-axis direction, for example.
図12Bには、折り返し部12と一体に形成される閉塞部材51が折り曲げられる前の状態が示される。この閉塞部材51を、開口部50が閉塞するように、矢印Cの方向に折り曲げることにより、図12Aに示す高周波シールド構造100Fが形成される。
FIG. 12B shows a state before the closing member 51 formed integrally with the folded-back portion 12 is bent. The high frequency shield structure 100F shown in FIG. 12A is formed by bending the closing member 51 in the direction of the arrow C so that the opening 50 is closed.
折り曲げられた閉塞部材51は、例えば締結部材40によって、高周波シールド構造100Fを取り付ける機器の筐体などに固定される。
The bent closing member 51 is fixed to the housing of the device to which the high-frequency shield structure 100F is attached by, for example, the fastening member 40.
なお、閉塞部材51は、開口部50の一部を閉塞するように構成してもよいし、開口部50の全体を閉塞するように構成してもよい。開口部50の一部を閉塞する場合、開口部50と閉塞部材51との間の隙間の寸法は、前述した長さL以下の値に設定することが好ましい。また、閉塞部材51は、フレキシブル基板1とは別体の部材を準備しておき、この部材を利用してもよい。
The closing member 51 may be configured to close a part of the opening 50, or may be configured to close the entire opening 50. When partially closing the opening 50, the dimension of the gap between the opening 50 and the closing member 51 is preferably set to a value equal to or less than the length L described above. Further, as the closing member 51, a member separate from the flexible substrate 1 may be prepared and this member may be used.
高周波シールド構造100Fによれば、コネクタ接続部11及び折り返し部12によって形成される包状体のZ軸方向に形成される開口部50の少なくとも一部が閉塞されるため、不要放射がより一層抑制される。なお、フレキシブル基板1とは別体の部材を閉塞部材51として利用する場合、当該部材の4つの辺をフレキシブル基板1に固定する必要がある。これに対して、高周波シールド構造100Fによれば、折り返し部12と一体に形成される閉塞部材51を利用することで、例えば閉塞部材51の3つの辺を、フレキシブル基板1に固定するだけで高周波シールド構造100Fを得ることができる。そのため、固定に伴う作業量が少なくなり、高周波シールド構造100Fの組立工数が減り、高周波シールド構造100Fを低コストに製造できる。
According to the high-frequency shield structure 100F, at least a part of the opening 50 formed in the Z-axis direction of the package formed by the connector connecting portion 11 and the folded portion 12 is closed, so that unnecessary radiation is further suppressed. Will be done. When a member separate from the flexible substrate 1 is used as the closing member 51, it is necessary to fix the four sides of the member to the flexible substrate 1. On the other hand, according to the high-frequency shield structure 100F, by using the closing member 51 integrally formed with the folded-back portion 12, for example, only three sides of the closing member 51 are fixed to the flexible substrate 1 to obtain a high frequency. A shield structure 100F can be obtained. Therefore, the amount of work required for fixing is reduced, the number of man-hours for assembling the high-frequency shield structure 100F is reduced, and the high-frequency shield structure 100F can be manufactured at low cost.
なお、高周波シールド構造100Fの閉塞構造は、高周波シールド構造100~高周波シールド構造100Dに組み合わせることも可能である。
The closed structure of the high frequency shield structure 100F can be combined with the high frequency shield structure 100 to the high frequency shield structure 100D.
図13は本発明の実施の形態に係る高周波シールド構造の第7変形例の断面図である。高周波シールド構造100Dと同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。第7変形例の高周波シールド構造100Gは、高周波シールド構造100Dの構成に加え、電波吸収体52を備える。
FIG. 13 is a cross-sectional view of a seventh modification of the high frequency shield structure according to the embodiment of the present invention. The description of the same configuration and effect as the high frequency shield structure 100D will be omitted or simplified by referring to the above description. The high-frequency shield structure 100G of the seventh modification includes a radio wave absorber 52 in addition to the configuration of the high-frequency shield structure 100D.
電波吸収体52は、コネクタ端子7aをY軸方向に延長した仮想線VL上において、例えば、折り返し部12の端面12aに固定される。電波吸収体は、例えばエコソーブ(登録商標)を例示できる。
The radio wave absorber 52 is fixed to, for example, the end surface 12a of the folded-back portion 12 on the virtual line VL extending the connector terminal 7a in the Y-axis direction. As the radio wave absorber, for example, Ecosorb (registered trademark) can be exemplified.
図14Aは本発明の実施の形態に係る高周波シールド構造による効果を説明するための比較例の筐体モデルの斜視図である。筐体モデル100’(比較例)は、例えば図7の高周波シールド構造100Cから折り返し部12を省いた高周波シールド構造である。
FIG. 14A is a perspective view of a housing model of a comparative example for explaining the effect of the high frequency shield structure according to the embodiment of the present invention. The housing model 100'(comparative example) is, for example, a high-frequency shield structure in which the folded-back portion 12 is omitted from the high-frequency shield structure 100C of FIG.
図14Aのモデルの設定値は、図7において、
コネクタ接続部11のZ軸方向の長さL1:22mm
誘電体1aの比誘電率:2.0
導体層21の厚さ:43μm
導体層22の厚さ:43μm
接地導体2の厚さ:43μm
信号線導体4の厚さ:43μmとした。 The set values of the model of FIG. 14A are shown in FIG.
Length ofconnector connection 11 in the Z-axis direction L 1 : 22 mm
Relative permittivity of dielectric 1a: 2.0
Thickness of conductor layer 21: 43 μm
Thickness of conductor layer 22: 43 μm
Thickness of ground conductor 2: 43 μm
The thickness of thesignal line conductor 4 was set to 43 μm.
コネクタ接続部11のZ軸方向の長さL1:22mm
誘電体1aの比誘電率:2.0
導体層21の厚さ:43μm
導体層22の厚さ:43μm
接地導体2の厚さ:43μm
信号線導体4の厚さ:43μmとした。 The set values of the model of FIG. 14A are shown in FIG.
Length of
Relative permittivity of dielectric 1a: 2.0
Thickness of conductor layer 21: 43 μm
Thickness of conductor layer 22: 43 μm
Thickness of ground conductor 2: 43 μm
The thickness of the
図14Bは図14AのモデルによるSパラメータのシミュレーション結果の一例を示す図である。縦軸はSパラメータ、横軸は周波数である。Sパラメータは、同軸コネクタから見た同軸コネクタへ反射する電力と、マイクロストリップ線路からSIWへ抜ける電力との比率を表す。実線のS11は、同軸コネクタから見た同軸コネクタへ反射する電力、破線のS21は、同軸コネクタからSIWへ通過する電力を表す。図14Bより、周波数28GHz付近において、反射電力が小さく、通過電力が約0dBで通過していることが分かる。
FIG. 14B is a diagram showing an example of the simulation result of the S parameter by the model of FIG. 14A. The vertical axis is the S parameter, and the horizontal axis is the frequency. The S parameter represents the ratio of the power reflected from the coaxial connector to the coaxial connector to the power flowing out from the microstrip line to the SIW. The solid line S11 represents the power reflected from the coaxial connector to the coaxial connector, and the broken line S21 represents the power passing from the coaxial connector to the SIW. From FIG. 14B, it can be seen that the reflected power is small and the passing power passes at about 0 dB in the vicinity of the frequency of 28 GHz.
図14Cは図14Aのモデルの高周波シールド構造から放射される電力のシミュレーション結果の一例を示す図である。縦軸は高周波シールド構造から放射される電力合計値、横軸は周波数である。本比較例では、折り返し部12が設けられていないため、20GHz以下の領域では、同軸-SIW変換器として機能しておらず放射していないが、20GHz以上の高い領域では放射している。
FIG. 14C is a diagram showing an example of a simulation result of electric power radiated from the high frequency shield structure of the model of FIG. 14A. The vertical axis is the total power radiated from the high frequency shield structure, and the horizontal axis is the frequency. In this comparative example, since the folded-back portion 12 is not provided, it does not function as a coaxial-SIW converter and does not radiate in the region of 20 GHz or less, but it radiates in the high region of 20 GHz or more.
図14Dは図14Aのモデルの高周波シールド構造を用いた場合のアンテナゲインのシミュレーション結果の一例を示す図である。縦軸は28GHzにおける特定の角度でのアンテナゲイン、横軸は球面座標系の角度を表す。実線は、マイナスY軸方向からプラスY軸方向に向かうYZ平面の角度におけるアンテナゲインをプロットしたものである。破線は、マイナスX軸方向からプラスX軸方向に向かうXY平面の角度におけるアンテナゲインをプロットしたものである。
FIG. 14D is a diagram showing an example of the simulation result of the antenna gain when the high frequency shield structure of the model of FIG. 14A is used. The vertical axis represents the antenna gain at a specific angle at 28 GHz, and the horizontal axis represents the angle of the spherical coordinate system. The solid line is a plot of the antenna gain at the angle of the YZ plane from the minus Y axis direction to the plus Y axis direction. The broken line is a plot of the antenna gain at the angle of the XY plane from the minus X axis direction to the plus X axis direction.
図15Aは本発明の実施の形態に係る高周波シールド構造による第1の効果を説明するためのモデルの斜視図である。図15Aには、図7の高周波シールド構造100Cが模式的に示される。図15Aの高周波シールド構造は、図14Aのモデルに折り返し部12を追加したものである。図15Aの高周波シールド構造では、長さLが、不要放射を抑圧した周波数帯の中心周波数での波長の1/2波長よりも長いものとする。
FIG. 15A is a perspective view of a model for explaining the first effect of the high frequency shield structure according to the embodiment of the present invention. FIG. 15A schematically shows the high frequency shield structure 100C of FIG. The high-frequency shield structure of FIG. 15A is obtained by adding a folded portion 12 to the model of FIG. 14A. In the high-frequency shield structure of FIG. 15A, the length L is longer than 1/2 wavelength of the wavelength at the center frequency of the frequency band in which unnecessary radiation is suppressed.
図15Aの高周波シールド構造の設定値は、
コネクタ接続部11のZ軸方向の長さL1:22mm
折り返し部12のX軸方向の長さL2:8.5mm
折り返し部12のY軸方向の高さL3:2mm
誘電体1aの比誘電率:2.0
導体層21の厚さ:43μm
導体層22の厚さ:43μm
接地導体2の厚さ:43μm
信号線導体4の厚さ:43μmとした。 The set value of the high frequency shield structure of FIG. 15A is
Length ofconnector connection 11 in the Z-axis direction L 1 : 22 mm
Length of foldedportion 12 in the X-axis direction L 2 : 8.5 mm
Height of foldedportion 12 in the Y-axis direction L 3 : 2 mm
Relative permittivity of dielectric 1a: 2.0
Thickness of conductor layer 21: 43 μm
Thickness of conductor layer 22: 43 μm
Thickness of ground conductor 2: 43 μm
The thickness of thesignal line conductor 4 was set to 43 μm.
コネクタ接続部11のZ軸方向の長さL1:22mm
折り返し部12のX軸方向の長さL2:8.5mm
折り返し部12のY軸方向の高さL3:2mm
誘電体1aの比誘電率:2.0
導体層21の厚さ:43μm
導体層22の厚さ:43μm
接地導体2の厚さ:43μm
信号線導体4の厚さ:43μmとした。 The set value of the high frequency shield structure of FIG. 15A is
Length of
Length of folded
Height of folded
Relative permittivity of dielectric 1a: 2.0
Thickness of conductor layer 21: 43 μm
Thickness of conductor layer 22: 43 μm
Thickness of ground conductor 2: 43 μm
The thickness of the
図15Bは図15Aの高周波シールド構造によるSパラメータのシミュレーション結果の一例を示す図である。図15Bには、図14Bと同様、Sパラメータが示される。図15Bより、図14Bと同様のシミュレーション結果が得られることから、折り返し部12を設けたことによる影響はないことが分かる。
FIG. 15B is a diagram showing an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 15A. FIG. 15B shows S-parameters, similar to FIG. 14B. From FIG. 15B, since the same simulation result as in FIG. 14B can be obtained, it can be seen that there is no influence due to the provision of the folded portion 12.
図15Cは図15Aの高周波シールド構造から放射される電力のシミュレーション結果の一例を示す図である。図15Cには、図14Cと同様、放射電力合計値が示される。
FIG. 15C is a diagram showing an example of a simulation result of electric power radiated from the high frequency shield structure of FIG. 15A. FIG. 15C shows the total radiated power value as in FIG. 14C.
図15Aの高周波シールド構造では、コネクタ接続部11及び折り返し部12により形成される開口部から電波が放射されるため、放射電力合計値は、図14Cと同様のシミュレーション結果が得られる。
In the high-frequency shield structure of FIG. 15A, radio waves are radiated from the openings formed by the connector connecting portion 11 and the folded-back portion 12, so that the total radiated power value is the same simulation result as in FIG. 14C.
図15Dは図15Aの高周波シールド構造を用いた場合のアンテナゲインのシミュレーション結果の一例を示す図である。図15Dには、図14Dと同様、放射電力合計値が示される。
FIG. 15D is a diagram showing an example of an antenna gain simulation result when the high frequency shield structure of FIG. 15A is used. FIG. 15D shows the total radiated power value as in FIG. 14D.
図15Aの高周波シールド構造では、折り返し部12が設けられるため、コネクタ端子7aをY軸方向に延長した仮想線VLの延伸方向、すなわち0°方向へ放射される不要電波が抑制される。そのため、当該方向へのアンテナゲインが大幅に低下する。
In the high-frequency shield structure of FIG. 15A, since the folded-back portion 12 is provided, unnecessary radio waves radiated in the extending direction of the virtual line VL extending the connector terminal 7a in the Y-axis direction, that is, in the 0 ° direction are suppressed. Therefore, the antenna gain in that direction is significantly reduced.
図16Aは本発明の実施の形態に係る高周波シールド構造による第2の効果を説明するためのモデルの斜視図である。図16Aには、図12Aの高周波シールド構造100Fが模式的に示される。
FIG. 16A is a perspective view of a model for explaining the second effect of the high frequency shield structure according to the embodiment of the present invention. FIG. 16A schematically shows the high frequency shield structure 100F of FIG. 12A.
図16Aの高周波シールド構造は、図15Aのモデルに閉塞部材51を追加したものである。図16Aの高周波シールド構造では、図15Aのモデルと同様に、長さLが、不要放射を抑圧した周波数帯の中心周波数での波長の1/2波長よりも長いものとする。
The high-frequency shield structure of FIG. 16A is obtained by adding the closing member 51 to the model of FIG. 15A. In the high-frequency shield structure of FIG. 16A, the length L is longer than 1/2 wavelength of the wavelength at the center frequency of the frequency band in which unnecessary radiation is suppressed, as in the model of FIG. 15A.
図16Aの高周波シールド構造の設定値は、
コネクタ接続部11のZ軸方向の長さL1:22mm
折り返し部12のX軸方向の長さL2:8.5mm
折り返し部12のY軸方向の高さL3:2mm
誘電体1aの比誘電率:2.0
導体層21の厚さ:43μm
導体層22の厚さ:43μm
接地導体2の厚さ:43μm
信号線導体4の厚さ:43μmとした。 The set value of the high frequency shield structure of FIG. 16A is
Length ofconnector connection 11 in the Z-axis direction L 1 : 22 mm
Length of foldedportion 12 in the X-axis direction L 2 : 8.5 mm
Height of foldedportion 12 in the Y-axis direction L 3 : 2 mm
Relative permittivity of dielectric 1a: 2.0
Thickness of conductor layer 21: 43 μm
Thickness of conductor layer 22: 43 μm
Thickness of ground conductor 2: 43 μm
The thickness of thesignal line conductor 4 was set to 43 μm.
コネクタ接続部11のZ軸方向の長さL1:22mm
折り返し部12のX軸方向の長さL2:8.5mm
折り返し部12のY軸方向の高さL3:2mm
誘電体1aの比誘電率:2.0
導体層21の厚さ:43μm
導体層22の厚さ:43μm
接地導体2の厚さ:43μm
信号線導体4の厚さ:43μmとした。 The set value of the high frequency shield structure of FIG. 16A is
Length of
Length of folded
Height of folded
Relative permittivity of dielectric 1a: 2.0
Thickness of conductor layer 21: 43 μm
Thickness of conductor layer 22: 43 μm
Thickness of ground conductor 2: 43 μm
The thickness of the
図16Bは図16Aの高周波シールド構造によるSパラメータのシミュレーション結果の一例を示す図である。図16Bより、図15Bと同様のシミュレーション結果が得られる。
FIG. 16B is a diagram showing an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 16A. From FIG. 16B, the same simulation result as in FIG. 15B can be obtained.
図16Cは図16Aの高周波シールド構造から放射される電力のシミュレーション結果の一例を示す図である。図16Aの高周波シールド構造では、閉塞部材51が追加されているため、開口部からの放射電波が抑制されるため、放射電力合計値が大幅に抑制される。
FIG. 16C is a diagram showing an example of a simulation result of electric power radiated from the high frequency shield structure of FIG. 16A. In the high-frequency shield structure of FIG. 16A, since the closing member 51 is added, the radiated radio wave from the opening is suppressed, so that the total radiated power value is significantly suppressed.
図16Dは図16Aの高周波シールド構造を用いた場合のアンテナゲインのシミュレーション結果の一例を示す図である。図16Aの高周波シールド構造では、閉塞部材51が追加されているため、コネクタ端子7aをY軸方向に延長した仮想線VLの延伸方向、すなわち0°方向へ放射される不要電波が抑制され、さらに当該方向以外の方向へ放射される不要電波も抑制されるため、あらゆる方向へのアンテナゲインが大幅に低下する。
FIG. 16D is a diagram showing an example of an antenna gain simulation result when the high frequency shield structure of FIG. 16A is used. In the high-frequency shield structure of FIG. 16A, since the closing member 51 is added, unnecessary radio waves radiated in the extending direction of the virtual line VL extending the connector terminal 7a in the Y-axis direction, that is, in the 0 ° direction are suppressed, and further. Since unnecessary radio waves radiated in directions other than that direction are also suppressed, the antenna gain in all directions is significantly reduced.
図17Aは本発明の実施の形態に係る高周波シールド構造による第3の効果を説明するための第1モデルの斜視図である。図17Bは図17Aの高周波シールド構造をXY平面で平面視した図である。図17A及び図17Bには、前述した長さLによる効果を説明するための高周波シールド構造が示される。
FIG. 17A is a perspective view of a first model for explaining a third effect of the high frequency shield structure according to the embodiment of the present invention. FIG. 17B is a plan view of the high frequency shield structure of FIG. 17A in the XY plane. 17A and 17B show a high frequency shield structure for explaining the effect of the length L described above.
図17Aの高周波シールド構造は、同軸コネクタの位置を90°反時計回り方向に移動させて、折り返し部12の形状を変形したものである。当該高周波シールド構造では、長さLが、不要放射を抑圧した周波数帯の中心周波数での波長の1/2波長よりも長いものとする。また、当該高周波シールド構造には、閉塞部材51が設けられていない。
The high-frequency shield structure of FIG. 17A is obtained by moving the position of the coaxial connector in the counterclockwise direction by 90 ° to deform the shape of the folded-back portion 12. In the high frequency shield structure, the length L is longer than 1/2 wavelength of the wavelength at the center frequency of the frequency band in which unnecessary radiation is suppressed. Further, the high frequency shield structure is not provided with the closing member 51.
当該高周波シールド構造の設定値は、
コネクタ接続部11のZ軸方向の長さL1:22mm
折り返し部12のX軸方向の長さL2:4mm
折り返し部12のY軸方向の高さL3:8.5mm
誘電体1aの比誘電率:2.0
導体層21の厚さ:43μm
導体層22の厚さ:43μm
接地導体2の厚さ:43μm
信号線導体4の厚さ:43μmとした。 The set value of the high frequency shield structure is
Length ofconnector connection 11 in the Z-axis direction L 1 : 22 mm
Length of foldedportion 12 in the X-axis direction L 2 : 4 mm
Height of the folded-back portion 12 in the Y-axis direction L 3 : 8.5 mm
Relative permittivity of dielectric 1a: 2.0
Thickness of conductor layer 21: 43 μm
Thickness of conductor layer 22: 43 μm
Thickness of ground conductor 2: 43 μm
The thickness of thesignal line conductor 4 was set to 43 μm.
コネクタ接続部11のZ軸方向の長さL1:22mm
折り返し部12のX軸方向の長さL2:4mm
折り返し部12のY軸方向の高さL3:8.5mm
誘電体1aの比誘電率:2.0
導体層21の厚さ:43μm
導体層22の厚さ:43μm
接地導体2の厚さ:43μm
信号線導体4の厚さ:43μmとした。 The set value of the high frequency shield structure is
Length of
Length of folded
Height of the folded-
Relative permittivity of dielectric 1a: 2.0
Thickness of conductor layer 21: 43 μm
Thickness of conductor layer 22: 43 μm
Thickness of ground conductor 2: 43 μm
The thickness of the
図17Cは図17Aの高周波シールド構造によるSパラメータのシミュレーション結果の一例を示す図である。図17Dは図17Aの高周波シールド構造から放射される電力のシミュレーション結果の一例を示す図である。図17Eは図17Aの高周波シールド構造を用いた場合のアンテナゲインのシミュレーション結果の一例を示す図である。図17C、図17D及び図17Eより、図15B、図15C及び図15Dと同様のシミュレーション結果が得られる。
FIG. 17C is a diagram showing an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 17A. FIG. 17D is a diagram showing an example of a simulation result of electric power radiated from the high frequency shield structure of FIG. 17A. FIG. 17E is a diagram showing an example of an antenna gain simulation result when the high frequency shield structure of FIG. 17A is used. From FIGS. 17C, 17D and 17E, simulation results similar to those of FIGS. 15B, 15C and 15D can be obtained.
図18Aは本発明の実施の形態に係る高周波シールド構造による第3の効果を説明するための第2モデルの斜視図である。図18Bは図18Aの高周波シールド構造をXY平面で平面視した図である。
FIG. 18A is a perspective view of a second model for explaining the third effect of the high frequency shield structure according to the embodiment of the present invention. FIG. 18B is a plan view of the high frequency shield structure of FIG. 18A in the XY plane.
図18A及び図18Bには、図17BのL3を短くすることで、長さLが、不要放射を抑圧した周波数帯の中心周波数での波長の1/2波長未満とした高周波シールド構造が示される。
18A and 18B show a high-frequency shield structure in which L 3 in FIG. 17B is shortened so that the length L is less than 1/2 of the wavelength at the center frequency of the frequency band in which unnecessary radiation is suppressed. Is done.
当該高周波シールド構造の設定値は、
コネクタ接続部11のZ軸方向の長さL1:22mm
折り返し部12のX軸方向の長さL2:4mm
折り返し部12のY軸方向の高さL3:4.5mm
誘電体1aの比誘電率:2.0
導体層21の厚さ:43μm
導体層22の厚さ:43μm
接地導体2の厚さ:43μm
信号線導体4の厚さ:43μmとした。 The set value of the high frequency shield structure is
Length ofconnector connection 11 in the Z-axis direction L 1 : 22 mm
Length of foldedportion 12 in the X-axis direction L 2 : 4 mm
Height of folded-back portion 12 in the Y-axis direction L 3 : 4.5 mm
Relative permittivity of dielectric 1a: 2.0
Thickness of conductor layer 21: 43 μm
Thickness of conductor layer 22: 43 μm
Thickness of ground conductor 2: 43 μm
The thickness of thesignal line conductor 4 was set to 43 μm.
コネクタ接続部11のZ軸方向の長さL1:22mm
折り返し部12のX軸方向の長さL2:4mm
折り返し部12のY軸方向の高さL3:4.5mm
誘電体1aの比誘電率:2.0
導体層21の厚さ:43μm
導体層22の厚さ:43μm
接地導体2の厚さ:43μm
信号線導体4の厚さ:43μmとした。 The set value of the high frequency shield structure is
Length of
Length of folded
Height of folded-
Relative permittivity of dielectric 1a: 2.0
Thickness of conductor layer 21: 43 μm
Thickness of conductor layer 22: 43 μm
Thickness of ground conductor 2: 43 μm
The thickness of the
図18Cは図18Aの高周波シールド構造によるSパラメータのシミュレーション結果の一例を示す図である。図18Dは図18Aの高周波シールド構造から放射される電力のシミュレーション結果の一例を示す図である。図18Eは図18Aの高周波シールド構造を用いた場合のアンテナゲインのシミュレーション結果の一例を示す図である。図18Cのシミュレーション結果は、図17Cと同等であるが、図18D及び図18Eより、長さLを短くしたことで、電力合計値とアンテナゲインが大幅に低減されることが分かる。
FIG. 18C is a diagram showing an example of the simulation result of the S parameter by the high frequency shield structure of FIG. 18A. FIG. 18D is a diagram showing an example of a simulation result of electric power radiated from the high frequency shield structure of FIG. 18A. FIG. 18E is a diagram showing an example of a simulation result of the antenna gain when the high frequency shield structure of FIG. 18A is used. The simulation result of FIG. 18C is the same as that of FIG. 17C, but it can be seen from FIGS. 18D and 18E that the total power value and the antenna gain are significantly reduced by shortening the length L.
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
本国際出願は、2019年9月30日に出願した日本国特許出願第2019-180261号に基づく優先権を主張するものであり、日本国特許出願第2019-180261号の全内容を本国際出願に援用する。
This international application claims priority based on Japanese Patent Application No. 2019-180261 filed on September 30, 2019, and the entire contents of Japanese Patent Application No. 2019-180261 are included in this international application. Invite to.
1 :フレキシブル基板
1a :誘電体
2 :接地導体
4 :信号線導体
4a :端部
4a1 :貫通孔
5 :はんだ
6 :同軸-SIW変換器
7,7A,7B :同軸コネクタ
7a :コネクタ端子
7b :ケーブル
7c :本体部
8 :空間
9,10 :グランド導体
10a :柱状端子
10b :面状端子
11 :コネクタ接続部
11a :端面
11b :凹部
11b1 :底部
11c :端部
11d :貫通孔
12 :折り返し部
12a :端面
13 :端部
20 :導体柱
21,22 導体層
23 :導体柱
24 :導体層
25 :穴
26 :はんだ
27 :締結部材
30 :折り返し部
40 :締結部材
50 :開口部
51 :閉塞部材
52 :電波吸収体
100 :高周波シールド構造
100’ 筐体モデル
100A,100B,100C,100D,100E,100F,100G :高周波シールド構造 1:Flexible substrate 1a: Dielectric 2: Ground conductor 4: Signal line conductor 4a: End 4a 1: Through hole 5: Solder 6: Coaxial- SIW converter 7,7A, 7B: Coaxial connector 7a: Connector terminal 7b: Cable 7c: Main body 8: Spaces 9, 10: Ground conductor 10a: Columnar terminal 10b: Planar terminal 11: Connector connection 11a: End face 11b: Recess 11b 1: Bottom 11c: End 11d: Through hole 12: Folded portion 12a: End face 13: End 20: Conductor column 21 and 22 Conductor layer 23: Conductor column 24: Conductor layer 25: Hole 26: Solder 27: Fastening member 30: Folded portion 40: Fastening member 50: Opening 51: Closing member 52: Radio absorber 100: High frequency shield structure 100'Housing model 100A, 100B, 100C, 100D, 100E, 100F, 100G: High frequency shield structure
1a :誘電体
2 :接地導体
4 :信号線導体
4a :端部
4a1 :貫通孔
5 :はんだ
6 :同軸-SIW変換器
7,7A,7B :同軸コネクタ
7a :コネクタ端子
7b :ケーブル
7c :本体部
8 :空間
9,10 :グランド導体
10a :柱状端子
10b :面状端子
11 :コネクタ接続部
11a :端面
11b :凹部
11b1 :底部
11c :端部
11d :貫通孔
12 :折り返し部
12a :端面
13 :端部
20 :導体柱
21,22 導体層
23 :導体柱
24 :導体層
25 :穴
26 :はんだ
27 :締結部材
30 :折り返し部
40 :締結部材
50 :開口部
51 :閉塞部材
52 :電波吸収体
100 :高周波シールド構造
100’ 筐体モデル
100A,100B,100C,100D,100E,100F,100G :高周波シールド構造 1:
Claims (9)
- フレキシブル基板と、
前記フレキシブル基板に接続された同軸コネクタと、
を備え、
前記フレキシブル基板は、
前記同軸コネクタが接続されると共に、前記同軸コネクタの信号線導体であるコネクタ端子が設けられる基板領域であるコネクタ接続部と、
前記コネクタ端子を覆うように、前記フレキシブル基板の端部が前記コネクタ接続部側に折り返される基板領域である折り返し部と、
前記コネクタ接続部及び前記折り返し部に設けられ、前記コネクタ端子を覆う接地導体と、
前記コネクタ接続部側に設けられる前記接地導体と、前記折り返し部側を覆う前記接地導体とを、電気的に接続するグランド導体と、
を備える高周波シールド構造。 Flexible board and
With the coaxial connector connected to the flexible board,
With
The flexible substrate is
A connector connection portion which is a board area where the coaxial connector is connected and a connector terminal which is a signal line conductor of the coaxial connector is provided.
A folded portion, which is a substrate region in which the end portion of the flexible substrate is folded back toward the connector connecting portion side so as to cover the connector terminal.
A grounding conductor provided at the connector connecting portion and the folded portion and covering the connector terminal,
A ground conductor that electrically connects the ground conductor provided on the connector connection side and the ground conductor covering the folded-back side.
High frequency shield structure with. - 前記コネクタ接続部及び前記折り返し部によって形成される包状体を覆う前記接地導体2の内側の最大寸法は、不要放射を抑圧した周波数帯の中心周波数での波長の1/2波長以下である請求項1に記載の高周波シールド構造。 Claim that the maximum dimension inside the ground conductor 2 covering the envelope formed by the connector connection portion and the folded portion is ½ wavelength or less of the wavelength at the center frequency of the frequency band in which unnecessary radiation is suppressed. Item 1. The high frequency shield structure according to item 1.
- 前記同軸コネクタは、前記コネクタ接続部及び前記折り返し部によって形成される包状体の内部に設けられる請求項1又は2に記載の高周波シールド構造。 The high-frequency shield structure according to claim 1 or 2, wherein the coaxial connector is provided inside a package formed by the connector connecting portion and the folded portion.
- 前記同軸コネクタは、前記コネクタ接続部の端部に形成される凹部に配置される請求項1又は2に記載の高周波シールド構造。 The high-frequency shield structure according to claim 1 or 2, wherein the coaxial connector is arranged in a recess formed at an end of the connector connection portion.
- 前記コネクタ接続部に形成される基板一体型導波路に前記折り返し部に設けられる前記接地導体が接続されることにより、閉ループのグランドが形成される請求項1~4の何れか一項に記載の高周波シールド構造。 The invention according to any one of claims 1 to 4, wherein a ground of a closed loop is formed by connecting the ground conductor provided at the folded-back portion to the substrate-integrated waveguide formed at the connector connecting portion. High frequency shield structure.
- 前記基板一体型導波路に前記折り返し部に設けられる前記接地導体を接触させる締結部材又ははんだを備える請求項5に記載の高周波シールド構造。 The high-frequency shield structure according to claim 5, wherein the substrate-integrated waveguide is provided with a fastening member or solder that contacts the ground conductor provided at the folded-back portion.
- 前記折り返し部の端部寄りの領域は、前記コネクタ接続部に設けられる導体層に接するように折り返される請求項1~6の何れか一項に記載の高周波シールド構造。 The high-frequency shield structure according to any one of claims 1 to 6, wherein the region near the end of the folded-back portion is folded back so as to be in contact with the conductor layer provided in the connector connecting portion.
- 前記コネクタ接続部及び前記折り返し部によって形成される包状体の内側の空間の開口部を閉塞する閉塞部材を備える請求項1~7の何れか一項に記載の高周波シールド構造。 The high-frequency shield structure according to any one of claims 1 to 7, further comprising a closing member that closes an opening in a space inside the package formed by the connector connecting portion and the folded portion.
- 前記コネクタ端子と対向して前記折り返し部に設けられる電波吸収体を備える請求項1~8の何れか一項に記載の高周波シールド構造。 The high-frequency shield structure according to any one of claims 1 to 8, further comprising a radio wave absorber provided in the folded-back portion facing the connector terminal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-180261 | 2019-09-30 | ||
JP2019180261A JP2022169817A (en) | 2019-09-30 | 2019-09-30 | High-frequency shield structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021065459A1 true WO2021065459A1 (en) | 2021-04-08 |
Family
ID=75338005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/034847 WO2021065459A1 (en) | 2019-09-30 | 2020-09-15 | High-frequency shield structure |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022169817A (en) |
WO (1) | WO2021065459A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5848499A (en) * | 1981-09-17 | 1983-03-22 | 住友電気工業株式会社 | Electronic circuit |
JPH054592U (en) * | 1991-06-26 | 1993-01-22 | 鐘淵化学工業株式会社 | Anti-reflection structure for internal circuits of high frequency electronic devices |
JPH06232585A (en) * | 1993-12-30 | 1994-08-19 | Sony Corp | Shielding apparatus |
JPH07131181A (en) * | 1993-11-08 | 1995-05-19 | Matsushita Electric Ind Co Ltd | Flexible cable |
JPH08330682A (en) * | 1995-05-30 | 1996-12-13 | Sharp Corp | Flexible printed board to mount semiconductor component |
US20090201652A1 (en) * | 2008-02-13 | 2009-08-13 | Siemens Medical Instruments Pte Ltd. | Circuit with an integrated shield and hearing aid |
JP2012199463A (en) * | 2011-03-23 | 2012-10-18 | Furukawa Electric Co Ltd:The | High frequency communication device |
JP2013206617A (en) * | 2012-03-27 | 2013-10-07 | Olympus Corp | Cable connection structure, ultrasonic probe, and ultrasonic endoscope system |
JP2013207161A (en) * | 2012-03-29 | 2013-10-07 | Furukawa Electric Co Ltd:The | High frequency shield structure |
JP2017130570A (en) * | 2016-01-21 | 2017-07-27 | 株式会社リコー | Multilayer printed board and method of manufacturing multilayer printed board |
-
2019
- 2019-09-30 JP JP2019180261A patent/JP2022169817A/en active Pending
-
2020
- 2020-09-15 WO PCT/JP2020/034847 patent/WO2021065459A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5848499A (en) * | 1981-09-17 | 1983-03-22 | 住友電気工業株式会社 | Electronic circuit |
JPH054592U (en) * | 1991-06-26 | 1993-01-22 | 鐘淵化学工業株式会社 | Anti-reflection structure for internal circuits of high frequency electronic devices |
JPH07131181A (en) * | 1993-11-08 | 1995-05-19 | Matsushita Electric Ind Co Ltd | Flexible cable |
JPH06232585A (en) * | 1993-12-30 | 1994-08-19 | Sony Corp | Shielding apparatus |
JPH08330682A (en) * | 1995-05-30 | 1996-12-13 | Sharp Corp | Flexible printed board to mount semiconductor component |
US20090201652A1 (en) * | 2008-02-13 | 2009-08-13 | Siemens Medical Instruments Pte Ltd. | Circuit with an integrated shield and hearing aid |
JP2012199463A (en) * | 2011-03-23 | 2012-10-18 | Furukawa Electric Co Ltd:The | High frequency communication device |
JP2013206617A (en) * | 2012-03-27 | 2013-10-07 | Olympus Corp | Cable connection structure, ultrasonic probe, and ultrasonic endoscope system |
JP2013207161A (en) * | 2012-03-29 | 2013-10-07 | Furukawa Electric Co Ltd:The | High frequency shield structure |
JP2017130570A (en) * | 2016-01-21 | 2017-07-27 | 株式会社リコー | Multilayer printed board and method of manufacturing multilayer printed board |
Also Published As
Publication number | Publication date |
---|---|
JP2022169817A (en) | 2022-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101496219B (en) | Waveguide connection structure | |
CN100344028C (en) | Input/output coupling structure for dielectric waveguide | |
US10971824B2 (en) | Antenna element | |
EP2178151B1 (en) | Waveguide connection structure | |
EP1928053A1 (en) | Waveguide structure | |
JP2013081009A (en) | High frequency line-waveguide converter | |
US8542159B2 (en) | Cable connector and antenna component | |
EP3624354A1 (en) | Wireless relay device | |
US11233303B2 (en) | High frequency filter | |
GB2398430A (en) | High frequency multilayer pcb with wave guiding channel | |
WO2013088618A1 (en) | Non-reciprocal circuit element, communication apparatus comprising circuit including that non-reciprocal circuit element, and method for making non-reciprocal circuit element | |
CN115207589A (en) | Coupling device, manufacturing method, waveguide antenna, radar, terminal and PCB | |
WO2021065459A1 (en) | High-frequency shield structure | |
WO2023133750A1 (en) | Ultra wideband board-to-board transitions for stripline rf transmisison lines | |
US10777899B2 (en) | Transmission line coupling system | |
US10320048B2 (en) | Circuit board and communication device with side coupler | |
CN219957861U (en) | Millimeter wave radar and vehicle | |
JP2001088097A (en) | Millimeter wave multi-layer substrate module and its manufacture | |
Maruyama et al. | Design and experiment of via-less and small-radiation waveguide to microstrip line transitions for millimeter wave radar modules | |
US11764476B2 (en) | Antenna device | |
CN114128037B (en) | Coupling member, microwave device, and electronic apparatus | |
CN118158892A (en) | Millimeter wave circuit structure and millimeter wave module measuring device | |
WO2022004545A1 (en) | Waveguide | |
JP3591185B2 (en) | Wireless module and information processing apparatus provided with wireless module | |
Kim et al. | A Low EMI Board-to-board Connector Design for 5G mmWave and High-speed Signaling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20871637 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20871637 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |