WO2021065241A1 - 経路生成装置 - Google Patents

経路生成装置 Download PDF

Info

Publication number
WO2021065241A1
WO2021065241A1 PCT/JP2020/031590 JP2020031590W WO2021065241A1 WO 2021065241 A1 WO2021065241 A1 WO 2021065241A1 JP 2020031590 W JP2020031590 W JP 2020031590W WO 2021065241 A1 WO2021065241 A1 WO 2021065241A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
point
predetermined
relay
map information
Prior art date
Application number
PCT/JP2020/031590
Other languages
English (en)
French (fr)
Inventor
翔平 今田
知樹 芳川
小川 修平
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080067881.2A priority Critical patent/CN114450648A/zh
Priority to JP2020571872A priority patent/JPWO2021065241A1/ja
Priority to US17/764,646 priority patent/US20220334583A1/en
Publication of WO2021065241A1 publication Critical patent/WO2021065241A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0217Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with energy consumption, time reduction or distance reduction criteria
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a route generator that generates a route to a destination, such as an automatic guided vehicle.
  • an induction method for traveling a traveling route targeting an automatic guided vehicle in a production line of a hotel, a factory, a distribution warehouse, etc. for example, an induced magnetic field transmitted from an electric wire buried in the floor is used as an automatic guided vehicle.
  • an electromagnetic induction method that detects with a mounted coil
  • an optical method that detects reflected light from a reflective tape attached to the floor surface with an optical sensor, and the like.
  • an automatic guided vehicle AGV Automatic Guided Vehicle
  • the user inputs a transport route to the automatic guided vehicle in advance and transports the vehicle to the destination.
  • a method of generating a route to a destination by using a route generation algorithm such as A * (Aster) is also used.
  • Patent Document 1 discloses a transport device in which a mobile device moves between stations along a traveling line and transports articles between stations.
  • a mobile device which is an automatic guided vehicle
  • moves to a destination it receives information from a relay point (storage medium) and proceeds along a route based on the information.
  • Patent Document 2 discloses a method of operating a robot vacuum cleaner, which is an automatic self-propelled machine on the surface to be cleaned.
  • roadmap nodes are registered at intervals on the surface to be cleaned, and the robot vacuum collides with obstacles from the previously registered roadmap node to the currently registered roadmap node.
  • Disclose technology that connects roadmap nodes to form a roadmap link on a roadmap diagram, thereby facilitating navigation of the robot vacuum when driving without or without detecting obstacles. There is.
  • a * (Aster), which is a route generation algorithm, it may take a very long time to generate a route. For example, the larger the facility, the longer it takes for the AGV to search for a way to the destination.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a route generation device that reduces the load on the user and facilitates selection of the shortest route of AGV.
  • the present invention has the following configuration as a means for achieving the above object and solving the above-mentioned problems. That is, the first exemplary invention of the present application is a route generating device that generates a route of a moving body, and generates map information indicating an intrudable area and a non-invading area of the moving body from predetermined map information. And, based on the generated map information, a predetermined process is applied to the boundary line between the intrudable area and the inaccessible area, and a relay point of the moving body is set on the boundary line.
  • An exemplary second invention of the present application is a route generation method, in which a step of generating map information indicating an intrudable area and an inaccessible area of a moving body from predetermined map information, and the generated map information.
  • the route to the destination where the AGV moves can be easily and quickly searched and determined, and the relay point can be easily set even if the map information that can be moved becomes complicated, so that the burden on the user increases. It is possible to provide a route generator that does not have to be done.
  • FIG. 1 is a block diagram showing a configuration of a route generation device according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a procedure for creating map information in the route generation device according to the first embodiment.
  • FIG. 3 is a flowchart showing a corner extraction processing procedure according to the first embodiment.
  • FIG. 4A is an example of map information created based on the data captured by LiDAR.
  • FIG. 4B shows an example in which an intrudable region is set with respect to the black-painted region shown in FIG. 4A.
  • FIG. 4C shows the passage route of the extracted automatic guided vehicle AGV.
  • FIG. 4D shows an example of a corner extracted based on the angle information.
  • FIG. 4E shows an example in which the extracted corners are aggregated into one.
  • FIG. 4A is an example of map information created based on the data captured by LiDAR.
  • FIG. 4B shows an example in which an intrudable region is set with respect to the black-painted region shown in
  • FIG. 4F shows an example of the path formed by the first method.
  • FIG. 4G shows an example of a path formed by the second method.
  • FIG. 5 is a diagram showing a method of extracting corners based on the angle formed by the point cloud.
  • FIG. 6 is a flowchart showing a route determination procedure in an AGV in which a destination is designated in the first embodiment.
  • FIG. 7 is an example of the movement path of the AGV formed by connecting the corners by the first method.
  • FIG. 8 is an example of the movement path of the AGV formed by connecting the corners by the second method.
  • FIG. 9 is a flowchart showing a procedure for creating map information in the route generation device according to the second embodiment of the present invention.
  • FIG. 10A is an example of map information created by LiDAR.
  • FIG. 10A is an example of map information created by LiDAR.
  • FIG. 10B shows an example of a point cloud map generated from the map information.
  • FIG. 10C shows the result of processing for leaving only line segments having a certain length or longer from the point cloud map.
  • FIG. 10D shows a map of the endpoints of the extracted line segments.
  • FIG. 10E is a map created by extending a straight line from each end point in the most open direction.
  • FIG. 10F is a map showing corners extracted by extending from the acute-angled and obtuse-angled endpoints excluding the endpoints determined to be flat.
  • FIG. 10G is a map when the corners are connected.
  • FIG. 11 shows an example of the movement path of the AGV to the destination in the second embodiment.
  • FIG. 12 is a diagram illustrating map creation according to the first modification.
  • FIG. 13 is a diagram illustrating the setting of the inaccessible region according to the modified example 2.
  • FIG. 1 is a block diagram showing a configuration of a route generation device according to a first embodiment of the present invention.
  • the route generation device 1 travels as a mobile body (automated guided vehicle AGV) on a travel route from a departure point to a designated destination in a facility such as a hotel or a distribution warehouse. Therefore, the route generation device 1 creates map information and route information of the traveling place (facility) in advance.
  • AGV automated guided vehicle
  • the route generation device 1 creates map information and route information of the traveling place (facility) in advance.
  • the route generation device 1 controls the entire device, for example, a control unit 2 composed of a microprocessor, a calculation unit 3, a storage unit (memory) 4, and an LRF (Laser) which is a laser-type range finder. RangeFinder) 5, a map information generation unit 7 that generates map information of a traveling place, a drive unit 8, and the like are provided.
  • the calculation unit 3 has a self-position estimation unit 11 and a route generation unit 13.
  • the storage unit (memory) 4 stores map information, route information, a program for creating these, a travel control program of the route generation device 1, and the like.
  • FIG. 2 is a flowchart showing a procedure for creating map information in the route generation device according to the first embodiment in chronological order.
  • the control unit 2 of the route generation device 1 uses, for example, LiDAR (Light Detection and Ringing) as an LRF, and uses an automatic guided vehicle AGV (here, a route) in a facility such as a hotel or a distribution warehouse. Obstacles (for example, walls, pillars, luggage, etc.) that hinder the running of the generator 1) are detected, and map information is created based on the obstacles.
  • LiDAR Light Detection and Ringing
  • AGV automatic guided vehicle
  • LiDAR is a technique of emitting a laser into a two-dimensional space or a three-dimensional space in a predetermined area called a facility to measure distances at a plurality of stations in the area.
  • FIG. 4A is an example of map information created based on the data captured by LiDAR, and is two-dimensional map information showing information such as the position and shape of the target area.
  • map information shown in FIG. 4A it is assumed that there is an obstacle (for example, a temporarily placed corrugated cardboard, luggage, etc. indicated by the symbols A and B in FIG. Fill the area.
  • step S13 the control unit 2 performs a process of setting an area at a certain distance from the detected obstacle as an “inaccessible area” in which the automatic guided vehicle AGV cannot enter.
  • a portion at a certain distance for example, the diagonal length of the automatic guided vehicle AGV
  • FIG. 4B is an example in which an intrudable region is set for the black-painted region shown in FIG. 4A.
  • the intrudable area where the AGV can move without colliding with a person or an object and the intrudable area where the AGV cannot move are determined. ..
  • a process of removing image noise generated in the image information acquired by LiDAR may be performed.
  • step S15 the control unit 2 extracts the contour portion of the inaccessible region provided in step S13 as the passage routes 41 and 43 of the automatic guided vehicle AGV. At this time, a process for removing an obstacle having a size smaller than a predetermined value may be performed.
  • the extracted passage routes 41 and 43 are orbital courses.
  • step S17 the control unit 2 extracts a corner (relay point) based on the passage route (contour portion described later) extracted in step S15.
  • FIG. 3 is a flowchart showing the procedure of the corner extraction process.
  • control unit 2 is a point cloud (indicated by a cross in FIG. 5) at regular intervals along the contour portion (edge) 47 of the inaccessible region 45. Is provided. These point clouds are also candidates for corners.
  • step S33 the control unit 2 determines an acute angle, an obtuse angle, or the like based on the angle formed by the above point cloud.
  • an acute angle is an angle of 90 ° or less
  • an obtuse angle is an angle larger than 90 ° and less than 180 °.
  • one straight line has a constant value with respect to the other straight line (for example,). If it is tilted by 45 °) or more, it is defined as an acute angle or an obtuse angle, and a point group in which the angle formed by a straight line connecting a predetermined continuous point group is equal to or more than a certain value is extracted.
  • the angle at the point c can be determined to be an acute angle from FIG.
  • the angle ⁇ is between 0 and 180 ° because it is calculated starting from one straight line.
  • ⁇ 1 is 45 °
  • ⁇ 2 is 135 °
  • ⁇ 3 is 5 °.
  • the angle ⁇ 3 is determined to be other than an obtuse angle and an acute angle because the angle formed by the straight line is not equal to or greater than a certain angle.
  • An example of the corner extracted based on the angle information obtained by such processing is shown in FIG. 4D.
  • step S35 the control unit 2 determines as a corner a point at which the angle formed corresponds to an acute angle or an obtuse angle of a certain value or more, based on the angle determination result in step S33.
  • corners can be set efficiently and the amount of information at that time can be reduced.
  • step S19 of FIG. 2 among the corners extracted as described above, points at a short distance are aggregated as one corner.
  • FIG. 4E shows an example in which each corner extracted in step S17 described above is integrated into one in step S19.
  • Each corner shown in FIG. 4E comprises an in-corner corresponding to an acute angle and an out-corner corresponding to an obtuse angle, as can be seen with reference to FIG. 4D.
  • step S21 of FIG. 2 the control unit 2 connects the corners (relay points) and calculates the distance from the length of the line segment.
  • the connection between the corners connects the corners without obstacles between them. Then, these corners and the calculated distance are stored in the memory 4 as route information. The following two methods can be adopted as the connection method between the corners.
  • the second method is to connect all the corners to each other and store the distance of the line segment formed by the connection.
  • FIG. 4G is an example of a route formed by connecting all the corners. Which method is adopted is, for example, selected by the user of the route generator.
  • FIG. 6 is a flowchart showing a route determination procedure in the automatic guided vehicle AGV (route generator) when the destination is specified.
  • the control unit 2 sets a destination (movement target position) for the command unit 9 of the route generation device 1.
  • the command unit 9 is provided with a key for inputting information, a touch screen, and the like.
  • step S43 the route generation device 1 searches for the optimum route from the combination of the corner (relay point) from the current location to the destination and the distance between the corners from the route information stored in the memory 4.
  • the "optimal route” means the route having the shortest travel distance or the shortest route passing through the wall of the building as much as possible.
  • the route searched in this way is a route in which the movement of the automatic guided vehicle AGV does not interfere with passersby and the like.
  • step S45 the control unit 2 moves the automatic guided vehicle AGV while controlling the drive unit 8 so as to move the route searched and determined in step S43.
  • the optimum route is autonomously determined from the coordinates of the corners and the distance information between the corners, and the AGV is moved.
  • the drive unit 8 includes, for example, a plurality of wheels, a known drive mechanism having a motor for driving these wheels, and the like.
  • the self-position estimation unit 11 of the route generation device 1 obtains the movement amount from the rotation angle of the wheels and the like by, for example, odometry, and estimates the position of the AGV from the cumulative result. Further, SLAM (Simultaneous Localization and Mapping) may be used for estimating the self-position.
  • SLAM Simultaneous Localization and Mapping
  • the destination is not on the relay point, check the nearest relay point. Then, the optimum route is searched for using the relay points. When moving, it first moves to the nearest relay point, then follows the route searched above, and moves from the last relay point to the destination.
  • FIG. 7 is an example of the movement route of the automatic guided vehicle AGV, which is formed by connecting the corners by the first method described above and searched from the route information shown in FIG. 4F.
  • FIG. 8 is an example of a movement route of the automatic guided vehicle AGV, which is formed by connecting all the corners by the above-mentioned second method and searched from the route information shown in FIG. 4G.
  • the movement path 71 in FIG. 7 is a path that moves through the outline of the wall
  • the movement path 81 in FIG. 8 is a path that cuts through the middle of the passage and moves. Therefore, it can be said that the movement route 71 of FIG. 7 is a movement route that does not hinder the movement of passersby as much as possible as compared with the movement route 81 of FIG.
  • the contour of the intrudable region is extracted from the generated map information, and the moving body (AGV) is based on the angle formed by the point cloud provided on the contour. Since the relay point of) can be set quickly, it becomes easy to generate a safe and shortest route from the starting point to the destination in consideration of obstacles.
  • FIG. 9 is a flowchart showing a procedure for creating map information in the route generation device according to the second embodiment in chronological order.
  • the control unit 2 creates map information using LiDAR (Light Detection and Ringing) as in the first embodiment (step S11 of FIG. 2).
  • FIG. 10A is an example of the created map information, and the black portion is an obstacle.
  • step S53 the control unit 2 detects the boundary surface of the shade of color in the map information shown in FIG. 10A, and generates, for example, the point cloud map shown in FIG. 10B. Then, as shown in FIG. 10C, a process is performed in which only line segments having a certain length (for example, the length of an obstacle such as a cardboard or a cone to be removed from the map) or longer are left from the point cloud map of FIG. 10B. Since the point cloud map of FIG. 10B has a large amount of information, it is possible to speed up the subsequent determination process of the presence or absence of a corner by detecting the line segment as shown in FIG. 10C.
  • a certain length for example, the length of an obstacle such as a cardboard or a cone to be removed from the map
  • step S55 the control unit 2 examines the surrounding occupied state (presence or absence of obstacles) with reference to the end points of the line segments extracted in step S53.
  • FIG. 10D is a map showing the end points of the line segments (marked with white circles), and
  • FIG. 10E shows a predetermined length (for example, the diagonal length of the automatic guided vehicle AGV) in the direction most open from each end point. It is a map created by extending a straight line.
  • the occupancy rate of the surroundings is 0.25
  • the occupancy rate of the surroundings is 0.5
  • the occupancy of the surroundings is set. The rate is 0.75.
  • the occupancy rate is the degree of spread to the periphery with respect to the end point of the line segment, and here, an acute angle, an obtuse angle, and a plane are discriminated from the occupancy rate. For example, an occupancy rate of 0.25 is determined to be an acute angle, an occupancy rate of 0.75 is determined to be an obtuse angle, and an occupancy rate of 0.5 is determined to be a flat surface.
  • FIG. 10F is extracted by extending a certain distance (for example, the diagonal length of the automatic guided vehicle AGV) in the direction most open from the end points determined to be acute or obtuse, excluding the end points determined to be flat. It is a map showing the corners. Serial numbers are assigned to each of the extracted corners.
  • a certain distance for example, the diagonal length of the automatic guided vehicle AGV
  • step S59 the corners are connected as shown in FIG. 10G, and these corners and the calculated distance are stored in the memory 4 as route information.
  • FIG. 11 shows an example of the movement route of the automatic guided vehicle AGV to the destination, which is searched from the route information in the second embodiment.
  • the corner can be extracted based on the map information in which the amount of information is reduced from the map information created by the LRF, and the corner setting process can be speeded up.
  • the corner can be extracted based on the map information in which the amount of information is reduced from the map information created by the LRF, and the corner setting process can be speeded up.
  • ⁇ Modification 1> In the route generation device according to the first and second embodiments described above, when creating map information, an obstacle is detected using a single LRF (LiDAR). Not limited to.
  • LRF LiDAR
  • LRF1 and LRF2 may be installed at different positions in the height direction of the route generator, and a map may be created based on the information obtained by them.
  • a map may be created based on the information obtained by them.
  • any LRF detects an obstacle a two-dimensional map is created assuming that the detection point has an obstacle.
  • an intrudable region is provided in consideration of the shape of the AGV and the like, but the present invention is not limited to this.
  • a camera may be installed in the route generator in addition to the LRF, and an intrudable area may be provided by using the information taken by the camera. Specifically, when the “no-entry cone” shown in FIG. 13 (c) is photographed by the camera, the camera information is added to the inaccessible area set based on the LRF shown in FIG. 13 (a). Therefore, an intrudable area as shown in FIG. 13B may be set. As a result, more accurate obstacle information can be included in the map information.
  • the camera may be a two-dimensional camera that generates two-dimensional image data, or a three-dimensional camera that generates three-dimensional distance image data.
  • a process of detecting a corner is performed on the already created map information, but a map is created by an AGV equipped with a camera and the map is used. Coordinates of a specific structure (eg, door, etc.) recognized by the camera during the creation of may be added as a supplementary corner.
  • 1 route generator 1 route generator, 2 control unit, 3 calculation unit, 4 storage unit (memory), 5 LRF (Laser Range Finder), 7 map information generation unit, 8 drive unit, 9 command unit, 11 self-position estimation unit, 13 route Generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

LiDARを使用して生成した地図情報から侵入可能領域の輪郭を抽出し、その輪郭に設けた点群のなす角度に基づいて、移動体(AGV)の中継地点を迅速に設定する。これにより、AGVの出発地から目的地までにおける、障害物を考慮した安全かつ最短の経路を容易に構築できる。

Description

経路生成装置
本発明は、例えば無人搬送機等の目的地までの経路を生成する経路生成装置に関する。
従来より、ホテル、工場の生産ライン、物流倉庫等において無人搬送機を目標とする走行経路を走行させるための誘導方式として、例えば、床に埋設された電線から発信する誘導磁界を無人搬送機に搭載したコイルで検出する電磁誘導方式、床面に貼り付けられた反射テープからの反射光を光学センサで検出する光学方式等が知られている。 
一方、上述した誘導方式を使用せずに無人搬送機を運行管理する方法として、例えば、目標とする走行経路を自動的に走行させて荷物の積み降ろし等を行う無人搬送車AGV(Automatic Guided Vehicle)が提案されている。 
このような無人搬送機の運行管理方法では、あらかじめユーザが無人搬送機に搬送経路を入力し、目的地までの搬送等を行っている。また、A*(エースター)といった経路生成のアルゴリズムを使用して、目的地までの経路を生成する手法も使用されている。 
特許文献1は、移動装置が走行ラインに沿ってステーション間を移動し、ステーション間で物品を搬送する搬送装置を開示している。ここでは、無人搬送機である移動装置が目的地まで移動する際に中継地点(記憶媒体)より情報を受信し、その情報に基づいて経路を進む。 
特許文献2は、掃除対象表面上での自動自走式機械であるロボット掃除機の動作方法を開示している。ここでは、掃除中、掃除対象表面上に間隔をおいてロードマップノードを登録し、ロボット掃除機が先に登録されたロードマップノードから現在登録されているロードマップノードまで、障害物に衝突することなく、あるいは障害物を検出することなく駆動している場合、ロードマップノードを連結してロードマップ図にロードマップリンクを形成し、それによってロボット掃除機のナビゲーションを容易する技術を開示している。
特開2008-97500号公報 特表2018-500636号公報
しかしながら、従来技術では、ユーザがAGVに経路を入力した場合、その経路が複雑となると、情報量が増大するとともに、ユーザ側の負担も増加する。 
一方、経路生成アルゴリズムであるA*(エースター)を使用する場合、経路生成までに非常に多くの時間を要する可能性がある。例えば、施設が広くなるほど、AGVが目的地までの道のりを探索するのに要する時間が長くなるという問題がある。 
本発明は、上述した課題に鑑みてなされたものであり、その目的は、ユーザの負荷を低減して、AGVの最短ルートの選定が容易な経路生成装置を提供することである。
上記の目的を達成し、上述した課題を解決する一手段として本発明は以下の構成を備える。すなわち、本願の例示的な第1の発明は、移動体の経路を生成する経路生成装置であって、所定の地図情報より前記移動体の侵入可能領域と侵入不可能領域を示す地図情報を生成する手段と、前記生成された地図情報に基づいて前記侵入可能領域と前記侵入不可能領域との境界線に対して所定の処理を適用して、境界線に前記移動体の中継地点を設定する手段と、前記中継地点間を結合した線分の長さから中継地点間の距離を算出する距離算出手段と、前記中継地点と前記中継地点間の距離に基づいて前記移動体の出発地から目的地までの経路を生成する手段とを備えることを特徴とする。 
本願の例示的な第2の発明は、経路生成方法であって、所定の地図情報より移動体の侵入可能領域と侵入不可能領域を示す地図情報を生成する工程と、前記生成された地図情報に基づいて前記侵入可能領域と前記侵入不可能領域との境界線上に所定間隔の点群を設ける工程と、前記点群のうち所定の点群を結ぶ直線のなす角度が一定値以上となる点群を抽出して得られる角度情報を算出する工程と、前記角度情報に基づいて前記侵入不可能領域内に前記移動体の中継地点を設定する工程と、前記中継地点間を結合した線分の長さから中継地点間の距離を算出する工程と、前記中継地点と前記中継地点間の距離に基づいて前記移動体の出発地から目的地までの経路を生成する工程とを備えることを特徴とする。
本発明によれば、AGVが移動する目的地までの経路を容易かつ迅速に探索、決定でき、移動し得る地図情報が複雑になっても容易に中継地点を設定するので、ユーザの負担が増大することがない経路生成装置を提供できる。
図1は、本発明の第1の実施形態に係る経路生成装置の構成を示すブロック図である。 図2は、第1の実施形態に係る経路生成装置において地図情報を作成する手順を示すフローチャートである。 図3は、第1の実施形態におけるコーナー抽出処理手順を示すフローチャートである。 図4Aは、LiDARで取り込んだデータをもとに作成された地図情報の一例である。 図4Bは、図4Aに示す黒塗り領域に対して侵入不可領域を設定した例を示す。 図4Cは、抽出された無人搬送車AGVの通行ルートを示す。 図4Dは、角度情報に基づいて抽出したコーナーの一例を示す。 図4Eは、抽出したコーナーを1つに集約した例を示す。 図4Fは、第1の方法で形成された経路の一例を示す。 図4Gは、第2の方法で形成された経路の一例を示す。 図5は、点群のなす角度に基づくコーナーの抽出方法を示す図である。 図6は、第1の実施形態において目的地が指定されたAGVでの経路決定手順を示すフローチャートである。 図7は、第1の方法によりコーナー間を接続して形成された、AGVの移動経路の一例である。 図8は、第2の方法によりコーナー間を接続して形成された、AGVの移動経路の一例である。 図9は、本発明の第2の実施形態に係る経路生成装置において地図情報を作成する手順を示すフローチャートである。 図10Aは、LiDARで作成された地図情報の一例である。 図10Bは、地図情報から生成した点群地図の例を示す。 図10Cは、点群地図から一定の長さ以上の線分のみを残す処理をした結果を示す。 図10Dは、抽出した線分の端点の地図を示す。 図10Eは、各端点から一番開けた方向に直線を伸ばして作成した地図である。 図10Fは、平面と判定された端点を除く鋭角、鈍角と判別された端点から伸ばして抽出したコーナーを示す地図である。 図10Gは、コーナー間を接続したときの地図である。 図11は、第2の実施形態における目的地までのAGVの移動経路の一例を示す。 図12は、変形例1に係る地図作成を説明する図である。 図13は、変形例2に係る侵入不可領域の設定を説明する図である。
以下、本発明に係る実施形態について添付の図面を参照して説明する。 
<第1の実施形態> 図1は、本発明の第1の実施形態に係る経路生成装置の構成を示すブロック図である。経路生成装置1は移動体(無人搬送車AGV)として、例えばホテル、物流倉庫等の施設において出発地から指定された目的地までの走行経路を走行する。そのため経路生成装置1は、あらかじめ、走行する場所(施設)の地図情報と経路情報を作成する。 
図1に示すように経路生成装置1は、装置全体の制御を司る、例えばマイクロプロセッサからなる制御部2、演算部3、記憶部(メモリ)4、レーザ式の測距センサであるLRF(Laser Range Finder)5、走行場所の地図情報を生成する地図情報生成部7、駆動部8等を備える。 
演算部3は、自己位置推定部11と経路生成部13を有する。記憶部(メモリ)4には、地図情報、経路情報、これらを作成するためのプログラム、経路生成装置1の走行制御プログラム等が格納されている。 
次に、第1の実施形態に係る経路生成装置における地図情報および経路情報の作成方法について説明する。図2は、第1の実施形態に係る経路生成装置において地図情報を作成する手順を時系列で示すフローチャートである。 
図2のステップS11において、経路生成装置1の制御部2は、LRFとして、例えばLiDAR(Light Detection and Ranging)を使用して、ホテル、物流倉庫等の施設において無人搬送車AGV(ここでは、経路生成装置1)の走行を妨げることになる障害物(例えば、壁、柱、荷物等)を検知し、それに基づいて地図情報を作成する。 
LiDARは、施設という所定領域内の2次元空間、または3次元空間にレーザーを出射して、その領域内の複数測点における距離を測定する技術である。 
図4Aは、LiDARで取り込んだデータをもとに作成された地図情報の一例であり、対象領域の位置、形状等の情報が表された2次元地図情報である。図4Aに示す地図情報では、LiDARで未検出となる部分には障害物(例えば、図4Aにおいて符号A,Bで示す、一時的に置かれた段ボール、荷物等)があるとして、事前にその領域を塗りつぶす。 
ステップS13において制御部2は、検出された障害物から一定の距離にある領域を、無人搬送車AGVが侵入できない「侵入不可領域」とする処理を行う。具体的には、図4Aの黒塗り部分のエッジから一定の距離(例えば、無人搬送車AGVの対角線の長さ)にある部分を侵入不可領域とする。図4Bは、図4Aに示す黒塗り領域に対して侵入不可領域を設定した例である。 
ここでは、例えば無人搬送車AGVの外形サイズ等に基づいて、AGVが人、物に衝突することなく移動可能になる侵入可能領域と、AGVの移動を不可とする侵入不可能領域とを決定する。図4Aに示す画像から図4Bに示す画像を得る際、LiDARにより取得した画像情報に生じた画像ノイズを除去する処理を行ってもよい。 
ステップS15において制御部2は、図4Cに示すように、上記のステップS13で設けた侵入不可領域の輪郭部分を、無人搬送車AGVの通行ルート41,43として抽出する。このとき、所定以下の大きさの障害物を除去する処理を行ってもよい。図4Cから分かるように、抽出された通行ルート41,43は周回コースになっている。 
制御部2は、ステップS17において、上記のステップS15で抽出した通行ルート(後述する輪郭部分)に基づいてコーナー(中継地点)を抽出する。図3は、コーナー抽出処理の手順を示すフローチャートである。 
すなわち制御部2は、図3のステップS31において、例えば、図5に示すように侵入不可領域45の輪郭部分(エッジ)47に沿って、一定間隔の点群(図5において×印で示す)を設ける。これらの点群は、コーナーの候補でもある。 
ステップS33において制御部2は、上記の点群のなす角度に基づいて鋭角、鈍角等を判別する。一般的には鋭角は90°以下の角度、鈍角は90°より大きく、180°未満の角度を指すが、ここでは、後述するように一方の直線に対して他方の直線が一定の値(例えば45°)以上傾いていれば鋭角または鈍角と規定し、所定の連続する点群を結ぶ直線のなす角度が一定値以上となる点群を抽出する。 
具体的には、図5の点cに着目して、点cから一定の距離L以上離れている点a,eを結んだ直線51,53のなす角θ1が一定の値以上であれば、点cにおける角は、図5より鋭角と判断できる。 
同様の処理を他の着目点について繰り返す。例えば、点fを起点として、両脇の点d,hを結んだ直線55,57のなす角θ2
が一定の値以上であれば、点fにおける角は、図5より鈍角と判断できる。 
すなわち、2本の直線のなす角度θを算出するとき、(例えば、図5の直線acと直線ce)、一方の直線を起点として算出するため、角度θは0~180°の間を取る。図5の場合、θ1は45°、θ2は135°、θは5°となる。 
よって、角θは、直線のなす角が一定の角度以上ではないため、鈍角および鋭角以外と判別する。このような処理で得られた角度情報に基づいて抽出したコーナーの一例を、図4Dに示す。 
制御部2は、ステップS35において、上記のステップS33における角度の判別結果に基づいて、なす角が一定以上の鋭角、鈍角に対応する点をコーナーとして決定する。これにより、効率的にコーナーを設定して、その際の情報量を削減できる。 
図3に示すコーナーの抽出処理が終了すると、図2のステップS19において、上記のように抽出されたコーナーのうち、近距離にある点については1つのコーナーとして集約する処理を行う。 
図4Eは、上述したステップS17で抽出したそれぞれのコーナーを、ステップS19において1つに集約した例を示す。図4Eに示すそれぞれのコーナーは、図4Dを参照して分かるように、鋭角に対応するインコーナーと、鈍角に対応するアウトコーナーとからなる。 
次に、図2のステップS21において制御部2は、コーナー(中継地点)間を接続し、その線分の長さから距離を算出する。コーナー間の接続は、その間に障害物のないコーナー同士を接続する。そして、これらのコーナーと、算出した距離とを経路情報としてメモリ4に記憶する。コーナー間の接続方法として、以下の2通りの方法を採り得る。 
第1の方法として、上述した各周回コースの隣り合うコーナー同士を接続し、それにより形成された線分の距離を記憶する。また、隣接しないコーナーについても、一定距離内にあれば他の周回コースを含めて接続し、形成された線分の距離を記憶する。こうすることで、例えば、無人搬送車AGVが基本的には1つの周回コースを走り続け、他の周回コースを極力走らないという状態を回避できる。このようにして形成された経路の例を図4Fに示す。 
第2の方法は、すべてのコーナー同士を接続して、それにより形成される線分の距離を記憶する方法である。図4Gは、すべてのコーナー同士を接続して形成された経路の例である。いずれの方法を採るかは、例えば、経路生成装置のユーザの選択とする。 
次に、経路生成装置において目的地までの経路を決定する処理について説明する。図6は、目的地が指定された場合の無人搬送車AGV(経路生成装置)での経路決定手順を示すフローチャートである。制御部2は、図6のステップS41において、ユーザは、経路生成装置1の指令部9に対して目的地(移動目標位置)を設定する。なお、指令部9は、情報入力用のキー、タッチ画面等を備えている。 
ステップS43において、経路生成装置1は、メモリ4に記憶した経路情報より、現在地から目的地までのコーナー(中継地点)とコーナー間の距離の組合わせの中から最適な経路を探索する。ここで「最適経路」とは、移動距離が最短の経路、あるいは可能な限り建物の壁際を通る最短の経路を意味する。このように探索された経路は、無人搬送車AGVの移動が通行人等の邪魔になることがない経路である。 
ステップS45において、制御部2は、ステップS43で探索、決定した経路を移動するよう駆動部8を制御しながら、無人搬送車AGVを移動させる。目的地までAGVを移動させる場合、コーナーの座標とコーナー間の距離情報から最適な道のりを自律的に決定し、移動させる。駆動部8は、例えば複数の車輪、これらの車輪を駆動するモータ等を有する公知の駆動機構からなる。 
移動の際、経路生成装置1の自己位置推定部11は、例えばオドメトリ(odometry)によって、車輪の回転角度等から、その移動量を求め、その累積結果よりAGVの位置を推定する。また、自己位置の推定に、SLAM(Simultaneous Localization and Mapping)を使用してもよい。 
なお、目的地が中継地点上にない場合、最近傍にある中継地点を調べる。そして、その中継地点間を使って、最適な経路を探索する。移動の際には、はじめに最近傍の中継地点まで移動し、上記で探索した経路を辿って、最後の中継地点から目的地まで移動する。 
図7は、上述した第1の方法によりコーナー間を接続して形成され、図4Fに示す経路情報より探索された、無人搬送車AGVの移動経路の一例である。また、図8は、上述した第2の方法により、すべてのコーナー間を接続して形成され、図4Gに示す経路情報より探索された、無人搬送車AGVの移動経路の一例である。 
図7の移動経路71は、壁づたいの大枠を移動する経路であり、図8の移動経路81は、通路の真ん中を突っ切って移動する経路である。したがって、図7の移動経路71は、図8の移動経路81に比べて通行人の動きを極力、妨げない移動経路であると言える。 
このように、第1の実施形態に係る経路生成装置によれば、生成した地図情報から侵入可能領域の輪郭を抽出し、その輪郭に設けた点群のなす角度に基づいて、移動体(AGV)の中継地点を迅速に設定できるので、障害物を考慮した出発地から目的地までの安全かつ最短の経路の生成が容易になる。 
すなわち、障害物の有無を考慮して効率的に中継地点が設定された、信頼性の高い経路生成が可能となる。また、侵入可能領域において障害物のないコーナー同士を接続した経路情報を生成することで、人の通行、物の動きを妨げないで出発地と目的地間の最短経路を生成できる。 
<第2の実施形態> 本発明の第2の実施形態について説明する。なお、第2の実施形態に係る経路生成装置の構成は、図1に示す第1の実施形態に係る経路生成装置と同一であるため、ここでは、その説明を省略する。 
図9は、第2の実施形態に係る経路生成装置において地図情報を作成する手順を時系列で示すフローチャートである。図9のステップS51において制御部2は、第1の実施形態(図2のステップS11)と同様、LiDAR(Light Detection and Ranging)を使用して地図情報を作成する。図10Aは、作成された地図情報の一例であり、黒色部分が障害物である。 
制御部2は、ステップS53において、図10Aに示す地図情報における色の濃淡の境界面を検出して、例えば、図10Bに示す点群地図を生成する。そして、図10Cに示すように、図10Bの点群地図から一定の長さ(例えば、地図から除去したい段ボール、コーン等の障害物の長さ)以上の線分のみを残す処理を行う。図10Bの点群地図は情報量が多いため、図10Cのように線分検出することで、以降におけるコーナーの有無の判断処理を迅速化できる。 
ステップS55において制御部2は、上記のステップS53で抽出した線分の端点を基準にして周囲の占有状態(障害物の有無)を調べる。図10Dは、線分の端点(白抜きの〇印)を示す地図であり、図10Eは、各端点から一番開けた方向に所定長(例えば、無人搬送車AGVの対角線の長さ)の直線を伸ばして作成した地図である。 
例えば、端点が90°程度開けている場合、周囲の占有率を0.25とし、180°開けている場合、周囲の占有率を0.5とし、270°程度開けている場合、周囲の占有率を0.75とする。 
占有率とは、線分の端点を基準とする周囲への広がりの度合いであり、ここでは、占有率から鋭角、鈍角、平面を判別する。例えば、占有率0.25を鋭角、占有率0.75を鈍角、占有率0.5を平面と判別する。 
図10Fは、平面と判定された端点を除いて、鋭角、鈍角と判別された端点から一番開けた方向に一定の距離(例えば、無人搬送車AGVの対角線の長さ)だけ伸ばして抽出したコーナーを示す地図である。抽出した各コーナーには連番が振られている。 
ステップS59において、図10Gに示すようにコーナー間を接続し、これらのコーナーと、算出した距離とを経路情報としてメモリ4に記憶する。 
なお、第2の実施形態において目的地が指定され、無人搬送車AGV(経路生成装置)で目的地までの経路を決定する処理については、図6に示す第1の実施形態と同様であるため、その説明を省略する。なお、図11は、第2の実施形態において、経路情報より探索された、目的地までの無人搬送車AGVの移動経路の一例を示す。 
このように第2の実施形態に係る経路生成装置によれば、LRFで作成した地図情報より情報量を削減した地図情報に基づいてコーナーを抽出でき、コーナーの設定処理を迅速化できる。特に、構造が簡単な施設において、効率的に出発地と目的地間の経路を生成できる。 
本発明は上述した実施形態に限定されず、種々の変形が可能である。 
<変形例1> 上述した第1および第2の実施形態に係る経路生成装置では、地図情報を作成する場合、単一のLRF(LiDAR)を使用して障害物を検出しているが、これに限定されない。 
例えば、経路生成装置の高さ方向の異なる位置それぞれにLRF1,LRF2を設置し、それらによって得られた情報に基づいて地図を作成してもよい。この場合、いずれかのLRFが障害物を検出すると、その検出ポイントには障害物があるものとして2次元地図を作成する。 
具体的には、LRF1によって、図12(a)に示す障害物が検出され、LRF2によって、図12(b)に示す障害物が検出された場合、これら2つの検出結果を合成して、図12(c)に示す地図を作成する。これにより、2次元地図の中に障害物に関する3次元の情報を取り入れることができる。 
<変形例2> 上記第1の実施形態に係る経路生成装置では、AGVの形状等を考慮して侵入不可領域を設けているが、これに限定されない。 
例えば、経路生成装置にLRFに加えてカメラを設置し、カメラで撮った情報を使って侵入不可領域を設けてもよい。具体的には、カメラによって、図13(c)に示す“進入禁止のコーン”が撮影された場合、図13(a)に示す、LRFに基づいて設定した侵入不可領域にカメラ情報を付加して、図13(b)に示すような侵入不可領域を設定してもよい。これによって地図情報に、より正確な障害物情報を盛り込むことができる。 
なお、カメラは、2次元の画像データを生成する2次元カメラであっても、あるいは3次元の距離画像データを生成する3次元カメラであってもよい。 
<変形例3> 上述した第1および第2の実施形態では、既に作成された地図情報に対して、コーナーを検出する処理を行っているが、カメラを搭載したAGVで地図を作成し、地図の作成中にカメラが認識した特定の構造物(例えば、ドア等)の座標を補足でコーナーとして追加してもよい。
1 経路生成装置、2 制御部、3 演算部、4 記憶部(メモリ)、5 LRF(Laser Range Finder)、7 地図情報生成部、8 駆動部、9 指令部、11 自己位置推定部、13 経路生成部

Claims (14)




  1.  移動体の経路を生成する経路生成装置であって、



     所定の地図情報より前記移動体の侵入可能領域と侵入不可能領域を示す地図情報を生成する手段と、



     前記生成された地図情報に基づいて前記侵入可能領域と前記侵入不可能領域との境界線に対して所定の処理を適用して、前記境界線に前記移動体の中継地点を設定する手段と、



     前記中継地点間を結合した線分の長さから中継地点間の距離を算出する距離算出手段と、



     前記中継地点と前記中継地点間の距離に基づいて前記移動体の出発地から目的地までの経路を生成する手段と、を備える経路生成装置。



  2.  前記所定の処理は、前記境界線上に所定間隔で点群を設け、該点群のうち所定の点群を結ぶ直線のなす角度が一定値以上となる点群を抽出して角度情報を算出する処理である請求項1に記載の経路生成装置。



  3.  前記点群を構成する任意の点に対して前記境界線に沿った両方向において所定距離以上で近傍する2つの点を結ぶ直線同士のなす角度が一定値以上となる該直線同士の交点を集約して前記中継地点を設定する請求項2に記載の経路生成装置。



  4.  前記距離算出手段は、前記侵入可能領域における所定の周回経路において隣り合う中継地点同士を結合した線分の長さから前記中継地点間の距離を算出する請求項1に記載の経路生成装置。



  5.  前記距離算出手段は、前記侵入可能領域における前記中継地点同士をすべて結合した線分の長さから前記中継地点間の距離を算出する請求項1に記載の経路生成装置。



  6.  前記生成された地図情報は、所定の対象物と周囲環境を撮影して得た撮像データを画像処理した地図情報である請求項1に記載の経路生成装置。



  7.  前記移動車の少なくとも外形サイズを含む情報に基づいて前記侵入可能領域と前記侵入不可能領域を決める請求項1に記載の移動体。



  8.  前記移動体は無人搬送車である請求項1~7のいずれか1項に記載の経路生成装置。



  9.  移動体の経路を生成する経路生成装置であって、



     所定の地図情報に基づいて所定の対象物の境界面または線分を検出する検出手段と、



     前記境界面または線分を含む地図情報を生成する手段と、



     前記生成された地図情報に所定の処理を適用して前記移動体の中継地点を設定する手段と、



     前記中継地点間を結合した線分に基づいて経路情報を算出する手段と、



     前記経路情報に基づいて前記移動体の出発地から目的地までの経路を生成する手段と、を備える経路生成装置。



  10.  前記検出手段は前記境界面または線分を構成する点群より所定長以上の線分の端部を抽出する請求項9に記載の経路生成装置。



  11.  前記所定の処理は、前記端部を基準とする周囲の占有状態より得た角度情報に基づく処理である請求項11に記載の経路生成装置。



  12.  前記角度情報に基づいて前記境界面または直線の端部から所定距離だけ延伸した位置に前記中継地点を設定する請求項11に記載の経路生成装置。



  13.  前記移動体は無人搬送車である請求項9~12のいずれか1項に記載の移動体。



  14.  所定の地図情報より移動体の侵入可能領域と侵入不可能領域を示す地図情報を生成する工程と、



     前記生成された地図情報に基づいて前記侵入可能領域と前記侵入不可能領域との境界線上に所定間隔の点群を設ける工程と、



     前記点群のうち所定の点群を結ぶ直線のなす角度が一定値以上となる点群を抽出して得られる角度情報を算出する工程と、



     前記角度情報に基づいて前記侵入不可能領域内に前記移動体の中継地点を設定する工程と、



     前記中継地点間を結合した線分の長さから中継地点間の距離を算出する工程と、



     前記中継地点と前記中継地点間の距離に基づいて前記移動体の出発地から目的地までの経路を生成する工程と、を備える経路生成方法。 
PCT/JP2020/031590 2019-09-30 2020-08-21 経路生成装置 WO2021065241A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080067881.2A CN114450648A (zh) 2019-09-30 2020-08-21 路径生成装置
JP2020571872A JPWO2021065241A1 (ja) 2019-09-30 2020-08-21
US17/764,646 US20220334583A1 (en) 2019-09-30 2020-08-21 Route generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019180471 2019-09-30
JP2019-180471 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065241A1 true WO2021065241A1 (ja) 2021-04-08

Family

ID=75338175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031590 WO2021065241A1 (ja) 2019-09-30 2020-08-21 経路生成装置

Country Status (4)

Country Link
US (1) US20220334583A1 (ja)
JP (1) JPWO2021065241A1 (ja)
CN (1) CN114450648A (ja)
WO (1) WO2021065241A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128779A (ja) * 2006-11-20 2008-06-05 Denso Corp ルート探索装置
JP2010092279A (ja) * 2008-10-08 2010-04-22 Murata Machinery Ltd 自律移動体及び自律移動体の移動制御方法
JP2015060388A (ja) * 2013-09-18 2015-03-30 村田機械株式会社 自律走行台車、予定走行経路データの加工方法、及びプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251545B2 (ja) * 2003-07-11 2009-04-08 独立行政法人科学技術振興機構 移動ロボット用経路計画システム
US7342516B2 (en) * 2003-10-08 2008-03-11 Hitachi, Ltd. Method and apparatus for communicating map and route guidance information for vehicle navigation
KR101262778B1 (ko) * 2008-09-03 2013-05-09 무라다기카이가부시끼가이샤 경로 계획 장치, 및 자율 이동 장치
KR101240181B1 (ko) * 2008-11-10 2013-03-07 한국전자통신연구원 이동 로봇의 안전경로 생성 방법 및 장치
JP2012243029A (ja) * 2011-05-18 2012-12-10 Toyota Central R&D Labs Inc 経路探索機能付き移動体
US9523583B2 (en) * 2015-02-27 2016-12-20 Here Global B.V. Generating routes using navigation meshes
NL2017238B1 (en) * 2016-07-25 2018-01-31 Xinaps B V A method and an apparatus for calculating a distance in an area
US10474164B2 (en) * 2016-12-30 2019-11-12 DeepMap Inc. Representing navigable surface boundaries of lanes in high definition maps for autonomous vehicles
DE102017120218A1 (de) * 2017-09-01 2019-03-07 RobArt GmbH Bewegungsplanung für autonome mobile roboter
JP7262076B2 (ja) * 2018-06-28 2023-04-21 パナソニックIpマネジメント株式会社 移動ロボット、及び、制御方法
US11199840B2 (en) * 2018-07-03 2021-12-14 Panasonic Intellectual Property Management Co., Ltd. Mover control system, mover system, mover control method, and non-transitory storage medium
JP7281707B2 (ja) * 2018-07-06 2023-05-26 パナソニックIpマネジメント株式会社 移動ロボット、及び、制御方法
CN110262518B (zh) * 2019-07-22 2021-04-02 上海交通大学 基于轨迹拓扑地图和避障的车辆导航方法、系统及介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128779A (ja) * 2006-11-20 2008-06-05 Denso Corp ルート探索装置
JP2010092279A (ja) * 2008-10-08 2010-04-22 Murata Machinery Ltd 自律移動体及び自律移動体の移動制御方法
JP2015060388A (ja) * 2013-09-18 2015-03-30 村田機械株式会社 自律走行台車、予定走行経路データの加工方法、及びプログラム

Also Published As

Publication number Publication date
US20220334583A1 (en) 2022-10-20
CN114450648A (zh) 2022-05-06
JPWO2021065241A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
Konolige A gradient method for realtime robot control
JP7356567B2 (ja) 移動ロボット及びその制御方法
Kümmerle et al. A navigation system for robots operating in crowded urban environments
KR101494224B1 (ko) 자율 이동체
CN110968083B (zh) 栅格地图的构建方法、避障的方法、设备及介质
KR102445731B1 (ko) 로봇의 주행 예측 및 제어 방법
CN109990782A (zh) 一种避开障碍物的方法及设备
KR20160022769A (ko) 청소 로봇 및 그 제어 방법
JP2018514879A (ja) フロア処理デバイス及びそのナビゲーション方法、並びに、一群のフロア処理デバイス及びそれらの全体的なナビゲーション方法
KR20190095622A (ko) 회피경로 생성방법 및 그를 위한 장치
KR20210058998A (ko) 웨이포인트 매칭을 이용한 자율적 맵 주행
KR102301758B1 (ko) 자율 주행 가능한 이동 로봇 및 이의 주행 제어 방법
EP2870513A1 (en) Autonomous mobile robot and method for operating the same
JP6074205B2 (ja) 自律移動体
JP2023531831A (ja) 駐車スペースのハイブリッド探索を用いた自律駐車
US20160195875A1 (en) Autonomous mobile robot and method for operating the same
KR101333496B1 (ko) 과거 지도 데이터 기반의 이동 로봇 제어 장치 및 방법
CN112631269B (zh) 自主移动机器人及自主移动机器人的控制程序
JPWO2015141445A1 (ja) 移動体
TWI532619B (zh) Dual Image Obstacle Avoidance Path Planning Navigation Control Method
KR102286656B1 (ko) 어라운드 맵을 이용하여 경로를 변경하는 방법 및 이를 구현하는 로봇
WO2021065241A1 (ja) 経路生成装置
WO2024037262A1 (zh) 一种机器人通过窄道的导航方法、芯片及机器人
CN108363391B (zh) 机器人及其控制方法
WO2021246170A1 (ja) 情報処理装置、情報処理システム、および方法、並びにプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020571872

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870509

Country of ref document: EP

Kind code of ref document: A1