WO2021064071A1 - E-maschine und antriebsvorrichtung - Google Patents

E-maschine und antriebsvorrichtung Download PDF

Info

Publication number
WO2021064071A1
WO2021064071A1 PCT/EP2020/077455 EP2020077455W WO2021064071A1 WO 2021064071 A1 WO2021064071 A1 WO 2021064071A1 EP 2020077455 W EP2020077455 W EP 2020077455W WO 2021064071 A1 WO2021064071 A1 WO 2021064071A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
housing
electric machine
leakage
rotor shaft
Prior art date
Application number
PCT/EP2020/077455
Other languages
English (en)
French (fr)
Inventor
Vyacheslav Brushkivskyy
Gerhard HÖRING
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Publication of WO2021064071A1 publication Critical patent/WO2021064071A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/124Sealing of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/002Conductive elements, e.g. to prevent static electricity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means

Definitions

  • the invention relates on the one hand to an electric machine with a leakage guide device and to a drive device for electrically driving a motor vehicle, having an electric machine.
  • Sealing devices for shafts are already known per se, for example Ra dialwell seals or labyrinth seals. This prevents a gaseous or liquid fluid, such as a lubricant, from escaping in the area of the shaft.
  • a sealing system for a shaft is known from DE 10 2016 207 672 A1, in which a shaft grounding ring is also provided in addition to the actual shaft seal.
  • One embodiment of this sealing system has two shaft seals, between which the shaft grounding ring is arranged.
  • the object of the invention is to develop the state of the art.
  • an electric machine with a housing, a rotor shaft that can be rotated relative to the housing and a leakage guide device is proposed.
  • a drive device for electrically driving a motor vehicle is proposed, having such an electric machine for providing drive power to the drive device.
  • Such an e-machine converts electrical energy into mechanical rotation, or vice versa.
  • Such an electric machine can be operated as an electric generator or motor if necessary.
  • the electric machine is in particular a synchronous machine or an asynchronous machine.
  • the leakage guiding device is used to guide a leakage, which is removed from the rotor shaft and flows off along a contour of the housing of the electric machine in the direction of the rotor shaft, into a reservoir.
  • the rotor shaft is connected in particular to a rotor of the electric machine, which also includes a one-piece design of the rotor and rotor shaft.
  • the rotor can be rotated in particular by means of a stator of the electric machine that is fixed to the housing.
  • the electric machine has a sealing device for sealing the rotor shaft.
  • the electric machine preferably has an interior space in which the rotor connected to the rotor shaft is rotatably arranged.
  • the rotor shaft points out of the interior at the sealing device.
  • the sealing device seals the interior of the electric machine from the outside on the rotor shaft.
  • the sealing device also has a catching device for removing a leakage penetrating the shaft seal from the rotor shaft.
  • the safety gear preferably works without contact. No additional sealing lip, brush or other component, which rests on the rotor shaft and thus performs frictional work, is required in order to wipe the leakage off the rotor shaft. Such a safety gear works virtually wear-free and without friction losses.
  • a leakage penetrating the shaft seal is understood to mean, in particular, a volume flow of a fluid which, in principle, is intended to hold back the shaft seal, but which, for various reasons, unintentionally overcomes the shaft seal.
  • a leak occurs when a sufficiently large gap opens up between the shaft seal and the rotor shaft and the fluid can flow through there along the rotor shaft.
  • a fluid can in particular be liquid.
  • Such a fluid can in particular be a lubricant.
  • a shaft seal is understood to mean, in particular, a component that is intended to hold back the fluid in the area of the rotor shaft.
  • Such shaft seals are on already known, for example as a radial shaft seal or as a labyrinth up device.
  • the safety gear works in particular by generating a centrifugal force acting on the leakage. This occurs when the rotor shaft rotates. A local increase in the diameter (thickening) of the shaft provided for the safety gear causes the leakage to be moved radially outward by the shaft rotation. This is done to such an extent that the leakage is detached from the shaft by the centrifugal force that occurs and is caught and carried away by the rest of the safety gear.
  • the catching device can direct the collected leakage to a reservoir for collecting the collected and discharged leakage.
  • the safety device is preferably formed by a shoulder arranged on the rotor shaft and a safety structure that radially surrounds this shoulder.
  • a shoulder forms, on the one hand, a local thickening of the rotor shaft and, on the other hand, a tear-off edge for the leakage.
  • the shoulder is provided here for the detachment of the leakage from the rotor shaft, while the catching structure is provided for the actual catch and discharge of the leakage detached by the shoulder.
  • the tear-off edge can have a suitable shape so that the leak can be detached from it particularly well.
  • the tear-off edge can be sharp-edged or burr-like (ie with a burr).
  • the shoulder arranged on the rotor shaft can either be formed by a shaft shoulder or by a component which is fastened to the rotor shaft and radially surrounds the rotor shaft.
  • a shaft shoulder is formed by the rotor shaft itself, that is to say by a corresponding shaping of the rotor shaft itself, for example as part of a metal-cutting turning process.
  • a component radially surrounding the shaft can be, for example, a separate ring which is pressed onto the rotor shaft or is otherwise fastened to it. This component then forms the thickening on the rotor shaft with the tear-off edge out.
  • the catch structure which radially surrounds the shoulder is preferably formed by a housing which rotatably supports the Ro gate shaft.
  • a housing which rotatably supports the Ro gate shaft.
  • the catch structure can, for example, be a special cast structure in the housing that is formed during the casting of the housing. However, it can also be incorporated into the housing in some other way. Alternatively, the catch structure can also be designed for attachment to the housing, for example for screwing, welding, pressing or gluing. In this case, the actual housing and the catch structure consist of different parts.
  • the catch structure is preferably formed from sheet metal, plastic or cast. This makes it particularly easy and inexpensive to manufacture.
  • the catching structure preferably has a bend in a radially inner region, so that a radially inner end of the catching structure is cup-shaped and is directed towards the shaft shoulder. In this way it is prevented that upwardly thrown leakage, which flows along the catching structure down in the direction of the shaft, drips back onto the shaft. Instead, this portion of the leakage is directed along the cup shape of the trap structure around the shaft.
  • the electric machine has a leakage guiding device.
  • the leakage guiding device guides this part of the leakage along the housing of the electric machine around the rotor shaft into the reservoir.
  • the leakage guide device is formed as a recess provided in the housing of the electric machine.
  • the recess can, for example, be wedge-shaped, rectangular or channel-shaped be shaped in the housing.
  • the recess that is seen in the housing of the electric machine can already be manufactured during the manufacture of the housing or can be introduced subsequently, for example milled.
  • the leakage guiding device is designed as an elevation provided on the housing of the electric machine.
  • the elevation can be formed, for example, by the housing of the electric machine itself.
  • the elevation can be attached to the housing at a later date.
  • a separate ring can be attached to the housing of the electric machine, for example, which protrudes beyond the contour of the housing section on which the leakage flows and leads the leakage in the direction of the reservoir. This ring can be pressed onto the rotor shaft or otherwise attached to it. If the ring is designed as a so-called snap ring, it can be inserted in a groove provided on the gearbox housing.
  • the leakage guiding device designed as a depression or elevation, thus serves the purpose of specifying a specific direction for a leakage flowing off the housing of the electric machine in the direction of the rotor shaft so that the leakage is directed into the reservoir without dripping back onto the rotor shaft . A new contact between the leakage and the rotor shaft can be prevented.
  • the sealing device can have a shaft ground.
  • a shaft grounding is understood to mean, in particular, a component that produces a rotatable electrical connection between the shaft and an electrical reference potential.
  • a reference potential is, for example, an electrical Erdpo potential or an electrical ground.
  • the shaft ground electrically connects the shaft to said housing.
  • the shaft grounding has at least one solid or flexible brush for making sliding contact with the shaft.
  • the shaft grounding is designed in particular as a shaft grounding ring.
  • the shaft seal and the shaft ground and the Fangvorrich device are arranged axially one behind the other.
  • the Wellener extension can be arranged axially between the shaft seal and the safety gear.
  • the safety gear can also absorb possible mechanical abrasion of the shaft earthing. Such abrasion usually comes from the shaft grounding brush or brushes.
  • the safety gear can be arranged axially between the shaft seal and the shaft ground. This means that the shaft connection is on the other side of the shaft seal and the safety gear, and so it does not come into contact with the leakage, or hardly at all.
  • the shaft grounding is arranged on the catching structure.
  • the shaft grounding is then carried by the catching structure.
  • the shaft is thus electrically connected to the electrical reference potential in the area of the catching structure.
  • the catch structure can thus itself be part of the electrical connection between the shaft and the electrical reference potential.
  • the catch structure and the shaft earthing can thus form a unit that can be assembled together.
  • the tear-off edge of the shaft shoulder can be arranged axially between the shaft seal and the shaft earth. This prevents leakage from the shaft seal reaching the shaft earth. This can also be used when the shaft grounding is arranged on the catching structure.
  • the proposed drive device is used to electrically drive a motor vehicle. Accordingly, the drive device has an electric machine for providing drive power for the motor vehicle.
  • the drive device can in particular be designed as a drive module and, for example, be designed to be arranged on a driven axle of the motor vehicle.
  • the electric machine of the drive device is formed by the proposed electric machine, so it comprises the proposed leakage guiding device.
  • FIG. 1 shows a partial view of a longitudinal section through an electric machine in a region of a sealing device of the electric machine;
  • FIG. 2 shows a partial view of a longitudinal section through the electric machine in a region of the electric machine 11 which lies opposite the region shown in FIG. 1;
  • FIG 3 shows a partial view of a longitudinal section through the electric machine in a region of a sealing device of the electric machine in a further embodiment.
  • Fig. 1 shows part of a longitudinal section through an electric machine 11 in a loading area of an axial end of the electric machine 11.
  • a rotor shaft 1 of the electric machine 11 rotatably mounted about an axis of rotation L penetrates a housing 2 of the Electric machine 11.
  • a sealing device 3 is provided to seal an interior of the electric machine 11 in the area of the rotor shaft 1.
  • the sealing device 3 comprises a shaft seal 4, shown here by way of example as a radial shaft sealing ring, and a safety gear 5 axially spaced therefrom.
  • the interior of the electric machine 11 is located on the left-hand side of the shaft seal 4 in FIG. 1.
  • the shaft seal 4 is intended to prevent a fluid, in particular a lubricant, from entering the interior of the electric machine 11. In practice, this does not succeed in all operating conditions of the electric machine 11 that occur. It can therefore happen that a leak penetrates the shaft seal 4 and flows along the rotor shaft 1 into the interior of the electric machine 11. This is prevented by the Fangvor device 5.
  • the safety device 5 can thus also be referred to as a leakage safety device.
  • the safety device 5 consists of a shaft shoulder 5A on the rotor shaft 1 and a safety structure 5B attached to the housing 2.
  • the catch structure 5B surrounds the shoulder 5A radially, but does not rest against it.
  • the catch structure 5B thus works in a contactless manner.
  • the shown catch structure 5B consists for example of sheet metal or Plastic.
  • the shoulder 5A forms a tear-off edge for the leakage which passes through the shaft seal 4.
  • the rotor shaft 1 rotates about the axis of rotation L and a leak occurs at the shaft seal 4, this reaches the shoulder 5A. There it is guided along the shoulder 5A radially outward to the trailing edge of the shoulder 5A. The tear-off edge in connection with the centrifugal force acting on the leakage at this point causes the leakage to be detached and thrown away from the shoulder 5A. The leakage thrown away is caught by the catching structure 5B and passed to a reservoir 7 located underneath the shaft seal 4.
  • the reservoir 7 is formed by the housing 2 of the electric machine 11.
  • the catching structure 5B At its radially inner end, i.e. in an area adjacent to the rotor shaft 1, the catching structure 5B has a leakage guiding device 13, which is designed here in the form of a bend, so that the radially inner end of the catching structure 5B is pot-shaped and parallel to the rotor shaft 1 ver runs towards the shoulder 5A. Leak that is thrown upwards and is caught there by the catching structure 5B thus flows along the catching structure 5B and the leakage guide device 13 down to the reservoir 7 without dripping back onto the rotor shaft 1.
  • the catch structure 5B can, as shown in FIG. 1, otherwise be designed in the form of a plate.
  • a leakage guide device 9, 10 which, according to the exemplary embodiment shown, is designed as a recess 9 provided in the housing 2 of the electric machine 11.
  • the recess 9 can, as shown here, be wedge-shaped in the housing 2.
  • the recess 9 can also be configured, for example, in the shape of a rectangle or a channel.
  • the leakage guide device 9, 10 thus serves the purpose of giving a certain direction to a leak flowing off the housing 2 of the electric machine 11 in the direction of the rotor shaft 1 so that the leakage is directed into the reservoir 7 without affecting the rotor shaft 1 to drip back.
  • the leakage guide device 9, 10 thus forms a type of drip edge along which the leakage drips off into the reservoir 7. A renewed contact of the leakage with the rotor shaft 1 can be prevented ver.
  • the recess 9 provided in the housing 2 of the electric machine 11 can already be produced during the manufacture of the housing 2. If the housing 2 is manufactured, for example, as a cast housing, then the recess 9 can be produced directly during casting. Alternatively, the recess 9 can be made in the housing 2 of the electric machine 11 afterwards, for example the recess 9 can be milled into the housing 2.
  • a shaft earth 6 is arranged axially between the safety gear 5 and the shaft seal 4 with respect to the axis of rotation L of the rotor shaft 1.
  • These ele ments 4, 5, 6 are immediately adjacent to each other.
  • the safety gear 5 could also be arranged axially between the shaft ground 6 and the Wel lendichtung 4.
  • the shaft ground 6 is used for the permanent electrical connection of the rotor shaft 1 to the housing 2 as an electrical reference potential. In this way, bearings 8 for mounting the shaft 1 in the housing 2 are protected from damage that can develop on the bearings 8 due to differences in electrical potential.
  • the Wellener extension 6 is shown here as an example of a shaft grounding ring.
  • the shaft seal 4 and the shaft ground 6 are held in position by a housing section of the housing 2.
  • This housing section has at least one passage 12 which is arranged axially between the shaft seal 4 and the shaft ground 6 with respect to the axis of rotation L of the rotor shaft 1.
  • This passage 12 leads radially away from the shaft seal 4 and the shaft ground 6 and serves to remove particles from the shaft ground 6 on the one hand and particles from the shaft seal 4 on the other hand. This is indicated in FIG. 1 by an arrow leading downwards at the opening 12.
  • Part of a leakage penetrating the shaft seal 4 can flow axially in the direction of the shaft ground 6 and into the passage 12 along the housing section of the housing 2 of the electric machine 11, in which the shaft seal 4 and the shaft ground 6 are arranged. This part of the leakage is discharged downwards directly into the reservoir 7 through the passage 12.
  • the recess 9 is arranged axially between the shaft seal 4 and the passage 12 with respect to the axis of rotation L of the rotor shaft 1.
  • the bearing 8 for the rotatable mounting of the rotor shaft 1 on the housing 2 of the electric machine 11, here embodied as a deep groove ball bearing, for example.
  • the bearing 8 is arranged on a first diameter d1 of the rotor shaft 1.
  • the Wel lendichtung 4 and the shaft ground 6 are arranged on a different, second diameter d2 of the rotor shaft 1.
  • the shoulder 5A forms a different, third diameter d3 of the rotor shaft 1.
  • d1 ⁇ d2 ⁇ d3 applies.
  • other dimensions of the diameters d1, d2, d3 could also be selected.
  • the first diameter d1 could be made smaller than the second diameter d2, while the second diameter d2, on the other hand, could be made larger than the third diameter d3.
  • a tear-off edge for the leak arises in the area of the trap structure 5B, which, in conjunction with the centrifugal force acting on the leak at this point, causes the leak to detach and hurl it away from the tear-off edge in the direction of the trap structure 5B.
  • FIG. 2 shows a partial view of a longitudinal section through the electric machine 11 in an area of the electric machine 11 which is opposite the area shown in FIG. 1.
  • the essential difference is that in the shown area of the embodiment according to FIG. 2 no shaft grounding 6 is provided and that the leakage guiding device 9, 10 is designed differently. Otherwise, the explanations apply to the embodiment according to FIG. 1 also to the embodiment according to FIG. 2.
  • the interior of the electric machine 11 is located here on the right-hand side of the shaft seal 4.
  • the leakage guiding device 9, 10 is not designed as a recess 9 but as an elevation 10.
  • the elevation 10 can be formed by the housing 2 of the electric machine 11 itself.
  • the elevation 10 can already be manufactured during the manufacture of the housing 2. If the housing 2 is manufactured, for example, as a cast housing, then the elevation can be produced directly when the housing is being cast.
  • the elevation 10 can be introduced into the housing 2 of the electric machine 11 at a later date.
  • an annular disk can be introduced into the housing 2 which protrudes beyond the contour of the housing section on which the leakage flows off. The annular disk thus forms a drip edge along which the leakage can drip off into the reservoir 7.
  • the leakage guide device 9, 10 embodied as an elevation 10 can also prevent a leak flowing back along the housing 2 of the electric machine 11 in the direction of the rotor shaft 1 from dripping back.
  • the shoulder 5A which forms the tear-off edge for the Lecka ge, has a device on both sides to prevent an upwardly thrown Lecka ge into the reservoir 7 below derive. This reliably prevents the leakage from dripping back onto the rotor shaft 1.
  • the sealing device 3 according to FIG. 1 for sealing the rotor shaft 1 is arranged on a first side of the electric machine 11 and the sealing device 3 according to FIG. 2 on one of the first side opposite the second side of the E- Machine 11 is arranged for sealing the rotor shaft 1 there.
  • a rotor of the electric machine 11 connected to the rotor shaft 1 is then arranged in particular axially adjacent to and between the two catching structures 5B from FIGS. 1 and 2.
  • 3 shows a partial view of a longitudinal section through the electric machine 11 in a region of a sealing device 3 of the electric machine 11 in a further embodiment.
  • the main difference from the embodiment shown in FIG. 1 is that the catch structure 5B of the catch device 5 is designed differently.
  • the explanations for the embodiment according to FIG. 1 also apply to the embodiment according to FIG. 2.
  • the interior of the electric machine 11 is located here on the left-hand side of the shaft seal 4.
  • the catching structure 5B of the catching device 5 has a thicker material thickness than the catching structure 5B shown in FIG. 1.
  • the thicker material thickness of the catching structure 5B enables the leakage guide device 13 provided at the radially inner end of the catching structure 5B to be designed as a notch or groove in the latter.
  • the catch structure 5B can be designed as a cast component or as a plastic component, which is designed for attachment to the housing 2 of the electric machine 11. In the exemplary embodiment shown, the catch structure 5B is pressed into the housing 2 of the electric machine 11.
  • a sealing element is arranged which, in the assembled state of the catch structure 5B, seals it off from the housing 2 of the electric machine 11. Leak that is thrown upwards and is caught by the trapping structure 5B there flows along the trapping structure 5B and the leakage guide device 13, which is designed as a notch or groove in the trapping structure 5B, down to the reservoir 7 without dripping back onto the rotor shaft 1.
  • the catch structure 5B can, as shown in Fig. 1, otherwise be plate-shaped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Die Erfindung betrifft eine E-Maschine (11) mit einem Gehäuse (2), einer drehbaren Rotorwelle (1) und einer Leckage-Leitvorrichtung (9,10) zum Leiten einer von der Rotorwelle (1) entfernten und entlang einer Kontur des Gehäuses (2) der E-Maschine (11) in Richtung auf die Rotorwelle 1 abfließenden Leckage in ein Reservoir (7). Die Erfindung betrifft zudem eine Antriebsvorrichtung zum elektrischen Antrieb eines Kraftfahrzeugs, aufweisend eine solchen E-Maschine (11) zur Bereitstellung einer Antriebsleistung der Antriebsvorrichtung.

Description

E-Maschine und Antriebsvorrichtunq
Die Erfindung betrifft zum einen eine E-Maschine mit einer Leckage-Leitvorrichtung sowie eine Antriebsvorrichtung zum elektrischen Antrieb eines Kraftfahrzeugs, auf weisend eine E-Maschine.
Dichtungsvorrichtungen für Wellen sind an sich bereits bekannt, beispielsweise Ra dialwellendichtungen oder Labyrinthdichtungen. Hierdurch wird ein Austritt eines gas förmigen oder flüssigen Fluids, wie beispielsweise eines Schmiermittels, im Bereich der Welle verhindert.
Aus der DE 10 2016 207 672 A1 ist ein Dichtungssystem für eine Welle bekannt, bei dem neben der eigentlichen Wellendichtung auch ein Wellenerdungsring vorgesehen ist. Eine Ausführungsform dieses Dichtungssystems weist zwei Wellendichtungen auf, zwischen denen der Wellenerdungsring angeordnet ist.
Aufgabe der Erfindung ist es, den Stand der Technik weiterzubilden.
Diese Aufgabe wird durch die Merkmale der Hautpansprüche gelöst. Bevorzugte Ausführungsformen sind den Unteransprüchen entnehmbar.
Demnach wird eine E-Maschine mit einem Gehäuse, einer gegenüber dem Gehäuse drehbaren Rotorwelle und einer Leckage-Leitvorrichtung vorgeschlagen. Zudem wird eine Antriebsvorrichtung zum elektrischen Antrieb eines Kraftfahrzeugs vorgeschla gen, aufweisend eine solche E-Maschine zur Bereitstellung einer Antriebsleistung der Antriebsvorrichtung. Eine solche E-Maschine wandelt elektrische Energie in eine me chanische Rotationsbewegung um, oder umgekehrt. Eine solche E-Maschine ist im Bedarfsfall als elektrischer Generator oder Motor betreibbar. Bei der E-Maschine handelt es sich insbesondere um eine Synchronmaschine oder eine Asynchronma schine. Die Leckage-Leitvorrichtung dient zum Leiten einer von der Rotorwelle entfernten und entlang einer Kontur des Gehäuses der E-Maschine in Richtung auf die Rotor welle abfließenden Leckage in ein Reservoir.
Die Rotorwelle ist insbesondere mit einem Rotor der E-Maschine verbunden, was auch eine einstückige Ausführung von Rotor und Rotorwelle umfasst. Der Rotor ist insbesondere mittels eines gehäusefesten Stators der E-Maschine drehbar. Die E- Maschine verfügt über eine Dichtungsvorrichtung zum Abdichten der Rotorwelle.
Bevorzugt verfügt die E-Maschine über einen Innenraum, in dem der mit der Rotor welle verbundene Rotor drehbar angeordnet ist. Die Rotorwelle weist dabei an der Dichtungsvorrichtung aus dem Innenraum hinaus. Die Dichtungsvorrichtung dichtet den Innenraum der E-Maschine also an der Rotorwelle gegen ein Äußeres ab. Die Dichtungsvorrichtung weist neben einer Wellendichtung auch eine Fangvorrichtung zum Entfernen einer die Wellendichtung durchdringenden Leckage von der Rotorwel le auf. Die Fangvorrichtung arbeitet vorzugsweise berührungslos. Es ist somit keine an der Rotorwelle anliegende und dadurch Reibungsarbeit verrichtende zusätzliche Dichtungslippe, Bürste oder sonstiges Komponente erforderlich, um die Leckage von der Rotorwelle abzustreifen. Eine solche Fangvorrichtung arbeitet quasi verschleiß frei und ohne Reibungsverluste.
Unter einer die Wellendichtung durchdringenden Leckage wird in diesem Zusam menhang insbesondere ein Volumenstrom eines Fluids verstanden, das die Wellen dichtung zwar grundsätzlich zurückhalten soll, das jedoch aus unterschiedlichen Gründen die Wellendichtung ungewollt überwindet. Beispielsweise entsteht eine sol che Leckage dann, wenn sich ein ausreichend großer Spalt zwischen der Wellen dichtung und der Rotorwelle auftut und das Fluid dort entlang der Rotorwelle hin durchströmen kann. Ein solches Fluid kann insbesondere flüssig sein. Ein solches Fluid kann insbesondere ein Schmiermittel sein.
Unter einer Wellendichtung wird insbesondere ein Bauelement verstanden, das das Fluid im Bereich der Rotorwelle zurückhalten soll. Solche Wellendichtungen sind an sich bereits bekannt, beispielsweise als Radialwellendichtring oder als Labyrinthdich tung.
Die Fangvorrichtung arbeitet insbesondere durch Erzeugung einer auf die Leckage wirkenden Fliehkraft. Diese tritt dann auf, wenn die Rotorwelle rotiert. Eine für die Fangvorrichtung vorgesehene lokale Vergrößerung des Durchmessers (Verdickung) der Welle bewirkt, dass die Leckage durch die Wellenrotation radial nach außen be wegt wird. Dies erfolgt in so einem Ausmaß, dass sich die Leckage durch die dabei auftretende Fliehkraft von der Welle ablöst und von der restlichen Fangvorrichtung aufgefangen und abgeführt wird. Die Fangvorrichtung kann die aufgefangene Lecka ge zu einem Reservoir leiten, zum Sammeln der aufgefangenen und abgeführten Leckage.
Vorzugsweise ist die Fangvorrichtung durch eine an der Rotorwelle angeordnete Schulter sowie eine diese Schulter radial umgebende Fangstruktur ausgebildet. Eine solche Schulter bildet einerseits eine lokale Verdickung der Rotorwelle und anderer seits eine Abrisskante für die Leckage aus. Somit ergibt sich bereits bei einer relativ geringen Rotationsgeschwindigkeit der Rotorwelle ein Ablösen und Wegschleudern der Leckage von der Rotorwelle. Die Schulter ist hierbei für das Ablösen der Leckage von der Rotorwelle vorgesehen, während die Fangstruktur für das eigentliche Auf fangen und Abführen der mittels der Schulter abgelösten Leckage vorgesehen ist.
Die Abrisskante kann über eine geeignete Form verfügen, damit sich die Leckage besonders gut davon ablöst. Insbesondere kann die Abrisskante scharfkantig oder grätig (also mit Grat) ausgebildet sein.
Die an der Rotorwelle angeordnete Schulter kann entweder durch eine Wellenschul ter ausgebildet sein oder durch ein auf der Rotorwelle befestigtes und die Rotorwelle radial umgebendes Bauteil gebildet sein. Eine solche Wellenschulter wird durch die Rotorwelle selbst gebildet, also durch eine entsprechende Formgebung der Rotor welle selbst, beispielsweise im Rahmen eines spanabhebenden Drehprozesses. Ein solches die Welle radial umgebendes Bauteil kann beispielsweise ein separater Ring sein, der auf die Rotorwelle aufgepresst ist oder anderweitig darauf befestigt ist. Die ses Bauteil bildet also dann die Verdickung auf der Rotorwelle mit der Abrisskante aus. Somit kann einfach und kostengünstig derjenige Teil der Fangvorrichtung aus gebildet sein, der zum Ablösen der Leckage von der Welle vorgesehen ist.
Vorzugsweise ist die die Schulter radial umgebende Fangstruktur durch ein die Ro torwelle drehbar lagerndes Gehäuse ausgebildet. Ein solches Gehäuse verfügt also über zumindest ein Lager, mittels dessen die Rotorwelle rotierbar gelagert ist. Die Fangstruktur kann beispielsweise eine spezielle Gussstruktur im Gehäuse sein, die während einer Gussherstellung des Gehäuses gebildet wird. Sie kann allerdings auch anderweitig in das Gehäuse eingearbeitet sein. Alternativ dazu kann die Fang struktur auch zur Befestigung an das Gehäuse ausgebildet sein, beispielsweise zum Anschrauben, Anschweißen, Einpressen oder Ankleben. In diesem Fall bestehen das eigentliche Gehäuse und die Fangstruktur aus unterschiedlichen Teilen. Die Fangstruktur ist vorzugsweise aus Metallblech, Kunststoff oder Guss gebildet. Dadurch ist sie besonders einfach und kostengünstig herstellbar.
Vorzugsweise weist die Fangstruktur in einem radial inneren Bereich eine Umbie gung auf, sodass ein radial inneres Ende der Fangstruktur topfförmig ausgebildet ist und hin zur Wellenschulter gerichtet ist. Auf diese Weise wird verhindert, dass nach oben geschleuderte Leckage, die entlang der Fangstruktur in Richtung Welle hinab fließt auf die Welle zurücktropft. Stattdessen wird dieser Anteil der Leckage an der Topfform der Fangstruktur entlang um die Welle herum geleitet.
Ein Teil der nach radial außen geschleuderten Leckage gelangt jedoch auch mit ei nem Gehäuseabschnitt des Gehäuse der E-Maschine in Kontakt und fließt somit ent lang einer Kontur des Gehäuseabschnitts in Richtung auf die Rotorwelle ab. Um zu verhindern, dass dieser Teil der Leckage auf die Rotorwelle zurücktropft, weist die E- Maschine eine Leckage-Leitvorrichtung auf. Durch die Leckage-Leitvorrichtung wird dieser Teil der Leckage entlang des Gehäuses der E-Maschine um die Rotorwelle herum in das Reservoir geleitet.
In einer Ausführungsform der Erfindung ist vorgesehen, dass die Leckage- Leitvorrichtung als in dem Gehäuse der E-Maschine vorgesehene Vertiefung ausge bildet ist. Die Vertiefung kann beispielsweise keilförmig, rechteckförmig oder rinnen- förmig in dem Gehäuse ausgebildet sein. Die in dem Gehäuse der E-Maschine vor gesehene Vertiefung kann bereits bei der Herstellung des Gehäuses gefertigt oder nachträglich eingebracht, beispielsweise eingefräst werden.
In einer weiteren Ausführungsform der Erfindung ist vorgesehen, dass die Leckage- Leitvorrichtung als an dem Gehäuse der E-Maschine vorgesehene Erhöhung ausge bildet ist. Die Erhöhung kann beispielsweise durch das Gehäuse der E-Maschine selbst ausgebildet sein. Alternativ kann die Erhöhung an dem Gehäuse nachträglich angebracht werden. Hierzu kann beispielsweise ein separater Ring an dem Gehäuse der E-Maschine angebracht werden, welcher über die Kontur des Gehäuseab schnitts, an welchem die Leckage abfließt, hinausragt und die Leckage in Richtung Reservoir führt. Dieser Ring kann auf die Rotorwelle aufgepresst oder anderweitig darauf befestigt sein. Bei Ausbildung des Rings als sogenannter Sprengring kann dieser in einer am Getriebegehäuse vorgesehenen Nut eingebracht werden.
Die als Vertiefung oder als Erhöhung ausgebildete Leckage-Leitvorrichtung dient somit dem Zweck, einer an dem Gehäuse der E-Maschine in Richtung der Rotorwelle abfließenden Leckage eine bestimmte Richtung vorzugeben, damit die Leckage ge zielt in das Reservoir geführt wird, ohne auf die Rotorwelle zurückzutropfen. Ein er neuter Kontakt der Leckage mit der Rotorwelle kann dadurch verhindert werden.
Die Dichtungsvorrichtung kann über eine Wellenerdung verfügen. Unter einer sol chen Wellenerdung wird insbesondere ein Bauelement verstanden, das eine drehba re elektrische Verbindung zwischen der Welle und einem elektrischen Bezugspoten tial herstellt. Ein solches Bezugspotential ist beispielsweise ein elektrisches Erdpo tential oder eine elektrische Masse. Eine solche Wellenerdung dient nicht zur elektri schen Kommutierung. Vorzugsweise verbindet die Wellenerdung die Welle elektrisch mit dem besagten Gehäuse. Die Wellenerdung verfügt insbesondere über zumindest eine massive oder flexible Bürste zur Herstellung eines Schleifkontakts mit der Welle. Die Wellenerdung ist insbesondere als Wellenerdungsring ausgebildet.
Vorzugsweise sind die Wellendichtung und die Wellenerdung und die Fangvorrich tung axial hintereinander angeordnet. Mit der axialen Richtung wird hierbei die Rieh- tung entlang der Rotationsachse der Welle verstanden. Hierbei kann die Wellener dung axial zwischen der Wellendichtung und der Fangvorrichtung angeordnet sein. Dadurch kann die Fangvorrichtung auch einen möglichen mechanischen Abrieb der Wellenerdung auffangen. Ein solcher Abrieb stammt in der Regel von der oder den Bürsten der Wellenerdung. Alternativ dazu kann die Fangvorrichtung axial zwischen der Wellendichtung und der Wellenerdung angeordnet sein. Somit liegt die Wellener dung jenseits der Wellendichtung und der Fangvorrichtung, und sie kommt somit nicht oder nur kaum mit der Leckage in Berührung.
Es kann vorgesehen sein, dass die Wellenerdung auf der Fangstruktur angeordnet ist. Die Wellenerdung wird von der Fangstruktur dann also getragen. Somit wird die Welle im Bereich der Fangstruktur mit dem elektrischen Bezugspotential elektrisch verbunden. Die Fangstruktur kann somit selbst Teil der elektrischen Verbindung zwi schen der Welle und dem elektrischen Bezugspotential sein. Die Fangstruktur und die Wellenerdung können somit eine gemeinsam montierbare Einheit bilden.
Die Abrisskante der Wellenschulter kann axial zwischen der Wellendichtung und der Wellenerdung angeordnet sein. Somit wird verhindert, dass Leckage der Wellendich tung bis zur Wellenerdung gelangt. Dies ist auch dann anwendbar, wenn die Wellen erdung auf der Fangstruktur angeordnet ist.
Die vorgeschlagene Antriebsvorrichtung dient zum elektrischen Antrieb eines Kraft fahrzeugs. Dementsprechend weist die Antriebsvorrichtung eine E-Maschine zur Be reitstellung einer Antriebsleistung für das Kraftfahrzeug auf. Die Antriebsvorrichtung kann insbesondere als Antriebsmodul ausgebildet sein und beispielsweise zur An ordnung an eine angetriebene Achse des Kraftfahrzeugs ausgebildet sein. Die E- Maschine der Antriebsvorrichtung ist durch die vorgeschlagene E-Maschine gebildet, also umfasst sie die vorgeschlagene Leckage-Leitvorrichtung.
Im Folgenden wir die Erfindung anhand von Figuren näher erläutert, aus welchen weitere bevorzugte Ausführungsformen und Merkmale der Erfindung entnehmbar sind. In schematischer Darstellung zeigen hierbei: Fig. 1 eine Teilansicht eines Längsschnittes durch eine E-Maschine in einem Bereich einer Dichtungsvorrichtung der E-Maschine;
Fig. 2 eine Teilansicht eines Längsschnittes durch die E-Maschine in einem Bereich der E-Maschine 11 , welcher dem in Fig. 1 gezeigten Bereich gegenüberliegt; und
Fig. 3 eine Teilansicht eines Längsschnittes durch die E-Maschine in einem Bereich einer Dichtungsvorrichtung der E-Maschine in einer weiteren Ausführungsform.
In den Figuren sind gleiche oder zumindest funktionsgleiche Bauteile oder Elemente mit gleichen Bezugszeichen versehen.
Fig. 1 zeigt einen Teil eines Längsschnittes durch eine E-Maschine 11 in einem Be reich eines axialen Endes der E-Maschine 11. In diesem Bereich durchdringt eine um eine Rotationsachse L drehbar gelagerte Rotorwelle 1 der E-Maschine 11 ein Ge häuse 2 der E-Maschine 11 . Zur Abdichtung eines Innenraumes der E-Maschine 11 im Bereich der Rotorwelle 1 ist eine Dichtungsvorrichtung 3 vorgesehen. Die Dich tungsvorrichtung 3 umfasst eine Wellendichtung 4, hier beispielhaft als Radialwellen dichtring dargestellt, sowie eine axial davon beabstandete Fangvorrichtung 5. Der Innenraum der E-Maschine 11 befindet sich in Fig. 1 linksseitig der Wellendichtung 4.
Die Wellendichtung 4 soll einen Eintritt eines Fluids, insbesondere eines Schmiermit tels, in den Innenraum der E-Maschine 11 verhindern. Dies gelingt in der Praxis nicht bei allen auftretenden Betriebsbedingungen der E-Maschine 11 . Es kann daher pas sieren, dass eine Leckage die Wellendichtung 4 durchdringt und entlang der Rotor welle 1 in den Innenraum der E-Maschine 11 einströmt. Dies wird durch die Fangvor richtung 5 verhindert. Die Fangvorrichtung 5 kann somit auch als Leckage- Fangvorrichtung bezeichnet werden. Die Fangvorrichtung 5 besteht im gezeigten Ausführungsbeispiel aus einer Wellenschulter 5A an der Rotorwelle 1 sowie einer an dem Gehäuse 2 befestigten Fangstruktur 5B. Die Fangstruktur 5B umgibt die Schul ter 5A radial, liegt daran jedoch nicht an. Somit arbeitet die Fangstruktur 5B berüh rungslos. Die gezeigte Fangstruktur 5B besteht beispielsweise aus Metallblech oder Kunststoff. Die Schulter 5A bildet eine Abrisskante für die Leckage aus, die durch die Wellendichtung 4 hindurch gelangt.
Wenn sich die Rotorwelle 1 um die Rotationsachse L dreht und dabei eine Leckage an der Wellendichtung 4 auftritt, gelangt diese zur Schulter 5A. Dort wird sie entlang der Schulter 5A nach radial außen zur Abrisskante der Schulter 5A geführt. Die Ab risskante in Verbindung mit der auf die Leckage an dieser Stelle wirkenden Fliehkraft bewirkt ein Ablösen und Wegschleudern der Leckage von der Schulter 5A. Die weg geschleuderte Leckage wird von der Fangstruktur 5B aufgefangen und zu einem un terhalb der Wellendichtung 4 befindlichen Reservoir 7 geleitet. Das Reservoir 7 wird bei dem gezeigten Ausführungsbeispiel durch das Gehäuse 2 der E-Maschine 11 gebildet.
An ihrem radial inneren Ende, also in einem Bereich benachbart zur Rotorwelle 1, weist die Fangstruktur 5B eine Leckage-Leitvorrichtung 13 auf, welche hier in Form einer Umbiegung ausgebildet ist, sodass das radiale innere Ende der Fangstruktur 5B topfförmig ausgebildet ist und parallel zur Rotorwelle 1 hin zur Schulter 5A ver läuft. Leckage die nach oben geschleudert wird und dort von der Fangstruktur 5B aufgefangen wird, fließt somit entlang der Fangstruktur 5B und der Leckage- Leitvorrichtung 13 zum Reservoir 7 hinab, ohne auf die Rotorwelle 1 zurückzutropfen. Die Fangstruktur 5B kann, wie in Fig. 1 dargestellt, ansonsten tellerförmig ausgebil det sein.
Ein Teil der nach radial außen geschleuderten Leckage gelangt jedoch auch mit ei nem Gehäuseabschnitt des Gehäuse 2 der E-Maschine 11 in Kontakt und fließt somit entlang einer Kontur des Gehäuseabschnitts in Richtung auf die Rotorwelle 1 ab. Um zu verhindern, dass dieser Teil der Leckage auf die Rotorwelle 1 zurücktropft, ist eine Leckage-Leitvorrichtung 9, 10 vorgesehen, welche gemäß dem gezeigten Ausfüh rungsbeispiel als in dem Gehäuse 2 der E-Maschine 11 vorgesehene Vertiefung 9 ausgebildet ist. Die Vertiefung 9 kann wie hier dargestellt keilförmig in dem Gehäuse 2 ausgebildet sein. Alternativ kann die Vertiefung 9 beispielsweise auch rechteckför mig oder rinnenförmig ausgebildet sein. Die Leckage-Leitvorrichtung 9, 10 dient somit dem Zweck, einer an dem Gehäuse 2 der E-Maschine 11 in Richtung der Rotorwelle 1 abfließenden Leckage eine be stimmte Richtung vorzugeben, damit die Leckage gezielt in das Reservoir 7 geführt wird, ohne auf die Rotorwelle 1 zurückzutropfen. Die Leckage-Leitvorrichtung 9, 10 bildet somit eine Art Abtropfkante, entlang welcher die Leckage in das Reservoir 7 abtropft. Ein erneuter Kontakt der Leckage mit der Rotorwelle 1 kann dadurch ver hindert werden.
Die in dem Gehäuse 2 der E-Maschine 11 vorgesehene Vertiefung 9 kann bereits bei der Herstellung des Gehäuses 2 gefertigt werden. Ist das Gehäuse 2 beispielsweise als Gussgehäuse gefertigt, dann kann die Vertiefung 9 direkt beim Gießen erzeugt werden. Alternativ kann die Vertiefung 9 in dem Gehäuse 2 der E-Maschine 11 nach träglich eingebracht werden, beispielsweise kann die Vertiefung 9 in das Gehäuse 2 eingefräst werden.
Eine Wellenerdung 6 ist in Bezug auf die Rotationsachse L der Rotorwelle 1 axial zwischen der Fangvorrichtung 5 und der Wellendichtung 4 angeordnet. Diese Ele mente 4, 5, 6 sind unmittelbar zueinander benachbart. In Abkehr davon könnte aller dings auch die Fangvorrichtung 5 axial zwischen der Wellenerdung 6 und der Wel lendichtung 4 angeordnet sein.
Die Wellenerdung 6 dient zur permanenten elektrischen Verbindung der Rotorwelle 1 mit dem Gehäuse 2 als elektrisches Bezugspotential. Auf diese Weise werden Lager 8 zur Lagerung der Welle 1 im Gehäuse 2 vor Schäden bewahrt, die sich auf Grund elektrischer Potentialunterschiede an den Lagern 8 ausbilden können. Die Wellener dung 6 ist hier beispielhaft als Wellenerdungsring dargestellt.
Die Wellendichtung 4 und die Wellenerdung 6 werden in dem gezeigten Ausfüh rungsbeispiel von einem Gehäuseabschnitt des Gehäuses 2 in Position gehalten. Dieser Gehäuseabschnitt verfügt über zumindest einen Durchlass 12, der in Bezug auf die Rotationsachse L der Rotorwelle 1 axial zwischen der Wellendichtung 4 und der Wellenerdung 6 angeordnet ist. Dieser Durchlass 12 führt radial von der Wellen dichtung 4 und der Wellenerdung 6 weg und dient zum Abführen von Partikeln von der Wellenerdung 6 einerseits und von Partikeln von der Wellendichtung 4 anderer seits. Dies ist in Fig. 1 durch einen nach unten führenden Pfeil bei der Öffnung 12 angedeutet.
Ein Teil einer die Wellendichtung 4 durchdringenden Leckage kann entlang des Ge häuseabschnitts des Gehäuses 2 der E-Maschine 11 , in welchem die Wellendichtung 4 und die Wellenerdung 6 angeordnet sind, axial in Richtung der Wellenerdung 6 strömen und in den Durchlass 12 gelangen. Durch den Durchlass 12 wird dieser Teil der Leckage nach unten direkt in das Reservoir 7 abgeführt. Die Vertiefung 9 ist in dem gezeigten Ausführungsbeispiel in Bezug auf die Rotationsachse L der Rotorwel le 1 axial zwischen der Wellendichtung 4 und dem Durchlass 12 angeordnet.
Axial benachbart zur Wellendichtung 4 und außerhalb des Innenraumes der E- Maschine 11 befindet sich das Lager 8 zur drehbaren Lagerung der Rotorwelle 1 am Gehäuse 2 der E-Maschine 11 , hier beispielhaft als Rillenkugellager ausgebildet. Das Lager 8 ist an einem ersten Durchmesser d1 der Rotorwelle 1 angeordnet. Die Wel lendichtung 4 und die Wellenerdung 6 sind an einem anderen, zweiten Durchmesser d2 der Rotorwelle 1 angeordnet. Die Schulter 5A bildet einen anderen, dritten Durchmesser d3 der Rotorwelle 1 aus. Hierbei gilt d1 < d2 < d3. In einer alternativen Ausführungsform könnten auch andere Dimensionen der Durchmesser d1 , d2, d3 gewählt werden. So könnte der erste Durchmesser d1 kleiner als der zweite Durch messer d2, der zweite Durchmesser d2 hingegen größer als der dritte Durchmesser d3 ausgebildet sein. Auch bei einer derartigen Dimensionierung der Durchmesser entsteht im Bereich der Fangstruktur 5B eine Abrisskante für die Leckage, welche in Verbindung mit der auf die Leckage an dieser Stelle wirkenden Fliehkraft ein Ablösen und Wegschleudern der Leckage von der Abrisskante in Richtung der Fangstruktur 5B bewirkt.
Fig. 2 zeigt eine Teilansicht eines Längsschnittes durch die E-Maschine 11 in einem Bereich der E-Maschine 11, welcher dem in Fig. 1 gezeigten Bereich gegenüberliegt. Der wesentliche Unterschied besteht darin, dass in dem gezeigten Bereich der Aus führungsform nach Fig. 2 keine Wellenerdung 6 vorgesehen ist und dass die Lecka- ge-Leitvorrichtung 9, 10 anders ausgebildet ist. Im Übrigen gelten die Erläuterungen zur Ausführungsform nach Fig. 1 auch zur Ausführungsform nach Fig. 2. Der Innen raum der E-Maschine 11 befindet sich hier rechtsseitig der Wellendichtung 4.
Gemäß dem in Fig. 2 gezeigten Ausführungsbeispiel ist die Leckage-Leitvorrichtung 9, 10 nicht als Vertiefung 9 sondern als Erhöhung 10 ausgebildet. Die Erhöhung 10 kann wie hier dargestellt durch das Gehäuse 2 der E-Maschine 11 selbst ausgebildet sein. Die Erhöhung 10 kann bereits bei der Herstellung des Gehäuses 2 gefertigt werden. Ist das Gehäuse 2 beispielsweise als Gussgehäuse gefertigt, dann kann die Erhöhung direkt beim Gießen des Gehäuses erzeugt werden. Alternativ kann die Er höhung 10 in dem Gehäuse 2 der E-Maschine 11 nachträglich eingebracht werden. Hierzu kann beispielsweise eine Ringscheibe in das Gehäuse 2 eingebracht werden, welche über die Kontur des Gehäuseabschnitts, an welchem die Leckage abfließt, hinausragt. Die Ringscheibe bildet somit eine Abtropfkante aus, entlang welcher die Leckage in das Reservoir 7 abtropften kann.
Auch durch die als Erhöhung 10 ausgebildete Leckage-Leitvorrichtung 9, 10 kann ein Zurücktropfen einer entlang dem Gehäuse 2 der E-Maschine 11 in Richtung auf die Rotorwelle 1 abfließenden Leckage verhindert werden.
Sowohl bei dem Ausführungsbeispiel nach Fig. 1 als auch bei dem Ausführungsbei spiel nach Fig. 2 ist beidseitig der Schulter 5A, welche die Abrisskante für die Lecka ge ausbildet, eine Vorrichtung vorhanden, um eine nach oben geschleuderte Lecka ge in das unten liegende Reservoir 7 abzuleiten. Dadurch wird ein Zurücktropfen der Leckage auf die Rotorwelle 1 sicher verhindert.
Es kann vorgesehen sein, dass die Dichtungsvorrichtung 3 gemäß Fig. 1 zur Abdich tung der Rotorwelle 1 auf einer ersten Seite der E-Maschine 11 angeordnet ist und die Dichtungsvorrichtung 3 gemäß Fig. 2 auf einer der ersten Seite gegenüberlie genden zweiten Seite der E-Maschine 11 zur dortigen Abdichtung der Rotorwelle 1 angeordnet ist. Ein mit der Rotorwelle 1 verbundener Rotor der E-Maschine 11 ist dann insbesondere axial benachbart zu und zwischen den beiden Fangstrukturen 5B aus Fig. 1 und Fig. 2 angeordnet. Fig. 3 zeigt eine Teilansicht eines Längsschnittes durch die E-Maschine 11 in einem Bereich einer Dichtungsvorrichtung 3 der E-Maschine 11 in einer weiteren Ausfüh rungsform. Der wesentliche Unterschied zu der in Fig. 1 dargestellten Ausführungs form besteht darin, dass die Fangstruktur 5B der Fangvorrichtung 5 anders ausgebil det ist. Im Übrigen gelten die Erläuterungen zur Ausführungsform nach Fig. 1 auch zur Ausführungsform nach Fig. 2. Der Innenraum der E-Maschine 11 befindet sich hier linksseitig der Wellendichtung 4.
Bei dem in Fig. 3 gezeigten Ausführungsbeispiel weist die Fangstruktur 5B der Fang vorrichtung 5 eine dickere Materialstärke auf, als die in Fig. 1 gezeigte Fangstruktur 5B. Die dickere Materialstärke der Fangstruktur 5B ermöglicht es, dass die an dem radial inneren Ende der Fangstruktur 5B vorgesehene Leckage-Leitvorrichtung 13 als Kerbe oder Nut in dieser ausgebildet sein kann. Die Fangstruktur 5B kann als Guss bauteil oder als Kunststoffbauteil ausgebildet sein, welches zur Befestigung an das Gehäuse 2 der E-Maschine 11 ausgebildet ist. In dem gezeigten Ausführungsbeispiel ist die Fangstruktur 5B in das Gehäuse 2 der E-Maschine 11 eingepresst. In dem radial äußeren Umfang der Fangstruktur 5B ist ein Dichtelement angeordnet, wel ches in montiertem Zustand der Fangstruktur 5B diese zum Gehäuse 2 der E- Maschine 11 hin abdichtet. Leckage die nach oben geschleudert wird und dort von der Fangstruktur 5B aufgefangen wird, fließt somit entlang der Fangstruktur 5B und der in der Fangstruktur 5B als Kerbe oder Nut ausgebildeten Leckage-Leitvorrichtung 13 zum Reservoir 7 hinab, ohne auf die Rotorwelle 1 zurückzutropfen. Die Fangstruk tur 5B kann, wie in Fig. 1 dargestellt, ansonsten tellerförmig ausgebildet sein.
Bezuqszeichen
1 Rotorwelle, Welle
2 Gehäuse
3 Dichtungsvorrichtung
4 Wellendichtung
5 Fangvorrichtung
5A Wellenschulter
5B Fangstruktur
6 Wellenerdung
7 Reservoir
8 Lager
9 Leckage-Leitvorrichtung, Vertiefung
10 Leckage-Leitvorrichtung, Erhöhung
11 E-Maschine
12 Durchlass
13 Leckage-Leitvorrichtung, Umbiegung d1 Wellendurchmesser d2 Wellendurchmesser d3 Wellendurchmesser
L Rotationsachse

Claims

Patentansprüche
1. E-Maschine (11 ) mit einem Gehäuse (2), einer drehbaren Rotorwelle (1 ) und einer Leckage-Leitvorrichtung (9,10) zum Leiten einer von der Rotorwelle (1) entfernten und entlang einer Kontur des Gehäuses (2) der E-Maschine (11) in Richtung auf die Rotorwelle 1 abfließenden Leckage in ein Reservoir (7).
2. E-Maschine (11) nach Anspruch 1 , wobei die Leckage-Leitvorrichtung (9, 10) als in dem Gehäuse (2) der E-Maschine (11) vorgesehene Vertiefung (9) ausgebildet ist.
3. E-Maschine (11), nach Anspruch 2, wobei die Vertiefung (9) keilförmig, rechteck förmig oder rinnenförmig in dem Gehäuse (2) der E-Maschine (11) ausgebildet ist.
4. E-Maschine (11) nach Anspruch 1 , wobei die Leckage-Leitvorrichtung (9, 10) als an dem Gehäuse (2) der E-Maschine (11) vorgesehene Erhöhung (10) ausgebildet ist.
5. E-Maschine (11) nach Anspruch 4, wobei die Erhöhung (10) durch das Gehäuse (2) der E-Maschine (11) selbst ausgebildet ist.
6. E-Maschine (11) nach Anspruch 4, wobei die Erhöhung (10) als an dem Gehäuse (2) angebrachter Ring ausgebildet ist.
7. E-Maschine (11 ) nach einem der vorhergehenden Ansprüche, mit einer Dich tungsvorrichtung (3), aufweisend eine Wellendichtung (4) und eine Fangvorrichtung (5) zum Entfernen einer die Wellendichtung (4) durchdringenden Leckage von der Rotorwelle (1).
8. E-Maschine (11) nach Anspruch 7, wobei die Fangvorrichtung (5) zum berüh rungslosen Entfernen einer die Wellendichtung (4) durchdringenden Leckage ausge bildet ist.
9. E-Maschine (11) nach Anspruch 7 oder 8, wobei die Fangvorrichtung (5) durch eine an der Rotorwelle (1 ) angeordnete Schulter (5A) und eine die Schulter (5A) ra dial umgebende Fangstruktur (5B) ausgebildet ist.
10. E-Maschine (11 ) nach Anspruch 9, wobei die Fangstruktur (5B) an ihrem radial inneren Ende eine Leckage-Leitvorrichtung (13) aufweist, zum Leiten einer von der Rotorwelle (1 ) entfernten und von der Fangstruktur (5B) aufgefangenen Leckage in das Reservoir (7).
11 . Antriebsvorrichtung zum elektrischen Antrieb eines Kraftfahrzeugs, aufweisend eine E-Maschine (11 ) zur Bereitstellung einer Antriebsleistung der Antriebsvorrich tung, dadurch gekennzeichnet, dass die E-Maschine (11 ) gemäß einem der Ansprü che 1 bis 10 ausgebildet ist.
PCT/EP2020/077455 2019-10-02 2020-10-01 E-maschine und antriebsvorrichtung WO2021064071A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019215239.2A DE102019215239A1 (de) 2019-10-02 2019-10-02 E-Maschine und Antriebsvorrichtung
DE102019215239.2 2019-10-02

Publications (1)

Publication Number Publication Date
WO2021064071A1 true WO2021064071A1 (de) 2021-04-08

Family

ID=72826841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/077455 WO2021064071A1 (de) 2019-10-02 2020-10-01 E-maschine und antriebsvorrichtung

Country Status (2)

Country Link
DE (1) DE102019215239A1 (de)
WO (1) WO2021064071A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202023103489U1 (de) 2022-06-24 2023-10-05 Dana Tm4 Inc. Ablaufsystem für einen Elektromotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2540010A1 (de) * 1975-09-09 1977-03-10 Siemens Ag Leckfluessigkeitsabdichtung von lagern fluessigkeitsgekuehlter hohler wellen elektrischer maschinen
DE3426705A1 (de) * 1984-07-20 1986-01-30 Oskar Krieger Maschinen- und Metallbau AG, Muttenz Dichtungsanordnung
US20110299803A1 (en) * 2009-04-01 2011-12-08 Zhongshan Broad-Ocean Motor Manufacturing Co., Ltd. Washer and motor bearing system comprising the same
WO2017178597A1 (de) * 2016-04-15 2017-10-19 Gkn Automotive Ltd. Dichtungsanordnung für eine welle
DE102016207672A1 (de) 2016-05-04 2017-11-09 Bayerische Motoren Werke Aktiengesellschaft Dichtungssystem für eine Welle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2004440A (en) * 1931-11-10 1935-06-11 Bosch Robert Packing arrangement for electrical machines
DE3930280A1 (de) * 1989-09-11 1991-03-28 Skf Gmbh Beruehrungslose dichtung
DE102012203697A1 (de) * 2012-03-08 2013-09-12 Siemens Aktiengesellschaft Elektrische Maschine mit einem Rotor zur Kühlung der elektrischen Maschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2540010A1 (de) * 1975-09-09 1977-03-10 Siemens Ag Leckfluessigkeitsabdichtung von lagern fluessigkeitsgekuehlter hohler wellen elektrischer maschinen
DE3426705A1 (de) * 1984-07-20 1986-01-30 Oskar Krieger Maschinen- und Metallbau AG, Muttenz Dichtungsanordnung
US20110299803A1 (en) * 2009-04-01 2011-12-08 Zhongshan Broad-Ocean Motor Manufacturing Co., Ltd. Washer and motor bearing system comprising the same
WO2017178597A1 (de) * 2016-04-15 2017-10-19 Gkn Automotive Ltd. Dichtungsanordnung für eine welle
DE102016207672A1 (de) 2016-05-04 2017-11-09 Bayerische Motoren Werke Aktiengesellschaft Dichtungssystem für eine Welle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202023103489U1 (de) 2022-06-24 2023-10-05 Dana Tm4 Inc. Ablaufsystem für einen Elektromotor

Also Published As

Publication number Publication date
DE102019215239A1 (de) 2021-04-08

Similar Documents

Publication Publication Date Title
DE102013204436A1 (de) Antrieb für eine Transportvorrichtung, Satz von Antrieben und Verfahren zum Antreiben einer Transportvorrichtung
DE102019133889A1 (de) Elektrische Maschine mit einer Ableitvorrichtung
WO2010072497A2 (de) Elektrische maschine mit rotorstützschild
DE102013208460A1 (de) Pumpenanordnung mit einer Gleitlageranordnung
DE102014207470A1 (de) E-Maschine mit einem gekühlten Rotor
DE10120419A1 (de) Einrichten zum Verhindern von Schmiermittelaustritt bei einem hohlen Wellenzahnradgetriebe
WO2021064071A1 (de) E-maschine und antriebsvorrichtung
WO2020104110A1 (de) Dichtungsvorrichtung, e-maschine und antriebsvorrichtung
WO2020104109A1 (de) Dichtungsvorrichtung, e-maschine und antriebsvorrichtung
DE102016106996B4 (de) Dichtungsanordnung für eine Welle
DE102019112825A1 (de) Adaptionsblech für Wälzlager mit integrierter Stromableitung
DE2343752A1 (de) Antriebsmotor fuer im untertagebergbau eingesetzte gewinnungsmaschinen, insbesondere walzenschraemmaschinen
DE102019212499A1 (de) Vorrichtung zur elektrisch leitfähigen Verbindung zwischen einer Welle und einem Gehäuse
EP0785612B1 (de) Einrichtung zur Förderung des Getriebeöls zur Kühlung elektrischer Maschinen
DE102007032991A1 (de) Schleifkontakteinrichtung zur Potenzialableitung an einer Werkzeugmaschinenspindel
EP4068583A2 (de) Elektrische maschine mit einer hülse am endabschnitt eines rotors
DE112016004378T5 (de) Verbessertes dichtungssystem für drehbare wellen
DE102021207812A1 (de) Elektromotor
EP2853019B1 (de) Elektrische maschine
DE102015205581B4 (de) Ferrofluiddichteinrichtung und elektrische Antriebsmaschine mit Ferrofluiddichteinrichtung
DE102019133866A1 (de) Getriebeeinheit für eine Antriebsanordnung sowie Verfahren zur Montage der Getriebeeinheit
DE102019133882A1 (de) Ableitvorrichtung sowie elektrische Maschine mit der Ableitvorrichtung
DE102017218743A1 (de) Verfahren zum Verbinden einer Drehmomentwandlereinheit mit einem Getriebe
EP3563069B1 (de) Welle mit einer abspritzkante zum abführen entlang der welle eindringenden schmiermittels mittels fliehkraft
DE102022004575B3 (de) Elektrischer Radnabenantrieb für ein Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20789501

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20789501

Country of ref document: EP

Kind code of ref document: A1