WO2021063318A1 - 指示方法和装置、接收处理方法和装置、终端和存储介质 - Google Patents

指示方法和装置、接收处理方法和装置、终端和存储介质 Download PDF

Info

Publication number
WO2021063318A1
WO2021063318A1 PCT/CN2020/118441 CN2020118441W WO2021063318A1 WO 2021063318 A1 WO2021063318 A1 WO 2021063318A1 CN 2020118441 W CN2020118441 W CN 2020118441W WO 2021063318 A1 WO2021063318 A1 WO 2021063318A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
frequency domain
resource
carried
indication information
Prior art date
Application number
PCT/CN2020/118441
Other languages
English (en)
French (fr)
Inventor
贺海港
卢有雄
杨瑾
邢卫民
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021063318A1 publication Critical patent/WO2021063318A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • This application relates to a wireless communication network, for example, to an indication method and device, a receiving and processing method and device, a terminal, and a storage medium.
  • V2X Vehicle to Everything, V2X for short
  • a resource reservation mechanism is often used for the resource reservation mechanism.
  • the terminal in addition to indicating the current PSSCH (Pysical Sidelink Share Channel, physical side link shared channel) resource allocation, the terminal also needs to further indicate the following in the SCI (Sidelink Control Information) Which resources are reserved by the terminal.
  • SCI Servicelink Control Information
  • the PSSCH may be a PSSCH with a fixed frequency domain bandwidth, or may not be a PSSCH with a fixed frequency domain bandwidth.
  • it is impossible to determine which type of PSSCH the PSSCH to be received is, and therefore, it is impossible to determine the frequency domain bandwidth and frequency domain position for receiving the PSSCH, which may lead to reception errors.
  • the embodiments of the present application provide an indication method and device, a receiving processing method and device, a terminal, and a storage medium.
  • the embodiment of the present application provides an indication method, including:
  • the type of the first channel is the type of the first channel
  • the type of information carried in the first channel is the type of information carried in the first channel
  • the type of the first channel and the type of the second channel are The type of the first channel and the type of the second channel;
  • the frequency domain resources of the first channel and the frequency domain resources of the second channel overlap.
  • the embodiment of the present application also provides a receiving processing method, including:
  • the frequency domain resources of the first channel overlap with the frequency domain resources of the second channel.
  • An embodiment of the present application provides an indicating device, which includes:
  • the indication module is used to indicate at least one of the following according to the indication mode through the first channel:
  • the type of the first channel is the type of the first channel
  • the type of information carried in the first channel is the type of information carried in the first channel
  • the type of the first channel and the type of the second channel are The type of the first channel and the type of the second channel;
  • the frequency domain resources of the first channel and the frequency domain resources of the second channel overlap.
  • An embodiment of the present application provides a receiving processing device, which includes:
  • An indication information obtaining module configured to receive a first channel, and obtain indication information of the first channel with respect to the first channel and/or the second channel;
  • a receiving module configured to receive the second channel based on the indication information
  • the frequency domain resources of the first channel overlap with the frequency domain resources of the second channel.
  • An embodiment of the present application provides a terminal, which includes a memory and one or more processors;
  • the memory is configured to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement any one of the methods in the embodiments of the present application.
  • the embodiment of the present application provides a storage medium that stores a computer program, and the computer program implements any one of the methods in the embodiments of the present application when the computer program is executed by a processor.
  • FIG. 1 is a schematic diagram of transmission according to an embodiment of the application
  • FIG. 2 is another schematic diagram of transmission provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of a channel structure provided by an embodiment of the application.
  • FIG. 4 is a method flowchart of a method for indicating resource reservation and resource allocation according to an embodiment of the application
  • FIG. 5 is another schematic diagram of transmission provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of another transmission provided by an embodiment of this application.
  • FIG. 7 is another schematic diagram of transmission provided by an embodiment of this application.
  • FIG. 8 is another schematic diagram of transmission provided by an embodiment of this application.
  • FIG. 9 is another schematic diagram of transmission provided by an embodiment of this application.
  • Fig. 10 is an enlarged view of a part of frequency domain resources of a time slot in Fig. 9;
  • FIG. 11 is a schematic diagram of a resource structure in a time slot provided by an embodiment of the application.
  • FIG. 12 is another schematic diagram of transmission provided by an embodiment of this application.
  • FIG. 13 is another schematic diagram of transmission provided by an embodiment of this application.
  • FIG. 14 is a method flowchart of a receiving processing method according to an embodiment of the application.
  • FIG. 15 is a structural block diagram of a receiving processing apparatus provided by an embodiment of the application.
  • a sidelink communication system when there is a business to be transmitted between User Equipment (UE, also called a terminal), the UE The service does not pass through the network side, that is, does not pass through the cellular link between the UE and the base station, but is directly transmitted by the data source UE to the target UE through Sidelink.
  • This direct communication mode between the UE and the UE has a greater To a certain extent, it is different from the characteristics of the traditional cellular system communication mode.
  • Typical applications of sidelink communication include device-to-device (D2D) communication and vehicle-to-everything (V2X) communication.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • V2X Vehicle to Vehicle
  • V2P Vehicle to Pedestrian
  • V2I Vehicle to Infrastructure
  • Sidelink communication not only saves wireless spectrum resources, but also reduces the data transmission pressure of the core network, which can reduce system resource occupation, increase the spectrum efficiency of cellular communication systems, and reduce communication delays. And to a large extent save network operating costs.
  • the terminal indicates the current PSSCH resource allocation through an SCI, and also indicates which resources are reserved by the terminal at the same time. Other terminals obtain the current PSSCH resource allocation status and resource reservation status of the terminal through the reception of the SCI.
  • Figures 1 and 2 are both schematic diagrams of transmission provided by an embodiment of the present application.
  • the Physical Sidelink Control Channel may be the PSCCH that schedules a single sub-channel PSSCH, or it may be the PSSCH that schedules a variable number of sub-channels. PSCCH.
  • V2X communication there are two ways to select resources.
  • One way is through the scheduling of a central node (for example, a base station), the central node determines the resources used by the device for transmission, and informs the terminal through signaling.
  • the other method is the resource selection method based on competition.
  • the device monitors the usage of resources within the resource pool, and through the monitoring results, it autonomously chooses to send signaling/data in the resource pool. Resources.
  • the terminal performs two processes of resource sensing and resource selection.
  • the sensing process the terminal obtains the reserved resource information of other terminals and RSRP (Reference Signal Receiving Power) information through the reception of the SCI.
  • the terminal excludes some high-interference resources based on the sensing result in the sensing operation, for example, within the resource selection window, excludes resources reserved by other terminals and whose RSRP is higher than a preset threshold.
  • the terminal further selects resources from the remaining resources for sending V2X data and signaling.
  • the terminal uses L consecutive sub-channels as a resource unit to select and exclude resources.
  • FIG. 3 is a schematic diagram of a channel structure provided by an embodiment of the application. As shown in Figure 3, each sub-channel includes multiple consecutive resource blocks. It can be seen from the above introduction that in the process of resource perception and resource selection, it is necessary to obtain resource reservations of other terminals. Regarding resource allocation and resource reservation, instructions are given through SCI.
  • Fig. 4 is a method flowchart of a method for indicating resource reservation and resource allocation provided by an embodiment of the application. As shown in FIG.
  • the method for indicating resource reservation and resource allocation includes: step S410, obtaining the number of scheduled PSSCH and reserved PSSCH subchannels; step S420, determining the scheduled PSSCH and the number of reserved PSSCHs according to the number of subchannels. Frequency domain resources and time domain resources of the reserved PSSCH; step S430, indicating the frequency domain resources and time domain resources of the scheduled PSSCH and the reserved PSSCH.
  • the embodiment of the present application provides an indication method to avoid the problem that the receiving terminal cannot determine the frequency domain bandwidth and the frequency domain position for receiving the PSSCH.
  • the embodiment of the present application provides an indication method, which may be executed by an indication device, which may be implemented by software and/or hardware, and is usually integrated in a terminal.
  • the indication method includes: instructing at least one of the following according to an indication manner through a first channel: the type of the first channel; the type of information carried in the first channel; the type of the second channel; the type of the first channel and the second The type of the channel; whether the specific bit in the information carried in the first channel is used for resource allocation of the second channel; wherein, within the set time interval, the frequency domain resources of the first channel and the frequency domain resources of the second channel overlap .
  • This embodiment provides an indication method.
  • the type of the first channel, the type of information carried in the first channel, the type of the second channel, the type of the first channel, and the type of the second channel are determined according to the indication mode through the first channel. , Whether a specific bit in the information carried in the first channel is used for one or a combination of one or several items in the resource allocation of the second channel is used to indicate operation, so that information about the first channel and/or the second channel is carried in the first channel Therefore, after other terminals receive the first channel, the frequency domain resource used to receive the second channel can be determined through the instruction information, which improves the reception accuracy.
  • the set time interval contains one time slot, or contains multiple time slots.
  • the frequency domain resources of the first channel and the frequency domain resources of the second channel overlap. It does not mean that all types of second channels and the first channel exist on the frequency domain resources in the set time interval. Overlap refers to that, among one or more types of second channels, at least one type of second channel overlaps with the first channel in frequency domain resources within a set time interval.
  • Frequency domain resources include frequency domain bandwidth and frequency domain location.
  • the frequency domain bandwidth of the first channel is fixed, and the frequency domain bandwidth of the second channel is fixed, that is, the frequency domain size of the first channel is fixed, and the frequency domain size of the second channel is also fixed.
  • the frequency domain resource size of the first channel is fixed, which means that the terminal can know the frequency domain size of the first channel before receiving the first channel without any physical channel or physical signal indication before receiving the first channel.
  • the frequency domain resource size of the second channel is fixed. It also means that the terminal can know the frequency of the second channel before receiving the second channel without passing any physical channel or physical signal indication. Domain size.
  • the second channel is fixed, which means that the frequency domain size of the second channel is not indicated by physical layer signaling, but can be configured through RRC (Radio Resource Control) signaling to configure the frequency domain resources of the second channel size.
  • RRC Radio Resource Control
  • the frequency domain resource size of the second channel can be configured through RRC signaling, it can still be guaranteed that the frequency domain resource size of the second channel remains unchanged within a period of time (for example, within 100ms), so the second channel can still be fixed The size of the frequency domain resources.
  • the first channel is a physical side link control channel.
  • the first channel is used to carry side link control information.
  • the second channel is a physical side link shared channel.
  • the second channel is a physical side link control channel.
  • the second channel carries side link control information.
  • the second channel when the second channel is PSCCH, it carries SCI.
  • the PSSCH when the second channel is the PSSCH, the PSSCH may also carry the SCI.
  • Specific bits include: frequency domain resource allocation bits in side link control information, reserved frequency domain resource indication bits in side link control information, or frequency domain resource allocation bits and reserved frequency resources in side link control information. Domain resource indicator bit.
  • the advance instruction method includes at least one of the following:
  • Manner 1 Based on the sequence generated by the Radio Network Temporary Identifier (RNTI), the cyclic redundancy check (CRC) bit carried by the first channel is scrambled and indicated.
  • RNTI Radio Network Temporary Identifier
  • CRC cyclic redundancy check
  • Manner 2 Based on the sequence generated by the wireless network temporary identification, the method of scrambling the payload carried by the first channel is indicated; wherein, the payload may include only SCI, or may include SCI and CRC.
  • Manner 3 Bit indication of a specific position in the side link control information carried by the first channel.
  • the information bits carried in the second channel are interception or repetition of the information bits in the first channel.
  • the first channel has 20 bits. After modulating and encoding these 20 bits, the modulation symbols are obtained and then mapped to the first channel.
  • the second channel replicates the 20 bits before modulation and decoding, and the second channel encodes and modulates them. After the modulation symbols are obtained, they are mapped to the second channel to obtain the information carried in the second channel.
  • the information bits carried in the second channel are time-domain repetitions of modulation symbols on the time-frequency resources in the first channel. For example, suppose that the first channel has 20 bits. After modulating and encoding these 20 bits, the modulation symbols are obtained and then mapped to the first channel. The information carried in the second channel is obtained by time-domain repetition of modulation symbols.
  • indicating the type of the first channel through the first channel may be: indicating whether the first channel is used to indicate the second channel of the fixed frequency domain bandwidth.
  • indicating the type of the first channel through the first channel may be: indicating whether the first channel is used to indicate a second channel having the same frequency domain resource as the first channel.
  • indicating the type of information carried in the first channel through the first channel may be: indicating whether the information carried in the first channel is used to indicate a second channel with a fixed frequency domain bandwidth.
  • the indication of the type of information carried in the first channel through the first channel may be: indicating whether the information carried in the first channel is used to indicate a second channel having the same frequency domain resources as the first channel.
  • the frequency domain resource of the second channel includes: the frequency domain resource of the second channel is the same as the frequency domain resource of the first channel, and/or the frequency domain resource of the second channel is the subchannel where the first channel is located.
  • the first terminal indicates whether a specific bit in the SCI carried in the first channel is used for PSSCH frequency domain resource allocation.
  • the first terminal indicates whether the frequency domain resource allocation bit (or reserved frequency domain resource indication bit) in the SCI is used for frequency domain resource allocation of the PSSCH.
  • the first terminal arrives at an aperiodic service packet, and the aperiodic service packet is split into one or more TBs (Transport Blocks). Assume that the acyclic service package corresponds to one TB. For the transmission of the TB, it is assumed that the physical layer has transmitted a total of three times. The first transmission corresponds to the initial transmission of the TB (may be referred to as the initial transmission), and the remaining two transmissions are retransmissions of the TB.
  • the first terminal uses specific bits in the SCI, for example, the SCI contains 40 bits of information, where the 6th to 10th bits are used to indicate the frequency domain resources of the PSSCH currently scheduled by the SCI. In addition, the 6th to 10th bits of information may also be used to indicate reserved PSSCH frequency domain resources.
  • FIG. 5 is another schematic diagram of transmission provided by an embodiment of this application.
  • the first transmission uses a fixed frequency domain bandwidth, and the fixed frequency domain bandwidth is one sub-channel.
  • the first transmission of the TB it is mainly used to indicate the frequency domain resources reserved for the second transmission, so as to prevent other terminals from choosing to be reserved by the terminal and RSRP (Reference Signal Received Power) is higher than the threshold Resources.
  • RSRP Reference Signal Received Power
  • a single subchannel includes PSCCH and PSSCH, and the SCI is carried by the PSCCH.
  • the first terminal indicates whether the resource allocation bit in the SCI is used to indicate the current PSSCH resource allocation.
  • the first terminal indicates whether a specific bit in the current SCI is used for the frequency domain resource allocation of the current PSSCH in one of the following ways:
  • scramble the CRC bit carried by the first channel to indicate whether the specific bit in the SCI is used for the frequency domain resource allocation of the second channel, including: using the sequence pair generated by the first RNTI number
  • the CRC bits carried by the first channel are scrambled, which means that the specific bits in the SCI are not used for the frequency domain resource allocation of the second channel; the sequence generated by the second RNTI number is used to add the CRC bits carried by the first channel
  • the scrambling operation such as the RNTI value numbered 200, indicates that a specific bit in the SCI is used for the frequency domain resource allocation of the second channel.
  • scramble the payload carried by the first channel to indicate whether a specific bit in the SCI is used for the frequency domain resource allocation of the second channel, including: using the sequence pair generated by the first RNTI number
  • the payload carried by the first channel is scrambled, which means that the specific bit in the SCI is not used for the frequency domain resource allocation of the second channel; the sequence generated by the second RNTI number is used to increase the payload carried by the first channel
  • the scrambling operation such as the RNTI value numbered 200, indicates that a specific bit in the SCI is used for the frequency domain resource allocation of the second channel.
  • indicating whether a specific bit in the SCI is used for frequency domain resource allocation of the second channel through a bit in a specific position in the side link control information carried in the first channel including: setting a specific bit in the SCI carried in the first channel The value of a bit in the position is 0, which means that the specific bit in the SCI is not used for the frequency domain resource allocation of the second channel; or, the value of a bit in the specific position is set to 1, which means that the specific bit in the SCI is used for the second channel Frequency domain resource allocation.
  • PSCCH and PSSCH are transmitted in consecutive L subchannel regions, where L is an integer greater than zero.
  • the PSCCH is located in the first subchannel among the L subchannels. The same manner as described above is used to indicate that the specific bit in the SCI is used for the second channel frequency domain resource allocation, which will not be repeated here.
  • the second terminal obtains the current resource allocation bits in the SCI through the PSCCH detection, and the indication information about whether the resource allocation bits are used for the frequency domain resource allocation of the current PSSCH. If the current PSSCH frequency domain resource allocation is not used for the current PSSCH frequency domain resource allocation, the second terminal's receiving behavior for the current PSSCH is: the second terminal receives the current PSSCH according to the fixed frequency domain bandwidth, and the fixed frequency domain bandwidth is a sub-channel , And the sub-channel is the sub-channel corresponding to the PSCCH where the current SCI is located.
  • the second terminal's receiving behavior for the current PSSCH is: the second terminal follows the indication of the current resource indicator bits (6-10 bits) in the SCI, Determine the starting position of the current PSSCH resource and the number of subchannels; receive the current PSSCH based on the starting position of the current PSSCH resource and the number of subchannels.
  • the second terminal obtains the current SCI for indicating whether the frequency domain resource indicator bit is valid through the PSCCH detection, and 0 indicates that the frequency domain resource indicator bit is invalid, so the second terminal The terminal determines that the bit used to indicate the frequency domain resource in the SCI is invalid. It is determined that the frequency domain resource indicator bit in the SCI is not used for the frequency domain resource allocation of the second channel, and the second terminal's receiving behavior for the current PSSCH is: the second terminal receives the current PSSCH according to the frequency domain bandwidth of a subchannel, and the subchannel is The sub-channel corresponding to the PSCCH where the current SCI is located.
  • the second terminal obtains the current SCI bit used to indicate whether the frequency domain resource is valid through the PSCCH detection, which means that the frequency domain resource indicator bit is valid, so the second The terminal determines that the bit used to indicate the frequency domain resource in the SCI is valid. It is determined that the frequency domain resource indicator bits in the SCI are used for the frequency domain resource allocation of the second channel, and the second terminal's receiving behavior for the current PSSCH is: the second terminal follows the indication of the current resource indicator bits (6-10 bits) in the SCI, Determine the starting position of the current PSSCH resource and the number of subchannels; receive the current PSSCH based on the starting position of the current PSSCH resource and the number of subchannels.
  • the second terminal obtains the current SCI bit used to indicate whether the frequency domain resource is valid through the PSCCH detection, which indicates that the frequency domain resource indicator bit is valid, so the second terminal The terminal determines that the bit used to indicate the frequency domain resource indication in the SCI is valid. It is determined that the frequency domain resource indicator bits in the SCI are used for the frequency domain resource allocation of the second channel, and the second terminal's receiving behavior for the current PSSCH is: the second terminal follows the indication of the current resource indicator bits (6-10 bits) in the SCI, Determine the starting position of the current PSSCH resource and the number of subchannels; receive the current PSSCH based on the starting position of the current PSSCH resource and the number of subchannels.
  • the first channel carries the indication information about the second channel, so that After receiving the first channel, other terminals can determine the frequency domain resources used to receive the second channel through the indication information, which improves the reception accuracy.
  • the first terminal indicates the type of PSCCH. Further, the first terminal indicates whether the PSCCH is used to indicate a PSSCH with a fixed frequency domain bandwidth. If the PSCCH is not a PSSCH for scheduling a fixed frequency domain bandwidth, the frequency domain resources of the PSSCH are indicated by the resource allocation bit in the SCI. SCI is carried by PSCCH.
  • the first terminal arrives at an aperiodic service package, and the aperiodic service package is split into one or more TBs. Assume that the acyclic service package corresponds to one TB. For the transmission of this TB, it is assumed that the physical layer has been transmitted three times in total.
  • FIG. 6 is a schematic diagram of another transmission provided by an embodiment of the application. As shown in Figure 6, for three transmissions of the same TB, the first transmission uses a fixed frequency domain bandwidth, and the fixed frequency domain bandwidth is one sub-channel.
  • the first terminal indicates whether the PSCCH is used to indicate the PSSCH of the fixed frequency domain bandwidth.
  • the first terminal indicates whether the PSCCH is used to indicate the PSSCH of the fixed frequency domain bandwidth in one of the following ways:
  • scrambling the CRC bits carried by the first channel to indicate whether the PSCCH is used to indicate the PSSCH with a fixed frequency domain bandwidth includes: using the sequence generated by the first RNTI number on the first channel The carried CRC bits are scrambled, which means that the PSCCH is used to indicate the PSSCH with a fixed frequency domain bandwidth; the sequence generated by the second RNTI number is used to scramble the CRC bits carried by the first channel, for example, the number 200 The RNTI value indicates that the PSCCH is used to indicate a PSSCH that is not a fixed frequency domain bandwidth.
  • scramble the payload carried by the first channel to indicate whether the PSCCH is used to indicate the PSSCH with a fixed frequency domain bandwidth, including: using the sequence generated by the first RNTI number to perform the scrambling on the first channel
  • the carried payload is scrambled, which means that the PSCCH is used to indicate the PSSCH with a fixed frequency domain bandwidth; the sequence generated by the second RNTI number is used to scramble the payload carried by the first channel, for example, the number 200
  • the RNTI value indicates that the PSCCH is used to indicate a PSSCH that is not a fixed frequency domain bandwidth.
  • indicating whether the PSCCH is used to indicate a PSSCH with a fixed frequency domain bandwidth through a bit in a specific position in the side link control information carried in the first channel including: setting a bit in a specific position in the SCI carried in the first channel The value of is 0, which means that the PSCCH is used to indicate a PSSCH with a fixed frequency domain bandwidth; or, the value of a bit in the specific position is set to 1, which means that the PSCCH is used to indicate a PSSCH with a fixed frequency domain bandwidth.
  • PSCCH and PSSCH are transmitted through consecutive L subchannel regions, where L is an integer greater than zero.
  • the PSCCH is located in the first subchannel among the L subchannels. The same manner as described above is used to indicate whether the PSCCH is used to indicate the PSSCH of the fixed frequency domain bandwidth, which will not be repeated here.
  • the first terminal carries the indication information through the PSCCH in the above manner, and sends the SCI and data information through the PSCCH and PSSCH respectively.
  • the second terminal obtains the indication information through PSCCH detection. If the indication information indicates that the PSSCH is a channel with a fixed frequency domain bandwidth, the second terminal's receiving behavior for the current PSSCH is: the second terminal receives the current PSSCH according to the frequency domain bandwidth of a subchannel, and the subchannel is the PSCCH where the current SCI is located Corresponding sub-channel.
  • the second terminal's receiving behavior for the current PSSCH is: the second terminal determines the current PSSCH according to the indication of the frequency domain resource indicator bits (6-10 bits) in the current SCI The starting position of the resource and the number of subchannels; the PSSCH is received based on the starting position of the current PSSCH resource and the number of subchannels.
  • the second terminal obtains that the bit in a specific position in the current SCI is 0 through PSCCH detection, and 0 means that PSCCH is a PSSCH used to indicate a fixed frequency domain bandwidth, and the second terminal receives the current PSSCH
  • the behavior is: the second terminal receives the current PSSCH according to the frequency domain bandwidth of one subchannel, and the subchannel is a subchannel corresponding to the PSCCH where the current SCI is located.
  • the second terminal obtains a bit of a specific position in the current SCI as 1, through detection of the PSCCH, and 1 indicates that the PSCCH is not a PSSCH used to indicate a fixed frequency domain bandwidth. Then the second terminal's receiving behavior for the current PSSCH is; the second terminal determines the starting position of the current PSSCH resource and the number of subchannels according to the indication of the resource indicator bits (6-10 bits) in the current SCI; based on the start of the current PSSCH resource Start position and number of sub-channels, and receive the current PSSCH.
  • the second terminal obtains a bit of a specific position in the current SCI as 1, through detection of the PSCCH, and 1 indicates that the PSCCH is not a PSSCH for indicating a fixed frequency domain bandwidth. Then the second terminal’s receiving behavior for the current PSSCH is: the second terminal determines the starting position of the current PSSCH resource and the number of subchannels according to the indication of the resource indicator bits (6 to 10 bits) in the current SCI; based on the start of the current PSSCH resource Start position and number of sub-channels, and receive the current PSSCH.
  • the first channel carries the indication information about the second channel, so that other terminals receive the first channel Later, the frequency domain resource for receiving the second channel can be determined through the indication information, which improves the receiving accuracy.
  • indicating the type of the second channel includes: indicating whether the second channel is used to carry sensing information.
  • the sensing information includes information obtained by receiving side link control information of other terminals, and/or reference signal received power measurement results.
  • the terminal can exclude some high-interference resources based on the perception information.
  • the implementation method is as described above and will not be repeated here.
  • indicating the type of the second channel includes: indicating whether the second channel is used to carry resource reservation information.
  • the resource reservation information may be information bits indicating which resources are reserved by the current terminal.
  • indicating the type of the second channel includes: indicating whether the second channel carries empty packets.
  • the first terminal indicates the type of PSSCH. Further, the first terminal indicates whether the PSSCH carries an empty packet (or called an empty data packet). SCI is carried by PSCCH.
  • the first terminal arrives at an aperiodic service package, and the aperiodic service package is split into one TB.
  • the physical layer has been transmitted twice.
  • FIG. 7 is a schematic diagram of another transmission provided by an embodiment of this application. As shown in Figure 7, the first transmission corresponds to the initial transmission of the TB, and the second transmission is the retransmission of the TB.
  • the first terminal transmits the PSCCH and PSSCH in a fixed frequency domain bandwidth, and the PSSCH in the fixed frequency domain bandwidth is used to carry empty packets.
  • the first terminal indicates whether the current PSSCH carries an empty packet in one of the following ways:
  • scrambling the CRC bits carried by the first channel to indicate whether the PSSCH carries empty packets including: using the sequence generated by the first RNTI number to add the CRC bits carried by the first channel
  • the scrambling operation means that the PSSCH carries empty packets; the sequence generated by the second RNTI number is used to scramble the CRC bits carried by the first channel.
  • the RNTI value numbered 200 means that the PSSCH does not carry empty packets.
  • scrambling the payload carried by the first channel to indicate whether the PSCCH carries an empty packet including: using the sequence generated by the first RNTI number to add the payload carried by the first channel
  • the scrambling operation means that the PSSCH carries empty packets; the sequence generated by the second RNTI number is used to scramble the payload carried by the first channel.
  • the RNTI value numbered 200 means that the PSSCH does not carry empty packets.
  • indicating whether the PSSCH carries a null packet through a bit in a specific position in the side link control information carried in the first channel including: setting a bit in a specific position in the SCI carried in the first channel to a value of 0, which means The PSSCH carries empty packets; or, setting a bit in the specific position to 1 indicates that the PSSCH does not carry empty packets.
  • the second terminal learns whether the current PSSCH type is an empty data packet through the reception of the PSCCH.
  • the filling bit is generated through the media access control layer, and the filling bit is sent to the physical layer; Fill bits are subjected to modulation and coding processing to obtain modulation symbols, and the modulation symbols are mapped on the second channel.
  • padding bits are generated through the physical layer, the padding bits are modulated to obtain modulation symbols, and the obtained modulation symbols are mapped on On the second channel.
  • padding bits are generated through the physical layer, and the padding bits are modulated and encoded to obtain modulation symbols, and the obtained modulation The symbols are mapped on the second channel.
  • the method further includes: indicating that the first channel and/or the second channel are located in the first sub-channel in the target resource; wherein the target resource includes at least one sub-channel, that is, the target resource Contains one sub-channel or at least two consecutive sub-channels.
  • the objects involved in the instruction may be the physical layer and the media access control layer of the same terminal.
  • the objects involved in the indication may also be different terminals, that is, the current terminal indicates to other terminals.
  • indicating that the first channel and/or the second channel are located in the first subchannel in the target resource may be indicating a resource set to the media access control layer through the physical layer. Selecting a target resource in the resource set by the medium access control layer indicates that the first channel and/or the second channel are located in the first subchannel of the target resource.
  • the selection basis of the target resource can be random selection, sequential selection, or selection based on availability.
  • the first sub-channel indicating that the first channel and/or the second channel are located in the target resource may also be indicating the resource allocation of the target resource through the side link control information, indicating that the first channel and/or the second channel are located in the target resource. In the first subchannel of the target resource.
  • the sending mode of the first channel and the second channel may be: the physical layer of the terminal indicates (reports) the candidate resource set to the MAC (Medium Access Control) layer, and the MAC layer is in the physical layer.
  • the set of layer indication (report) candidate resources one or more candidate resources are selected for sending data and signaling.
  • Each resource in the candidate resource set contains L consecutive sub-channels, and L is an integer greater than zero.
  • the resource selection method is: the physical layer indicates (reports) the candidate resource set to the MAC, and the MAC layer selects one or more candidate resources. For a candidate resource selected by the MAC layer, the MAC layer further selects the first subchannel among the L subchannels in the candidate resource, which is used for the transmission of V2X data and control signaling.
  • the MAC layer After the first terminal has service arrival, the MAC layer indicates the number of sub-channels L and the length of the resource selection window to the physical layer. After the physical layer receives an indication from the MAC layer on the number of channels L and the number of resource selection window lengths, the physical layer obtains L and resource selection window information.
  • the physical layer obtains the RSRP value of the unit resource in the resource selection window based on operations such as receiving SCI from other terminals and RSRP measurement.
  • the time domain of the one resource unit is a time slot, and the frequency domain is L continuous subchannels.
  • For a unit resource RSRP it is obtained by averaging the RSRP of L sub-channels in the unit resource.
  • the terminal excludes unit resources whose RSRP is higher than the threshold, and obtains resource set A. Taking set A as the candidate resource set, the physical layer of the terminal indicates (reports) the candidate resource set to the MAC layer.
  • the terminal further sorts the resources in resource set A by RSSI (Received Signal Strength Indicator), and selects resources with low RSSI energy to form the resources Set B.
  • the terminal can use set B as a candidate resource set to indicate (report) to the MAC layer.
  • each candidate resource in the candidate resource set received by the MAC layer contains L continuous subchannels.
  • the MAC layer selects the first target candidate resource from the candidate resource set, and the MAC layer further selects the first target candidate resource.
  • the first subchannel is used for data and signaling transmission.
  • the illustration is illustrated by using FIG. 5 as an example.
  • the MAC layer decides to perform three transmissions, the first transmission is the initial transmission of the TB, and the second and third transmissions are the retransmissions of the TB.
  • the MAC layer selects a candidate resource from the candidate resource set, and only uses the first subchannel of the L subchannels in the candidate resource for sending data and signaling.
  • the MAC layer selects a candidate resource from the candidate resource set, and all L subchannels in the candidate resource are used for data and signaling transmission.
  • the frequency domain resource sizes of the initial transmission and retransmission of the same TB are different. If the terminal separately calculates the size of the two frequency domain resources to determine which resources are idle and can be used for the transmission of data and control information, additional resource selection complexity will be introduced. Through the above method, the physical layer of the terminal only needs to select idle resources according to a frequency domain resource size and report to the MAC layer, thereby saving the complexity of resource selection.
  • a specific bit in the SCI indicates the resource allocation of the current PSSCH, indicating that the frequency domain resources of the current PSSCH are L continuous subchannels, but the first terminal is only in one of the L subchannels Send data and signaling on the Internet. For example, the terminal only sends data and signaling on the first subchannel among the L subchannels.
  • FIG. 8 is another schematic diagram of transmission provided by an embodiment of this application.
  • the first transmission is used for the initial transmission of a PSSCH
  • the second and third transmissions are used for the retransmission of a PSSCH.
  • the bits in the SCI used to indicate the PSSCH frequency domain resource allocation indicate that L consecutive sub-channel positions are used as the PSSCH frequency domain resource allocation.
  • L subchannel frequency domain resources are indicated, however, the first terminal only transmits the PSSCH on the first subchannel of the L subchannels, that is, among the L subchannels, only the first subchannel is used to carry the first terminal's PSSCH.
  • the bits in the SCI used to indicate the PSSCH frequency domain resource allocation indicate that L consecutive subchannel positions are used as the PSSCH frequency domain resource allocation.
  • the first terminal transmits the PSSCH on all of the L subchannels.
  • the second terminal After detecting the frequency domain resource allocation indication indicated by the SCI of the first terminal, the second terminal receives the PSSCH scheduled by the SCI according to the frequency domain resource allocation situation.
  • the second terminal receives the PSSCH according to the L frequency domain subchannels indicated by the first terminal SCI.
  • the initial PSSCH transmission is mainly used to indicate the reserved resources of the retransmission resources, and there is retransmission after the initial transmission. Therefore, it does not matter even if the second terminal cannot successfully receive the PSSCH transmitted for the first time. But doing so can bring additional benefits that reduce the indication overhead in the SCI.
  • specific bits can be used to indicate the frequency domain resources of the scheduled resources at the same time, and the frequency domain resources of the reserved resources can be indicated at the same time.
  • indicating the type of the second channel includes: indicating the format of the side link control information carried in the second channel through the first channel.
  • the first channel is PSCCH and the second channel is PSSCH.
  • the SCI signaling is divided into two parts.
  • the first part (stage) of the SCI is carried by the first channel, and the second part (stage) of the SCI is carried by the second channel.
  • the first stage of SCI it corresponds to an SCI format.
  • the second stage of SCI two SCI formats are included.
  • the frequency domain bandwidth and frequency domain position of the second channel used to carry the SCI are the same as those of the first channel.
  • the frequency domain bandwidth and frequency domain position of the second channel used to carry the SCI are indicated by the first channel, and the first channel is not limited.
  • the frequency domain bandwidth and frequency domain position of the second channel are the same as those of the first channel.
  • the first terminal indicates the format of the side link control information carried in the second channel in one of the following ways:
  • scrambling the CRC bits to indicate the format of the SCI carried by the second channel includes: using the sequence generated by the first RNTI number to scramble the CRC bits carried by the first channel Operation means that the format of the SCI carried by the second channel is the first SCI format; use the sequence generated by the second RNTI number to scramble the CRC bits carried by the first channel, for example, the RNTI value numbered 200 , Indicates that the format of the SCI carried by the second channel is the second SCI format.
  • the format of the SCI carried in the second channel is the first SCI format; if the value of the bit is 1 , Indicates that the format of the SCI carried by the second channel is the second SCI format.
  • FIG. 9 is a schematic diagram of another transmission provided by an embodiment of this application.
  • the leftmost first channel indicates that the SCI format carried by the second channel is the first SCI format.
  • the first channel in the middle indicates that the SCI format carried by the second channel is the second SCI format.
  • the first channel on the far right indicates that the SCI format carried by the second channel is the second SCI format.
  • Different SCI formats have different information bits in SCI. Or, although different SCI formats have the same number of SCI bits, at least a part of the bit positions in the SCI are used for different indication purposes.
  • the first channel in addition to indicating the SCI format carried by the second channel through the first channel, the first channel may also be used to indicate which time-frequency resources are reserved by the terminal. This allows other terminals to avoid the reserved resources after receiving the reservation information and avoid resource conflicts between different terminals.
  • the SCI carried by the second channel can be used to indicate the time-frequency resource allocation of the PSSCH.
  • the SCI of the second channel When the SCI of the second channel is the first format, the SCI of the second channel does not include PSSCH time-frequency resource allocation information. However, the SCI of the second channel contains some other information, such as reserved bit information or reserved resource indication information.
  • the SCI of the second channel When the SCI of the second channel is in the second format, the SCI of the second channel includes time-frequency resource allocation information of the PSSCH. But it does not include reserved bit information and reserved resource indication information.
  • the time-frequency resource corresponding to the frequency domain resource position of the first channel removes GP (Guard Period, guard time interval) symbols and PSFCH (Physical Sidelink Feedback) CHannel, physical side link feedback channel) symbol, and the remaining resources are the target resource area.
  • the SCI carried by the second channel is the first SCI format
  • the resource location of the second channel is: within the frequency domain resource range of the first channel, except for the first channel and AGC (Automatic Gain Control) symbols And all remaining resources except PSFCH symbols.
  • AGC Automatic Gain Control
  • the GP (Guard Period) symbol is used to send and receive conversion symbols.
  • the terminal usually receives before the GP symbol and transmits after the GP symbol. Or, the terminal usually transmits before the GP symbol and receives after the GP symbol.
  • PSFCH Physical Sidelink Feedback Channel
  • the terminal can receive feedback information from other terminals, and the terminal can also send feedback information to other terminals through the PSFCH.
  • the first terminal transmits the SCI through the first channel and the second channel, and indicates the type of the second channel through the first channel.
  • the first channel sent by the first terminal is received.
  • the first stage SCI carried by the first channel is obtained, and through the reception of the first channel, the format of the side link control information carried in the second channel is determined.
  • the second terminal determines the format of the side link control information carried in the second channel in one of the following ways:
  • descrambling the CRC carried by the first channel, and determining the format of the SCI carried by the second channel includes: using the sequence generated by the first RNTI number to determine the format of the SCI carried by the first channel.
  • CRC bits are descrambled, and CRC check is performed after descrambling. If the CRC check passes, it means that the format of the SCI carried by the second channel is the first SCI format; for the same reason, the second RNTI number is used.
  • the sequence of, the CRC bit carried by the first channel is descrambled, and the CRC check is performed after descrambling. If the CRC check passes, it means that the format of the SCI carried by the second channel is the second SCI format.
  • a bit in a specific position in the SCI carried in the first channel received by the terminal determines that the format of the SCI carried in the second channel is the first SCI format; if this bit If the value is 1, the terminal determines that the format of the SCI carried by the second channel is the second SCI format.
  • the terminal determines the time-frequency resource position of the second channel as: within the set time zone (for example, the time slot where the first channel is located), the first Within the channel frequency domain resource range, all remaining resources except the first channel, AGC symbols, and PSFCH symbols.
  • the terminal determines the position of the time-frequency resource of the second channel as: in the set time zone, the resource in the SCI carried in the second channel Indicates the frequency domain resource indicated by the bit.
  • the receiving terminal After obtaining the time-frequency resource position of the second channel, the receiving terminal further receives the second channel.
  • the first channel indicates the format of the side link control information carried in the second channel, so that the first channel carries the instruction information about the second channel, so that other terminals receive the first channel.
  • the frequency domain resource used for receiving the second channel can be determined through the indication information, which improves the receiving accuracy.
  • the first channel includes PSCCH and PSCCH DMRS used for PSCCH reception, and the PSCCH carries SCI.
  • the time-frequency resource corresponding to the frequency domain resource position of the first channel removes the GP symbol and the PSFCH symbol, and the remaining resource is the target resource area.
  • the second channel is mapped on all remaining resources except the first channel in the target resource area.
  • FIG. 11 is a schematic diagram of a resource structure in a time slot provided by an embodiment of the application. As shown in FIG. 11, the second channel is obtained by resource repetition on the first channel.
  • the first channel includes 4 symbols, m RBs, and the numbers of the 4 symbols are 0, 1, 2, and 3, respectively.
  • the second channel contains 7 symbols, numbered 4, 5, 6, 7, 8, 9, and 10.
  • the frequency domain resource of the second channel is the same as the frequency domain resource of the first channel, and the second channel is obtained by performing symbol repetition on the first channel.
  • the resources on the m RBs of the symbol numbered 4 in the second channel are obtained by duplicating the m RBs on the symbol numbered 0 in the first channel.
  • the resources on the m RBs of the symbol numbered 5 in the second channel are obtained by duplicating the m RBs on the symbol numbered 1 in the first channel.
  • the resources on the m RBs of the symbol numbered 6 in the second channel are obtained by duplicating the m RBs on the symbol numbered 2 in the first channel.
  • the resources on the m RBs of the symbol numbered 7 in the second channel are obtained by duplicating the m RBs on the symbol numbered 3 in the first channel.
  • the resources on the m RBs of the symbol numbered 8 in the second channel are obtained by duplicating the m RBs on the symbol numbered 0 in the first channel.
  • the resources on the m RBs of the symbol numbered 9 in the second channel are obtained by duplicating the m RBs on the symbol numbered 1 in the first channel.
  • the resources on the m RBs of the symbol numbered 10 in the second channel are obtained by duplicating the m RBs on the symbol numbered 2 in the first channel.
  • the terminal transmits information through the first channel (PSCCH) and the second channel as shown in FIG. 11.
  • indicating the type of the second channel includes: indicating whether there is side link control information of the second stage.
  • the first channel is used to indicate whether there is a second-stage SCI, and then the type of the second channel is indicated according to the indication information. In this way of indicating, whether there is an association between the SCI of the second stage and the type of the second channel. If it indicates that there is no second-stage SCI, it means that the type of the second channel is the second channel of the first type. If it indicates that there is a second-stage SCI, it means that the type of the second channel is the second channel of the second type.
  • the first channel is used to indicate whether there is side link control information of the second stage.
  • Figures 12 and 13 are respectively another schematic diagrams of transmission provided by an embodiment of the application.
  • the first channel is PSCCH
  • the second channel is PSSCH, which is used to carry data information
  • the third channel is PSSCH or PSCCH.
  • SCI signaling is divided into two parts, the first part (phase) of the SCI is carried by the first channel (PSCCH), and the second part (phase) of the SCI is carried by the third channel.
  • the second channel includes two types, with the following characteristics:
  • the frequency domain resource of the second channel is the subchannel where the SCI of the first stage is located, and the time domain resource Within the same set time as the first stage of SCI.
  • the frequency domain resource of the second channel is the frequency domain resource indicated by the second stage SCI, and the time domain resource is the same as the first stage
  • the SCI is within the same set time, for example, in the same time slot as the SCI (Phase 2 SCI) of the first stage.
  • the first terminal indicates whether there is a second-stage SCI in one of the following ways:
  • scrambling the CRC bits based on the sequence generated by the RNTI indicates whether there is a second stage of SCI, including: using the sequence generated by the first RNTI number to scramble the CRC bits carried by the first channel, indicating the first The first-stage SCI has no corresponding second-stage SCI; the sequence generated by the second RNTI number is used to scramble the CRC bits carried by the first channel.
  • the RNTI value numbered 200 indicates that the first-stage SCI has a corresponding The second stage of SCI.
  • the leftmost first channel indicates that there is no second-stage SCI.
  • the first channel in the middle indicates the second stage of SCI.
  • the first channel on the far right indicates that there is a second stage of SCI.
  • the information indicated by the SCI at the first stage includes reserved resource indication information.
  • the reserved resource indication information includes the frequency domain resource indication bit of the reserved resource and the time domain resource indication bit of the reserved resource.
  • the bits used to indicate the frequency domain resources of the reserved resources in the first stage SCI are also used to indicate the current frequency domain resources of the second channel. That is, the specific bit in the first stage SCI, the indicated frequency domain resource, indicates the frequency domain resource of the reserved resource, and also indicates the current frequency domain resource of the second channel.
  • the specific bit in the first stage SCI indicates L continuous subchannel frequency domain resources as the current resource allocation indicator for the second channel, but the current second channel only occupies the first subchannel.
  • indicating that the first channel and/or the second channel are located in the first subchannel in the target resource includes: indicating at least two consecutive subchannels, and performing operations on the remaining subchannels other than the first subchannel Puncturing processing; or, indicating at least two consecutive sub-channels, for the time-frequency resources corresponding to the at least two consecutive sub-channels in the set time interval, the remaining time excluding the time-frequency resources corresponding to the first channel Frequency resources are punched.
  • indicating that the first channel and/or the second channel are located in the first subchannel in the target resource includes: indicating at least one subchannel, and performing rate matching on the first subchannel; or, indicating at least one For sub-channels, rate matching is performed on the frequency domain resources of the first channel.
  • the second terminal receives the first channel. Through the reception of the first channel, the second terminal obtains the first-stage SCI carried by the first channel, and through the reception of the first channel, determines whether there is a second-stage SCI associated with the first-stage SCI.
  • the second terminal determines whether there is second-stage side link control information by one of the following methods:
  • the CRC bits carried by the first channel are descrambled, and then the CRC check is performed after descrambling. If the CRC check passes, it means that there is no second-stage SCI associated with the first-stage SCI; for the same reason, use the second one
  • the sequence generated by the RNTI number is used to descramble the CRC bits carried by the first channel, and then perform a CRC check after descrambling. If the CRC check passes, it means that there is a second-stage SCI associated with the first-stage SCI .
  • the terminal determines that there is no second-stage SCI associated with the first-stage SCI; if the value of this bit is If it is 1, the terminal determines that there is a second-stage SCI associated with the first-stage SCI.
  • the second terminal After determining whether there is a second-stage SCI associated with the first-stage SCI, the second terminal determines the type of the second channel based on the presence or absence of the second-stage SCI. That is to say, whether there is a second-stage SCI is bound to the type of the second channel. If there is no second-stage SCI, it can be determined that the type of the second channel is the second channel of the first type. If there is a second-stage SCI, the terminal determines that the type of the second channel is the second type of the second channel.
  • the manner in which the second terminal determines the frequency domain resource of the second channel of the first type includes at least one of the following manners:
  • the frequency domain resources of the second channel are determined as follows: The channel is the second channel of the first type, and the frequency domain resource of the second channel is the first subchannel of the L subchannels indicated by the specific bit in the SCI.
  • the frequency domain resource of the second channel based only on the indication of the second channel type: if the second channel is the second channel of the first type, the frequency domain resource of the second channel is the subchannel where the first channel is located, or The same frequency domain resource for the first channel.
  • the second terminal further determines that the time-frequency resources of the second channel of the first type are: within the set time region (for example, the time slot where the first channel is located), and within the frequency domain resource range of the second channel determined by the second terminal, except All remaining resources except the first channel, AGC symbols, and PSFCH symbols.
  • the second terminal determines the time-frequency resource location of the second channel as: in the set time region (for example, the time slot where the first channel is located), the frequency domain resource indicated by the second stage SCI , Remove all remaining resources except the first channel, third channel, AGC symbol, and PSFCH symbol.
  • the second terminal After obtaining the time-frequency resource position of the second channel, the second terminal further receives the second channel.
  • the first channel indicates whether there is side link control information of the second stage, so that the first channel carries the instruction information about the second channel, so that after other terminals receive the first channel ,
  • the frequency domain resource used for receiving the second channel can be determined through the indication information, which improves the receiving accuracy.
  • indicating the type of the second channel includes: indicating the purpose of the reserved bit information carried by the second channel.
  • the purpose of indicating the reserved bit information carried by the second channel includes one of the following: indicating the version protocol of the second channel; indicating the protocol version of the information carried in the second channel.
  • the first channel refers to PSCCH, which carries SCI.
  • the second channel may be PSCCH or PSSCH, and is used to carry reserved bit information. Next, let's take the second channel as PSCCH as an example for description.
  • the first channel indicates the type of the second channel
  • the manner of indicating the type of the second channel may be one of the following methods: indicating whether the second channel carries reserved bit information; indicating the protocol version of the second channel ; Indicates the protocol version of the information (such as SCI) carried in the second channel.
  • a bit in a specific position in the SCI carried by the first channel indicates the protocol version, which can be indicated as version 0 or version 1. If a bit in a specific position in the SCI is 0, it indicates version 0, and if a bit in a specific position in the SCI is 1, it indicates version 1.
  • the value of the reserved bit information carried in the second channel is 0, indicating that the reserved bit information is not used to indicate any information.
  • the reserved bit information carried in the second channel is used to indicate some information about the future protocol version. What information each bit area is used to indicate in the future version of the reserved bit information can be determined in the future version of the protocol.
  • the second channel is not received.
  • the second terminal of the future version receives the first channel of other transmitting terminals, if the version indicated by the first channel is version 0, the second channel is not received. If the version indicated by the first channel is version 1, then the second channel is received.
  • the first channel is used to indicate whether the reserved bit information carried by the second channel is assigned a certain purpose, so that the first channel carries the indication information about the second channel, so that it can be received in other terminals. After arriving at the first channel, the indication information can be used to determine whether to receive the second channel.
  • indicating the type of the second channel includes: indicating the type of the second channel through new data indication information and redundancy version indication information carried in the first channel.
  • the method of indicating the type of the second channel through the first channel is: indicating the second channel through New Data Indicator (NDI) information and Redundant Version (RV) indicator information type.
  • NDI New Data Indicator
  • RV Redundant Version
  • the frequency domain resources of the first channel overlap with the frequency domain resources of the second channel.
  • the set time interval includes one time slot, or includes multiple time slots.
  • the first channel is PSCCH, which is used to carry SCI
  • the second channel is PSSCH.
  • the frequency domain position of the second channel is: the subchannel where the first channel is located.
  • the frequency domain bandwidth and frequency domain position of the second channel are indicated by the first channel.
  • the type of the second channel is indicated through the first channel. It is indicated in the following manner: the NDI bit in the SCI carried by the first channel indicates the initial transmission, and the RV value indicated by the RV in the SCI is not equal to 0, indicating that the type of the second channel is the first type.
  • the NDI bit in the SCI carried by the first channel indicates the initial transmission, and the RV value indicated by the RV indicator bit in the SCI is equal to 0, which indicates that the type of the second channel is the second type.
  • the NDI bit in the SCI carried by the first channel indicates retransmission, and the type of the second channel is the second type.
  • the first terminal terminal transmits V2X through the first channel and the second channel.
  • the first channel sent by the first terminal is received.
  • the NDI bit indication and the RV value are obtained.
  • the type of the second channel is determined to be the first type; if the received NDI bit indicates the initial transmission and the RV value is equal to 0, then the type of the second channel is determined It is the second type; if the received NDI bit indicates a retransmission, the type of the second channel is the second type.
  • the second terminal determines that the frequency domain resource of the second channel is: when the second channel is of the first type, the time-frequency resource position of the second channel is determined as: within the set time zone ( For example, the time slot where the first channel is located), in the sub-channel where the first channel is located, all remaining resources except the first channel, AGC symbols, and PSFCH symbols.
  • the time-frequency resource location of the second channel is determined as: within the set time area (for example, the time slot where the first channel is located), the resource indicator bit in the SCI carried on the second channel
  • the indicated frequency domain resources are all remaining resources except the first channel, AGC symbols, and PSFCH symbols.
  • the second terminal After obtaining the time-frequency resource position of the second channel, the second terminal further receives the second channel.
  • the type of the second channel is indicated by indicating the new data indication information and the redundancy version indication information carried in the first channel, so that the indication information about the second channel is carried in the first channel. Therefore, after other terminals receive the first channel, the frequency domain resource used to receive the second channel can be determined through the indication information, which improves the reception accuracy.
  • FIG. 14 is a method flowchart of a receiving processing method provided by an embodiment of this application.
  • the method may be executed by a receiving processing device, which may be implemented by software and/or hardware, and is usually integrated in a terminal. As shown in Figure 14, the method includes:
  • Step 100 Receive a first channel, and obtain indication information of the first channel with respect to the first channel and/or the second channel.
  • the frequency domain resources of the first channel overlap with the frequency domain resources of the second channel.
  • obtaining the indication information of the first channel with respect to the first channel and/or the second channel may be: descrambling the cyclic redundancy check bit carried by the first channel based on the sequence generated by the temporary identification of the wireless network In the manner of obtaining the indication information of the first channel with respect to the first channel and/or the second channel.
  • the payload carried by the first channel is descrambled to obtain the indication information of the first channel with respect to the first channel and/or the second channel.
  • acquiring a bit at a specific position in the side link control information carried by the first channel and using the obtained bit at a specific position as the indication information.
  • Step 200 Receive the second channel based on the indication information.
  • the indication information is that the second channel carries an empty packet, then abandon the receiving operation on the second channel.
  • receiving the second channel based on the indication information includes: when the indication information includes side link control information scheduled through the first channel, according to the frequency in the side link control information The frequency domain resource indicated by the domain resource allocation bit is received on the second channel; in the case that the indication information does not include side link control information scheduled through the first channel, according to the same frequency as the first channel Domain resources, receiving the second channel; in the case that the indication information does not include side link control information scheduled through the first channel, the second channel is received according to the sub-channel where the first channel is located.
  • receiving the second channel based on the indication information includes: in a case where the indication information indicates that the second channel is a channel with a fixed frequency domain bandwidth, receiving the second channel according to the subchannel where the first channel is located In the case where the indication information indicates that the second channel is not a channel with a fixed frequency domain bandwidth, the second channel is received according to the frequency domain resource indicated by the frequency domain resource indicator bit carried by the first channel.
  • receiving the second channel based on the indication information includes: when the indication information indicates that the second channel is a channel with a fixed frequency domain bandwidth, receiving the second channel according to the same frequency domain resource as the first channel Two channels; in the case where the indication information indicates that the second channel is not a channel with a fixed frequency domain bandwidth, the second channel is received according to the frequency domain resources indicated by the frequency domain resource indicator bits carried by the first channel.
  • receiving the second channel based on the indication information includes: when the indication information indicates that the frequency domain resource indication bit carried by the first channel is not used to indicate the second channel with a fixed frequency domain bandwidth, according to The second channel is received by the same frequency domain resource as the first channel; when the indication information indicates that the frequency domain resource indicator bit carried by the first channel is used to indicate the second channel with a fixed frequency domain bandwidth, the second channel is carried according to the first channel The frequency domain resource indicated by the frequency domain resource indicator bit is used to receive the second channel.
  • receiving the second channel based on the indication information includes: when the indication information indicates that the frequency domain resources of the first channel and the second channel are the same, according to the same frequency domain resources as the first channel Receiving the second channel; when the indication information indicates that the frequency domain resources of the first channel and the second channel are not the same, the frequency domain resources indicated by the frequency domain resource indicator bits carried by the first channel are compared to the second channel To receive.
  • receiving the second channel based on the indication information includes: when the indication information indicates that the first channel and the second channel are the same sub-channel, receiving according to the same frequency domain resource as the first channel The second channel; in the case where the indication information indicates that the first channel and the second channel are not the same subchannel, the second channel is received according to the frequency domain resource indicated by the frequency domain resource indicator bit carried by the first channel.
  • receiving the second channel based on the indication information includes: determining a frequency domain resource for receiving the second channel based on the type of the second channel and the resource allocation bits carried in the first channel; The frequency domain resource receives the second channel.
  • determining the frequency domain resource for receiving the second channel based on the type of the second channel and the resource allocation bits carried in the first channel includes: when the type of the second channel is a channel with a fixed frequency domain bandwidth In the case of, it is determined that the first subchannel of the at least one subchannel indicated by the resource allocation bit carried in the first channel is used to receive the second channel; the type of the second channel is not a channel with a fixed frequency domain bandwidth. In this case, it is determined that at least one subchannel indicated by the resource allocation bit carried in the first channel is used for receiving the second channel.
  • determining the frequency domain resource for receiving the second channel based on the type of the second channel and the resource allocation bits carried in the first channel includes: when the type of the second channel is a channel with a fixed frequency domain bandwidth In the case of, determine the sub-channel where the first channel is located, or the same frequency domain resource as the first channel is used to receive the second channel; in the case that the type of the second channel is not a channel with a fixed frequency domain bandwidth, determine the first channel At least one sub-channel indicated by the resource allocation bit carried in the second channel is used for receiving the second channel.
  • the receiving the second channel based on the indication information includes: when the new data indication information indicates that the current transmission is an initial transmission, And when the redundancy version indication information is 0, the second channel is received according to the frequency domain resources indicated by the frequency domain resource indication bits carried in the first channel; when the new data indication information indicates that the current transmission is the first transmission, And when the redundancy version indication information is non-zero, the second channel is received according to one of the following: the same frequency domain resource as the first channel; the sub-channel where the first channel is located.
  • the method further includes: acquiring sensing information carried by the second channel, and performing resource selection based on the sensing information, and the sensing information includes at least one of the following Information: Information obtained by receiving side link control information of other terminals; reference signal received power measurement results.
  • the method further includes: when the received first channel and the second channel are located in the same sub-channel, measuring the received power of the reference signal of the second channel As a result, it is the measurement result of the reference signal received power of any subchannel in the target resource reserved by the first channel.
  • the target resource reserved by the first channel includes at least one continuous subchannel.
  • the receiving terminal can be regarded as the second terminal in the above solution, and the process of receiving the second channel based on the indication information is as described above, and will not be repeated here.
  • An embodiment of the present application also provides an indication device, which implements the indication information on the first channel and/or the second channel to be carried in the first channel by executing the indication method.
  • the device may be implemented by software and/or hardware, and is usually configured in a transmitting terminal.
  • the device includes: an indication module, configured to indicate at least one of the following according to an indication manner through a first channel: the type of the first channel; The type of information carried in the channel; the type of the second channel; the type of the first channel and the type of the second channel; whether a specific bit in the information carried in the first channel is used for the resource allocation of the second channel; In a certain time interval, the frequency domain resources of the first channel and the frequency domain resources of the second channel overlap.
  • the indicating device provided in the embodiment of the present application is configured to implement the indicating method of the foregoing embodiment, and the implementation principle and technical effect of the indicating device are similar to the indicating method, and will not be repeated here.
  • FIG. 15 is a structural block diagram of a receiving processing apparatus provided by an embodiment of the application.
  • the device executes the receiving processing method to receive the second channel based on the indication information on the first channel and/or the second channel in the first channel.
  • the device can be implemented by software and/or hardware, and is usually configured in a receiving terminal.
  • the device includes: an indication information obtaining module 300, which is used to receive a first channel, and obtain indication information about the first channel and/or the second channel of the first channel; and a receiving module 400, which is used to The instruction information receives the second channel.
  • the frequency domain resources of the first channel overlap with the frequency domain resources of the second channel.
  • the receiving processing device provided in the embodiment of the present application is configured to implement the receiving processing method of the foregoing embodiment.
  • the implementation principle and technical effect of the receiving processing device are similar to the receiving processing method, and will not be repeated here.
  • the embodiment of the present application provides a terminal including a memory and one or more processors; the memory is configured to store one or more programs; when the one or more programs are processed by the one or more The processor executes, so that the one or more processors implement the method described in the embodiment of the present application.
  • the terminal provided above can be configured to execute the method provided in any of the above embodiments, and has corresponding functions and effects.
  • the embodiment of the present application also provides a storage medium of executable instructions, and the computer-executable instruction implements the method described in the embodiment of the present application when executed by a computer processor.
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Versatile Disc (DVD) or Compact Disc (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processors
  • ASICs application specific integrated circuits
  • FPGA Field Programmable Gate Array
  • processors based on multi-core processor architecture such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种指示方法和装置、接收处理方法和装置、终端和存储介质。该指示方法包括:通过第一信道根据指示方式对以下至少之一进行指示:第一信道的类型;第一信道中承载的信息的类型;第二信道的类型;第一信道的类型和第二信道的类型;第一信道中承载的信息中特定比特是否用于第二信道的资源分配;其中,在设定时间区间内,第一信道的频域资源和第二信道的频域资源存在重叠。该接收处理方法包括:接收第一信道,获得所述第一信道关于第一信道和/或第二信道中的至少之一的指示信息;基于所述指示信息接收所述第二信道;其中,在设定时间区间内,所述第一信道的频域资源与所述第二信道的频域资源存在重叠。

Description

指示方法和装置、接收处理方法和装置、终端和存储介质
本申请要求在2019年09月30日提交中国专利局、申请号为201910944425.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种指示方法和装置、接收处理方法和装置、终端和存储介质。
背景技术
在V2X(Vehicle to Everything,简称为V2X)通信中,为了避免不同终端的资源的冲突,往往采用资源预留机制。对于资源预留机制,终端除了需要指示当前的PSSCH(Pysical Sidelink Share Channel,物理边链路共享信道)的资源分配外,还需要在SCI(Sidelink Control Information,边链路控制信息)中进一步指示后面哪些资源被该终端预留。其它终端通过SCI的接收,获得该终端当前PSSCH的资源分配,以及获得该终端的预留资源。然而,PSSCH可能是固定频域带宽的PSSCH,也可能不是固定频域带宽的PSSCH。对于其它终端而言,无法确定待接收的PSSCH是哪种类型的PSSCH,因此,不能确定用于接收PSSCH的频域带宽和频域位置,进而,可能导致接收错误。
发明内容
本申请实施例提供一种指示方法和装置、接收处理方法和装置、终端和存储介质。
本申请实施例提供一种指示方法,包括:
通过第一信道根据指示方式对以下至少之一进行指示:
第一信道的类型;
第一信道中承载的信息的类型;
第二信道的类型;
第一信道的类型和第二信道的类型;
第一信道中承载的信息中特定比特是否用于第二信道的资源分配;
其中,在设定时间区间内,第一信道的频域资源和第二信道的频域资源存在重叠。
本申请实施例还提供一种接收处理方法,包括:
接收第一信道,获得所述第一信道关于第一信道和/或第二信道的指示信息;
基于所述指示信息接收所述第二信道;
其中,在设定时间区间内,所述第一信道的频域资源与所述第二信道的频域资源存在重叠。
本申请实施例提供一种指示装置,该装置包括:
指示模块,用于通过第一信道根据指示方式对以下至少之一进行指示:
第一信道的类型;
第一信道中承载的信息的类型;
第二信道的类型;
第一信道的类型和第二信道的类型;
第一信道中承载的信息中特定比特是否用于第二信道的资源分配;
其中,在设定时间区间内,第一信道的频域资源和第二信道的频域资源存在重叠。
本申请实施例提供一种接收处理装置,该装置包括:
指示信息获取模块,用于接收第一信道,获得所述第一信道关于第一信道和/或第二信道的指示信息;
接收模块,用于基于所述指示信息接收所述第二信道;
其中,在设定时间区间内,所述第一信道的频域资源与所述第二信道的频域资源存在重叠。
本申请实施例提供一种终端,该终端包括:存储器,以及一个或多个处理器;
所述存储器,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本申请实施例中的任意一种方法。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1为本申请实施例提供的一种传输示意图;
图2为本申请实施例提供的另一种传输示意图;
图3为本申请实施例提供的一种信道结构示意图;
图4为本申请实施例提供的一种资源预留和资源分配的指示方法的方法流程图;
图5为本申请实施例提供的另一种传输示意图;
图6为本申请实施例提供的另一种传输示意图;
图7为本申请实施例提供的另一种传输示意图;
图8为本申请实施例提供的另一种传输示意图;
图9为本申请实施例提供的另一种传输示意图;
图10为对图9中的一个时隙的部分频域资源的放大图;
图11为本申请实施例提供的一个时隙内的资源结构示意图;
图12为本申请实施例提供的另一种传输示意图;
图13为本申请实施例提供的另一种传输示意图;
图14为本申请实施例提供的一种接收处理方法的方法流程图;
图15为本申请实施例提供的一种接收处理装置的结构框图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
为了便于理解本申请的技术方案,进行下述说明:在边链路(Sidelink)通信系统中,用户设备(User Equipment,UE,也可称为终端)之间有业务需要传输时,UE之间的业务不经过网络侧,即不经过UE与基站之间的蜂窝链路的转发,而是直接由数据源UE通过Sidelink传输给目标UE,这种UE与UE之间直接通信的模式具有较大程度上区别于传统蜂窝系统通信模式的特征。边链路(Sidelink)通信的典型应用包括设备到设备(D2D,Device-to-Device)通信和车联网(Vehicle to Everything,简称为V2X)通信。车联网(V2X)通信包括车与车(Vehicle to Vehicle,简称为V2V)、车与人(Vehicle to Pedestrian,简称为V2P)、车与路(Vehicle to Infrastructure,简称为V2I)。对于能够应用Sidelink通信的近距离通信用户来说,Sidelink通信不但节省了无线频谱资源,而且降低 了核心网的数据传输压力,能够减少系统资源占用,增加蜂窝通信系统频谱效率,降低通信时延,并在很大程度上节省网络运营成本。
在V2X通信中,终端通过一个SCI指示当前PSSCH的资源分配,同时还指示后面哪些资源被该终端预留。其它终端通过SCI的接收,获得该终端当前PSSCH资源分配情况及资源预留情况。图1和2均为本申请实施例提供的一种传输示意图。如图1和图2的初始传输所示,对于初始传输,物理边链路控制信道(Physical Sidelink Control CHannel,PSCCH)可能是调度单个子信道PSSCH的PSCCH,也可能是调度可变子信道数目PSSCH的PSCCH。
在V2X通信中,资源选择方式有两种。一种方式是通过中心节点(例如基站)的调度,由中心节点决定设备用于发送的资源,并通过信令通知给终端。另一种方式是基于竞争的资源选择方法,在基于竞争的资源选择方法中,设备通过监听资源池范围内资源的使用情况,通过监听结果,在资源池内自主的选择用于发送信令/数据的资源。
本申请实施例基于竞争的资源选择方法中,终端会执行资源感知(sensing)和资源选择这两个过程。在感知过程中,终端通过SCI的接收获得其它终端的预留资源信息以及RSRP(Reference Signal Receiving Power,参考信号接收功率)信息。在资源选择阶段,终端基于感知操作中的感知结果,排除一些高干扰的资源,例如,在资源选择窗范围内,排除被其它终端预留且RSRP高于预设门限值的资源。进行资源排除操作后,终端进一步的在剩余资源中选择资源,用于V2X数据和信令的发送。在资源选择过程中,终端以L个连续的子信道作为一个资源单位,进行资源选择和排除。终端通过L个连续的子信道进行数据和信令的发送,L为大于0的整数。另外,每个子信道由连续的多个RB(Resource Block,资源块)组成。图3为本申请实施例提供的一种信道结构示意图。如图3所示,每个子信道包括多个连续的资源块。通过上述的介绍可以看出来,在资源感知和资源选择过程中,需要获得其它终端的资源预留情况。关于资源分配和资源预留,通过SCI进行指示。图4为本申请实施例提供的一种资源预留和资源分配的指示方法的方法流程图。如图4所示,资源预留和资源分配的指示方法包括:步骤S410、获得调度的PSSCH和预留的PSSCH的子信道数目;步骤S420、根据所述子信道数目确定被调度的PSSCH和预留的PSSCH的频域资源和时域资源;步骤S430、指示被调度的PSSCH和预留的PSSCH的频域资源和时域资源。
本申请实施例提供一种指示方法,以避免接收终端无法确定用于接收PSSCH的频域带宽和频域位置的问题。
本申请实施例提供一种指示方法,该指示方法可以由指示装置执行,该装 置可以由软件和/或硬件实现,通常集成在终端中。该指示方法包括:通过第一信道根据指示方式对以下至少之一进行指示:第一信道的类型;第一信道中承载的信息的类型;第二信道的类型;第一信道的类型和第二信道的类型;第一信道中承载的信息中特定比特是否用于第二信道的资源分配;其中,在设定时间区间内,第一信道的频域资源和第二信道的频域资源存在重叠。
本实施例提供一种指示方法,通过第一信道根据指示方式对第一信道的类型、第一信道中承载的信息的类型、第二信道的类型、第一信道的类型和第二信道的类型、第一信道中承载的信息中特定比特是否用于第二信道的资源分配中的一项或几项的组合进行指示操作,实现在第一信道中携带关于第一信道和/或第二信道的指示信息,从而,在其它终端接收到第一信道后,可以通过指示信息确定用于接收第二信道的频域资源,提升了接收准确度。
设定时间区间包含一个时隙,或者包含多个时隙。在设定时间区间内,第一信道的频域资源和第二信道的频域资源存在重叠,并不是说设定时间区间内所有类型的第二信道,和第一信道在频域资源上存在重叠,而是指,对于一个或多个类型的第二信道之中,至少一个类型的第二信道,在设定时间区间内与第一信道在频域资源上存在重叠。频域资源包括频域带宽和频域位置等。
可选的,第一信道的频域带宽是固定的,所述第二信道的频域带宽是固定的,即第一信道的频域大小是固定的,第二信道的频域大小也是固定的。第一信道的频域资源大小是固定的,是指终端在接收第一信道之前,无需通过任何物理信道或物理信号的指示,就可以在接收第一信道之前知道第一信道的频域大小。
同理,第二信道的频域资源大小是固定的,同样指终端在接收第二信道之前,无需通过任何物理信道或物理信号的指示,就可以在接收第二信道之前知道第二信道的频域大小。这里第二信道是固定的,是指第二信道的频域大小不是通过物理层信令指示的,但可以是通过RRC(无线资源控制,Radio Resource Control)信令配置第二信道的频域资源大小。虽然第二信道的频域资源大小可以通过RRC信令配置,但仍然可以保证在一段时间内(例如100ms以内)第二信道的频域资源大小是不变的,因此第二信道仍然可以归于固定的频域资源大小之列。
可选的,第一信道是物理边链路控制信道。
可选的,第一信道用于承载边链路控制信息。
可选的,第二信道是物理边链路共享信道。
可选的,第二信道是物理边链路控制信道。
可选的,第二信道承载边链路控制信息。例如,在第二信道是PSCCH时,其承载SCI。此外,在第二信道是PSSCH时,PSSCH也可以承载SCI。
特定比特包括:边链路控制信息中的频域资源分配比特,边链路控制信息中的预留频域资源指示比特,或者,边链路控制信息中的频域资源分配比特和预留频域资源指示比特。
预设指示方式包括以下至少之一:
方式一、基于无线网络临时标识(Radio Network Temporary Identifier,RNTI)产生的序列,对第一信道承载的循环冗余校验(Cyclic Redundancy Check,CRC)比特进行加扰的方式指示。
方式二、基于无线网络临时标识产生的序列,对第一信道承载的有效载荷进行加扰的方式指示;其中,有效载荷可以只包括SCI,也可以包括SCI和CRC。
方式三、通过第一信道承载的边链路控制信息中的特定位置的比特指示。
可选的,第二信道中承载的信息比特为对所述第一信道中的信息比特的截取或重复。
例如,假设第一信道有20比特,通过对这20比特进行调制和编码得到调制符号后,映射至第一信道上。第二信道复制调制和解码前的20比特,由第二信道对其进行编码和调制,得到调制符号后,映射至第二信道,得到第二信道中承载的信息。
可选的,第二信道中承载的信息比特为对第一信道中的时频资源上的调制符号的时域重复。例如,假设第一信道有20比特,通过对这20比特进行调制和编码得到调制符号后,映射至第一信道上。第二信道中承载的信息是对调制符号进行时域重复获得的。
本申请实施例中,可选的,通过第一信道对第一信道的类型进行指示可以是:指示第一信道是否用于指示固定频域带宽的第二信道。或者,通过第一信道对第一信道的类型进行指示可以是:指示第一信道是否用于指示与第一信道具有相同频域资源的第二信道。
示例性的,通过第一信道对第一信道中承载的信息的类型进行指示可以是:指示第一信道中承载的信息是否用于指示固定频域带宽的第二信道。或者,通过第一信道对第一信道中承载的信息的类型进行指示可以是:指示第一信道中承载的信息是否用于指示与所述第一信道具有相同频域资源的第二信道。
第二信道的频域资源包括:第二信道的频域资源与第一信道的频域资源相同,和/或第二信道的频域资源为第一信道所在的子信道。
在一个示例性实施方式中,第一终端指示第一信道中承载的SCI中的特定比特是否用于PSSCH的频域资源分配。可选的,第一终端指示SCI中的频域资源分配比特(或预留频域资源指示比特)是否用于PSSCH的频域资源分配。
例如,假设第一终端到达了一个非周期业务包,该非周期业务包被拆分成一个或多个TB(Transport Block,传输块)。假设该非周期业务包对应一个TB。对于该TB的传输,假设物理层共传输了三次,其中第一次传输对应该TB的初始传输(可称为初传),剩余两次传输为该TB的重传。对于该TB的传输,第一终端通过SCI中的特定比特,例如SCI包含40比特的信息,其中第6~10比特用于指示当前SCI调度的PSSCH的频域资源。另外,该第6~10比特信息,也可以用于指示预留的PSSCH频域资源。
图5为本申请实施例提供的另一种传输示意图。如图5所示,对于同一TB的三次传输,第一次传输采用固定频域带宽,该固定频域带宽为一个子信道。对于该TB的第一次传输,主要用于指示第二次传输预留的频域资源,从而避免其它终端选择被该终端预留且RSRP(Reference Signal Received Power,参考信号接收功率)高于门限的资源。
对于图5中所述TB的初始传输,单个子信道内,包括了PSCCH和PSSCH,SCI通过PSCCH承载。对于SCI中用于指示频域资源分配的特定比特,同时也是频域资源预留比特,第一终端指示SCI中的资源分配比特是否用于指示当前PSSCH的资源分配。对于图5中所述TB的初始传输,第一终端通过以下方式之一,指示当前SCI中的特定比特,是否用于当前PSSCH的频域资源分配:
例如,基于RNTI产生的序列,对第一信道承载的CRC比特进行加扰,指示SCI中的特定比特是否用于第二信道频域资源分配,包括:使用第一个RNTI编号所产生的序列对第一信道所承载的CRC比特进行加扰操作,表示SCI中的特定比特不用于第二信道频域资源分配;使用第二个RNTI编号所产生的序列对第一信道所承载的CRC比特进行加扰操作,例如编号为200的RNTI值,表示SCI中的特定比特用于第二信道频域资源分配。
或者,基于RNTI产生的序列,对第一信道承载的有效载荷进行加扰,指示SCI中的特定比特是否用于第二信道频域资源分配,包括:使用第一个RNTI编号所产生的序列对第一信道所承载的有效载荷进行加扰操作,表示SCI中的特定比特不用于第二信道频域资源分配;使用第二个RNTI编号所产生的序列对第一信道所承载的有效载荷进行加扰操作,例如编号为200的RNTI值,表示SCI中的特定比特用于第二信道频域资源分配。
或者,通过第一信道承载的边链路控制信息中的特定位置的比特,指示SCI中的特定比特是否用于第二信道频域资源分配,包括:设置第一信道中承载的 SCI中的特定位置的一个比特的值为0,表示SCI中的特定比特不用于第二信道频域资源分配;或者,设置该特定位置的一个比特的值为1,表示SCI中的特定比特用于第二信道频域资源分配。
对于TB的第二、三次传输,在连续的L个子信道区域内,传输PSCCH和PSSCH,L为大于零的整数。PSCCH位于L个子信道中的第一个子信道内。采用上述相同的方式指示SCI中的特定比特用于第二信道频域资源分配,此处不再赘述。
第一终端按照上述方式通过PSCCH进行信息指示,并通过PSCCH和PSSCH分别发送SCI和数据信息后。第二终端通过PSCCH的检测,获得当前SCI中的资源分配比特,以及关于资源分配比特是否用于当前PSSCH的频域资源分配的指示信息。如果当前PSSCH的频域资源分配不用于当前PSSCH的频域资源分配,则第二终端对当前PSSCH的接收行为是:第二终端按照固定频域带宽接收当前PSSCH,固定频域带宽为一个子信道,并且该子信道为当前SCI所在的PSCCH对应的子信道。如果当前PSSCH的频域资源分配用于当前PSSCH的频域资源分配,则第二终端对当前PSSCH的接收行为是:第二终端按照当前SCI中的资源指示比特(6~10比特)的指示,确定当前PSSCH资源的起始位置和子信道数目;基于当前PSSCH资源的起始位置和子信道数目,接收当前PSSCH。
对于图5中第一终端的初始传输,第二终端通过PSCCH的检测,获得当前SCI中用于指示频域资源指示比特是否有效的比特为0,0表示频域资源指示比特无效,因此第二终端判定SCI中用于指示频域资源的比特无效。判定SCI中的频域资源指示比特不用于第二信道频域资源分配,第二终端对当前PSSCH的接收行为是:第二终端按照一个子信道的频域带宽接收当前PSSCH,并且该子信道为当前SCI所在的PSCCH对应的子信道。
对于图5中第一终端的第二次传输,第二终端通过PSCCH的检测,获得当前SCI中用于指示频域资源是否有效的比特为1,1表示频域资源指示比特有效,因此第二终端判定SCI中用于指示频域资源的比特有效。判定SCI中的频域资源指示比特用于第二信道频域资源分配,第二终端对当前PSSCH的接收行为是:第二终端按照当前SCI中的资源指示比特(6~10比特)的指示,确定当前PSSCH资源的起始位置和子信道数目;基于当前PSSCH资源的起始位置和子信道数目,接收当前PSSCH。
对于图5中第一终端的第三次传输,第二终端通过PSCCH的检测,获得当前SCI中用于指示频域资源是否有效的比特为1,1表示频域资源指示比特有效,因此第二终端判定SCI中用于指示频域资源指示的比特有效。判定SCI中的频 域资源指示比特用于第二信道频域资源分配,第二终端对当前PSSCH的接收行为是:第二终端按照当前SCI中的资源指示比特(6~10比特)的指示,确定当前PSSCH资源的起始位置和子信道数目;基于当前PSSCH资源的起始位置和子信道数目,接收当前PSSCH。
本实施例中,通过指示第一信道中承载的SCI中的特定比特是否用于第二信道的频域资源分配的方式,实现在第一信道中携带关于第二信道的指示信息,从而,在其它终端接收到第一信道后,可以通过指示信息确定用于接收第二信道的频域资源,提升了接收准确度。
在一个示例性实施方式中,第一终端指示PSCCH的类型。进一步的,第一终端指示PSCCH是否用于指示固定频域带宽的PSSCH。如果PSCCH不是用于调度固定频域带宽的PSSCH,则PSSCH的频域资源通过SCI中的资源分配比特指示。SCI通过PSCCH承载。
例如,第一终端到达了一个非周期业务包,该非周期业务包被拆分成一个或多个TB。假设该非周期业务包对应一个TB。对于该TB的传输,假设物理层共传输了三次。图6为本申请实施例提供的另一种传输示意图。如图6所示,对于同一TB的三次传输,第一次传输采用固定频域带宽,该固定频域带宽为一个子信道。
对于图6中所述TB的初始传输,第一终端指示PSCCH是否用于指示固定频域带宽的PSSCH。对于图6中所述TB的初始传输,第一终端通过以下方式之一,指示PSCCH是否用于指示固定频域带宽的PSSCH:
例如,基于RNTI产生的序列,对第一信道承载的CRC比特进行加扰,指示PSCCH是否用于指示固定频域带宽的PSSCH,包括:使用第一个RNTI编号所产生的序列对第一信道所承载的CRC比特进行加扰操作,表示PSCCH用于指示固定频域带宽的PSSCH;使用第二个RNTI编号所产生的序列对第一信道所承载的CRC比特进行加扰操作,例如编号为200的RNTI值,表示PSCCH用于指示不是固定频域带宽的PSSCH。
或者,基于RNTI产生的序列,对第一信道承载的有效载荷进行加扰,指示PSCCH是否用于指示固定频域带宽的PSSCH,包括:使用第一个RNTI编号所产生的序列对第一信道所承载的有效载荷进行加扰操作,表示PSCCH用于指示固定频域带宽的PSSCH;使用第二个RNTI编号所产生的序列对第一信道所承载的有效载荷进行加扰操作,例如编号为200的RNTI值,表示PSCCH用于指示不是固定频域带宽的PSSCH。
或者,通过第一信道承载的边链路控制信息中的特定位置的比特,指示 PSCCH是否用于指示固定频域带宽的PSSCH,包括:设置第一信道中承载的SCI中的特定位置的一个比特的值为0,表示PSCCH用于指示固定频域带宽的PSSCH;或者,设置该特定位置的一个比特的值为1,表示PSCCH用于指示不是固定频域带宽的PSSCH。
对于TB的第二、三次传输,通过连续的L个子信道区域,传输PSCCH和PSSCH,L为大于零的整数。PSCCH位于L个子信道中的第一个子信道内。采用上述相同的方式指示PSCCH是否用于指示固定频域带宽的PSSCH,此处不再赘述。
第一终端按照上述方式,通过PSCCH携带指示信息,以及通过PSCCH和PSSCH分别发送SCI和数据信息后。第二终端通过PSCCH的检测,获得指示信息。如果指示信息指示PSSCH是固定频域带宽的信道,则第二终端对当前PSSCH的接收行为是:第二终端按照一个子信道的频域带宽接收当前PSSCH,并且该子信道为当前SCI所在的PSCCH对应的子信道。
如果指示信息指示PSSCH不是固定频域带宽的信道,则第二终端对当前PSSCH的接收行为是:第二终端按照当前SCI中的频域资源指示比特(6~10比特)的指示,确定当前PSSCH资源的起始位置和子信道数目;基于当前PSSCH资源的起始位置和子信道数目,接收PSSCH。
对于第一终端的初始传输,第二终端通过PSCCH的检测,获得当前SCI中特定位置的比特为0,0表示PSCCH是用于指示固定频域带宽的PSSCH,则第二终端对当前PSSCH的接收行为是:第二终端按照一个子信道的频域带宽接收当前PSSCH,并且该子信道为当前SCI所在的PSCCH对应的子信道。
对于第一终端的第二次传输,第二终端通过PSCCH的检测,获得当前SCI中特定位置的比特为1,1表示PSCCH不是用于指示固定频域带宽的PSSCH。则第二终端对当前PSSCH的接收行为是;第二终端按照当前SCI中的资源指示比特(6~10比特)的指示,确定当前PSSCH资源的起始位置和子信道数目;基于当前PSSCH资源的起始位置和子信道数目,接收当前PSSCH。
同理,对于第一终端的第三次传输,第二终端通过PSCCH的检测,获得当前SCI中特定位置的比特为1,1表示PSCCH不是用于指示固定频域带宽的PSSCH。则第二终端对当前PSSCH的接收行为是:第二终端按照当前SCI中的资源指示比特(6~10比特)的指示,确定当前PSSCH资源的起始位置和子信道数目;基于当前PSSCH资源的起始位置和子信道数目,接收当前PSSCH。
本实施例中,通过指示第一信道是否用于指示固定频域带宽的第二信道的方式,实现在第一信道中携带关于第二信道的指示信息,从而,在其它终端接 收到第一信道后,可以通过指示信息确定用于接收第二信道的频域资源,提升了接收准确度。
本申请实施例中,可选的,对第二信道的类型进行指示,包括:指示第二信道是否用于承载感知信息。
所述感知信息包括通过接收其它终端的边链路控制信息获取的信息,和/或参考信号接收功率测量结果。
在资源选择阶段,终端可以基于感知信息,排除一些高干扰的资源,实现方式如前所述,此处不再赘述。
本申请实施例中,可选的,对第二信道的类型进行指示,包括:指示第二信道是否用于承载资源预留信息。
资源预留信息可以是指示哪些资源被当前终端预留的信息比特。
本申请实施例中,可选的,对第二信道的类型进行指示,包括:指示第二信道是否承载空包。
在一个示例性实施方式中,第一终端指示PSSCH的类型。进一步的,第一终端指示PSSCH是否承载空包(或称为空的数据包)。SCI通过PSCCH承载。
例如,第一终端到达了一个非周期业务包,该非周期业务包被拆分成一个TB。对于该TB的传输,物理层共传输了二次。图7为本申请实施例提供的另一种传输示意图。如图7所示,第一次传输对应TB的初始传输,第二传输为该TB的重传。在第一次传输之前,第一终端通过在固定频域带宽内传输PSCCH和PSSCH,固定频域带宽内的PSSCH用于承载空包。
第一终端通过以下方式之一指示当前PSSCH是否承载空包:
例如,基于RNTI产生的序列,对第一信道承载的CRC比特进行加扰,指示PSSCH是否承载空包,包括:使用第一个RNTI编号所产生的序列对第一信道所承载的CRC比特进行加扰操作,表示PSSCH承载空包;使用第二个RNTI编号所产生的序列对第一信道所承载的CRC比特进行加扰操作,例如编号为200的RNTI值,表示PSSCH未承载空包。
或者,基于RNTI产生的序列,对第一信道承载的有效载荷进行加扰,指示PSCCH是否承载空包,包括:使用第一个RNTI编号所产生的序列对第一信道所承载的有效载荷进行加扰操作,表示PSSCH承载空包;使用第二个RNTI编号所产生的序列对第一信道所承载的有效载荷进行加扰操作,例如编号为200的RNTI值,表示PSSCH未承载空包。
或者,通过第一信道承载的边链路控制信息中的特定位置的比特,指示 PSSCH是否承载空包,包括:设置第一信道中承载的SCI中的特定位置的一个比特的值为0,表示PSSCH承载空包;或者,设置该特定位置的一个比特的值为1,表示PSSCH未承载空包。
对于第一终端发送的PSSCH,第二终端通过PSCCH的接收,获知当前PSSCH类型是否是空的数据包。
若PSSCH承载空包,则放弃对所述第二信道执行接收操作。
本申请实施例中,可选的,在第二信道承载空包的情况下,通过媒体接入控制层产生填充比特,并将所述填充比特发送给物理层;通过所述物理层对所述填充比特进行调制编码处理,得到调制符号,并将所述调制符号映射在所述第二信道上。
本申请实施例中,可选的,在第二信道用于承载数空包的情况下,通过物理层产生填充比特,对填充比特进行调制处理得到调制符号,并将所得到的调制符号映射在所述第二信道上。
本申请实施例中,可选的,在第二信道用于承载数空包的情况下,通过物理层产生填充比特,对填充比特进行调制和编码处理,得到调制符号,并将所得到的调制符号映射在所述第二信道上。
可选的,在上述实例的基础上,还包括:指示第一信道和/或第二信道位于目标资源中的第一个子信道;其中,所述目标资源包含至少一个子信道,即目标资源包含一个子信道或至少两个连续的子信道。该指示涉及的对象可以是同一终端的物理层和媒体接入控制层。可选的,该指示涉及的对象还可以是不同终端,即当前终端向其它终端指示。
例如,指示第一信道和/或第二信道位于目标资源中的第一个子信道可以是,通过物理层向媒体接入控制层指示一个资源集合。通过所述媒体接入控制层在所述资源集合中选择目标资源,指示所述第一信道和/或第二信道位于所述目标资源的第一个子信道中。目标资源的选择依据可以是随机选取、顺序选取或基于空闲情况选取等。
例如,指示第一信道和/或第二信道位于目标资源中的第一个子信道还可以是,通过边链路控制信息指示目标资源的资源分配,指示第一信道和/或第二信道位于目标资源的第一个子信道中。
在一个示例性实施方式中,第一信道和第二信道的发送方式可以是:终端的物理层向MAC(Medium Acess Control,媒体接入控制)层指示(报告)候选资源集合,MAC层在物理层指示(报告)候选资源集合中,选择一个或多个候选资源,用于数据和信令的发送。候选资源集合中的每个资源包含L个连续子 信道,L为大于0的整数。
本实施例中,资源选择方法为:物理层向MAC指示(报告)候选资源集合,MAC层选择一个或多个候选资源。对于MAC层选择的一个候选资源,MAC层进一步选择该候选资源中L个子信道中的第一个子信道,用于V2X的数据和控制信令的发射。
第一终端有业务到达后,MAC层向物理层指示子信道数目L和资源选择窗长度。物理层接收来自MAC层关于信道数目L和资源选择窗长度的数目的指示后,物理层获得L和资源选择窗信息。
进一步的,物理层基于对其它终端的SCI的接收、以及RSRP测量等操作,获得资源选择窗内单位资源的RSRP值。所述一个资源单位时域为一个时隙,频域为连续L个子信道。对于一个单位资源RSRP,通过该单位资源内L个子信道的RSRP的平均获得。在资源选择窗内,终端排除RSRP高于门限的单位资源,获得资源集合A。把集合A作为候选资源集合,终端的物理层把候选资源集合指示(报告)给MAC层。或者,在获得资源集合A后,另一种可选的方案是,终端进一步对资源集合A内的资源进行RSSI(Received Signal Strength Indicator,接收信号强度指示)排序,挑选RSSI能量低的资源组成资源集合B。终端可以把集合B作为候选资源集合,指示(报告)给MAC层。
基于上述方法,MAC层收到的候选资源集合中的每个候选资源包含L个连续子信道,MAC层从候选资源集合中选择第一目标候选资源,MAC层进一步选择第一目标候选资源中的第一个子信道,用于数据和信令的发送。
对于上述描述的方法,通过如图5为例进行阐述说明。图5中,对于终端的一个TB,MAC层决定进行三次传输,第一次传输为该TB的初始传输,第二、三次传输为该TB重传。对于该TB的第一次传输,MAC层从候选资源集合中选择一个候选资源,并且仅仅使用该候选资源中L个子信道中的第一个子信道,用于数据和信令的发送。对于该TB的第二(或第三次)传输,MAC层从候选资源集合中选择一个候选资源,候选资源中所有L个子信道,用于数据和信令的发送。
从图5中可以看出,同一TB的初传和重传的频域资源大小是不同的。如果终端分别计算两种频域资源大小,判断哪些资源是空闲,可以用于数据和控制信息的传输,则会引入额外的资源选择复杂度。通过上述方式,终端的物理层只需要按照一种频域资源大小选择空闲资源,上报给MAC层,从而节省了资源选择的复杂度。
在一个示例性实施方式中,SCI中的特定比特指示当前PSSCH的资源分配, 指示当前PSSCH的频域资源为L个连续子信道,但第一终端仅在所述L个子信道中的一个子信道上发送数据和信令。例如,终端仅在所述L个子信道中的第一个子信道上发送数据和信令。
图8为本申请实施例提供的另一种传输示意图。对于上述描述的方法,以图8为例进行阐述说明。在图8中,第一次传输用于一个PSSCH的初传,第二、三次传输用于一个PSSCH的重传。对于PSSCH的初传,SCI中用于指示PSSCH频域资源分配的比特,指示了连续的L个子信道位置作为PSSCH的频域资源分配。虽然指示了L个子信道频域资源,然而,第一终端仅仅在L个子信道中的第一个子信道上发送PSSCH,即L个子信道中,仅第一个子信道用于承载第一终端的PSSCH。
对于PSSCH的第二次(或第三次)传输,SCI中用于指示PSSCH频域资源分配的比特,指示了连续的L个子信道位置作为PSSCH的频域资源分配。第一终端在L个子信道中的所有子信道上发送PSSCH。
对于第二终端,第二终端检测到第一终端的SCI所指示的频域资源分配指示后,按照该频域资源分配情况去接收被SCI调度的PSSCH。对于图8中,初始PSSCH的接收,第二终端按照第一终端SCI说指示的L个频域子信道去接收PSSCH。在该实施例方案中,PSSCH初始传输,主要用于指示重传资源的预留资源,初始传输后面还有重传,因此,即使第二终端无法成功接收首次传输的PSSCH也没有关系。但这样做,可以带来额外的好处是,降低SCI中的指示开销,SCI中可以通过特定的比特,同时指示被调度资源的频域资源,又可以同时指示预留资源的频域资源。
本申请实施例中,可选的,对第二信道的类型进行指示,包括:通过第一信道指示第二信道中承载的边链路控制信息的格式。
在一个示例性实施方式中,第一信道为PSCCH,第二信道为PSSCH。SCI信令被划分为两个部分,第一部分(阶段)SCI通过第一信道承载,第二部分(阶段)的SCI通过第二信道承载。对于第一阶段SCI,对应一个SCI格式。对于第二阶段SCI,包含两种SCI格式。
当第二阶段SCI为第一种SCI格式的时候,在一个设定的时间区间内,用于承载该SCI的第二信道的频域带宽和频域位置与第一信道相同。
当第二阶段SCI为第二种SCI格式的时候,在一个设定的时间区间内,用于承载该SCI的第二信道的频域带宽和频域位置通过第一信道指示,并不限定第二信道的频域带宽和频域位置与第一信道相同。
可选的,第一终端通过以下方式之一指示第二信道中承载的边链路控制信 息的格式:
例如,基于RNTI产生的序列,对CRC比特进行加扰,指示第二信道所承载的SCI的格式,包括:使用第一个RNTI编号所产生的序列对第一信道所承载的CRC比特进行加扰操作,表示第二信道所承载的SCI的格式为第一种SCI格式;使用第二个RNTI编号所产生的序列对第一信道所承载的CRC比特进行加扰操作,例如编号为200的RNTI值,表示第二信道所承载的SCI的格式为第二种SCI格式。
或者,对于第一信道中承载的SCI中的特定位置的一个比特,如果该比特的值为0,表示第二信道所承载的SCI的格式为第一种SCI格式;如果该比特的值为1,表示第二信道所承载的SCI的格式为第二种SCI格式。
图9为本申请实施例提供的另一种传输示意图。基于上述的指示方式,对于图9的三个第一信道,最左边的第一信道,指示第二信道所承载的SCI格式为第一种SCI格式。中间的第一信道,指示第二信道所承载的SCI格式为第二种SCI格式。最右边的第一信道,指示第二信道所承载的SCI格式为第二种SCI格式。不同的SCI格式,SCI的信息比特数不同。或者,不同的SCI格式尽管SCI比特数相同,但SCI中的至少一部分比特位置,用于不同的指示目的。
对于第一信道,除了可以通过第一信道指示第二信道所承载的SCI格式之外,第一信道也可以用于指示后面的哪些时频资源被终端预留。以便于其它终端收到预留信息后,避让已经被预留的资源,避免不同终端之间的资源冲突。
对于第二信道所承载的SCI,可以用于指示PSSCH的时频资源分配。例如:
当第二信道的SCI为第一种格式的时候,第二信道的SCI不包括PSSCH的时频资源分配信息。但是,第二信道的SCI包含一些其它信息,例如预留比特信息或预留资源的指示信息等。
当第二信道的SCI为第二种格式的时候,第二信道的SCI包括PSSCH的时频资源分配信息。但不包括预留比特信息和预留资源的指示信息。
本实施例中,在设定时间区间(一个时隙)内,第一信道(PSCCH)的频域资源位置对应的时频资源去除GP(Guard Period,保护时间间隔)符号和PSFCH(Physical Sidelink Feedback CHannel,物理边链路反馈信道)符号,剩余资源为目标资源区域。第二信道承载的SCI为第一种SCI格式时,第二信道(PSSCH)的资源位置为:第一信道频域资源范围内,除了第一信道、AGC(Automatic Gain Control,自动增益控制)符号和PSFCH符号以外的所有剩余资源。对于图9中最左边的一个时隙的部分频域资源,放大后的示意图如图10所示。
GP(Guard Period,保护时间间隔)符号用于收发转换符号,终端通常在GP符号之前进行接收,在GP符号之后进行发送。或者,终端通常在GP符号之前进行发送,在GP符号之后进行接收。PSFCH(Physical Sidelink Feedback CHannel,物理边链路反馈信道)为反馈信道,用于反馈终端接收的数据是对还是错。在PSFCH符号,终端可以接收其它终端的反馈信息,终端也可以通过PSFCH向其它终端发送反馈信息。
第一终端在通过第一信道和第二信道进行SCI的发送,并且通过第一信道指示第二信道的类型。
对于第二终端,接收第一终端发送的第一信道。通过第一信道的接收,获得第一信道所承载的第一阶段SCI,以及通过第一信道的接收,确定第二信道中承载的边链路控制信息的格式。
可选的,第二终端通过以下方式之一确定第二信道中承载的边链路控制信息的格式:
例如,基于RNTI产生的序列,对第一信道所承载的CRC解扰,确定第二信道所承载的SCI的格式,包括:使用第一个RNTI编号所产生的序列,对第一信道所承载的CRC比特进行解扰操作,解扰后进行CRC校验,如果CRC校验通过,则表示第二信道所承载的SCI的格式为第一种SCI格式;同理,使用第二个RNTI编号所产生的序列,对第一信道所承载的CRC比特进行解扰操作,解扰后进行CRC校验,如果CRC校验通过,则表示第二信道所承载的SCI的格式为第二种SCI格式。
或者,终端接收的第一信道中承载的SCI中的特定位置的一个比特,如果该比特的值为0,则终端判断第二信道所承载的SCI的格式为第一种SCI格式;如果该比特的值为1,则终端判断第二信道所承载的SCI的格式为第二种SCI格式。
如果终端所获得的第二信道中所承载的SCI为第一种SCI格式,则终端确定第二信道的时频资源位置为:设定时间区域内(例如第一信道所在时隙),第一信道频域资源范围内,除了第一信道、AGC符号、PSFCH符号以外的所有剩余资源。
如果终端所获得的第二信道中所承载的SCI为第二种SCI格式,则终端确定第二信道的时频资源位置为:设定时间区域内,第二信道中所承载的SCI中的资源指示比特所指示的频域资源。
接收终端获得第二信道的时频资源位置后,进一步的对第二信道进行接收。
本实施例中,通过第一信道指示第二信道中承载的边链路控制信息的格式 的方式,实现在第一信道中携带关于第二信道的指示信息,从而,在其它终端接收到第一信道后,可以通过指示信息确定用于接收第二信道的频域资源,提升了接收准确度。
在一个示例性实施方式中,第一信道包括PSCCH和用于PSCCH接收的PSCCH DMRS,且PSCCH承载SCI。本实施例中,在一个时隙内,第一信道频域资源位置对应的时频资源去除GP符号和PSFCH符号,剩余资源为目标资源区域。本实施例中,第二信道映射在目标资源区域内第一信道以外的所有剩余资源上。
本实施例中,第二信道占用的频域资源位置和RB数目与第一信道(PSCCH)相同。图11为本申请实施例提供的一个时隙内的资源结构示意图。如图11所示,第二信道通过对第一信道进行资源重复获得。
例如,第一信道包含4个符号,m个RB,且4个符号的编号分别为0,1,2,3。第二信道包含7个符号,编号分别为4,5,6,7,8,9,10。第二信道的频域资源与第一信道的频域资源相同,第二信道通过对第一信道进行符号重复获得。
第二信道中编号为4的符号的m个RB上的资源,通过对第一信道中编号为0的符号上的m个RB进行复制获得。
第二信道中编号为5的符号的m个RB上的资源,通过对第一信道中编号为1的符号上的m个RB进行复制获得。
第二信道中编号为6的符号的m个RB上的资源,通过对第一信道中编号为2的符号上的m个RB进行复制获得。
第二信道中编号为7的符号的m个RB上的资源,通过对第一信道中编号为3的符号上的m个RB进行复制获得。
第二信道中编号为8的符号的m个RB上的资源,通过对第一信道中编号为0的符号上的m个RB进行复制获得。
第二信道中编号为9的符号的m个RB上的资源,通过对第一信道中编号为1的符号上的m个RB进行复制获得。
第二信道中编号为10的符号的m个RB上的资源,通过对第一信道中编号为2的符号上的m个RB进行复制获得。
本实施例中,终端按照图11所示,通过第一信道(PSCCH)和第二信道发送信息。
本申请实施例中,可选的,对第二信道的类型进行指示,包括:指示是否 有第二阶段的边链路控制信息。
例如,通过第一信道指示是否有第二阶段的SCI,进而根据该指示信息指示第二信道的类型。在这种指示方式中,是否有第二阶段的SCI与第二信道的类型之间有关联关系。如果指示没有第二阶段SCI,则意味着第二信道的类型为第一类型的第二信道。如果指示有第二阶段SCI,则意味第二信道的类型为第二类型的第二信道。
在一个示例性实施方式中,对通过第一信道指示是否有第二阶段的边链路控制信息进行说明。图12和13分别为本申请实施例提供的另一种传输示意图。在图12和图13中,第一信道为PSCCH,第二信道为PSSCH,用于承载数据信息,第三信道是PSSCH或PSCCH。SCI信令被划分为两个部分,第一部分(阶段)SCI通过第一信道(PSCCH)承载,第二部分(阶段)的SCI通过第三信道承载。
如图12和图13所示,第二信道包括两种类型,特点如下:对于第一种类型的第二信道,第二信道的频域资源为第一阶段SCI所在的子信道,时域资源与第一阶段的SCI在同一设定时间内。例如,和第一阶段SCI在同一时隙内;对于第二种类型的第二信道,第二信道的频域资源为第二阶段的SCI所指示的频域资源,时域资源与第一阶段的SCI(第二阶段的SCI)在同一设定时间内,例如,和第一阶段的SCI(第二阶段的SCI)在同一时隙内。
本实施例中,第一终端通过以下方式之一指示是否有第二阶段的SCI:
例如,基于RNTI产生的序列对CRC比特加扰,指示是否有第二阶段的SCI,包括:使用第一个RNTI编号所产生的序列对第一信道所承载的CRC比特进行加扰操作,表示第一阶段SCI没有对应的第二阶段SCI;使用第二个RNTI编号所产生的序列对第一信道所承载的CRC比特进行加扰操作,例如编号为200的RNTI值,表示第一阶段SCI有对应的第二阶段的SCI。
或者,对于第一信道中承载的SCI中的特定位置的一个比特,如果值为0,表示没有第二阶段的SCI;如果值为1,表示有第二阶段的SCI。
基于上述的指示方式,对于图12或图13的三个第一信道,最左边的第一信道,指示没有第二阶段的SCI。中间的第一信道,指示有第二阶段的SCI。最右边的第一信道,指示有第二阶段的SCI。
在本实施例中,第一阶段SCI所指示的信息,包括预留资源指示信息。预留资源指示信息,包括预留资源的频域资源指示比特和预留资源的时域资源指示比特。本实施例中,对于第一阶段SCI中用于指示预留资源频域资源的比特,同时也用于指示当前第二信道的频域资源。即第一阶段SCI中的特定比特,所 指示的频域资源,指示的是预留资源的频域资源,指示的也是当前第二信道的频域资源。
本实施例中,所述第一阶段SCI中的特定比特,指示L个连续子信道频域资源作为当前第二信道的资源分配指示,但当前第二信道仅仅占用第一个子信道。
示例性的,指示所述第一信道和/或第二信道位于目标资源中的第一个子信道,包括:指示至少两个连续的子信道,对第一个子信道以外的剩余子信道进行打孔处理;或者,指示至少两个连续的子信道,对设定时间区间内所述至少两个连续的子信道对应的时频资源中,除第一信道对应的时频资源以外的剩余时频资源进行打孔处理。
可选的,指示所述第一信道和/或第二信道位于目标资源中的第一个子信道,包括:指示至少一个子信道,在第一个子信道进行速率匹配;或者,指示至少一个子信道,在第一信道的频域资源上进行速率匹配。
关于打孔的方式,如图12所示。速率匹配的方式,如图13所示。
第二终端接收第一信道。通过第一信道的接收,第二终端获得第一信道所承载的第一阶段SCI,以及通过第一信道的接收,确定是否有与第一阶段的SCI关联的第二阶段SCI。
可选的,第二终端通过以下方式之一确定是否有第二阶段的边链路控制信息:
例如,基于RNTI产生的序列,对第一信道所承载的CRC比特解扰,确定是否有与第一阶段的SCI关联的第二阶段SCI,包括:使用第一个RNTI编号所产生的序列,对第一信道所承载的CRC比特进行解扰操作,解扰后进行CRC校验,如果CRC校验通过,则表示没有与第一阶段的SCI关联的第二阶段SCI;同理,使用第二个RNTI编号所产生的序列,对第一信道所承载的CRC比特进行解扰操作,解扰后进行CRC校验,如果CRC校验通过,则表示有与第一阶段的SCI关联的第二阶段SCI。
或者,终端接收的第一信道中承载的SCI中的特定位置的一个比特,如果该比特的值为0,则终端判断没有与第一阶段的SCI关联的第二阶段SCI;如果该比特的值为1,则终端判断有与第一阶段的SCI关联的第二阶段SCI。
第二终端判断是否有与第一阶段的SCI关联的第二阶段SCI后,基于第二阶段SCI的有无,判断第二信道的类型。也就是说,是否有第二阶段的SCI,与第二信道的类型之间有绑定关系。如果没有第二阶段SCI,则可以判断第二信道的类型为第一种类型的第二信道。如果有第二阶段SCI,则终端判断第二信道的 类型为第二种类型的第二信道。
第二终端确定第一种类型的第二信道的频域资源的方式,包括以下方式至少之一:
基于第二信道类型的指示和第一阶段SCI中特定比特所指示的L个频域资源(或者为第一信道中承载的资源分配比特),确定第二信道的频域资源为:如果第二信道为第一种类型的第二信道,则第二信道的频域资源为SCI中特定比特所指示的L个子信道中的第一个子信道。
仅基于第二信道类型的指示,确定第二信道的频域资源:如果第二信道为第一种类型的第二信道,则第二信道的频域资源为第一信道所在的子信道,或者第一信道相同的频域资源。
第二终端进一步确定第一种类型的第二信道的时频资源为:设定时间区域内(例如第一信道所在时隙),第二终端所确定的第二信道频域资源范围内,除了第一信道、AGC符号、PSFCH符号以外的所有剩余资源。
对于第二种类型的第二信道,则第二终端确定第二信道的时频资源位置为:设定时间区域内(例如第一信道所在时隙),第二阶段SCI所指示的频域资源,去除第一信道、第三信道、AGC符号、PSFCH符号以外的所有剩余资源。
第二终端获得第二信道的时频资源位置后,进一步的对第二信道进行接收。
本实施例中,通过第一信道指示是否有第二阶段的边链路控制信息的方式,实现在第一信道中携带关于第二信道的指示信息,从而,在其它终端接收到第一信道后,可以通过指示信息确定用于接收第二信道的频域资源,提升了接收准确度。
本申请实施例中,可选的,对第二信道的类型进行指示,包括:指示第二信道所承载的预留比特信息的用途。指示第二信道所承载的预留比特信息的用途包括以下之一:指示第二信道的版本协议;指示第二信道中承载的信息的协议版本。
在一个示例性实施方式中,第一信道是指PSCCH,承载SCI。第二信道可以是PSCCH,也可以是PSSCH,用于承载预留比特信息。接下来,我们以第二信道为PSCCH为例,进行说明。
本实施例中,第一信道对第二信道的类型进行指示,指示第二信道的类型的方式可以是以下方式之一:指示第二信道是否承载预留比特信息;指示第二信道的协议版本;指示第二信道中承载信息(例如SCI)的协议版本。
例如,通过第一信道承载的SCI中特定位置的一个比特指示协议版本,可 以指示为版本0,还是版本1。若SCI中特定位置的一个比特为0,则指示版本0,若SCI中特定位置的一个比特为1,则指示版本1。
例如,对于版本0的第二信道,第二信道中承载的预留比特信息的值为0,表示预留比特信息不用于指示任何信息。对于版本1的第二信道,第二信道中承载的预留比特信息,用于指示将来协议版本的一些信息。预留比特信息在将来版本中每个比特区域用于指示什么信息,可以在将来协议版本中再确定。
对于当前版本的第二接收终端,收到其它终端的第一信道后,不对第二信道进行接收。
当将来版本的第二终端,收到其它发射终端的第一信道后,如果第一信道指示的版本为版本0,则不对第二信道进行接收。如果第一信道指示的版本为版本1,则对第二信道进行接收。
本实施例中,通过第一信道指示第二信道所承载的预留比特信息是否被赋予确定的用途的方式,实现在第一信道中携带关于第二信道的指示信息,从而,在其它终端接收到第一信道后,可以通过指示信息确定是否接收第二信道。
可选的,对第二信道的类型进行指示,包括:通过第一信道中承载的新数据指示信息和冗余版本指示信息,对第二信道的类型进行指示。
在一个示例性实施方式中,通过第一信道指示第二信道的类型的方式为:通过新数据指示(New Data Indicator,NDI)信息和冗余版本(Redundant Version,RV)指示信息指示第二信道的类型。
在设定时间区间内,第一信道的频域资源与第二信道的频域资源存在重叠。例如,所述设定时间区间包含一个时隙,或者包括多个时隙。
在图7中,第一信道为PSCCH,用于承载SCI,第二信道为PSSCH。
当第二信道为第一类型时,在一个设定的时间区间内,第二信道的频域位置为:第一信道所在的子信道。
当第二信道为第二类型时,在一个设定的时间区间内,第二信道的频域带宽和频域位置通过第一信道指示。
本实施例中,第二信道的类型通过第一信道进行指示。通过以下方式指示:第一信道所承载的SCI中的NDI比特指示为初传,SCI中的RV指示的RV值不等于0,则指示第二信道的类型为第一类型。
第一信道所承载的SCI中的NDI比特指示为初传,SCI中的RV指示比特指示的RV值等于0,则指示第二信道的类型为第二类型。
第一信道所承载的SCI中的NDI比特指示为重传,则第二信道的类型为第 二类型。
第一终终端通过第一信道和第二信道进行V2X的发送。
对于第二终端,接收第一终端发送的第一信道。通过第一信道的接收,获得NDI比特指示和RV值。
如果接收的NDI比特指示为初传,RV值不等于0,则判断第二信道的类型为第一类型;如果接收的NDI比特指示为初传,RV值等于0,则判断第二信道的类型为第二类型;如果接收的NDI比特指示为重传,则第二信道的类型为第二类型。
在获得第二信道的类型后,第二终端确定第二信道的频域资源为:当第二信道为第一类型时,则确定第二信道的时频资源位置为:设定时间区域内(例如第一信道所在时隙),第一信道所在子信道内,除了第一信道、AGC符号、PSFCH符号以外的所有剩余资源。
当第二信道为第二类型时,则确定第二信道的时频资源位置为:设定时间区域内(例如第一信道所在时隙),第二信道中所承载的SCI中的资源指示比特所指示的频域资源,是除了第一信道、AGC符号、PSFCH符号以外的所有剩余资源。
第二终端获得第二信道的时频资源位置后,进一步对第二信道进行接收。
本实施例中,通过指示第一信道中承载的新数据指示信息和冗余版本指示信息的方式,对第二信道的类型进行指示,实现在第一信道中携带关于第二信道的指示信息,从而,在其它终端接收到第一信道后,可以通过指示信息确定用于接收第二信道的频域资源,提升了接收准确度。
图14为本申请实施例提供的一种接收处理方法的方法流程图。该方法可以由接收处理装置执行,该装置可以由软件和/或硬件实现,通常集成在终端中。如图14所示,该方法包括:
步骤100、接收第一信道,获得所述第一信道关于第一信道和/或第二信道的指示信息。
在设定时间区间内,所述第一信道的频域资源与所述第二信道的频域资源存在重叠。
示例性的,获得所述第一信道关于第一信道和/或第二信道的指示信息可以是:基于无线网络临时标识产生的序列,对第一信道承载的循环冗余校验比特进行解扰的方式,获得所述第一信道关于第一信道和/或第二信道的指示信息。或者,基于无线网络临时标识产生的序列,对第一信道承载的有效载荷进行解 扰的方式,获得所述第一信道关于第一信道和/或第二信道的指示信息。或者,获取第一信道承载的边链路控制信息中的特定位置的比特,将所获得的特定位置的比特作为指示信息。
步骤200、基于所述指示信息接收所述第二信道。
若指示信息是第二信道承载空包,则放弃对所述第二信道执行接收操作。
示例性的,基于所述指示信息接收所述第二信道,包括:在所述指示信息包含通过第一信道调度的边链路控制信息的情况下,按照所述边链路控制信息中的频域资源分配比特所指示的频域资源,对第二信道进行接收;在所述指示信息不包含通过第一信道调度的边链路控制信息的情况下,按照与所述第一信道相同的频域资源,对第二信道进行接收;在所述指示信息不包含通过第一信道调度的边链路控制信息的情况下,按照所述第一信道所在的子信道接收第二信道。
示例性的,基于所述指示信息接收所述第二信道,包括:在所述指示信息指示第二信道是固定频域带宽的信道的情况下,按照第一信道所在的子信道接收第二信道;在所述指示信息指示第二信道不是固定频域带宽的信道的情况下,按照第一信道承载的频域资源指示比特所指示的频域资源,对第二信道进行接收。
示例性的,基于所述指示信息接收所述第二信道,包括:在所述指示信息指示第二信道是固定频域带宽的信道的情况下,按照与第一信道相同的频域资源接收第二信道;在所述指示信息指示第二信道不是固定频域带宽的信道的情况下,按照第一信道承载的频域资源指示比特所指示的频域资源,对第二信道进行接收。
示例性的,基于所述指示信息接收所述第二信道,包括:在所述指示信息指示第一信道承载的频域资源指示比特不用于指示固定频域带宽的第二信道的情况下,按照与第一信道相同的频域资源接收第二信道;在所述指示信息指示第一信道承载的频域资源指示比特用于指示固定频域带宽的第二信道的情况下,按照第一信道承载的频域资源指示比特所指示的频域资源,对第二信道进行接收。
示例性的,基于所述指示信息接收所述第二信道,包括:在所述指示信息指示第一信道和第二信道的频域资源相同的情况下,按照与第一信道相同的频域资源接收第二信道;在所述指示信息指示第一信道和第二信道的频域资源不相同的情况下,按照第一信道承载的频域资源指示比特所指示的频域资源,对第二信道进行接收。
示例性的,基于所述指示信息接收所述第二信道,包括:在所述指示信息指示第一信道和第二信道是同一个子信道的情况下,按照与第一信道相同的频域资源接收第二信道;在所述指示信息指示第一信道和第二信道不是同一子信道的情况下,按照第一信道承载的频域资源指示比特所指示的频域资源,对第二信道进行接收。
示例性的,基于所述指示信息接收所述第二信道,包括:基于第二信道的类型和第一信道中承载的资源分配比特,确定用于接收所述第二信道的频域资源;基于所述频域资源,对所述第二信道进行接收。
示例性的,基于第二信道的类型和第一信道中承载的资源分配比特,确定用于接收所述第二信道的频域资源,包括:在第二信道的类型是固定频域带宽的信道的情况下,确定所述第一信道中承载的资源分配比特所指示的至少一个子信道中的第一子信道用于接收第二信道;在第二信道的类型不是固定频域带宽的信道的情况下,确定所述第一信道中承载的资源分配比特所指示的至少一个子信道用于接收第二信道。
示例性的,基于第二信道的类型和第一信道中承载的资源分配比特,确定用于接收所述第二信道的频域资源,包括:在第二信道的类型是固定频域带宽的信道的情况下,确定第一信道所在的子信道,或者第一信道相同的频域资源用于接收第二信道;在第二信道的类型不是固定频域带宽的信道的情况下,确定第一信道中承载的资源分配比特所指示的至少一个子信道用于接收第二信道。
示例性的,在指示信息包括新数据指示信息和冗余版本指示信息的情况下,所述基于所述指示信息接收所述第二信道,包括:在新数据指示信息指示当前传输为初传,且冗余版本指示信息为0的情况下,按照第一信道中承载的频域资源指示比特所指示的频域资源,对第二信道进行接收;在新数据指示信息指示当前传输为初传,且冗余版本指示信息为非0的情况下,按照以下之一接收第二信道:与第一信道相同的频域资源;第一信道所在的子信道。
示例性的,在基于所述指示信息接收所述第二信道之后,还包括:获取所述第二信道承载的感知信息,基于所述感知信息进行资源选择,所述感知信息包括以下至少一项信息:通过接收其它终端的边链路控制信息获取的信息;参考信号接收功率测量结果。
示例性的,在基于所述指示信息接收所述第二信道之后,还包括:在接收的第一信道和第二信道位于同一个子信道内的情况下,将第二信道的参考信号接收功率测量结果,作为被第一信道预留的目标资源中任一子信道的参考信号接收功率测量结果。被第一信道预留的目标资源包含至少一个连续的子信道。
接收终端,可以看成是上述方案中的第二终端,其基于指示信息对第二信道进行接收的过程如前所述,此处不再赘述。
本申请实施例还提供一种指示装置,该装置通过执行指示方法,实现在第一信道中携带关于第一信道和/或第二信道的指示信息。该装置可以由软件和/或硬件实现,且通常配置于发射终端,该装置包括:指示模块,用于通过第一信道根据指示方式对以下至少之一进行指示:第一信道的类型;第一信道中承载的信息的类型;第二信道的类型;第一信道的类型和第二信道的类型;第一信道中承载的信息中特定比特是否用于第二信道的资源分配;其中,在设定时间区间内,第一信道的频域资源和第二信道的频域资源存在重叠。
本申请实施例提供的指示装置设置为实现上述实施例的指示方法,该指示装置的实现原理与技术效果与指示方法类似,此处不再赘述。
本申请实施例还提供一种接收处理装置。图15为本申请实施例提供的一种接收处理装置的结构框图。该装置通过执行接收处理方法,以基于第一信道中关于第一信道和/或第二信道的指示信息,对第二信道进行接收。该装置可以由软件和/或硬件实现,且通常配置于接收终端。如图15所示,该装置包括:指示信息获取模块300,用于接收第一信道,获得所述第一信道关于第一信道和/或第二信道的指示信息;接收模块400,用于基于所述指示信息接收所述第二信道。
在设定时间区间内,所述第一信道的频域资源与所述第二信道的频域资源存在重叠。
本申请实施例提供的接收处理装置设置为实现上述实施例的接收处理方法,该接收处理装置的实现原理与技术效果与接收处理方法类似,此处不再赘述。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本申请实施例提供了一种终端,包括存储器,以及一个或多个处理器;所述存储器,设置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本申请实施例所述的方法。
上述提供的终端可设置为执行上述任意实施例提供的方法,具备相应的功能和效果。
本申请实施例还提供了一种可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时实现本申请实施例所述的方法。
以上,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Versatile Disc,DVD)或光盘(Compact Disc,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (50)

  1. 一种指示方法,包括:
    通过第一信道根据指示方式对以下至少之一进行指示:
    所述第一信道的类型;
    所述第一信道中承载的信息的类型;
    第二信道的类型;
    所述第一信道的类型和第二信道的类型;
    所述第一信道中承载的信息中特定比特是否用于第二信道的资源分配;
    其中,在设定时间区间内,所述第一信道的频域资源和第二信道的频域资源存在重叠。
  2. 根据权利要求1所述的方法,其中,所述第一信道的频域带宽是固定的,所述第二信道的频域带宽是固定的。
  3. 根据权利要求1所述的方法,其中,所述第一信道是物理边链路控制信道。
  4. 根据权利要求1所述的方法,其中,所述第一信道用于承载边链路控制信息。
  5. 根据权利要求1所述的方法,其中,所述第二信道承载感知信息。
  6. 根据权利要求1所述的方法,其中,所述第二信道是物理边链路共享信道。
  7. 根据权利要求1所述的方法,其中,所述第二信道是物理边链路控制信道。
  8. 根据权利要求6或7所述的方法,其中,所述第二信道承载边链路控制信息。
  9. 根据权利要求1所述的方法,其中,所述指示方式包括以下至少之一:
    基于无线网络临时标识产生的序列,对所述第一信道承载的循环冗余校验比特进行加扰的方式指示;
    基于无线网络临时标识产生的序列,对所述第一信道承载的有效载荷进行加扰的方式指示;
    通过所述第一信道承载的边链路控制信息中的特定位置的比特指示。
  10. 根据权利要求1所述的方法,其中,对所述第一信道的类型进行指示,包括:
    指示所述第一信道是否用于指示固定频域带宽的第二信道。
  11. 根据权利要求1所述的方法,其中,对所述第一信道的类型进行指示,包括:
    指示所述第一信道是否用于指示与所述第一信道具有相同频域资源的第二信道。
  12. 根据权利要求1所述的方法,其中,对所述第一信道中承载的信息的类型进行指示,包括:
    指示所述第一信道中承载的信息是否用于指示固定频域带宽的第二信道。
  13. 根据权利要求1所述的方法,其中,对所述第一信道中承载的信息的类型进行指示,包括:
    指示所述第一信道中承载的信息是否用于指示与所述第一信道具有相同频域资源的第二信道。
  14. 根据权利要求13所述的方法,其中,所述第二信道的频域资源包括以下至少之一:
    所述第二信道的频域资源与所述第一信道的频域资源相同;
    所述第二信道的频域资源为所述第一信道所在的子信道。
  15. 根据权利要求1所述的方法,其中,对所述第二信道的类型进行指示,包括:
    指示所述第二信道是否用于承载感知信息。
  16. 根据权利要求1所述的方法,其中,对所述第二信道的类型进行指示,包括:
    指示所述第二信道是否用于承载资源预留信息。
  17. 根据权利要求1所述的方法,其中,对所述第二信道的类型进行指示,包括:
    指示所述第二信道是否承载空包。
  18. 根据权利要求17所述的方法,其中,在所述第二信道承载空包的情况下,通过媒体接入控制层产生填充比特,并将所述填充比特发送给物理层;
    通过所述物理层对所述填充比特进行调制编码处理,得到调制符号,并将所述调制符号映射在所述第二信道上。
  19. 根据权利要求17所述的方法,其中,在所述第二信道用于承载空包的 情况下,通过物理层产生填充比特,对所述填充比特进行调制处理或调制编码处理,得到调制符号,并将所述调制符号映射在所述第二信道上。
  20. 根据权利要求1所述的方法,其中,对所述第二信道的类型进行指示,包括:
    指示所述第二信道中承载的边链路控制信息的格式。
  21. 根据权利要求1所述的方法,其中,对所述第二信道的类型进行指示,包括:
    指示所述第二信道所承载的预留比特信息的用途。
  22. 根据权利要求21所述的方法,其中,所述指示所述第二信道所承载的预留比特信息的用途,包括:
    指示所述第二信道的版本协议,或者,指示所述第二信道中承载的信息的协议版本。
  23. 根据权利要求1所述的方法,其中,对所述第二信道的类型进行指示,包括:
    通过所述第一信道中承载的新数据指示信息和冗余版本指示信息,对所述第二信道的类型进行指示。
  24. 根据权利要求1所述的方法,其中,所述第二信道中承载的信息比特为对所述第一信道中的信息比特的截取或重复。
  25. 根据权利要求1所述的方法,其中,所述第二信道中承载的信息比特为对所述第一信道中的时频资源上的调制符号的时域重复。
  26. 根据权利要求1所述的方法,其中,所述第二信道中承载的信息比特包括边链路控制信息和填充比特。
  27. 根据权利要求1所述的方法,还包括:
    指示所述第一信道和所述第二信道中的至少之一位于目标资源中的第一个子信道;
    其中,所述目标资源包含至少一个子信道。
  28. 根据权利要求27所述的方法,其中,所述指示第一信道和所述第二信道中的至少之一位于目标资源中的第一个子信道,包括:
    通过物理层向媒体接入控制层指示一个资源集合;
    通过所述媒体接入控制层在所述资源集合中选择目标资源,指示所述第一信道和所述第二信道中的至少之一位于所述目标资源的第一个子信道中。
  29. 根据权利要求27所述的方法,其中,所述指示所述第一信道和所述第二信道中的至少之一位于目标资源中的第一个子信道,包括:
    通过边链路控制信息指示目标资源的资源分配,指示所述第一信道和第二信道中的至少之一位于所述目标资源的第一个子信道中。
  30. 根据权利要求27所述的方法,其中,所述指示所述第一信道和所述第二信道中的至少之一位于目标资源中的第一个子信道,包括:
    指示至少两个连续的子信道,对第一个子信道以外的剩余子信道进行打孔处理;
    或者,指示至少两个连续的子信道,对设定时间区间内所述至少两个连续的子信道对应的时频资源中,除第一信道对应的时频资源以外的剩余时频资源进行打孔处理。
  31. 根据权利要求27所述的方法,其中,所述指示所述第一信道和所述第二信道中的至少之一位于目标资源中的第一个子信道,包括:
    指示至少一个子信道,在第一个子信道进行速率匹配;
    或者,指示至少一个子信道,在所述第一信道的频域资源上进行速率匹配。
  32. 一种接收处理方法,包括:
    接收第一信道,获得所述第一信道关于第一信道和第二信道中的至少之一的指示信息;
    基于所述指示信息接收所述第二信道;
    其中,在设定时间区间内,所述第一信道的频域资源与所述第二信道的频域资源存在重叠。
  33. 根据权利要求32所述的方法,其中,所述获得所述第一信道关于第一信道和第二信道中的至少之一的指示信息,包括:
    通过以下至少一种方式获得所述第一信道关于第一信道和第二信道中的至少之一的指示信息:
    基于无线网络临时标识产生的序列,对所述第一信道承载的循环冗余校验比特进行解扰;
    基于无线网络临时标识产生的序列,对所述第一信道承载的有效载荷进行解扰;
    获取所述第一信道承载的边链路控制信息中的特定位置的比特。
  34. 根据权利要求32所述的方法,其中,所述基于所述指示信息接收所述 第二信道,包括:
    在所述指示信息是所述第二信道承载空包的情况下,放弃对所述第二信道执行接收操作。
  35. 根据权利要求32所述的方法,其中,所述基于所述指示信息接收所述第二信道,包括:
    在所述指示信息包含通过所述第一信道调度的边链路控制信息的情况下,按照所述边链路控制信息中的频域资源分配比特所指示的频域资源,对所述第二信道进行接收;
    在所述指示信息不包含通过所述第一信道调度的边链路控制信息的情况下,按照与所述第一信道相同的频域资源,对所述第二信道进行接收;
    在所述指示信息不包含通过所述第一信道调度的边链路控制信息的情况下,按照所述第一信道所在的子信道接收所述第二信道。
  36. 根据权利要求32所述的方法,其中,所述基于所述指示信息接收所述第二信道,包括:
    在所述指示信息指示所述第二信道是固定频域带宽的信道的情况下,按照所述第一信道所在的子信道接收所述第二信道;
    在所述指示信息指示所述第二信道不是固定频域带宽的信道的情况下,按照所述第一信道承载的频域资源指示比特所指示的频域资源,对所述第二信道进行接收。
  37. 根据权利要求32所述的方法,其中,所述基于所述指示信息接收所述第二信道,包括:
    在所述指示信息指示所述第二信道是固定频域带宽的信道的情况下,按照与所述第一信道相同的频域资源接收所述第二信道;
    在所述指示信息指示所述第二信道不是固定频域带宽的信道的情况下,按照所述第一信道承载的频域资源指示比特所指示的频域资源,对所述第二信道进行接收。
  38. 根据权利要求32所述的方法,其中,所述基于所述指示信息接收所述第二信道,包括:
    在所述指示信息指示所述第一信道承载的频域资源指示比特不用于指示固定频域带宽的第二信道的情况下,按照与所述第一信道相同的频域资源接收所述第二信道;
    在所述指示信息指示所述第一信道承载的频域资源指示比特用于指示固定 频域带宽的第二信道的情况下,按照所述第一信道承载的频域资源指示比特所指示的频域资源,对所述第二信道进行接收。
  39. 根据权利要求32所述的方法,其中,所述基于所述指示信息接收所述第二信道,包括:
    在所述指示信息指示所述第一信道和所述第二信道的频域资源相同的情况下,按照与所述第一信道相同的频域资源接收所述第二信道;
    在所述指示信息指示所述第一信道和所述第二信道的频域资源不相同的情况下,按照所述第一信道承载的频域资源指示比特所指示的频域资源,对所述第二信道进行接收。
  40. 根据权利要求32所述的方法,其中,所述基于所述指示信息接收所述第二信道,包括:
    在所述指示信息指示所述第一信道和所述第二信道是同一个子信道的情况下,按照与所述第一信道相同的频域资源接收所述第二信道;
    在所述指示信息指示所述第一信道和所述第二信道不是同一子信道的情况下,按照所述第一信道承载的频域资源指示比特所指示的频域资源,对所述第二信道进行接收。
  41. 根据权利要求32所述的方法,其中,所述基于所述指示信息接收所述第二信道,包括:
    基于所述第二信道的类型和所述第一信道中承载的资源分配比特,确定用于接收所述第二信道的频域资源;
    基于所述频域资源,对所述第二信道进行接收。
  42. 根据权利要求41所述的方法,其中,所述基于所述第二信道的类型和所述第一信道中承载的资源分配比特,确定用于接收所述第二信道的频域资源,包括:
    在所述第二信道的类型是固定频域带宽的信道的情况下,确定所述第一信道中承载的资源分配比特所指示的至少一个子信道中的第一子信道用于接收所述第二信道;
    在所述第二信道的类型不是固定频域带宽的信道的情况下,确定所述第一信道中承载的资源分配比特所指示的至少一个子信道用于接收所述第二信道。
  43. 根据权利要求41所述的方法,其中,所述基于第二信道的类型和所述第一信道中承载的资源分配比特,确定用于接收所述第二信道的频域资源,包括:
    在所述第二信道的类型是固定频域带宽的信道的情况下,确定所述第一信道所在的子信道,或者与所述第一信道相同的频域资源用于接收所述第二信道;
    在第二信道的类型不是固定频域带宽的信道的情况下,确定所述第一信道中承载的资源分配比特所指示的至少一个子信道用于接收所述第二信道。
  44. 根据权利要求32所述的方法,其中,在所述指示信息包括新数据指示信息和冗余版本指示信息的情况下,所述基于所述指示信息接收所述第二信道,包括:
    在所述新数据指示信息指示当前传输为初传,且所述冗余版本指示信息为0的情况下,按照所述第一信道中承载的频域资源指示比特所指示的频域资源,对所述第二信道进行接收;
    在所述新数据指示信息指示当前传输为初传,且所述冗余版本指示信息为非0的情况下,按照以下之一接收所述第二信道:
    与所述第一信道相同的频域资源;
    所述第一信道所在的子信道。
  45. 根据权利要求32所述的方法,在基于所述指示信息接收所述第二信道之后,还包括:
    获取所述第二信道承载的感知信息,基于所述感知信息进行资源选择,其中,所述感知信息包括以下至少一项信息:
    通过接收其它终端的边链路控制信息获取的信息;
    参考信号接收功率测量结果。
  46. 根据权利要求45所述的方法,在获取所述第二信道承载的参考信号接收功率测量结果之后,还包括:
    在接收的第一信道和第二信道位于同一个子信道内的情况下,将所述第二信道的参考信号接收功率测量结果,作为被所述第一信道预留的目标资源中任一子信道的参考信号接收功率测量结果;
    其中,被所述第一信道预留的目标资源包含至少一个子信道。
  47. 一种指示装置,包括:
    指示模块,设置为通过第一信道根据指示方式对以下至少之一进行指示:
    所述第一信道的类型;
    所述第一信道中承载的信息的类型;
    第二信道的类型;
    所述第一信道的类型和第二信道的类型;
    所述第一信道中承载的信息中特定比特是否用于第二信道的资源分配;
    其中,在设定时间区间内,所述第一信道的频域资源和第二信道的频域资源存在重叠。
  48. 一种接收处理装置,包括:
    指示信息获取模块,设置为接收第一信道,获得所述第一信道关于第一信道和第二信道中的至少之一的指示信息;
    接收模块,位置为基于所述指示信息接收所述第二信道;
    其中,在设定时间区间内,所述第一信道的频域资源与所述第二信道的频域资源存在重叠。
  49. 一种终端,包括:存储器,以及至少一个处理器;
    所述存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现权利要求1-46中任一所述的方法。
  50. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-46中任一项所述的方法。
PCT/CN2020/118441 2019-09-30 2020-09-28 指示方法和装置、接收处理方法和装置、终端和存储介质 WO2021063318A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910944425.0 2019-09-30
CN201910944425.0A CN110677883A (zh) 2019-09-30 2019-09-30 一种指示方法、接收处理方法、装置、终端和存储介质

Publications (1)

Publication Number Publication Date
WO2021063318A1 true WO2021063318A1 (zh) 2021-04-08

Family

ID=69078749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118441 WO2021063318A1 (zh) 2019-09-30 2020-09-28 指示方法和装置、接收处理方法和装置、终端和存储介质

Country Status (2)

Country Link
CN (1) CN110677883A (zh)
WO (1) WO2021063318A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677883A (zh) * 2019-09-30 2020-01-10 中兴通讯股份有限公司 一种指示方法、接收处理方法、装置、终端和存储介质
CN115866677A (zh) * 2020-01-15 2023-03-28 大唐移动通信设备有限公司 数据重传激活方法、设备、装置及存储介质
CN111263454B (zh) * 2020-01-19 2023-04-07 展讯通信(上海)有限公司 传输块大小确定方法和终端设备
BR112022008359A2 (pt) * 2020-02-12 2022-07-26 Apple Inc Formato de informações de controle sidelink estágio 2
EP4029176A4 (en) * 2020-02-12 2023-05-17 Apple Inc. V2X FREQUENCY INDICATION AND TIME RESOURCE SIGNALING
CN113545111B (zh) * 2020-02-14 2023-10-20 北京小米移动软件有限公司 资源预留方法、装置及终端
CN113271668B (zh) * 2020-02-14 2023-06-30 中信科智联科技有限公司 一种资源指示方法及终端
CN113498200B (zh) * 2020-03-19 2023-06-06 维沃移动通信有限公司 一种传输配置方法及终端
CN115399024A (zh) * 2020-04-24 2022-11-25 华为技术有限公司 用于资源选择的方法和终端装置
CN115553005A (zh) * 2020-05-21 2022-12-30 Oppo广东移动通信有限公司 侧行反馈资源配置方法、终端设备和网络设备
CN111934835A (zh) * 2020-08-06 2020-11-13 中兴通讯股份有限公司 一种资源选择、指示方法、装置、终端和存储介质
WO2022027697A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 资源选择方法及装置
CN114553379B (zh) * 2020-11-24 2024-05-14 华为技术有限公司 资源处理方法、装置、系统及存储介质
CN115134895A (zh) * 2021-03-22 2022-09-30 华为技术有限公司 双drx模式下唤醒指示方法及相关装置
CN115942377A (zh) * 2021-08-05 2023-04-07 大唐移动通信设备有限公司 一种信息处理方法、终端及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031808A1 (en) * 2017-08-07 2019-02-14 Lg Electronics Inc. METHOD FOR TRANSMITTING AND RECEIVING SIGNALS IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREOF
CN109526247A (zh) * 2016-08-09 2019-03-26 松下电器(美国)知识产权公司 用于v2x传输的数据的改进的初始传输和重传
CN110139238A (zh) * 2018-02-09 2019-08-16 电信科学技术研究院有限公司 信息发送方法及终端
CN110677883A (zh) * 2019-09-30 2020-01-10 中兴通讯股份有限公司 一种指示方法、接收处理方法、装置、终端和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109526247A (zh) * 2016-08-09 2019-03-26 松下电器(美国)知识产权公司 用于v2x传输的数据的改进的初始传输和重传
WO2019031808A1 (en) * 2017-08-07 2019-02-14 Lg Electronics Inc. METHOD FOR TRANSMITTING AND RECEIVING SIGNALS IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREOF
CN110139238A (zh) * 2018-02-09 2019-08-16 电信科学技术研究院有限公司 信息发送方法及终端
CN110677883A (zh) * 2019-09-30 2020-01-10 中兴通讯股份有限公司 一种指示方法、接收处理方法、装置、终端和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "On sidelink resource allocation mechanism", 3GPP DRAFT; R1-1904494, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 12 April 2019 (2019-04-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 9, XP051707234 *
NOKIA, NOKIA SHANGHAI BELL: "Discussion of physical layer structure for sidelink", 3GPP DRAFT; R1-1906074-NOKIA-5G_V2X_NRSL-DISCUSSION OF PHYSICAL LAYER STRUCTURE FOR SIDELINK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051727531 *

Also Published As

Publication number Publication date
CN110677883A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2021063318A1 (zh) 指示方法和装置、接收处理方法和装置、终端和存储介质
US20200403737A1 (en) Method and apparatus for transmission or reception of sidelink feedback in communication system
JP7246396B2 (ja) データ伝送方法及び装置、コンピュータ記憶媒体
US20220272717A1 (en) Signal sending method and device, signal receiving method and device, information feedback method and device, communication node, and medium
CN113812177B (zh) 侧行链路免授权传输的感测和资源选择方法及设备
EP3448109B1 (en) Scheduling method, apparatus, and system
JP6663076B2 (ja) 情報送信方法及びユーザ装置
JP7120716B2 (ja) ユーザ機器間通信のための方法及びユーザ機器
KR20200050848A (ko) Nr v2x 시스템에서 harq 피드백 절차 수행 방법 및 그 장치
US20230208557A1 (en) Method and apparatus for transmission and reception of sidelink control information in wireless communication system
EP4369833A2 (en) Method and apparatus for transmitting and receiving reference signal for sidelink data in wireless communication system
JP2023538148A (ja) 1つのスロットにおける複数のサイドリンク送信機会のための方法および装置
JP6865215B6 (ja) 無線通信装置、無線通信方法および集積回路
EP4087309A1 (en) Wireless communication method and terminal device
US20230239900A1 (en) Method and device for selecting resource in wireless communication system
EP3096543B1 (en) D2d data transmission method and device
US11357032B2 (en) Control information transmission method, transmit end, and receive end
KR20200087698A (ko) 무선통신시스템에서 사이드링크 물리계층 세션 아이디를 결정하는 방법 및 장치
WO2020088223A1 (zh) 一种进行资源选择的方法及设备
WO2021008434A1 (zh) 反馈信息处理方法及设备
CN113411174B (zh) 一种通信方法及通信装置
WO2021027815A1 (zh) 一种反馈信息传输方法及装置
WO2017133013A1 (zh) 一种传输控制信令的方法及设备
WO2016045037A1 (zh) 信号发送方法,信号接收方法及其相关设备
WO2017028337A1 (zh) 一种传输块类型信令指示方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870802

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20870802

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20870802

Country of ref document: EP

Kind code of ref document: A1