WO2021060881A1 - 기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재 - Google Patents

기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재 Download PDF

Info

Publication number
WO2021060881A1
WO2021060881A1 PCT/KR2020/012985 KR2020012985W WO2021060881A1 WO 2021060881 A1 WO2021060881 A1 WO 2021060881A1 KR 2020012985 W KR2020012985 W KR 2020012985W WO 2021060881 A1 WO2021060881 A1 WO 2021060881A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
thermoplastic composite
thermoplastic resin
impregnated
viscosity
Prior art date
Application number
PCT/KR2020/012985
Other languages
English (en)
French (fr)
Inventor
길형배
Original Assignee
코오롱플라스틱 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱플라스틱 주식회사 filed Critical 코오롱플라스틱 주식회사
Publication of WO2021060881A1 publication Critical patent/WO2021060881A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts

Definitions

  • the present invention relates to a method for producing a thermoplastic composite material that imparts functionalization, and to a thermoplastic composite material produced therefrom.
  • thermoplastic composites are increasing.
  • thermosetting resins such as epoxy, BMI (Bismaleimide), and phenolic resin, carbon fiber, fiberglass, and aramid fiber. ), etc.
  • thermosetting composite material has a problem in that the time to harden the resin is excessive, so that the product manufacturing time is excessive.
  • thermoplastic resin composite that combines reinforcing fibers and thermoplastic resins such as PP resin (Polypropylene), nylon resin (Polyamide), and PPS (Polyphenylene Sulfide), and the development of products using the same are actively progressing.
  • PP resin Polypropylene
  • nylon resin Polyamide
  • PPS Polyphenylene Sulfide
  • Thermoplastic composites are classified into non-continuous fiber composites and continuous fiber composites.
  • the non-continuous fiber composite material has a high degree of design freedom, and generally has high productivity through processes such as injection and extrusion, but has a disadvantage of somewhat low physical properties.
  • Continuous fiber composites have high physical properties, but low design freedom. In recent years, there are increasing cases of applying continuous fiber composites to replace the main materials of applications requiring high stiffness/high strength.
  • Korean Patent Publication No. 2019-0062911 discloses a continuous fiber-reinforced thermoplastic composite material formed in the form of a rod by combining a plurality of yarns or tape intermediate materials, and a method for manufacturing the same. Since an ideal isotropic material is realized by passing through the spraying section, a thermoplastic composite material having excellent impregnation properties capable of manufacturing a material with high impact properties has been disclosed.
  • Thermoplastic composite production methods can be largely classified into dip dieing, power scattering, flim lanination, and commingled.
  • the water bath impregnation method is a method of impregnating while passing through a die containing molten resin
  • the powder impregnation method is a method of dispersing a fine powdered thermoplastic resin on thin reinforcing fibers and then melting and impregnating them.
  • the film impregnation method is a method of placing thin reinforcing fibers between film-type thermoplastic resins and then melting them to impregnate them.
  • the reinforcing fibers and the fiber-type thermoplastic resin are laminated into one bundle and then melted and impregnated. That's the way.
  • Each of the above methods should control the process according to the type of thermoplastic resin applied.
  • the water bath impregnation method has a problem in that shear stress is generated in the reinforcing fibers during the process of forcibly impregnating the reinforcing fibers while passing through the pins inside the die and causing the single yarn to break.
  • the present inventors have tried to solve the above problems, and as a result of impregnating a low-viscosity thermoplastic resin into the reinforcing fiber to prepare a pre-impregnated thermoplastic composite, and then further impregnating it with a high-viscosity thermoplastic resin, the reinforcing fibers during the impregnation process. It was confirmed that a thermoplastic composite material having functions such as high mechanical properties, flame retardance, and light resistance properties can be manufactured because no single yarn occurs, and the present invention was completed.
  • thermoplastic composite material capable of imparting functions such as mechanical properties, flame retardancy, and light resistance while preventing single yarn of reinforcing fibers during impregnation, and a thermoplastic composite material prepared therefrom.
  • the present invention comprises the steps of: (a) impregnating a reinforcing fiber with a low-viscosity thermoplastic resin to prepare a pre-impregnated thermoplastic composite material; (b) pressing the pre-impregnated thermoplastic composite material to improve impregnation; (c) supplying a high-viscosity thermoplastic resin to the pressurized pre-impregnated thermoplastic composite material; (d) preparing an impregnated thermoplastic composite material having a target weight fraction; And (e) cooling and winding the impregnated thermoplastic composite.
  • the step of preparing a thermoplastic composite material impregnated with reinforcing fibers by impregnating the low-viscosity thermoplastic resin with reinforcing fibers includes the steps of: (a-1) injecting a low-viscosity thermoplastic resin melted in an extruder into an impregnation die; (a-2) spreading the reinforcing fibers thinly; (a-3) heating the thinly stretched reinforcing fibers; (a-4) supplying the heated thin reinforcing fiber into the impregnation die; And (a-5) impregnating the heated thin reinforcing fiber with a low-viscosity thermoplastic resin to prepare a pre-impregnated thermoplastic composite.
  • thermoplastic composite material impregnated with the reinforcing fiber is characterized in that 10 to 20 wt% of a low-viscosity thermoplastic resin is included.
  • the pressing is characterized in that it is performed through a pressing roller.
  • the high-viscosity thermoplastic resin contains an additive for imparting at least one physical property selected from the group consisting of mechanical properties, thermal properties, light resistance, scratch resistance, hydrolysis resistance, electrical conductivity, thermal conductivity, and chemical resistance. It characterized in that it includes.
  • the high viscosity thermoplastic resin is characterized in that it is supplied in a molten form, a powder form, or a film form.
  • the target weight fraction is characterized in that the sum of the total resin weights of the low-viscosity thermoplastic resin and the high-viscosity thermoplastic resin and the weight ratio of the reinforcing fibers are 60 to 70: 40 to 30 wt%.
  • the present invention also provides a thermoplastic composite material manufactured by the above manufacturing method.
  • thermoplastic composite is capable of impregnating a high-viscosity thermoplastic resin without single yarn of the reinforcing fiber, as well as functional properties such as mechanical properties, flame retardancy, and light resistance, so that the reinforcing fiber is highly impregnated and functionalized thermoplastic.
  • Composites can be manufactured.
  • FIG. 1 is a schematic diagram showing a step of manufacturing a pre-impregnated thermoplastic composite according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a step of manufacturing a thermoplastic composite material through a molten high viscosity thermoplastic resin according to an embodiment of the present invention.
  • thermoplastic composite material using a high viscosity thermoplastic resin in the form of a film according to an embodiment of the present invention.
  • thermoplastic composite material using a high-viscosity thermoplastic resin in powder form according to an embodiment of the present invention.
  • the present invention comprises the steps of (a) impregnating a reinforcing fiber with a low-viscosity thermoplastic resin to prepare a pre-impregnated thermoplastic composite material; (b) pressing the pre-impregnated thermoplastic composite material to improve impregnation; (c) supplying a high-viscosity thermoplastic resin to the pressurized pre-impregnated thermoplastic composite material; (d) preparing an impregnated thermoplastic composite material having a target weight fraction; And (e) cooling and winding the impregnated thermoplastic composite.
  • FIG. 1 is a schematic diagram showing a step of manufacturing a pre-impregnated thermoplastic composite according to an embodiment of the present invention.
  • the thermoplastic composite material of the present invention includes a first extruder 100 for extruding a low-viscosity thermoplastic resin, a fiber heating device 102 for melting reinforcing fibers, and a pre-impregnation die 103 for impregnating a low-viscosity thermoplastic resin into the reinforcing fibers. It can be produced in a thermoplastic composite manufacturing apparatus comprising a.
  • the first extruder 100 is equipped with a first extruder screw 101 for mixing and dispersing, and the pre-impregnated die 103 is provided with an impregnated pin 104 for impregnating a low-viscosity thermoplastic resin.
  • the step (a) of preparing a pre-impregnated thermoplastic composite material by impregnating a low-viscosity thermoplastic resin in the reinforcing fiber is (a-1) injecting a low-viscosity thermoplastic resin melted in an extruder into an impregnation die. step; (a-2) spreading the reinforcing fibers thinly; (a-3) heating the thinly stretched reinforcing fiber; (a-4) supplying the heated thinly stretched reinforcing fiber into the impregnation die; And (a-5) it can be prepared by impregnating a low-viscosity thermoplastic resin in the heated thin reinforcing fiber.
  • step (a-1) of injecting the low-viscosity thermoplastic resin melted by the extruder into the impregnation die will be described with reference to FIG. 1 as follows.
  • the first extruder 100 receives the low-viscosity thermoplastic resin 2 through a feeder, melts it in the high-temperature extruder, and is transferred through the screw 101.
  • the thermoplastic resin introduced through the feeder is a resin having a low viscosity, and it is preferable to use a resin having reinforcing fibers and sufficient wettability.
  • the low-viscosity thermoplastic resin is polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polyamide (PA), polyacetal (POM), polybutylene terephthalate ( PBT), polyphenylene sulfide (PPS), polyethyl ether ketone (PEEK) linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and the like, and additional additives for viscosity control may be added.
  • PVC polyvinyl chloride
  • PE polyethylene
  • PP polypropylene
  • PA polyamide
  • POM polyacetal
  • PBT polybutylene terephthalate
  • PPS polyphenylene sulfide
  • PEEK polyethyl ether ketone
  • LLDPE linear low-density polyethylene
  • HDPE high-density polyethylene
  • the spreading step (a-2) of thinning the reinforcing fiber may be performed while the reinforcing fiber supplied through a creek (not shown) passes through a plurality of rollers, the amount of spreading of the reinforcing fiber in the final thermoplastic composite material. Considering the weight fraction and the target thickness, it can be adjusted to a width that satisfies the FAW (weight of reinforcing fiber per unit area).
  • the reinforcing fibers may include carbon fibers, glass fibers, silicon carbide fibers, boron fibers, aramid fibers, natural fibers, metallic fibers, and the like, but are not limited thereto.
  • the step (a-3) of heating the thinly stretched reinforcing fiber is performed in the fiber heating device 102, and the temperature can be adjusted in consideration of compatibility.
  • the fiber heating temperature is lower than the sizing decomposition temperature of the reinforcing fiber, a temperature equivalent to the internal temperature of the impregnation die is given, and when the fiber heating temperature is higher than the decomposition temperature of the sizing of the reinforcing fiber, the temperature at which decomposition of the sizing does not occur is maintained. do.
  • the fiber is heated at a temperature at which sizing can be eliminated when it exhibits higher compatibility when no sizing treatment is performed than in the case of sizing treatment.
  • step (a-4) of supplying the heated thinly stretched reinforcing fiber into the impregnation die it is necessary to maintain an appropriate separation distance to prevent single yarn due to interference when the thinly stretched reinforcing fiber is introduced into the impregnating die 103. desirable.
  • the separation distance may vary depending on the number of reinforcing fibers, the thickness and width of the composite material to be manufactured.
  • the low-viscosity thermoplastic resin contains 10 to 20 wt% in the pre-impregnated thermoplastic composite material with reinforcing fibers. It is preferable to be impregnated as much as possible.
  • the content of the low-viscosity thermoplastic resin is less than 10 wt%, there is a problem in that the low-viscosity thermoplastic resin is impregnated into the reinforcing fiber, and when it exceeds 20 wt%, there may be a problem in expressing the optimum performance.
  • the temperature and the linear speed representing the lowest viscosity through the measurement of the relative viscosity of the low-viscosity thermoplastic resin to be introduced as for the temperature and the process speed inside the impregnating die 103.
  • a more preferable process speed should be applied through an experiment with the optimum value at the process speed at which single yarns of the heated thinly stretched reinforcing fibers do not occur.
  • the heated thinly stretched reinforcing fibers injected into the pre-impregnation die 103 are combined with the melted thermoplastic resin injected from the first extruder 100, and then pass through the pre-impregnated pin 104 for pre-impregnation, and the thermoplastic resin melted into the inside. Let it impregnate. At this time, it is desirable to maintain the pre-impregnated pin and the position in an optimum condition in which single yarns of the heated thinly stretched reinforcing fibers do not occur.
  • step (b) of pressing the pre-impregnated thermoplastic composite material to improve the impregnation property which may be performed through a consolidation process, and may be pressed using a male/male type pressing roller.
  • FAW reinforcing fiber weight per unit area
  • resin fraction by suppressing the flow of the reinforcing fiber and the flow of the thermoplastic resin.
  • the step of supplying a high-viscosity thermoplastic resin to the pressurized pre-impregnated thermoplastic composite material is performed in order to impart functionality and impregnation with the high-viscosity thermoplastic resin (c).
  • the high-viscosity thermoplastic resin may be used that contains an additive for imparting at least one physical property selected from the group consisting of mechanical properties, thermal properties, light resistance, scratch resistance, hydrolysis resistance, electrical conductivity, thermal conductivity and chemical resistance.
  • an additive for imparting at least one physical property selected from the group consisting of mechanical properties, thermal properties, light resistance, scratch resistance, hydrolysis resistance, electrical conductivity, thermal conductivity and chemical resistance.
  • the high viscosity thermoplastic resin PEEK, PEAK, PPS, PA6, PA66, etc. having a MI (Melt Index) of 500 or less may be exemplified, but the present invention is not limited thereto.
  • the high-viscosity thermoplastic resin may be supplied in a molten form, a powder form, or a film form, and a supply method and a processing device may vary as shown in FIGS. 2 to 3 according to the form.
  • FIG. 2 is a schematic diagram showing a step of manufacturing a thermoplastic composite material through a molten high viscosity thermoplastic resin according to an embodiment of the present invention.
  • thermoplastic composite material (T-die) 32 may be manufactured.
  • the second extruder 200 is equipped with a second extruder screw 201 for mixing and dispersing.
  • thermoplastic composite material using a high viscosity thermoplastic resin in the form of a film according to an embodiment of the present invention.
  • thermoplastic composite manufacturing apparatus including a crelag (not shown) and a DBP (Double Belt Press) 300 for secondary impregnation It can be made of a thermoplastic composite (film) 41.
  • the high-viscosity thermoplastic resin 4 in the form of a film is supplied to both sides of the pre-impregnated thermoplastic composite 11 pressurized through a creak.
  • thermoplastic composite material using a high-viscosity thermoplastic resin in powder form according to an embodiment of the present invention.
  • thermoplastic composite manufacturing apparatus including a powder scatter 400 and a DBP (Double Belt Press) 300 for secondary impregnation It may be made of a thermoplastic composite (powder) 51.
  • the high-viscosity thermoplastic resin 5 in the form of powder can be manufactured in a fine powder form through processes such as ball mill and crushing, and the high-viscosity thermoplastic resin 5 in the form of powder is pressed through the powder scatter 400. After being scattered on the upper and lower portions of the pre-impregnated thermoplastic composite 11, it may be impregnated.
  • the step (d) of preparing the impregnated thermoplastic composite material having the target weight fraction may also vary depending on the molten form, powder form, or film form of the high-viscosity thermoplastic resin to be used.
  • the target weight fraction can be adjusted as needed according to the use of the finally produced thermoplastic composite, and the weight ratio of the sum of the total resin weights of the low-viscosity thermoplastic resin and the high-viscosity thermoplastic resin and the reinforcing fiber is 60-70: 40-30wt. It is preferable to control it to be %.
  • the target weight fraction can be adjusted while cooling and impregnation in a DBP (Double Belt Press) 300.
  • thermoplastic resin (4) in the form of a film
  • DBP Double Belt Press
  • the temperature and speed of the powder to minimize the heat history when passing through a heater of a temperature capable of melting the high-viscosity thermoplastic resin and the impregnated thermoplastic composite material in the powder form are controlled, and To prevent dropping, the target weight fraction can be adjusted in DBP (Double Belt Press).
  • thermoplastic composite material (UD Tape) of the present invention can be prepared by performing the conventional cooling and winding steps of the impregnated thermoplastic composite material.
  • reinforcing fiber 2 low viscosity thermoplastic resin
  • High-viscosity thermoplastic resin 4 High-viscosity thermoplastic resin in the form of a film
  • thermoplastic composite 31 molten high viscosity thermoplastic resin
  • T-die 300 DBP (Double Belt Press)
  • thermoplastic composite material manufactured according to the present invention can be used in various industrial fields requiring weight reduction since the reinforcing fiber is impregnated with a high-viscosity thermoplastic resin without single yarn.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

본 발명은 기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재에 관한 것이다. 상기 열가소성 복합재의 제조방법은 (a) 강화섬유에 저점도 열가소성 수지를 함침시켜 가함침된 열가소성 복합재를 제조하는 단계; (b) 함침성 향상을 위하여 상기 가함침된 열가소성 복합재를 가압하는 단계; (c) 가압된 가함침된 열가소성 복합재에 고점도 열가소성 수지를 공급하는 단계; (d) 목표 무게분율을 갖는 함침된 열가소성 복합재를 제조하는 단계; 및 (e) 함침된 열가소성 복합재를 냉각 및 권취하는 단계를 포함한다. 본 발명에 따른 열가소성 복합재의 제조방법은 강화섬유의 단사없이 고점도 열가소성 수지에 함침이 가능할 뿐만 아니라, 기계적 물성, 난연성, 내광성 등의 기능성까지 부여할 수 있으므로, 강화섬유가 고함침되고, 기능화된 열가소성 복합재를 제조할 수 있다.

Description

기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재
본 발명은 기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재에 관한 것이다.
다양한 산업분야에서 특히 자동차 및 우주/항공 분야를 포함한 운송 분야에서 경량화에 대한 요구가 커지며 열가소성 복합재의 적용 및 관심이 증가되고 있다.
기존 복합재의 주요 기술로써는 에폭시 수지(Epoxy), BMI(Bismaleimide), 페놀 수지(phenolic resin) 등의 열경화성수지(Thermsetting resin)와 탄소섬유(Carbon fiber), 유리섬유(Fiberglass), 아라미드섬유(Aramid fiber) 등의 강화섬유를 복합화한 소재와 이를 응용한 제품이 주를 이루어 왔다. 하지만 열경화성 복합재는 수지는 경화하는 시간이 과도하여 제품 제작 시간이 과도한 문제점이 있다.
이 문제를 해결하기 위해 최근 PP수지(Polypropylene), 나일론 수지(Polyamide), PPS(Polyphenylene Sulfide) 등의 열가소성 수지와 강화섬유를 복합화한 열가소성수지 복합재 개발과 이를 응용한 제품 개발이 활발히 진행되고 있다.
열가소성 복합재는 비연속섬유 복합재와 연속섬유 복합재로 분류된다. 비연속 섬유 복합재는 디자인 자유도가 높고 일반적으로 사출 및 압출 등의 공정을 통해 생산성이 높은 특징을 갖지만 물성이 다소 낮은 단점이 있다. 연속섬유 복합재는 물성이 높지만 디자인 자유도가 낮은 단점이 있다. 최근에는 고강성/고강도를 요구하는 응용 제품의 주요 재료를 대체하기 위해 연속섬유 복합재를 적용하는 사례가 증가하고 있다.
한국공개특허 제2019-0062911호는 복수의 얀(yarn) 또는 테이프(tape) 중간재가 합사되어 봉 형태로 형성된 연속섬유 보강 열가소성 복합재료 및 이의 제조방법을 개시하였고, 한국등록특허 제2010824호는 에어 분사 구간을 통과시켜 이상적인 등방성 소재를 구현하기 때문에 고 충격 특성의 소재 제조가 가능한 함침성이 우수한 열가소성 복합재를 개시하였다.
열가소성 복합재 생산 방식은 크게 수조 함침법(Dip dieing), 파우더 함침법(Power scattering), 필름 함침법(Flim lanination), 합사 함침법(Commingled)으로 구분할 수 있다. 수조 함침법은 용융된 수지가 담겨있는 다이를 통과하며 함침 시키는 방법이고, 파우더 함침법은 얇게 편 강화섬유에 고운 분말 형태의 열가소성 수지를 흩뿌린 후 용융하여 함침시키는 방법이다. 필름 함침법은 필름형태의 열가소성 수지 사이에 얇게 편 강화섬유를 위치시킨 후 용융하여 함침시키는 방법이고, 합사 함침법은 강화섬유와 섬유형태의 열가소성 수지를 하나의 뭉치로 합사한 후 용융시켜 함침 시키는 방법이다. 상기의 방법들은 각각 적용되는 열가소성 수지의 형태의 따라 공정을 제어해야한다.
상기 방법 중 수조 함침법은 다이 내부의 핀을 지나며 강제로 함침시키는 과정에서 강화섬유에 전단응력이 발생하고 섬유가 끊어지는 단사를 유발시키는 문제가 있다.
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 노력한 결과, 저점도 열가소성 수지를 강화섬유에 함침시켜 가함침된 열가소성 복합재를 제조한 다음, 이를 고점도 열가소성 수지에 추가로 함침시킬 경우, 함침과정에서 강화섬유의 단사가 발생되지 않아, 높은 기계적 물성, 난연, 내광 특성 등의 기능성이 부여된 열가소성 복합재를 제조할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.
본 발명의 목적은 함침시 강화섬유의 단사를 방지하면서, 기계적 물성, 난연성, 내광성 등의 기능성을 부여할 수 있는 열가소성 복합재의 제조방법 및 이로부터 제조된 열가소성 복합재를 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 강화섬유에 저점도 열가소성 수지를 함침시켜 가함침된 열가소성 복합재를 제조하는 단계; (b) 함침성 향상을 위하여 상기 가함침된 열가소성 복합재를 가압하는 단계; (c) 가압된 가함침된 열가소성 복합재에 고점도 열가소성 수지를 공급하는 단계; (d) 목표 무게분율을 갖는 함침된 열가소성 복합재를 제조하는 단계; 및 (e) 함침된 열가소성 복합재를 냉각 및 권취하는 단계를 포함하는 열가소성 복합재의 제조방법을 제공한다.
본 발명에 있어서, 상기 저점도 열가소성 수지에 강화섬유를 함침시켜 강화섬유가 가함침된 열가소성 복합재를 제조하는 단계는 (a-1) 압출기에서 용융시킨 저점도 열가소성 수지를 함침다이로 주입시키는 단계; (a-2) 강화섬유를 얇게 펴는 스프레딩 단계; (a-3) 얇게 펴진 강화섬유를 가열하는 단계; (a-4) 가열된 얇게 펴진 강화섬유를 함침다이 내부로 공급하는 단계; 및 (a-5) 가열된 얇게 펴진 강화섬유에 저점도 열가소성 수지를 함침시켜 가함침된 열가소성 복합재를 제조하는 단계를 포함한다.
본 발명에 있어서, 상기 강화섬유가 가함침된 열가소성 복합재는 저점도 열가소성 수지가 10~20wt% 포함된 것을 특징으로 한다.
본 발명에 있어서, 상기 가압은 가압롤러를 통하여 수행되는 것을 특징으로 한다.
본 발명에 있어서, 상기 고점도 열가소성 수지는 기계적 특성, 열적 특성, 내광특성, 내스크래치성, 내가수분해성, 전기전도성, 열전도성 및 내약품성으로 구성된 군에서 선택되는 1 이상의 물성을 부여하기 위한 첨가제를 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 고점도 열가소성 수지는 용융 형태, 파우더 형태 또는 필름 형태로 공급되는 것을 특징으로 한다.
본 발명에 있어서, 상기 목표 무게분율은 상기 저점도 열가소성 수지 및 고점도 열가소성 수지의 총 수지 무게의 합과 강화섬유의 무게비가 60~70 : 40~30wt%인 것을 특징으로 한다.
본 발명은 또한, 상기 제조방법으로 제조된 열가소성 복합재를 제공한다.
본 발명에 따른 열가소성 복합재의 제조방법은 강화섬유의 단사없이 고점도 열가소성 수지에 함침이 가능할 뿐만 아니라, 기계적 물성, 난연성, 내광성 등의 기능성까지 부여할 수 있으므로, 강화섬유가 고함침되고, 기능화된 열가소성 복합재를 제조할 수 있다.
도 1은 본 발명의 일 실시예에 따른 가함침된 열가소성 복합재를 제조하는 단계를 보여주는 개략도이다.
도 2는 본 발명의 일 실시예에 따른 용융된 고점도 열가소성 수지를 통해 열가소성 복합재를 제조하는 단계를 보여주는 개략도이다.
도 3은 본 발명의 일 실시예에 따른 필름 형태의 고점도 열가소성 수지를 통해 열가소성 복합재를 제조하는 단계를 보여주는 개략도이다.
도 4는 본 발명의 일 실시예에 따른 파우더 형태의 고점도 열가소성 수지를 통해 열가소성 복합재를 제조하는 단계를 보여주는 개략도이다.
본 발명은 (a) 강화섬유에 저점도 열가소성 수지를 함침시켜 가함침된 열가소성 복합재를 제조하는 단계; (b) 함침성 향상을 위하여 상기 가함침된 열가소성 복합재를 가압하는 단계; (c) 가압된 가함침된 열가소성 복합재에 고점도 열가소성 수지를 공급하는 단계; (d) 목표 무게분율을 갖는 함침된 열가소성 복합재를 제조하는 단계; 및 (e) 함침된 열가소성 복합재를 냉각 및 권취하는 단계를 포함하는 열가소성 복합재의 제조방법에 관한 것이다.
이하, 도면을 참조하여 본 발명을 보다 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 가함침된 열가소성 복합재를 제조하는 단계를 보여주는 개략도이다.
본 발명의 열가소성 복합재는 저점도 열가소성 수지를 압출하는 제1압출기(100), 강화섬유의 용융을 위한 섬유가열장치(102), 저점도 열가소성 수지를 강화섬유에 가함침시키는 가함침 다이(103)를 포함하는 열가소성 복합재 제조장치에서 제조될 수 있다. 상기 제1압출기(100)는 혼합 및 분산을 위한 제1압출기 스크류(101)가 장착되어 있고, 가함침 다이(103)에는 저점도 열가소성 수지를 함침시키기 위한 함친 핀(104)이 구비되어 있다.
도 1에 도시된 바와 같이, 강화섬유에 저점도 열가소성 수지를 함침시켜 가함침된 열가소성 복합재를 제조하는 단계(a)는 (a-1) 압출기에서 용융시킨 저점도 열가소성 수지를 함침다이로 주입시키는 단계; (a-2) 강화섬유를 얇게 펴는 스프레딩 단계; (a-3) 얇게 펴진 강화섬유를 가열하는 단계;(a-4) 가열된 얇게 펴진 강화섬유를 함침다이 내부로 공급하는 단계; 및 (a-5) 가열된 얇게 펴진 강화섬유에 저점도 열가소성 수지를 함침시켜 제조할 수 있다.
상기 압출기에서 용융시킨 저점도 열가소성 수지를 함침다이로 주입시키는 단계(a-1)를 도 1를 참고하여 설명하면 다음과 같다.
제1 압출기(100)는 피더를 통해 저점도 열가소성 수지(2)를 공급받아 고온의 압출기 내부에서 용융되며 스크류(101)를 통해 이송된다. 이때 바람직한 예로 피더를 통해 투입되는 열가소성 수지는 저점도의 수지이며, 강화섬유와 충분한 젖음성을 갖는 수지를 이용하는 것이 바람직하다. 상기 저점도 열가소성 수지는 MI(Melt Index)가 1000 이상인 폴리염화비닐(PVC), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리아미드(PA), 폴리아세탈(POM), 폴리부틸렌테레프탈레이트 (PBT), 폴리페닐렌설파이드(PPS), 폴리에틸에테르케톤(PEEK) 선형저밀도폴리에틸렌 (LLDPE), 고밀도 폴리에틸렌(HDPE) 등을 예시할 수 있고, 점도 조절을 위한 별도의 첨가제의 투입이 가능하다.
상기 강화섬유를 얇게 펴는 스프레딩 단계(a-2)는 크릴랙(미도시)을 통해 공급되는 강화섬유가 다수의 롤러를 지나면서 수행될 수 있는데, 강화섬유의 펴짐량은 최종 열가소성 복합재에서의 무게분율과 목표 두께를 고려하여 FAW(단위 면적 당 강화섬유 무게)를 충족하는 넓이로 조절할 수 있다.
상기 강화섬유는 탄소섬유, 유리섬유, 실리콘카바이드 섬유, 보론섬유, 아라미드 섬유, 천연섬유, 메탈릭 섬유 등을 예시할 수 있으나, 이에 한정되는 것은 아니다.
상기 얇게 펴진 강화섬유를 가열하는 단계(a-3)는 섬유가열장치(102)에서 수행되는데, 온도는 상용성을 고려하여 조절할 수 있다. 즉 섬유가열 온도가 강화섬유의 사이징 분해온도 보다 낮을 경우에는 함침다이 내부 온도에 준하는 온도를 부여하고, 섬유가열 온도가 강화섬유의 사이징의 분해온도 보다 높을 경우 사이징의 분해가 발생하지 않는 온도를 유지한다. 또한 바람직하게는 사이징 처리의 경우보다 사이징 처리가 되어 있지 않을 때 더욱 높은 상용성을 나타내는 경우 사이징을 없앨 수 있는 온도에서 섬유를 가열한다.
상기 가열된 얇게 펴진 강화섬유를 함침다이 내부로 공급하는 단계(a-4)는 얇게 펴진 강화섬유를 가함침 다이(103)로 투입시 간섭에 의한 단사를 방지하기 위해 적정한 이격거리를 유지하는 것이 바람직하다. 상기 이격거리로는 강화섬유의 가닥수와 제작하고자 하는 복합재의 두께, 그리고 너비에 따라 달라질 수 있다.
상기 가열된 얇게 펴진 강화섬유에 저점도 열가소성 수지를 함침시켜 가함침된 열가소성 복합재를 제조하는 단계(a-5)에서, 저점도 열가소성 수지는 강화섬유가 가함침된 열가소성 복합재에서 10~20wt% 포함되도록 함침되는 것이 바람직하다. 상기 저점도 열가소성 수지의 함량이 10wt% 미만인 경우 저점도 열가소성수지가 강화섬유 내부에 함침되는데 문제가 있고, 20wt%를 초과할 경우에는 최적의 성능을 발현하는데 문제가 있을 수 있다.
이때 가함침 다이(103) 내부의 온도와 공정 속도는 투입되는 저점도 열가소성 수지의 상대점도(Relative Viscosity) 측정을 통해 가장 낮은 점도를 나타내는 온도와 선속도를 유지하는 것이 바람직하고. 더욱 바람직한 공정속도는 가열된 얇게 펴진 강화섬유의 단사가 발생하지 않는 공정속도에서의 최적값을 실험을 통해 적용해야 한다.
가함침 다이(103) 내부로 투입된 가열된 얇게 펴진 강화섬유는 제1압출기(100)로부터 투입된 용융된 열가소성 수지와 결합 후 가함침을 위한 가함침 핀(104)을 지나며 내부로 용융된 열가소성 수지를 함침 시킨다. 이때 가함침 핀과 위치는 가열된 얇게 펴진 강화섬유의 단사가 발생하지 않는 최적 조건으로 유지하는 것이 바람직하다.
가함침된 열가소성 복합재는 함침성 향상을 위하여 가압하는 단계(b)를 수행하는 것이 바람직한데, 이는 압밀 과정을 통하여 수행될 수 있으며, 암/수 형태의 가압 롤러를 이용하여 가압할 수 있다. 가압 단계를 거치면 강화섬유의 흐트러짐 및 열가소성 수지의 흐름을 억제하여 FAW(단위 면적 당 강화섬유 무게)와 수지분율의 변화를 방지할 수 있다.
본 발명에서는 기능성 부여 및 고점도 열가소성 수지와의 함침을 위하여, 가압된 가함침된 열가소성 복합재에 고점도 열가소성 수지를 공급하는 단계를 수행한다(c).
상기 고점도 열가소성 수지는 기계적 특성, 열적 특성, 내광특성, 내스크래치성, 내가수분해성, 전기전도성, 열전도성 및 내약품성으로 구성된 군에서 선택되는 1 이상의 물성을 부여하기 위한 첨가제를 포함하는 것을 이용할 수 있고, 고점도 열가소성 수지로는 MI(Melt Index)가 500 이하인 PEEK, PEAK, PPS, PA6, PA66 대부분의 열가소성 등을 예시할 수 있으나 이에 한정되는 것은 아니다.
상기 고점도 열가소성 수지는 용융 형태, 파우더 형태 또는 필름 형태로 공급될 수 있으며, 형태에 따라 도 2~3과 같이 공급 방법 및 처리장치가 달라질 수 있다.
도 2는 본 발명의 일 실시예에 따른 용융된 고점도 열가소성 수지를 통해 열가소성 복합재를 제조하는 단계를 보여주는 개략도이다.
도 2에 도시된 바와 같이, 용융된 고점도 열가소성 수지(31)를 이용할 경우에는 고점도 열가소성 수지(3)를 압출하는 제2압출기(200), 용융된 고점도 열가소성 수지(31)의 공급을 위한 T-다이(202) 및 냉각과 2차 함침을 위한 DBP(Double Belt Press)(300)를 포함하는 열가소성 복합재 제조장치에서 열가소성 복합재(T-다이)(32)로 제조될 수 있다. 상기 제2압출기(200)는 혼합 및 분산을 위한 제2압출기 스크류(201)가 장착되어 있다.
도 3은 본 발명의 일 실시예에 따른 필름 형태의 고점도 열가소성 수지를 통해 열가소성 복합재를 제조하는 단계를 보여주는 개략도이다.
도 3에 도시된 바와 같이, 필름 형태의 고점도 열가소성 수지(4)를 이용할 경우에는 크릴랙(미도시) 및 2차 함침을 위한 DBP(Double Belt Press)(300)를 포함하는 열가소성 복합재 제조장치에서 열가소성 복합재(필름)(41)로 제조될 수 있다. 필름 형태의 고점도 열가소성 수지(4)는 크릴랙을 통해 가압된 가함침된 열가소성 복합재(11)의 양면으로 공급된다.
도 4는 본 발명의 일 실시예에 따른 파우더 형태의 고점도 열가소성 수지를 통해 열가소성 복합재를 제조하는 단계를 보여주는 개략도이다.
도 4에 도시된 바와 같이, 파우더 형태의 고점도 열가소성 수지(5)를 이용할 경우에는 파우더 스캐터(400) 및 2차 함침을 위한 DBP(Double Belt Press)(300)를 포함하는 열가소성 복합재 제조장치에서 열가소성 복합재(파우더)(51)로 제조될 수 있다.
파우더 형태의 고점도 열가소성 수지(5)는 고점도 열가소성 수지를 볼밀, 파쇄 등의 공정을 거쳐 미세한 파우더 형태로 제조할 수 있으며, 파우더 형태의 고점도 열가소성 수지(5)는 파우더 스캐터(400)를 통하여 가압된 가함침된 열가소성 복합재(11)의 상부와 하부에 흩뿌려진 후, 함침될 수 있다.
상기 목표 무게분율을 갖는 함침된 열가소성 복합재를 제조하는 단계(d) 또한, 사용되는 고점도 열가소성 수지의 용융 형태, 파우더 형태 또는 필름 형태에 따라 달라질 수 있다.
상기 목표 무게분율은 최종적으로 제조되는 열가소성 복합재의 용도에 따라 필요에 따라 조절할 수 있으며, 상기 저점도 열가소성 수지 및 고점도 열가소성 수지의 총 수지 무게의 합과 강화섬유의 무게비가 60~70 : 40~30wt%인 것으로 조절하는 것이 바람직하다.
용융된 고점도 열가소성 수지(31)를 이용하는 경우에는 DBP(Double Belt Press)(300)에서, 냉각 및 함침을 시키면서 목표 무게분율을 조절할 수 있다.
반면, 필름 형태의 고점도 열가소성 수지(4)를 이용하는 경우에는 수지가 용융 가능한 온도의 히터를 지날 때 열이력을 최소화할 수 있는 온도와 선속을 조절하고, DBP(Double Belt Press)에서, 균일한 열과 압력을 가하면서 목표 무게분율을 조절할 수 있다.
파우더 형태의 고점도 열가소성 수지(5)를 이용하는 경우에는 파우더 형태의 고점도 열가소성 수지 및 가함침된 열가소성 복합재가 용융 가능한 온도의 히터를 지날 때 열이력을 최소화할 수 있는 온도와 선속을 조절하고, 파우더의 탈락을 방지하기 위하여 DBP(Double Belt Press)에서 목표 무게분율을 조절할 수 있다.
최종적으로 본 발명의 열가소성 복합재(UD Tape)는 함침된 열가소성 복합재를 통상적인 냉각과 권취 단계를 수행함으로써 제조될 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
* 부호의 설명
1: 강화섬유 2: 저점도 열가소성 수지
3: 고점도 열가소성 수지 4: 필름 형태의 고점도 열가소성 수지
5: 파우더 형태의 고점도 열가소성 수지
11: 가함침된 열가소성 복합재 31: 용융된 고점도 열가소성 수지
32: 열가소성 복합재(T-다이) 41: 열가소성 복합재(필름)
51: 열가소성 복합재(파우더) 100: 제1 압출기
101: 제1압출기 스크류 102: 섬유 가열 장치
103: 가함침 다이 104: 가함침 핀
200: 제2 압출기 201: 제2압출기 스크류
202: T-다이 300: DBP(Double Belt Press)
400: 파우더 스캐터
본 발명에 따라 제조된 열가소성 복합재는 단사없이 강화섬유가 고점도 열가소성 수지에 함침되어 있으므로 경량화가 요구되는 다양한 산업분야에서 활용될 수 있다.

Claims (8)

  1. (a) 강화섬유에 저점도 열가소성 수지를 함침시켜 가함침된 열가소성 복합재를 제조하는 단계;
    (b) 함침성 향상을 위하여 상기 가함침된 열가소성 복합재를 가압하는 단계;
    (c) 가압된 가함침된 열가소성 복합재에 고점도 열가소성 수지를 공급하는 단계;
    (d) 목표 무게분율을 갖는 함침된 열가소성 복합재를 제조하는 단계; 및
    (e) 함침된 열가소성 복합재를 냉각 및 권취하는 단계를 포함하는 열가소성 복합재의 제조방법.
  2. 제1항에 있어서, 상기 강화섬유에 저점도 열가소성 수지를 함침시켜 가함침된 열가소성 복합재를 제조하는 단계는
    (a-1) 압출기에서 용융시킨 저점도 열가소성 수지를 함침다이로 주입시키는 단계;
    (a-2) 강화섬유를 얇게 펴는 스프레딩 단계;
    (a-3) 얇게 펴진 강화섬유를 가열하는 단계;
    (a-4) 가열된 얇게 펴진 강화섬유를 함침다이 내부로 공급하는 단계; 및
    (a-5) 가열된 얇게 펴진 강화섬유에 저점도 열가소성 수지를 함침시켜 가함침된 열가소성 복합재를 제조하는 단계를 포함하는 것을 특징으로 하는 열가소성 복합재의 제조방법.
  3. 제2항에 있어서, 상기 강화섬유가 가함침된 열가소성 복합재는 저점도 열가소성 수지가 10~20wt% 포함된 것을 특징으로 하는 열가소성 복합재의 제조방법.
  4. 제1항에 있어서, 상기 가압은 가압롤러를 통하여 수행되는 것을 특징으로 하는 열가소성 복합재의 제조방법.
  5. 제1항에 있어서, 상기 고점도 열가소성 수지는 기계적 특성, 열적 특성, 내광특성, 내스크래치성, 내가수분해성, 전기전도성, 열전도성 및 내약품성으로 구성된 군에서 선택되는 1 이상의 물성을 부여하기 위한 첨가제를 포함하는 것을 특징으로 하는 열가소성 복합재의 제조방법.
  6. 제1항에 있어서, 상기 고점도 열가소성 수지는 용융 형태, 파우더 형태 또는 필름 형태로 공급되는 것을 특징으로 하는 열가소성 복합재의 제조방법.
  7. 제1항에 있어서, 상기 목표 무게분율은 상기 저점도 열가소성 수지 및 고점도 열가소성 수지의 총 수지 무게의 합과 강화섬유의 무게비가 60~70 : 40~30wt%인 것을 특징으로 하는 열가소성 복합재의 제조방법.
  8. 제1항 내지 제7항중 어느 한 항의 제조방법으로 제조된 열가소성 복합재.
PCT/KR2020/012985 2019-09-27 2020-09-24 기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재 WO2021060881A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190119896A KR102078617B1 (ko) 2019-09-27 2019-09-27 기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재
KR10-2019-0119896 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060881A1 true WO2021060881A1 (ko) 2021-04-01

Family

ID=69669692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012985 WO2021060881A1 (ko) 2019-09-27 2020-09-24 기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재

Country Status (2)

Country Link
KR (1) KR102078617B1 (ko)
WO (1) WO2021060881A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102078617B1 (ko) * 2019-09-27 2020-02-19 코오롱플라스틱 주식회사 기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재
CN111791515B (zh) * 2020-06-09 2024-06-28 江苏集萃先进高分子材料研究所有限公司 一种大丝束长碳纤维热塑性复合材料及其制备方法
KR102396494B1 (ko) * 2020-09-24 2022-05-09 창원대학교 산학협력단 천연 섬유 복합재료의 표면 난연화 방법 및 이에 의해 제조된 천연 섬유 복합재료
KR102331848B1 (ko) * 2020-12-07 2021-12-01 코오롱플라스틱 주식회사 열가소성 복합재 로드의 제조장치, 이의 제조방법, 및 이로부터 제조된 열가소성 복합재 로드
KR20240087012A (ko) 2022-12-12 2024-06-19 (주)비지에프에코머티리얼즈 하이브리드 타입 개섬롤러에 의한 열가소성 복합재의 제조방법, 이에 의한 열가소성 복합재 시트 및 강성보강 구조를 갖는 시트 프리폼, 그리고 이를 위한 하이브리드 타입 개섬롤러

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353377B2 (ja) * 1993-05-06 2002-12-03 松下電工株式会社 積層板の製造方法
KR20060117677A (ko) * 2005-05-13 2006-11-17 한화종합화학 주식회사 고강성 열가소성 복합재 시트
KR101676726B1 (ko) * 2015-04-24 2016-11-17 주식회사 티포엘 균일한 프리프레그의 제조 시스템
KR20170012576A (ko) * 2012-09-06 2017-02-02 미쯔비시 레이온 가부시끼가이샤 프리프레그 및 그의 제조 방법
KR101867201B1 (ko) * 2014-02-14 2018-06-12 미쯔비시 케미컬 주식회사 섬유 강화 플라스틱 및 그의 제조 방법
KR102078617B1 (ko) * 2019-09-27 2020-02-19 코오롱플라스틱 주식회사 기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353377B2 (ja) * 1993-05-06 2002-12-03 松下電工株式会社 積層板の製造方法
KR20060117677A (ko) * 2005-05-13 2006-11-17 한화종합화학 주식회사 고강성 열가소성 복합재 시트
KR20170012576A (ko) * 2012-09-06 2017-02-02 미쯔비시 레이온 가부시끼가이샤 프리프레그 및 그의 제조 방법
KR101867201B1 (ko) * 2014-02-14 2018-06-12 미쯔비시 케미컬 주식회사 섬유 강화 플라스틱 및 그의 제조 방법
KR101676726B1 (ko) * 2015-04-24 2016-11-17 주식회사 티포엘 균일한 프리프레그의 제조 시스템
KR102078617B1 (ko) * 2019-09-27 2020-02-19 코오롱플라스틱 주식회사 기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재

Also Published As

Publication number Publication date
KR102078617B1 (ko) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2021060881A1 (ko) 기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재
US10974418B2 (en) Method of producing a fibrous material pre-impregnated with thermoplastic polymer in a fluid bed
CN102936370B (zh) 一种连续纤维增强热塑性树脂预浸带及其制备方法
CN103501986B (zh) 连续纤维增强热塑棒和用于其制造的拉挤方法
CN103724813B (zh) 连续纤维增强热塑性阻燃抗静电复合材料及其制备方法
KR0162649B1 (ko) 연속 섬유를 예비 함침함으로써 개질될 수 있는 특징으로 가진 복합물질
CN106163755B (zh) 借助于超临界气体制备预浸渍有热塑性聚合物的纤维质材料的方法
US20160347009A1 (en) Method of manufacturing a fibrous material preimpregnated with thermoplastic polymer using an aqueous dispersion of polymer
WO2014007505A1 (ko) 열가소성 프리프레그 및 그 제조방법
CN101474868A (zh) 连续纤维增强热塑性树脂复合材料预浸带的制备设备及其应用
CN103477020A (zh) 用于海底应用的脐带
WO2014104730A1 (ko) 연속 탄소섬유 강화 열가소성 프리프레그의 제조 방법
WO2015174758A1 (ko) 장섬유 보강 플라스틱 복합재 및 장섬유 보강 플라스틱 복합재의 제조 방법
CN107866954B (zh) 连续纤维增强热塑性树脂预浸带的制造方法及设备
WO2019107991A1 (ko) 연속섬유 보강 열가소성 수지 복합재료 및 그 제조방법
WO2012096506A2 (ko) 함침성이 우수한 고강도 복합시트 제조 장치 및 이를 이용한 고강도 복합시트 제조 방법
CN217553378U (zh) 一种生物基聚酰胺复合板材
WO2013187220A1 (ja) 炭素繊維複合材料およびそれを用いてなる成形品、ならびにそれらの製造方法
WO2018147526A1 (ko) 탄소 섬유 시트 몰딩 컴파운드의 제조 방법 및 제조 장치
US20130330553A1 (en) Rod assembly and method for forming rod assembly
WO2002006037A1 (en) Pultrusion head to produce long fibre reinforced thermoplastic matrix profiles
CN106674746A (zh) 一种聚丙烯连续长纤维片材及其制备方法
CN114393856A (zh) 一种基于复合锁链制备的纤维连续成型工艺
WO2024136152A1 (ko) 슈퍼 엔지니어링 플라스틱 수지의 컴파운딩 방법 및 이 방법으로 제조한 슈퍼엔지니어링 플라스틱
DE102010007491B4 (de) Verfahren und Vorrichtung zur Herstellung thermoplastischer Prepregs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868819

Country of ref document: EP

Kind code of ref document: A1