WO2021060356A1 - Transport device, in vitro diagnostic analysis device, and transport system - Google Patents

Transport device, in vitro diagnostic analysis device, and transport system Download PDF

Info

Publication number
WO2021060356A1
WO2021060356A1 PCT/JP2020/035974 JP2020035974W WO2021060356A1 WO 2021060356 A1 WO2021060356 A1 WO 2021060356A1 JP 2020035974 W JP2020035974 W JP 2020035974W WO 2021060356 A1 WO2021060356 A1 WO 2021060356A1
Authority
WO
WIPO (PCT)
Prior art keywords
rack
transport
sensor
unit
sample
Prior art date
Application number
PCT/JP2020/035974
Other languages
French (fr)
Japanese (ja)
Inventor
研吾 西村
洋平 奥田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2021548972A priority Critical patent/JP7215590B2/en
Publication of WO2021060356A1 publication Critical patent/WO2021060356A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system

Definitions

  • the present disclosure relates to a transport device for transporting a rack for accommodating a sample, and an in-vitro diagnostic analyzer provided with the transport device.
  • Patent Document 1 proposes a transport device for transporting a rack accommodating one or more specimens by using a protrusion protruding from a side wall of a transport path.
  • the conventional transfer device is configured to be able to store a certain amount of racks on the transfer path after the analysis is completed. Therefore, the user can set a plurality of samples in the transport device and instruct the analyzer to analyze the plurality of samples at once. This allows the user to engage in other tasks during the analysis of multiple specimens.
  • the number of samples to be analyzed varies depending on the facility where the analyzer is used. For example, in a small hospital, the number of samples to be analyzed is small. On the other hand, in large hospitals, a large number of samples can be analyzed.
  • the user sets the rack (sample) in the analyzer every time the analysis of the samples mounted on the fixed amount of racks is completed. And / or the complicated work of taking out (cleaning up) the rack (specimen) was required.
  • the present disclosure has been devised in view of such circumstances, and an object thereof is to provide a technique for simplifying a work required by a user in a transport device.
  • a support member provided on the downstream side of the processing unit is detachably configured in the transport path of the transport device.
  • a transport path including a processing section, which is a position where the sample held in the rack is processed, a transport means for moving the rack in the transport path, and a transport path downstream of the processing section in the transport path.
  • a transport device is provided that includes a support member provided on the side that supports the rack, and the support member is configured to be removable from the transport path.
  • the support member includes a rack sensor for detecting the arrival of the rack at the support member, and further comprises a control means configured to detect the filling of the rack in the transport path based on the detection output of the rack sensor.
  • the rack sensor may be configured so that the control means can acquire the detection output even when the support member is removed from the transport path.
  • the transport path includes a transport start portion and a transport end portion, the processing portion is located on the downstream side of the transport start portion, the transport end portion is located on the downstream side of the processing portion, and the transport means starts transporting the rack.
  • the transport path includes a first transport means for transporting from the unit to the transport end portion and a second transport means for transporting the rack from the transport end portion, and the transport path is carried out from the transport end portion by the second transport means.
  • the transport means includes a rack discharge section on which the rack can be mounted and a rack supply section on which the rack can be mounted, and the transport means is a third for carrying the rack mounted on the rack supply section into the transport start section.
  • a start sensor for detecting a rack mounted on a transport start portion including a transport means, an end sensor for detecting a rack mounted on a transport end portion, a first transport means, a second A transport means and a drive mechanism selection means for controlling a third transport means
  • the transport path includes a first side wall connected from a transport start portion to a transport end portion, and is provided on the first side wall of the transport start portion and the processing portion.
  • the first transport means includes a first slider having a first protrusion, and a first drive means for driving the first slider forward and backward, and the first protrusion is a first.
  • the drive mechanism selection means is configured to pass through the processing unit and to the transfer end unit, and the drive mechanism selection means is based on the presence / absence information of the rack detected by the start unit sensor and the end unit sensor.
  • the first transfer means is driven, and (iv) the transfer start portion and If it is determined that the rack is mounted on at least one of the transport end portions, then it is determined whether or not the rack is at the transport start portion, and if it is determined that the rack is mounted on the transport start portion, it is determined. Next, it is determined whether or not the rack is mounted on the transport end portion, and when it is determined that the rack is mounted on the transport end portion, the first transport means and the second transport means are driven. You may be.
  • an in-vitro diagnostic analyzer comprising the transport device and an analyzer that performs analysis of a sample held in a rack transported by the transport device is provided.
  • the in-vitro diagnostic analyzer may further include an expansion member that is attached to the location where the support member has been removed in the transport path, and the support member may be configured to be attached to the expansion member.
  • the transport device comprises a transport device for transporting a rack configured to hold the sample and an extension member attached to the transport device, the transport device being a sample held by the rack.
  • a transport path including a processing section, which is a position where processing is performed, a transport means for moving the rack in the transport path, and a support member provided on the downstream side of the processing section in the transport path to support the rack.
  • the support member is configured to be removable from the transport path
  • the expansion member is configured to be attached to the location where the support member was removed in the transport path, and the support member is attached to the extension member.
  • a transport system is provided that is configured as such.
  • the support member includes a rack sensor for detecting the arrival of the rack at the support member, and the transport system is a control means configured to detect the fullness of the rack in the transport path based on the detection output of the rack sensor.
  • the rack sensor may be configured so that the control means can acquire the detection output even when the support member is mounted on the expansion member.
  • the transport system further comprises a drive unit that drives the rack above the expansion member to transport it to a side different from the transport path, and the control means responds to the rack sensor detecting the arrival of the rack at the support member. It may be configured to drive the drive unit.
  • the transport system may further include a drive unit that drives the rack above the expansion member to transport it in a direction different from the transport path.
  • FIG. 300 It is a perspective view of the expansion member 300 which is an example of the expansion unit. It is a figure which shows the state which the expansion member 300 is attached to the transport device 10. It is a control block diagram of the analyzer 500. It is a block diagram of the transport device 10. It is a flowchart of the process executed for the transfer of the rack 7 in the transfer device 10. It represents a state before the expansion member 300 is mounted. It represents the state after the expansion member 300 is attached. It is a figure which shows the modification of the expansion member. It is a figure which shows the example of mounting the expansion member 350 of FIG. 18 to a transport device. It is a figure for demonstrating the change of the position of the extrusion member 401 and the connecting member 403 according to the rotation of a pulley 410.
  • FIG. 1 is a diagram showing an overall configuration of a first embodiment of an analysis system.
  • the analysis system 1 includes an analysis device 500 and a transfer device 10.
  • the transport device 10 transports the sample analyzed by the analyzer 500.
  • the sample is housed in a container 4, and one or more containers 4 are housed in a sample rack (rack 7).
  • the transport device 10 includes a transport path and transports the rack 7 in the transport path.
  • the transport device 10 includes a support member 10X that can be attached to and detached from the transport device 10 at the end of the transport path.
  • the method of transporting the sample by the transport device 10 is not limited to that shown in FIG.
  • the analyzer 500 can be used for the analysis of various samples.
  • An example of a sample analyzed is urine.
  • cerebrospinal fluid eg, lumbar spinal fluid.
  • the suboccipital fluid e.g., ventricular fluid.
  • the analyzer 500 includes the main body 501.
  • the main body 501 includes elements such as a barcode reader 224, which will be described later.
  • the analyzer 500 may identify each of the samples to be inspected by reading each barcode of the container 4 with the barcode reader 224.
  • FIG. 2 is a perspective view of the transport device 10.
  • FIG. 3 is a diagram schematically showing a transport path of the sample rack in the transport device 10.
  • the transport device 10 includes a transport path.
  • the transport path mainly includes a sample rack supply section 11 (rack supply section), a main transport path 12, and a sample rack discharge section 13 (rack discharge section), as shown in FIGS. 2 and 3.
  • the main transport path 12 includes a sample rack lateral transport start portion 12A (convey start portion), a processing portion 12B, and a sample rack horizontal transport end portion 12C (convey end portion).
  • the sample rack supply unit 11 and the main transport path 12 are connected via the sample rack horizontal transport start portion 12A so as to form a substantially right angle.
  • the sample rack supply unit 11 and the main transport path 12 are connected in an L shape.
  • the main transport path 12 and the sample rack discharge portion 13 are connected to each other via the sample rack lateral transport end portion 12C so as to form a substantially right angle.
  • the main transport path 12 and the sample rack discharge unit 13 are connected in an L shape.
  • the sample rack supply unit 11, the main transport path 12, and the sample rack discharge unit 13 are connected in a “U” shape (mainly see FIG. 3).
  • substantially right angle means a right angle or a substantially right angle.
  • the sample rack supply unit 11, the main transport path 12, and the sample rack discharge unit 13 are formed on eight continuous flat tables so that the rack 7 can be transported while sliding.
  • FIG. 4 is a diagram schematically showing the internal structure of the transport device 10.
  • the transport device 10 includes a sample rack feeding mechanism 30 (third transport means) for carrying the rack 7 mounted on the sample rack supply unit 11 into the main transport path 12.
  • the lateral transport mechanism 50 (first transport means) for transporting the rack 7 mounted on the main transport path 12 and the rack 7 mounted on the sample rack horizontal transport end portion 12C are carried out to the sample rack discharge section 13.
  • the rack 7 is placed on the sample rack supply unit 11. At this time, the rack 7 is placed so that the elongated direction, in other words, the row direction in which the containers 4 held by the rack 7 are lined up, is substantially parallel to the main transport path 12.
  • the rack 7 placed in this way is conveyed by the sample rack feeding mechanism 30 toward the sample rack lateral transfer start portion 12A in a direction substantially perpendicular to the elongated direction of the rack 7.
  • the transport device 10 is provided with a recess 90 on the upstream side of the sample rack supply unit 11.
  • the rack 7 may be introduced into the sample rack supply unit 11 from the outside via the recess 90.
  • the rack 7 transported to the sample rack horizontal transport start portion 12A is transported to the sample rack horizontal transport end portion 12C along the main transport path 12 in the long direction of the rack 7 by the lateral transport mechanism 50.
  • the rack 7 transported to the sample rack lateral transfer end portion 12C is pushed by the sample rack discharge mechanism 100 in a direction substantially perpendicular to the long direction of the rack 7 and is carried out to the sample rack discharge unit 13. .. In this way, the rack 7 is conveyed in a "U" shape from the sample rack supply unit 11 to the sample rack discharge unit 13 via the main transfer path 12.
  • various treatments can be performed on the sample held in the rack 7.
  • the treatment is not particularly limited, and examples thereof include all treatments such as sample analysis, sample observation, sample collection, and addition of a sample to a sample container.
  • the transport device 10 may be used in combination with an analyzer (for example, the analyzer 500 of FIG. 1).
  • the analyzer may collect and measure a sample in a container 4 located at a given location in the rack 7.
  • the rack 7 holds 10 containers 4.
  • the transport device 10 may stop the rack 7 at each of the 10 stop positions in the processing unit 12B. At each of the 10 stop positions, each of the 10 containers 4 may face the barcode reader 224.
  • the analyzer may collect a sample in the container 4 facing the barcode reader 224 and perform the process. That is, the transfer device 10 may be stopped 10 times at the processing unit 12B so that each of the 10 containers 4 held in the rack 7 is to be processed.
  • the rack 7 may be stopped at only one place in the processing unit 12B.
  • the analyzer may collect samples from each of the ten containers 4 held in the stopped rack 7 and perform processing on each sample.
  • the transport device 10 may be used in combination with the pretreatment device.
  • the pretreatment device collects a sample in each of one or more containers 4 located in a given place in the rack 7, measures a sample, and the like. You may.
  • the transport device 10 may be used in combination with the inspection device.
  • the inspection device may inspect the sample in each of one or more containers 4 located at a given location in the rack 7.
  • the transfer device 10 may be used in combination with the preparation device.
  • the preparation device may prepare reagents using samples in each of one or more containers 4 located in a given location in the rack 7. Good.
  • the processing performed when the rack 7 is located in the processing unit 12B is not limited to one type, and a plurality of types of processing may be continuously performed. Further, the number of containers 4 to be processed is not limited to one. The samples in two or more containers 4 may be treated at the same time or at different times.
  • the transfer of the rack 7 from the sample rack horizontal transfer start portion 12A to the sample rack horizontal transfer end portion 12C may be performed at a constant speed or may be performed while shifting gears.
  • the transport may be performed without interruption, or may be temporarily interrupted in the middle.
  • the processing unit 12B may change the speed or temporarily stop the transportation depending on the type of processing.
  • the transport device 10 includes a sample rack feed mechanism 30, a lateral transport mechanism 50, and a sample rack discharge mechanism 100.
  • the sample rack feeding mechanism 30 is located below the sample rack supply unit 11
  • the lateral transport mechanism 50 is located below the main transport path 12
  • the sample rack discharge mechanism 100 is located below the main transport path 12.
  • FIG. 5 is a perspective view of the sample rack.
  • FIG. 6 is a diagram showing a configuration of the sample rack feeding mechanism 30. 7 to 9 are views showing the configuration of the lateral transport mechanism 50.
  • FIG. 10 is a diagram showing the configuration of the sample rack discharge mechanism 100.
  • the shape of the rack 7 will be described with reference to FIG.
  • the rack 7 has a rectangular parallelepiped shape.
  • a plurality of holes 3 are formed in a row on the upper surface of the rack 7.
  • the rack 7 can hold the sample by inserting the container 4 containing the sample into each hole 3.
  • a through hole 5 is formed on the side surface of the rack 7 in the long direction.
  • the through hole 5 is connected to the hole 3.
  • the through hole 5 penetrates from one side to the other side of the side surface of the container 4 held by the rack 7. That is, the rack 7 can transmit the light radiated to the sample from one side of the rack 7 to the other side of the rack 7 via the container 4.
  • the rack 7 may be irradiated with light from above.
  • the transport device 10 and / or the analyzer 500 can perform optical measurement of the sample by detecting the transmitted light on the side of the container 4.
  • the rack 7 includes one recess on the bottom surface of the rack 7, but the number of the recesses is not limited to one and may include a plurality of recesses.
  • the transport device 10 may transport the rack 7 whose bottom surface does not include a recess. Further, the transport device 10 may transport the rack 7 that does not include the through hole 5.
  • the shape of the through hole 5 is not limited to FIG. 5, and may be appropriately changed depending on the usage pattern of the through hole 5. Further, the shape of the hole 3 is also a cylindrical hole in FIG. 5, but it can be appropriately changed according to the shape of the container 4.
  • the material of the container 4 is not particularly limited.
  • the container 4 may be a container made of any material such as a glass container, various resin containers, a quartz container, and a metal container.
  • the material of the container 4 can be appropriately selected according to the type of the sample to be put therein.
  • the sample to be put in the container 4 is not particularly limited. For example, any biological sample, biological sample, chemical sample, etc. can be mentioned.
  • the lateral transport mechanism 50 pushes the rack 7 from the rear and transports the rack 7 in the direction of the arrow AR04 in FIG. Therefore, the lateral transport mechanism 50 can transport the rack 7 regardless of the shape of the rack 7. More specifically, the lateral transfer mechanism 50 may stop the transfer of the rack 7 or change the transfer speed while the rack 7 is being conveyed in the processing unit 12B. The transfer device 10 may acquire a setting for changing the stop position and / or the transfer speed of the rack 7 by the lateral transfer mechanism 50.
  • sample rack supply section 11 main transport path 12, sample rack discharge section 13, sample rack feed mechanism 30, lateral transport mechanism 50, and sample rack discharge mechanism 100
  • sample rack discharge mechanism 100 each component of the transport device 10 (sample rack supply section 11, main transport path 12, sample rack discharge section 13, sample rack feed mechanism 30, lateral transport mechanism 50, and sample rack discharge mechanism 100) is described in detail. explain.
  • the sample rack supply unit 11 includes a side wall 22 (second side wall) and a side wall 23 (third side wall).
  • the side wall 22 and the side wall 23 face each other substantially in parallel.
  • substantially parallel means parallel or substantially parallel.
  • the distance (width) between the side wall 22 and the side wall 23 is set according to the length of the rack 7 in the elongated direction.
  • the rack 7 is set so that it can be placed between the side wall 22 and the side wall 23 in the long direction and the rack 7 can move in a direction substantially perpendicular to the long direction. ..
  • substantially vertical means vertical or substantially vertical. According to this configuration, the rack 7 can be stocked in the vertical direction.
  • the widths of the side wall 22 and the side wall 23 may be set according to the number of racks 7 to be placed (stocked). As a result, the sample rack supply unit 11 can be stocked with a plurality of racks 7 before processing arranged in parallel.
  • Notches 15 are formed on the side wall 22 and the side wall 23, respectively. From the notch 15, a protrusion 33 (third protrusion) of the sample rack feeding mechanism 30 projects into the sample rack supply portion 11 (see FIGS. 2 and 4).
  • the rack 7 mounted on the sample rack supply unit 11 is pushed by both ends of the rear side surface 7A in the transport direction (upward on the paper surface in FIG. 2) by the two projecting portions 33, so that the sample rack lateral transport start portion It is transported up to 12A.
  • the two projecting portions 33 push both ends of the rear side surface 7A of the rearmost rack 7 in the transport direction.
  • all the racks 7 mounted on the sample rack supply unit 11 move in a direction substantially perpendicular to the elongated direction of the rack 7 (in the direction on the paper surface in FIG. 2).
  • a convex portion may be provided on the side wall 23 of the supply portion 11.
  • sample rack feeding mechanism 30 which is a driving mechanism for moving the rack 7 mounted on the sample rack supply unit 11 will be described.
  • the sample rack feeding mechanism 30 is a drive mechanism for carrying the rack 7 mounted on the sample rack supply unit 11 into the sample rack lateral transport start unit 12A.
  • the sample rack feeding mechanism 30 drives two pairs of rails 31, two stages 32 capable of moving forward and backward on each rail 31, and the two stages 32. It includes a drive unit 35 (third drive means). Further, on each stage 32, two projecting portions 33 attached so as to project from each notch 15 (see FIG. 2) into the sample rack supply portion 11 are fixed.
  • the transport drive unit 35 includes a main pulley 36 and a sub pulley 37, a timing belt 38 for connecting the main pulley 36 and the sub pulley 37, a connecting metal fitting 39 for connecting the timing belt 38 and the stage 32, and a main pulley. It includes two motors 34 that are directly connected to the rotating shafts of 36. As a result, the driving force of each motor 34 can be transmitted to each stage 32 to drive each stage 32.
  • the motor 34 rotates, the rotational driving force is transmitted to the timing belt 38.
  • a part of the timing belt 38 is connected to the stage 32 via a connecting metal fitting 39. Therefore, the rotational driving force transmitted to the timing belt 38 is transmitted to the stage 32.
  • the two motors 34 operate in synchronization with each other. As a result, the two stages 32 can move forward and backward in synchronization.
  • two projecting portions 33 provided on each of the two stages 32 can simultaneously push both ends of the side surface 7A rearward in the traveling direction of the rack 7 with equal force. Stage 32 moves forward.
  • the rack 7 can be moved toward the sample rack lateral transport start portion 12A in a direction substantially perpendicular to the elongated direction (in the direction on the paper surface in FIG. 2).
  • the mechanism for transmitting the rotational driving force of the motor 34 by the pulley and the timing belt has been described here, the present invention is not limited to this. Specifically, as a transmission mechanism for the rotational driving force of the motor 34, a wide variety of conventionally known power transmission mechanisms can be used in addition to this mechanism.
  • the transport device 10 can stop the sample rack feeding mechanism 30 (specifically, the motor 34) when the rack 7 is located at the sample rack lateral transport start portion 12A.
  • Such movement of the stage 32 can be realized by controlling the operation of the motor 34 by the drive mechanism selection unit 110. Since the drive control of the sample rack feeding mechanism 30 will be described later, details will not be described here.
  • the main transport path 12 and the lateral transport mechanism 50 will be described. It should be noted that the configuration including the lateral transport mechanism 50 and the main transport path 12 can also be referred to as a sample rack horizontal transport device.
  • the sample rack lateral transport start portion 12A, the processing portion 12B, and the sample rack lateral transport end portion 12C arranged in a straight line are connected in this order.
  • the main transport path 12 is formed by connecting the sample rack lateral transport start portion 12A, the processing portion 12B, and the sample rack lateral transport end portion 12C in series in this order.
  • the sample rack horizontal transfer start unit 12A is connected in series with the sample rack supply unit 11.
  • the side wall 23 of the sample rack supply portion 11 also constitutes the sample rack lateral transport start portion 12A.
  • the sample rack lateral transfer start portion 12A is directly connected to the sample rack supply portion 11 via the side wall 23.
  • the rack 7 conveyed from the sample rack supply unit 11 is placed on the sample rack lateral transfer start unit 12A.
  • a first sensor 112 (starting sensor) is attached to the sample rack lateral transport starting portion 12A.
  • the first sensor 112 detects whether or not the rack 7 is mounted on the sample rack lateral transfer start portion 12A. This detection signal is transmitted to the drive mechanism selection unit 110 (see FIG. 14 described later).
  • the first sensor 112 is not particularly limited as long as it can detect whether or not the rack 7 is mounted on the sample rack lateral transfer start portion 12A.
  • the first sensor 112 may be, for example, a sensor that uses laser light reflection, or a sensor that detects a force (in other words, the weight of the rack 7) applied to the sample rack lateral transfer start unit 12A.
  • the first sensor 112 is installed on the side wall 20 (first side wall) of the sample rack lateral transport start portion 12A, but the present invention is not limited thereto.
  • the first sensor 112 may be installed, for example, on the table 8 on the bottom surface of the sample rack lateral transport start portion 12A, or may be installed on the side wall 23 of the sample rack lateral transport start portion 12A.
  • the sample rack horizontal transfer end portion 12C is connected in series with the sample rack discharge portion 13.
  • the side wall 24 of the sample rack discharge portion 13 also constitutes the sample rack lateral transport end portion 12C. That is, it can be said that the sample rack lateral transport end portion 12C is connected in series with the sample rack discharge portion 13 via the side wall 24.
  • the rack 7 which is conveyed by the lateral transfer mechanism 50 and placed on the sample rack lateral transfer end portion 12C is carried out to the sample rack discharge portion 13.
  • a second sensor 114 (end sensor) is attached to the sample rack lateral transport end portion 12C.
  • the second sensor 114 detects whether or not the rack 7 is mounted on the sample rack lateral transport end portion 12C. This detection signal is transmitted to the drive mechanism selection unit 110 (see FIG. 14 described later).
  • the second sensor 114 is not particularly limited as long as it can detect whether or not the rack 7 is mounted on the sample rack lateral transport end portion 12C.
  • the second sensor 114 may be a sensor that uses laser light reflection, or a sensor that detects a force (in other words, the weight of the rack 7) applied to the sample rack lateral transport end portion 12C.
  • the second sensor 114 is installed on the side wall 24 of the sample rack lateral transport end portion 12C, but the present invention is not limited thereto.
  • the second sensor 114 may be installed on the table 8 on the bottom surface of the sample rack lateral transport end portion 12C, for example.
  • a notch 17 (second notch) is formed on the side wall 20 (first side wall) of the sample rack lateral transport end portion 12C.
  • a plate-shaped protrusion 102 (second protrusion) of the sample rack discharge mechanism 100 which will be described later, can protrude from the notch 17.
  • the rack 7 mounted on the sample rack lateral transport end portion 12C is pushed out by the protrusion 102 and is carried out from the sample rack lateral transport end portion 12C to the sample rack discharge portion 13. Since the sample rack discharge mechanism 100 and the sample rack discharge unit 13 will be described later, details will not be described here.
  • the processing unit 12B is located between the sample rack horizontal transfer start unit 12A and the sample rack horizontal transfer end unit 12C. While the rack 7 is being conveyed on the processing unit 12B, various treatments are performed on the container 4 held in the rack 7 or the sample placed in the container 4. The process is not particularly limited and is as described above.
  • the processing unit 12B is provided with a side wall 20 and a side wall 21.
  • the side wall 20 and the side wall 21 face each other substantially in parallel.
  • the distance (width) between the side wall 20 and the side wall 21 is set according to the length of the rack 7 in the vertical direction (short direction).
  • the rack 7 is set so that it can be placed vertically between the side wall 20 and the side wall 21 and the rack 7 can be moved in the horizontal direction (long direction of the sample rack). ..
  • the rack 7 can be conveyed along the lateral direction of the sample rack (longward direction of the sample rack, left direction in FIG. 2).
  • the side wall 20 not only constitutes the processing portion 12B, but also constitutes the sample rack lateral transport start portion 12A and the sample rack lateral transport end portion 12C. That is, it can be said that the sample rack lateral transport start portion 12A, the processing portion 12B, and the sample rack lateral transport end portion 12C are connected via the side wall 20.
  • the width of the processing unit 12B that is, the distance between the side wall 20 and the side wall 21 is set according to the length of the rack 7 in the short direction.
  • the rack 7 is set so that it can be placed between the side wall 20 and the side wall 21 in the short direction and the rack 7 can move in the long direction.
  • the length of the processing unit 12B is not particularly limited, and may be appropriately set according to the length of the rack 7 in the long direction, the intended use of the transport device 10, and the like. Specifically, it may be equal to or larger than the width (diameter) of the container 4 held in the rack 7. For example, the length may be such that one rack 7 can be arranged in the processing unit 12B in the long direction.
  • the bar code reader 224 of the analyzer 500 may be attached to the processing unit 12B. This makes it possible to read the barcode attached to the container 4 and retrieve the information. This can be used for the purpose of identifying the sample contained in the container 4.
  • the installation position of the barcode reader 224 is not particularly limited.
  • the barcode reader 224 may be installed on the side wall 20 or the side wall 21 of the processing unit 12B, for example.
  • a notch 16 (first notch) is formed along the main transport path 12 on the side wall 20 in the sample rack lateral transport start portion 12A and the processing portion 12B. From the notch 16, the protrusion 91 (first protrusion) of the lateral transport mechanism 50 projects into the main transport path 12 (see FIG. 2).
  • the lateral transport mechanism 50 drives the rack 7 mounted on the sample rack lateral transport start portion 12A
  • the rear side surface 7A in the transport direction is pushed by the protrusion 91, and the sample rack lateral transport is performed on the main transport path 12.
  • the rack 7 moves toward the end portion 12C in the elongated direction (to the left of the paper in FIG. 2).
  • the rack 7 is transported from the sample rack horizontal transport start portion 12A to the sample rack horizontal transport end portion 12C.
  • the side wall 20 may be provided with a convex portion.
  • FIG. 7 is a front view showing the overall structure of the lateral transport mechanism 50.
  • FIG. 8 is a right side view of the lateral transport mechanism 50.
  • FIG. 9 is a view of the member 53 as viewed from above.
  • the rack 7 is moved in a direction substantially perpendicular to the elongated direction of the rack 7 (on the paper surface in FIG. 2) by the sample rack feeding mechanism 30 described above, and is transported to the sample rack lateral transport start portion 12A.
  • the motor 34 is stopped and the lateral transfer mechanism 50 is operated.
  • the operation control of the sample rack feeding mechanism 30 and the lateral transport mechanism 50 is performed by the drive mechanism selection unit 110 (see FIG. 14 described later). The details of the control will be described later, and will not be described here.
  • the lateral transport mechanism 50 is for transporting the rack 7 from the sample rack lateral transport start portion 12A to the sample rack lateral transport end portion 12C, and is a transport drive unit 52 (first drive) that drives the slider 51 and the slider 51. Means) and. Further, the slider 51 is provided with a member 53 having a protrusion 91. As described above, the protrusion 91 is attached so as to project from the notch 16 (see FIG. 2) provided in the side wall 20 of the main transport path 12. More specifically, as shown in FIG. 9, the protrusion 91 abuts on the stopper 84 due to the urging force of the elastic body 80 (the urging member) and protrudes from the notch 16 (see FIG. 2) into the main transport path 12. In this state, it is positioned parallel to the transport path so that the side surface 7A (see FIG. 5) of the rack 7 can be pushed.
  • the inclined surface of the protrusion 91 is inclined from the upper surface of the protrusion (in other words, the tip of the protrusion 91) toward the counterclockwise direction (in other words, the direction opposite to the transport direction of the rack 7 in the main transport path 12). It is formed, and when an external force is applied from the direction of arrow 86 in FIG. 9 (in other words, the direction from the transport start portion to the transport end portion), the protrusion 91 rotates around the support shaft 77 against the urging force (in other words, the direction from the transport start portion to the transport end portion). In FIG. 9, it can be buried in the notch 16 in the clockwise direction). Further, the protrusion 91 can be embedded in the side wall 23 of the sample rack lateral transport start portion 12A.
  • the size of the protrusion 91 is not particularly limited, and is appropriately set according to the length of the rack 7 in the short direction.
  • the length of the portion of the protrusion 91 protruding from the side wall 20 is preferably 50 to 100% of the length of the rack 7 in the short direction. If it is within the range, the rack 7 can be stably conveyed. On the other hand, if it is shorter than the range, when the protrusion 91 moves in the transport direction of the rack 7, the protrusion 91 enters the gap of the surface facing the side wall 20 of the rack 7, causing a problem that the rack 7 rotates. there is a possibility.
  • the slider 51 can be moved by the action of the transport drive unit 52. Specifically, when the slider 51 moves to the left of the paper surface in FIG. 2, the protrusion 91 of the member 53 attached to the slider 51 pushes the side surface 7A of the rack 7 to the left of the paper surface of FIG. become. As a result, the rack 7 on the main transport path 12 can be transported from the sample rack horizontal transport start portion 12A to the sample rack horizontal transport end portion 12C.
  • the transport drive unit 52 includes a main pulley 60 and a sub pulley 61, a timing belt 62 for connecting the main pulley 60 and the sub pulley 61, a connecting metal fitting 63 for connecting the timing belt 62 and the slider 51, and a main pulley. Includes a motor 64 that is directly connected to the rotating shaft of 60.
  • the rotation of the motor 64 causes the belt 62 stretched between the main pulley 60 and the sub pulley 61 to move.
  • the slider 51 also moves at the same time via the connecting metal fitting 63 fixed to the timing belt 62. Therefore, as described above, the rack 7 can be moved in the elongated direction (leftward on the paper surface in FIG. 2).
  • the member 53 (the embodiment including one protrusion 91) has been described for the lateral transport mechanism 50, but the present invention is not limited thereto.
  • a plurality of members 53 may be included, and the plurality of protrusions 91 may be sequentially projected from the notch 16.
  • one protrusion 91 can push one rack 7 from behind and can convey the racks 7 that are continuously conveyed one after another.
  • the sample rack discharge unit 13 includes a side wall 24 and a side wall 25.
  • the side wall 24 and the side wall 25 face each other substantially in parallel. Further, the distance (width) between the side wall 24 and the side wall 25 is set according to the length of the rack 7 in the elongated direction.
  • the rack 7 can be placed between the side wall 24 and the side wall 25 in the elongated direction, and the rack 7 is substantially perpendicular to the elongated direction (downward on the paper surface in FIG. 2). It is set so that it can be moved to. According to the configuration, the rack 7 carried out from the sample rack horizontal transfer end portion 12C can be stocked in the vertical direction.
  • the widths of the side wall 24 and the side wall 25 may be set according to the number of racks 7 to be placed (stocked). As a result, a plurality of processed racks 7 can be arranged in parallel and stocked in the sample rack discharge unit 13.
  • the rack 7 is carried out from the sample rack horizontal transfer end portion 12C to the sample rack discharge portion 13 by the sample rack discharge mechanism 100. Specifically, when the sample rack discharge mechanism 100 is driven, the protrusion 102 protruding from the notch 17 of the side wall 20 of the sample rack lateral transport end portion 12C is rearward sideways with respect to the carry-out direction of the rack 7. , The side surface of the rack 7 adjacent to the side wall 20 is pushed in a direction substantially perpendicular to the side surface. As a result, the rack 7 is moved downward on the paper surface of FIG. 2, and is carried out from the sample rack lateral transfer end portion 12C to the sample rack discharge portion 13.
  • the side wall 25 may be provided with a convex portion.
  • the sample rack discharge mechanism 100 which is a drive mechanism for moving the rack 7 mounted on the sample rack lateral transport end portion 12C, will be described in detail with reference to FIG.
  • FIG. 10 is a right side view showing the overall structure of the sample rack discharge mechanism 100.
  • the sample rack discharge mechanism 100 is attached to the back of the side wall 20 (see FIG. 2) of the sample rack lateral transport end portion 12C.
  • the sample rack discharge mechanism 100 includes a slider 104 and a transport drive unit 65 (second drive means) for driving the slider 104.
  • the slider 104 is provided with a plate-shaped protrusion 102 for pushing the rack 7 to the sample rack discharge portion 13.
  • the protrusion 102 is arranged so as to be able to protrude from the notch 17 of the side wall 20 of the sample rack lateral transport end portion 12C.
  • the protrusion 102 has a plate shape, the shape of the surface that pushes the side surface of the rack 7 is not particularly limited. For example, it may be a flat surface, but it may also have a shape that allows the side surface of the rack 7 to be pushed.
  • the size of the protrusion 102 is not particularly limited, but it is preferably a size capable of pushing an area of about 2/3 of the pushing surface of the rack 7.
  • the protrusion 102 preferably pushes the side surface below the position of the center of gravity of the rack 7. As a result, the rack 7 can be stably carried out.
  • the transport drive unit 65 includes a main pulley 40 and a sub pulley 41, a timing belt 42 for connecting the main pulley 40 and the sub pulley 41, a connecting metal fitting 43 for connecting the timing belt 42 and the slider 104, and a main fitting.
  • a motor 44 that is directly connected to the rotating shaft of the pulley 40. Therefore, when the motor 44 rotates, the rotational driving force is transmitted to the timing belt 42.
  • a part of the timing belt 42 is connected to the slider 104 via the connecting metal fitting 43. Therefore, the rotational driving force transmitted to the timing belt 42 is transmitted to the slider 104. As a result, the slider 104 can move forward and backward.
  • the mechanism for transmitting the rotational driving force of the motor 44 by the pulley and the timing belt has been described, but the present invention is not limited thereto.
  • a transmission mechanism for the rotational driving force of the motor 44 a wide variety of conventionally known power transmission mechanisms can be applied in addition to the above mechanism.
  • the transport device 10 can transport the rack 7 from the sample rack supply unit 11 to the sample rack discharge unit 13 via the main transport path 12.
  • the transport device 10 further includes a third sensor 118 (rack sensor) mounted on the support member 10X, as mainly shown in FIG.
  • the third sensor 118 detects that the object is close to the third sensor 118 within a given distance.
  • the transport device 10 can detect that the sample rack discharge unit 13 is filled with the rack based on the detection output of the third sensor 118. More specifically, when the sample rack discharge unit 13 is filled with the rack 7 conveyed to the sample rack discharge unit 13 and a state occurs in which one rack 7 reaches the support member 10X. The occurrence of the state can be detected based on the detection output of the third sensor 118.
  • the third sensor 118 may be any kind of sensor.
  • the third sensor 118 is installed on the surface of, for example, a sensor that uses laser light reflection, a sensor that detects a force (in other words, the weight of the rack 7) applied to the sample rack discharge unit 13, or a support member 10X. It may be a sensor that detects the pressing of the pressed button.
  • the support member 10X is removable from the transport path.
  • the sample rack discharge unit 13 can be substantially extended by installing the expansion unit at the place where the support member 10X is mounted. This can increase the number of racks 7 that can be stored in the transfer device 10.
  • FIG. 11 is a perspective view of the expansion member 300, which is an example of the expansion unit. As shown in FIG. 11, the expansion member 300 includes an expansion path 301, side walls 311, 312, end walls 313, and legs 321 and 322.
  • FIG. 12 is a diagram showing a state in which the expansion member 300 is attached to the transport device 10. Further referring to FIG. 12, the expansion member 300 is attached to the transfer device 10 by connecting the end portion 301A of the expansion path 301 to the portion where the support member 10X of the transfer device 10 is mounted. The support member 10X removed from the transfer device 10 can be attached to the expansion member 300 so as to be inscribed in the end wall 313.
  • the rack 7 conveyed to the sample rack discharge unit 13 is sent out to the expansion path 301 according to the subsequent transfer of the rack 7.
  • the third sensor 118 detects the rack 7 in the support member 10X installed in the expansion member 300.
  • the drive mechanism selection unit 110 is filled with the rack 7 in the transfer path and the expansion path 301 of the transfer device 10. Can be detected.
  • FIG. 13 is a control block diagram of the analyzer 500.
  • the analyzer 500 includes a control unit 210, a communication unit 221, a sample preparation unit 222, an imaging unit 223, a barcode reader 224, and an operation unit 226.
  • the control unit 210 includes a CPU (Central Processing Unit) 211 and a storage unit 212.
  • CPU Central Processing Unit
  • the CPU 211 executes a computer program stored in the storage unit 212 and controls each unit of the analyzer 500.
  • the storage unit 212 includes a storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), and a hard disk.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the storage unit 212 will be described as an example of a storage location for information. That is, the information "stored in the storage unit 212" needs to be stored in the storage unit 212 as long as it is stored in an accessible storage device such as a CPU 211 or a processor that executes processing in the present specification. There is no.
  • the communication unit 221 transmits the data from the control unit 210 to another device, and inputs the information from the other device to the control unit 210.
  • the communication unit 221 is realized by, for example, a network interface card.
  • the sample preparation unit 222 prepares a sample necessary for analysis.
  • the sample is prepared, for example, by mixing and stirring the sample in the container 4 and the reagent required for measurement.
  • the imaging unit 223 acquires an image of the sample prepared by the sample preparation unit 222.
  • the imaging unit 223 has an automatic focusing mechanism. As a result, the sample prepared by the sample preparation unit 222 is automatically imaged by the imaging unit 223.
  • the image pickup unit 223 outputs the captured image to the control unit 210.
  • the barcode reader 224 reads the barcode attached to the container 4 and outputs the read information to the control unit 210.
  • the CPU 211 identifies the analysis result of the sample by analyzing the captured image.
  • An example of image analysis is formation analysis.
  • the CPU 211 determines whether or not the pre-stored image pattern of the formed component is included in the image of the sample. After that, when the CPU 211 determines that the image of the sample contains the image pattern of the formed portion, the CPU 211 counts the number of the formed portion in the image and outputs the number.
  • the imaging unit 223 may capture a plurality of images for one sample and output them to the control unit 210.
  • the CPU 211 displays an image including an image pattern (for example, an image pattern of a specific formed portion related to urine) stored in a predetermined storage unit 212 for each sample. It may be stored in the storage unit 212 in association with the formed portion.
  • the operation unit 226 is realized by, for example, a hardware button provided on the main body 501.
  • the operation unit 226 When the operation unit 226 is operated, the operation unit 226 outputs a signal corresponding to the type of the operated button or the like to the CPU 210.
  • control unit 210 when an analysis instruction from the user is input via the operation unit 226, the control unit 210 outputs the transfer instruction of the rack 7 to the transfer device 10 via the communication unit 221. Good.
  • FIG. 14 is a block diagram of the transport device 10. Next, the control of transporting the rack 7 in the transport device 10 will be described with reference to FIG.
  • the drive mechanism selection unit 110 includes a first communication unit 120, a second communication unit 121, a drive control unit 111, a third communication unit 122, a fourth communication unit 123, and a fifth.
  • the communication unit 124, the sixth communication unit 125, and the seventh communication unit 126 are included.
  • the first communication unit 120 and the second communication unit 121 are interfaces for the drive mechanism selection unit 110 to communicate with the first sensor 112 and the second sensor 114, respectively.
  • the drive mechanism selection unit 110 communicates with the sample rack feeding mechanism 30, the lateral transport mechanism 50, and the sample rack discharging mechanism 100, respectively. It is an interface.
  • the first sensor 112 and the second sensor 114 are connected to the drive control unit 111 via the first communication unit 120 and the second communication unit 121, respectively.
  • the sample rack feeding mechanism 30, the lateral transport mechanism 50, and the sample rack discharging mechanism 100 are connected to the drive control unit 111 via the third communication unit 122, the fourth communication unit 123, and the fifth communication unit 124, respectively. It is connected.
  • the sixth communication unit 125 is an interface for the drive mechanism selection unit 110 to communicate with the third sensor 118.
  • the seventh communication unit 126 is an interface for the drive mechanism selection unit 110 to communicate with the notification device 200.
  • the notification device 200 is a device that outputs information indicating that the rack is full in the transport device 10, and may be a display, a lamp, and / or a speaker.
  • the drive mechanism selection unit 110 receives the detection signal of the presence / absence of the rack 7 from the first sensor 112 and the second sensor 114 via the first communication unit 120 and the second communication unit 121, and sends the detection signal to the drive control unit 111. be able to.
  • the drive mechanism selection unit 110 can receive the detection signal of the presence / absence of the rack 7 from the third sensor 118 via the sixth communication unit 125 and send it to the drive control unit 111.
  • the first sensor 112 is a device that detects the rack 7 mounted on the sample rack horizontal transfer start portion 12A.
  • the second sensor 114 is a device that detects the rack 7 mounted on the sample rack lateral transport end portion 12C.
  • the third sensor 118 is a device that detects the rack 7 that has reached the support member 10X.
  • the first sensor 112, the second sensor 114, and the third sensor 118 include a detection unit 115, a sensor control unit 116, and a sensor communication unit 117, respectively, as shown in FIG.
  • the detection unit 115 provides information on whether or not the rack 7 is mounted on the sample rack horizontal transfer start unit 12A or the sample rack horizontal transfer end unit 12C, or whether or not the rack 7 has reached the support member 10X. To detect. The information detected by the detection unit 115 is transmitted to the sensor control unit 116.
  • the sensor control unit 116 determines whether or not the information detected by the detection unit 115 indicates a given event. More specifically, in the first sensor 112, the sensor control unit 116 determines whether or not it indicates the event "the rack 7 is mounted on the sample rack lateral transport start unit 12A". .. In the second sensor 114, the sensor control unit 116 determines whether or not it indicates the event "the rack 7 is mounted on the sample rack lateral transport end unit 12C". In the third sensor 118, the sensor control unit 116 determines whether or not it indicates the event "the rack 7 has reached the support member 10X".
  • the sensor control unit 116 stores in advance a reference for determining whether or not the information detected by the detection unit 115 indicates the above-mentioned event. Therefore, the sensor control unit 116 determines whether or not the detection output indicates the above-mentioned event by comparing the detection output from the detection unit 115 with the above-mentioned reference. The sensor control unit 116 transmits the determination result to the drive mechanism selection unit 110. Notification of the determination result from the sensor control unit 116 is performed via the sensor communication unit 117.
  • the sensor communication unit 117 is an interface for the first sensor 112, the second sensor 114, and the third sensor 118 to communicate with the drive mechanism selection unit 110.
  • the notification of the determination result from the sensor control unit 116 is transmitted from the sensor communication unit 117 to the drive mechanism selection unit 110.
  • the communication between the first sensor 112, the second sensor 114, and the third sensor 118 and the drive mechanism selection unit 110 may be unidirectional communication from each sensor to the drive mechanism selection unit 110, or bidirectionally. It may be communication.
  • the power supply unit for driving each member of the first sensor 112, the second sensor 114, and the third sensor 118 is not shown, electric power is supplied from the power supply of the transfer device 10 according to the present embodiment. Is preferable.
  • the drive control unit 111 includes a sample rack feeding mechanism 30, a lateral transport mechanism 50, a sample rack discharging mechanism 100, and a notification device based on the detection signals from the first sensor 112, the second sensor 114, and the third sensor 118. 200 is controlled.
  • the drive control unit 111 includes a CPU, RAM, and ROM. When the CPU executes a given program, the drive control unit 111 realizes the functions described in the present specification.
  • the drive control unit 111 includes an information analysis unit 113, a first command unit 130, a second command unit 131, a third command unit 132, and a fourth command unit 134.
  • the information analysis unit 113 includes a sample rack feeding mechanism 30, a lateral transport mechanism 50, a sample rack discharging mechanism 100, and a notification. It is determined which of the devices 200 is to be operated, and the result is notified to the first command unit 130, the second command unit 131, the third command unit 132, and the fourth command unit 134 as signals.
  • the first command unit 130 generates a signal for driving or stopping the sample rack feeding mechanism 30 based on the signal from the information analysis unit 113, and transmits the signal via the third communication unit 122. It is transmitted to the sample rack feeding mechanism 30.
  • the second command unit 131 generates a signal for driving or stopping the lateral transport mechanism 50 based on the signal from the information analysis unit 113, and laterally transmits the signal via the fourth communication unit 123. It is transmitted to the transport mechanism 50.
  • the third command unit 132 generates a signal for driving or stopping the sample rack discharge mechanism 100 based on the signal from the information analysis unit 113, and transmits the signal via the fifth communication unit 124. It is transmitted to the sample rack discharge mechanism 100.
  • the fourth command unit 134 generates a signal for driving or stopping the notification device 200 based on the signal from the information analysis unit 113, and notifies the signal via the seventh communication unit 126. It is transmitted to the device 200.
  • each of the first command unit 130, the second command unit 131, the third command unit 132, and the fourth command unit 134 is realized by the CPU executing a program stored in the memory in advance. , May be realized as a function of the drive control unit 111.
  • the third communication unit 122, the fourth communication unit 123, the fifth communication unit 124, and the seventh communication unit 126 communicate between elements such as the sample rack feeding mechanism 30 and the drive control unit 111. Realized by a communication interface to do.
  • the transport device 10 further includes an eighth communication unit 127.
  • the eighth communication unit 127 is an interface for communicating the drive control unit 111 with an external device such as the analyzer 500.
  • FIG. 15 is a flowchart of processing executed for transporting the rack 7 in the transport device 10.
  • the transfer device 10 may realize the process of FIG. 15 by executing a given program by the CPU of the drive control unit 111.
  • the drive control unit 111 may acquire an instruction for transporting the rack from the analyzer 500 via the eighth communication unit 127 (see FIG. 14).
  • the CPU of the drive control unit 111 may start the process of FIG. 15 in response to receiving the transfer instruction from the analyzer 500.
  • step S1 the drive control unit 111 instructs the first sensor 112, the second sensor 114, and the third sensor 118 to detect the presence or absence of the rack 7.
  • the detection unit 115 detects whether or not the rack 7 is mounted on the sample rack horizontal transfer start unit 12A and the sample rack horizontal transfer end unit 12C. Produce output. Does the detection output generated by the detection unit 115 indicate that the rack 7 is mounted on the sample rack lateral transport start portion 12A or the sample rack lateral transport end portion 12C, or is mounted.
  • the sensor control unit 116 determines whether or not it indicates that there is no such thing.
  • the first sensor 112 and the second sensor 114 notify the drive mechanism selection unit 110 of the determination result via the sensor communication unit 117.
  • the detection unit 115 According to the instruction, in the third sensor 118, the detection unit 115 generates a detection output indicating whether or not an object has reached the third sensor 118.
  • the sensor control unit 116 determines whether or not the detection output generated by the detection unit 115 indicates that the object has reached the support member 10X.
  • the third sensor 118 notifies the drive mechanism selection unit 110 of the determination result via the sensor communication unit 117.
  • step S2 the drive control unit 111 indicates whether or not the determination result notified from the third sensor 118 to the drive mechanism selection unit 110 indicates that the object has reached the support member 10X, that is, the transport. In the device 10 (or the transfer device 10 and the expansion member 300), it is determined whether or not the rack 7 is full.
  • the drive control unit 111 in the transfer device 10 when the determination result from the third sensor 118 indicates that the object has reached the support member 10X, the drive control unit 111 in the transfer device 10 (or the transfer device 10 and the extension member 300). It may be determined that the rack 7 is full. When the determination result from the third sensor 118 does not indicate that the object has reached the support member 10X, the drive control unit 111 fills the rack 7 in the transfer device 10 (or the transfer device 10 and the expansion member 300). You may judge that it is not.
  • step S2 If the drive control unit 111 determines that the rack is full (YES in step S2), the control proceeds to step S3, and if not (NO in step S2), the control proceeds to step S4.
  • step S4 the drive control unit 111 receives the determination result notified from the first sensor 112 and the second sensor 114 to the drive mechanism selection unit 110 of the sample rack lateral transfer start unit 12A and the sample rack lateral transfer end unit 12C. It is determined whether or not it indicates that the rack 7 is mounted on at least one of them.
  • the drive control unit 111 determines in step S9 that the third The sample rack feeding mechanism 30 is driven by transmitting a signal to the sample rack feeding mechanism 30 via the communication unit 122.
  • step S4 determines whether or not the rack 7 is mounted on at least one of the sample rack horizontal transfer start unit 12A and the sample rack horizontal transfer end unit 12C (YES in step S4).
  • step S5 it is determined whether or not the rack 7 is on the sample rack lateral transfer start portion 12A.
  • step S8 the drive control unit 111 mounts the rack 7 only on the sample rack horizontal transport end portion 12C. May be regarded as. Then, the drive control unit 111 executes step S8 and step S9. Specifically, in step S8, the drive control unit 111 transmits a signal to the sample rack discharge mechanism 100 via the fifth communication unit 124 to drive the sample rack discharge mechanism 100. Further, in step S9, the drive control unit 111 transmits a signal to the sample rack feeding mechanism 30 via the third communication unit 122 to drive the sample rack feeding mechanism 30.
  • step S5 the drive control unit 111 has described an embodiment in which steps S8 and S9 are executed. , Only step S8 may be executed.
  • step S5 if it is determined in step S5 that the rack 7 is mounted on the sample rack horizontal transfer start unit 12A, the drive control unit 111 further moves the rack 7 onto the sample rack horizontal transfer end unit 12C in step S6. Judge whether it is placed or not.
  • the drive control unit 111 transmits a signal to the lateral transport mechanism 50 via the fourth communication unit 123 in step S7. The lateral transport mechanism 50 is driven.
  • step S6 if it is determined in step S6 that the rack 7 is also mounted on the sample rack lateral transport end unit 12C, the drive control unit 111 executes both steps S7 and S8. Specifically, in step S7, the drive control unit 111 transmits a signal to the lateral transport mechanism 50 via the fourth communication unit 123 to drive the lateral transport mechanism 50. Further, in step S8, the drive control unit 111 transmits a signal to the sample rack discharge mechanism 100 via the fifth communication unit 124 to drive the sample rack discharge mechanism 100.
  • step S3 the drive control unit 111 transmits a signal to the notification device 200 via the seventh communication unit 126, notifies the notification device 200 of the fullness, and ends the process of FIG. 15.
  • the user may take out the rack 7 stored in the transfer device 10 and set a new rack 7 in the sample rack supply unit 11 in response to the notification of fullness. After that, the user may input an instruction for analysis of the sample by operating the operation unit 226 of the analyzer 500.
  • the control unit 210 of the analyzer 500 may transmit an instruction for transporting the rack to the transport device 10 in response to the input of the instruction.
  • the drive control unit 111 may restart the process of FIG. 15 in response to the acquisition of a new instruction from the analyzer 500.
  • the first sensor 112 and the second sensor 114 detect the rack 7 mounted on the sample rack lateral transfer start portion 12A and the sample rack lateral transfer end portion 12C.
  • the drive mechanism is controlled based on the detection.
  • the transport device 10 can stably transport the rack 7 from the sample rack supply unit 11 to the sample rack discharge unit 13 via the main transport path 12 without overturning the rack 7.
  • the transport device 10 since the transport device 10 has the configuration described with reference to FIGS. 1 to 10, it is possible to reliably transport all types of sample racks regardless of the shape of the sample rack. .. Further, even if another external force is applied during the transportation of the sample rack, step-out or damage is unlikely to occur. Therefore, the transport device 10 is excellent in safety and operability.
  • the transfer device 10 is suitable even when combined with any device that requires automatic transfer of the sample rack, for example, various analyzers, diagnostic devices, pretreatment devices, inspection devices, adjustment devices, manufacturing devices, and the like.
  • it can be used as a sample rack transfer device for transporting a sample rack when various processing steps such as pretreatment, preparation, and measurement of a biological sample are performed using a sample rack that holds biological sample containers in a row. it can.
  • the analyzer also includes an in vitro diagnostic analyzer such as a urinary formation analyzer.
  • the transport device 10 can be a part of the analysis system by integrating various devices as illustrated above. Further, it is assumed that only some of the members constituting the various devices as illustrated above are attached to the transport device 10 and connected to various analyzers, diagnostic devices, manufacturing devices and the like including the remaining members.
  • FIG. 16 shows a state before the expansion member 300 is mounted.
  • the rack 7 after passing through the processing unit 12B is discharged to the sample rack discharge unit 13 via the sample rack lateral transport end unit 12C.
  • the third sensor 118 detects the arrival of the rack 7.
  • the transport device 10 interrupts the transport of the rack 7 and notifies that it is full.
  • FIG. 17 shows a state after the expansion member 300 is attached.
  • the rack 7 after passing through the processing unit 12B is sent to the expansion path 301 via the sample rack lateral transfer end unit 12C and the sample rack discharge unit 13. That is, when the expansion member 300 is attached, the rack 7 can be stored not only in the sample rack discharge unit 13 but also in the expansion path 301.
  • the third sensor 118 detects the arrival of the rack 7 in the support member 10X mounted on the expansion path 301. As a result, the transport device 10 interrupts the transport of the rack 7 and notifies that it is full.
  • the transport device 10 may continue transporting the rack 7 until the processing for all the containers 4 in the rack 7 located in the processing unit 12B is completed.
  • the support member 10X is replaced from the transport device 10 to the expansion member 300, so that even when the expansion member 300 is mounted, the support member 10X is replaced with the expansion member 300.
  • the detection output of the third sensor 118 mounted on the support member 10X can be used to detect the fullness of the sample rack.
  • the sensor communication unit 117 of the third sensor 118 and the sixth communication unit 125 of the drive mechanism selection unit 110 may communicate wirelessly or by wire.
  • the shape of the expansion member 300 is selected so that the sensor communication unit 117 and the sixth communication unit 125 are located within the communicable range even if the support member 10X is attached to the expansion member 300. It is preferable that the communication method is selected.
  • the expansion member 300 preferably includes a housing for accommodating the wiring connecting the sensor communication unit 117 and the sixth communication unit 125.
  • FIG. 18 is a diagram showing a modified example of the expansion member.
  • the expansion member 350 shown in FIG. 18 includes an expansion path 351, a tab portion 351A, and a wall portion 353.
  • FIG. 19 is a diagram showing an example of mounting the expansion member 350 of FIG. 18 on the transport device.
  • FIG. 19 shows two transport devices 10A and 10B.
  • Each of the transfer device 10A and the transfer device 10B has a configuration similar to that of the transfer device 10 of the first embodiment, unless otherwise specified.
  • the expansion member 350 is attached to the end of the sample rack discharge unit 13.
  • the support member 10X which was attached to the end of the sample rack discharge portion 13 before the expansion member 350 is attached, is attached to the expansion member 350 so as to abut the wall portion 353.
  • the tab portion 351A of the expansion member 350 is fitted in the recess 90 of the transport device 10B on the left side.
  • the rack 7 in the transport device 10A can be introduced into the sample rack supply section 11 of the transport device 10B via the expansion path 351 and the tab section 351A.
  • the transport device 10A includes an additional transport mechanism 400 for ejecting the rack 7 introduced into the expansion path 351.
  • the additional transfer mechanism 400 includes an extrusion member 401, a belt 402, a pulley 410, and a connecting member 403.
  • the extruded member 401 is, for example, a rod-shaped member made of resin.
  • the connecting member 403 connects the extrusion member 401 and the belt 402.
  • FIGS. 20 and 21 are diagrams for explaining changes in the positions of the extrusion member 401 and the connecting member 403 in response to the rotation of the pulley 410.
  • the rack 7 is further shown in FIGS. 20 and 21.
  • the pulley 410 rotates counterclockwise from the state shown in FIG. 19
  • the extrusion member 401 and the connecting member 403 move to the left as shown in FIG.
  • the pulley 410 further rotates counterclockwise from the state shown in FIG. 20
  • the extrusion member 401 and the connecting member 403 move to the left as shown in FIG.
  • the rack 7 is introduced into the sample rack supply unit 11 of the transfer device 10B.
  • the transfer device 10A After introducing the rack 7 into the transfer device 10B, the transfer device 10A rotates the pulley 410 clockwise. As a result, the connecting member 403 and the extruded member 401 move to the right and return to their respective positions shown in FIG.
  • FIG. 22 is a block diagram showing a partial configuration of the transport device 10 according to the second embodiment. In FIG. 22, a portion added to the transfer device 10 of the first embodiment is shown.
  • the drive control unit 111 of the transfer device 10 further includes a fifth command unit 135.
  • the drive mechanism selection unit 110 includes a ninth communication unit 128 for transmitting an instruction from the fifth command unit 135 to the additional transfer mechanism 400.
  • the drive control unit 111 when the drive control unit 111 detects that the rack 7 has reached the third sensor 118 based on the detection output from the third sensor 118, the drive control unit 111 instead causes the notification device 200 to notify the fullness.
  • the additional transport mechanism 400 is instructed to introduce the rack 7 on the expansion path 351 to the outside of the transport device 10.
  • An example of "outside the transport device 10" may be a transport device 10B with respect to the transport device 10A, as described with reference to FIGS. 19 to 21.
  • Another example may be a storage housing that does not have a transport mechanism.
  • the drive control unit 111 is in a rack full state from a transfer device (for example, the transfer device 10B in FIG. 19) installed on the downstream side of the transfer device (for example, the transfer device 10A in FIG. 19) including the drive control unit 111. You may get information about. If the rack is full in the downstream transfer device, the drive control unit 111 does not have to introduce the rack into the downstream transfer device. For example, when information indicating that all of the first sensor 112, the second sensor 114, and the third sensor 118 are detecting the rack is acquired from the transport device on the downstream side, the drive control unit 111 uses the third sensor 111. Even if the rack 7 reaches 118, it is not necessary to instruct the additional transfer mechanism 400 to introduce the rack 7 on the expansion path 351 to the outside of the transfer device 10. In this case, the drive control unit 111 may instruct the notification device 200 to notify the fullness.
  • a transfer device for example, the transfer device 10B in FIG. 19
  • the drive control unit 111 may instruct the notification device 200 to notify the full
  • the transfer device 10A and the transfer device 10B shown in FIG. 19 may be mounted on different analyzers. That is, the transport device 10A may be mounted on the first analyzer, and the transport device 10B may be mounted on the second analyzer. Since the transfer device 10A can introduce the rack set in the transfer device 10A into the transfer device 10B via the expansion member 350, it can be used in an analysis system in which the first analysis device and the second analysis device are linked. .. That is, the drive control unit 111 of the transfer device 10A does not target a part of the racks 7 set in the sample rack supply unit 11 of the transfer device 10A to be processed by the processing unit 12B of the transfer device 10A. It may be introduced in 10B. As a result, the user can collectively set the rack to be analyzed by the first analyzer and the rack to be analyzed by the second analyzer in the transport device 10A.
  • the number of connected transport devices is not limited to "2". Three or more transport devices may be connected. Since the transfer device can pass through the rack processed by the processing unit of the other transfer device by its own device, even if each of the three or more transfer devices is mounted on different analyzers, the user can use all of them.
  • the racks to be processed by the analyzer can be collectively set in the transport device installed on the most upstream side.
  • the additional transport mechanism 400 does not necessarily have to be driven according to the detection output of the sensor.
  • the drive control unit 111 may use the additional transfer mechanism 400.
  • the drive may be started.
  • 1 analysis system 4 containers, 7 racks, 7A side surfaces, 8 tables, 10, 10A, 10B transport equipment, 10X support members, 11 sample rack supply section, 12 main transport path, 12A sample rack horizontal transport start section, 12B processing section , 12C sample rack horizontal transfer end unit, 13 sample rack discharge unit, 110 drive mechanism selection unit, 111 drive control unit, 112 first sensor, 113 information analysis unit, 114 second sensor, 118 third sensor, 224 barcode reader , 300,350 expansion member, 301,351 expansion path, 301A end, 313 end wall, 321,322 legs, 351A tab, 353 wall, 400 additional transport mechanism, 401 extrusion member, 403 connecting member, 410 pulley, 500 analyzer.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

In the present invention, an analysis system (1) includes an analysis device (500) and a transport device (10). The transport device (10) transports a rack (7). The rack houses containers (4) that house samples to be processed by the analysis device (500). The transport device (10) has a support member (10X) that is detachable. After the support member (10X) is removed, an expansion member (300) may be installed at the place where the support member (10X) was mounted.

Description

搬送装置、体外診断用分析装置、および搬送システムTransport equipment, in-vitro diagnostic analyzer, and transport system
 本開示は、試料を収容するラックを搬送するための搬送装置、および、搬送装置を備える体外診断用分析装置に関する。 The present disclosure relates to a transport device for transporting a rack for accommodating a sample, and an in-vitro diagnostic analyzer provided with the transport device.
 従来、体外診断用分析装置における検体の試料の搬送に関し、種々検討がなされてきた。たとえば、特許第4797842号公報(特許文献1)は、1以上の検体を収容するラックを、搬送路の側壁から突出した突起部を用いて搬送する搬送装置を提案している。 Conventionally, various studies have been conducted on the transportation of sample samples in an in vitro diagnostic analyzer. For example, Japanese Patent No. 4779842 (Patent Document 1) proposes a transport device for transporting a rack accommodating one or more specimens by using a protrusion protruding from a side wall of a transport path.
特許第4797842号公報Japanese Patent No. 4797842
 従来の搬送装置は、搬送路上に分析終了後に一定量のラックを保管できるように構成されている。したがって、ユーザは、複数の検体を搬送装置にセットし、当該複数の検体の分析を一括して分析装置に指示することができた。これにより、複数の検体の分析の間、ユーザは他の作業に従事することができる。 The conventional transfer device is configured to be able to store a certain amount of racks on the transfer path after the analysis is completed. Therefore, the user can set a plurality of samples in the transport device and instruct the analyzer to analyze the plurality of samples at once. This allows the user to engage in other tasks during the analysis of multiple specimens.
 分析対象となる検体の数は、分析装置が利用される施設によって異なる。たとえば、規模の小さい病院では、分析対象となる検体の数は少ない。一方で、規模の大きい病院では、大量の検体が分析対象となり得る。 The number of samples to be analyzed varies depending on the facility where the analyzer is used. For example, in a small hospital, the number of samples to be analyzed is small. On the other hand, in large hospitals, a large number of samples can be analyzed.
 従来の搬送装置では、分析対象となる検体の数が多くなった場合でも、ユーザは、上記一定量のラックに搭載された検体の分析が終了するたびに分析装置にラック(検体)をセットする及び/又はラック(検体)を取り出す(片づける)という煩雑な作業を必要とされていた。 In the conventional transport device, even if the number of samples to be analyzed increases, the user sets the rack (sample) in the analyzer every time the analysis of the samples mounted on the fixed amount of racks is completed. And / or the complicated work of taking out (cleaning up) the rack (specimen) was required.
 本開示は、係る実情に鑑み考え出されたものであり、その目的は、搬送装置において、ユーザが必要とされる作業を簡易にするための技術を提供することである。 The present disclosure has been devised in view of such circumstances, and an object thereof is to provide a technique for simplifying a work required by a user in a transport device.
 本開示のある局面に従うと、搬送装置の搬送路において処理部より下流側に設けられた支持部材が着脱可能に構成されている。これにより、搬送路に貯留されるラックの数を増やし、ユーザが当該搬送装置をセットされた分析装置に一度に分析を指示できる検体の数を増やすことができる。 According to a certain aspect of the present disclosure, a support member provided on the downstream side of the processing unit is detachably configured in the transport path of the transport device. As a result, the number of racks stored in the transport path can be increased, and the number of samples that the user can instruct the analyzer in which the transport device is set to analyze at one time can be increased.
 本開示のある局面に従うと、ラックに保持された試料に対する処理が行われる位置である処理部を含む搬送路と、搬送路においてラックを移動させるための搬送手段と、搬送路において処理部より下流側に設けられた、ラックを支持する支持部材とを備え、支持部材は、搬送路に対して着脱可能に構成されている、搬送装置が提供される。 According to a certain aspect of the present disclosure, a transport path including a processing section, which is a position where the sample held in the rack is processed, a transport means for moving the rack in the transport path, and a transport path downstream of the processing section in the transport path. A transport device is provided that includes a support member provided on the side that supports the rack, and the support member is configured to be removable from the transport path.
 支持部材は、支持部材へのラックの到達を検出するためのラックセンサを含み、ラックセンサの検出出力に基づいて、搬送路におけるラックの充満を検知するように構成された制御手段をさらに備え、ラックセンサは、支持部材が搬送路から取り外された状態であっても、制御手段に検出出力を取得できるように構成されていてもよい。 The support member includes a rack sensor for detecting the arrival of the rack at the support member, and further comprises a control means configured to detect the filling of the rack in the transport path based on the detection output of the rack sensor. The rack sensor may be configured so that the control means can acquire the detection output even when the support member is removed from the transport path.
 搬送路は、搬送開始部および搬送終了部を含み、処理部は、搬送開始部より下流側に位置し、搬送終了部は、処理部より下流側に位置し、搬送手段は、ラックを搬送開始部から搬送終了部まで搬送するための第1搬送手段と、ラックを搬送終了部から搬出するための第2搬送手段と、を含み、搬送路は、第2搬送手段により搬送終了部から搬出されたラックを載置可能なラック排出部と、ラックを載置可能なラック供給部と、を含み、搬送手段は、ラック供給部に載置されたラックを搬送開始部に搬入するための第3搬送手段を含み、搬送開始部に載置されたラックを検出するための開始部センサと、搬送終了部に載置されたラックを検出するための終了部センサと、第1搬送手段、第2搬送手段、および第3搬送手段を制御する駆動機構選択手段とを備え、搬送路は、搬送開始部から搬送終了部までつながった第1側壁を含み、搬送開始部および処理部の第1側壁には、第1切り欠きが形成され、第1搬送手段は、第1突起部を有する第1スライダと、第1スライダを前進後進駆動させる第1駆動手段とを備え、第1突起部は、第1切り欠きから搬送路内に突出しており、第1突起部がラックの搬送方向に対して下流側の側面に当接し、第1駆動手段を用いて側面を押すことにより、ラックを搬送開始部から、処理部を通過して、搬送終了部まで搬送するように構成されており、駆動機構選択手段は、開始部センサおよび終了部センサが検知したラックの存否情報に基づき、搬送開始部および搬送終了部の少なくとも一方にラックが載置されているか否かを判断し、(i)搬送開始部および搬送終了部のいずれにもラックが載置されていないと判断すると、第3搬送手段を駆動し、(ii)搬送開始部および搬送終了部の少なくとも一方にラックが載置されていると判断すると、次にラックが搬送開始部にあるか否かを判断し、ラックが搬送開始部にないと判断すると、(a)第2搬送手段および第3搬送手段を駆動、あるいは(b)第2搬送手段のみを駆動し、(iii)搬送開始部および搬送終了部の少なくとも一方にラックが載置されていると判断すると、次にラックが搬送開始部にあるか否かを判断し、ラックが搬送開始部に載置されていると判断すると、次いで搬送終了部にラックが載置されているか否かを判断し、ラックが搬送終了部にないと判断すると、第1搬送手段を駆動し、(iv)搬送開始部および搬送終了部の少なくとも一方にラックが載置されていると判断すると、次にラックが搬送開始部にあるか否かを判断し、ラックが搬送開始部に載置されていると判断すると、次いで搬送終了部にラックが載置されているか否かを判断し、ラックが搬送終了部に載置されていると判断すると、第1搬送手段および第2搬送手段を駆動する、ように構成されていてもよい。 The transport path includes a transport start portion and a transport end portion, the processing portion is located on the downstream side of the transport start portion, the transport end portion is located on the downstream side of the processing portion, and the transport means starts transporting the rack. The transport path includes a first transport means for transporting from the unit to the transport end portion and a second transport means for transporting the rack from the transport end portion, and the transport path is carried out from the transport end portion by the second transport means. The transport means includes a rack discharge section on which the rack can be mounted and a rack supply section on which the rack can be mounted, and the transport means is a third for carrying the rack mounted on the rack supply section into the transport start section. A start sensor for detecting a rack mounted on a transport start portion including a transport means, an end sensor for detecting a rack mounted on a transport end portion, a first transport means, a second A transport means and a drive mechanism selection means for controlling a third transport means are provided, and the transport path includes a first side wall connected from a transport start portion to a transport end portion, and is provided on the first side wall of the transport start portion and the processing portion. Is formed with a first notch, the first transport means includes a first slider having a first protrusion, and a first drive means for driving the first slider forward and backward, and the first protrusion is a first. It protrudes into the transport path from one notch, the first protrusion abuts on the side surface on the downstream side with respect to the transport direction of the rack, and the side surface is pushed by using the first drive means to transfer the rack to the transport start portion. The drive mechanism selection means is configured to pass through the processing unit and to the transfer end unit, and the drive mechanism selection means is based on the presence / absence information of the rack detected by the start unit sensor and the end unit sensor. When it is determined whether or not the rack is mounted on at least one of the end portions, and (i) it is determined that the rack is not mounted on either the transport start portion or the transport end portion, the third transport means is driven. Then, (ii) if it is determined that the rack is mounted on at least one of the transport start portion and the transport end portion, it is then determined whether or not the rack is in the transport start portion, and the rack is not in the transport start portion. If it is determined that, (a) the second transport means and the third transport means are driven, or (b) only the second transport means is driven, and (iii) the rack is placed on at least one of the transport start portion and the transport end portion. If it is determined that the rack is placed at the transfer start portion, then it is determined whether or not the rack is located at the transfer start portion. If it is determined whether or not the rack is not at the transfer end portion, the first transfer means is driven, and (iv) the transfer start portion and If it is determined that the rack is mounted on at least one of the transport end portions, then it is determined whether or not the rack is at the transport start portion, and if it is determined that the rack is mounted on the transport start portion, it is determined. Next, it is determined whether or not the rack is mounted on the transport end portion, and when it is determined that the rack is mounted on the transport end portion, the first transport means and the second transport means are driven. You may be.
 本開示の他の局面に従うと、上記搬送装置と、搬送装置によって搬送されるラックに保持された試料の分析を実行する分析装置とを備える、体外診断用分析装置が提供される。 According to another aspect of the present disclosure, an in-vitro diagnostic analyzer comprising the transport device and an analyzer that performs analysis of a sample held in a rack transported by the transport device is provided.
 体外診断用分析装置は、搬送路において支持部材が取り外された場所に取り付けられる拡張部材をさらに備え、支持部材は、拡張部材に取り付けられるように構成されていてもよい。 The in-vitro diagnostic analyzer may further include an expansion member that is attached to the location where the support member has been removed in the transport path, and the support member may be configured to be attached to the expansion member.
 本開示のさらに他の局面に従うと、試料を保持するように構成されたラックを搬送するための搬送装置と、搬送装置に取り付けられる拡張部材とを備え、搬送装置は、ラックによって保持された試料に対する処理が行われる位置である処理部を含む搬送路と、搬送路においてラックを移動させるための搬送手段と、搬送路において処理部より下流側に設けられた、ラックを支持する支持部材とを含み、支持部材は、搬送路に対して着脱可能に構成されていおり、拡張部材は、搬送路において支持部材が取り外された場所に取り付けられるように構成され、支持部材は、拡張部材に取り付けられるように構成されている、搬送システムが提供される。 According to yet another aspect of the present disclosure, the transport device comprises a transport device for transporting a rack configured to hold the sample and an extension member attached to the transport device, the transport device being a sample held by the rack. A transport path including a processing section, which is a position where processing is performed, a transport means for moving the rack in the transport path, and a support member provided on the downstream side of the processing section in the transport path to support the rack. Including, the support member is configured to be removable from the transport path, the expansion member is configured to be attached to the location where the support member was removed in the transport path, and the support member is attached to the extension member. A transport system is provided that is configured as such.
 支持部材は、支持部材へのラックの到達を検出するためのラックセンサを含み、搬送システムは、ラックセンサの検出出力に基づいて、搬送路におけるラックの充満を検知するように構成された制御手段をさらに備え、ラックセンサは、支持部材が拡張部材に装着された状態であっても、制御手段に検出出力を取得できるように構成されていてもよい。 The support member includes a rack sensor for detecting the arrival of the rack at the support member, and the transport system is a control means configured to detect the fullness of the rack in the transport path based on the detection output of the rack sensor. The rack sensor may be configured so that the control means can acquire the detection output even when the support member is mounted on the expansion member.
 搬送システムは、拡張部材の上のラックを搬送路とは異なる側へ搬送するために駆動する駆動部をさらに備え、制御手段は、ラックセンサが支持部材へのラックの到達を検出したことに応じて、駆動部を駆動させるように構成されていてもよい。 The transport system further comprises a drive unit that drives the rack above the expansion member to transport it to a side different from the transport path, and the control means responds to the rack sensor detecting the arrival of the rack at the support member. It may be configured to drive the drive unit.
 搬送システムは、拡張部材の上のラックを搬送路とは異なる方向へ搬送するために駆動する駆動部をさらに備えていてもよい。 The transport system may further include a drive unit that drives the rack above the expansion member to transport it in a direction different from the transport path.
分析システムの第1の実施の形態の全体構成を示す図である。It is a figure which shows the whole structure of the 1st Embodiment of an analysis system. 搬送装置10の斜視図である。It is a perspective view of the transport device 10. 搬送装置10におけるサンプルラックの搬送経路を模式的に示す図である。It is a figure which shows typically the transport path of the sample rack in the transport device 10. 搬送装置10の内部構造を模式的に示す図である。It is a figure which shows typically the internal structure of the transport device 10. サンプルラックの斜視図である。It is a perspective view of a sample rack. サンプルラック送り込み機構30の構成を示す図である。It is a figure which shows the structure of the sample rack feeding mechanism 30. 横搬送機構50の全体構造を示す正面図である。It is a front view which shows the whole structure of the lateral transport mechanism 50. 図7の横搬送機構50の右側面図である。It is a right side view of the lateral transport mechanism 50 of FIG. 横搬送機構50の構成を示す図である。It is a figure which shows the structure of the lateral transport mechanism 50. サンプルラック排出機構100の全体構造を示す右側面図である。It is a right side view which shows the whole structure of the sample rack discharge mechanism 100. 拡張用のユニットの一例である拡張部材300の斜視図である。It is a perspective view of the expansion member 300 which is an example of the expansion unit. 拡張部材300が搬送装置10に装着された状態を示す図である。It is a figure which shows the state which the expansion member 300 is attached to the transport device 10. 分析装置500の制御ブロック図である。It is a control block diagram of the analyzer 500. 搬送装置10のブロック図である。It is a block diagram of the transport device 10. 搬送装置10においてラック7の搬送のために実行される処理のフローチャートである。It is a flowchart of the process executed for the transfer of the rack 7 in the transfer device 10. 拡張部材300が装着される前の状態を表す。It represents a state before the expansion member 300 is mounted. 拡張部材300が装着された後の状態を表す。It represents the state after the expansion member 300 is attached. 拡張部材の変形例を示す図である。It is a figure which shows the modification of the expansion member. 図18の拡張部材350の搬送装置への装着例を示す図である。It is a figure which shows the example of mounting the expansion member 350 of FIG. 18 to a transport device. プーリ410の回転に応じた押出部材401および連結部材403の位置の変化を説明するための図である。It is a figure for demonstrating the change of the position of the extrusion member 401 and the connecting member 403 according to the rotation of a pulley 410. プーリ410の回転に応じた押出部材401および連結部材403の位置の変化を説明するための図である。It is a figure for demonstrating the change of the position of the extrusion member 401 and the connecting member 403 according to the rotation of a pulley 410. 第2の実施の形態の搬送装置10の部分的な構成を示すブロック図である。It is a block diagram which shows the partial structure of the transfer device 10 of the 2nd Embodiment.
 以下に、図面を参照しつつ、本開示に係る搬送装置を含む搬送システムおよび分析システムの実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号が付され、それらの名称および機能は同じである。したがって、これらの説明は繰り返されない。 Hereinafter, embodiments of a transport system and an analysis system including the transport device according to the present disclosure will be described with reference to the drawings. In the following description, the same parts and components are designated by the same reference numerals and have the same names and functions. Therefore, these explanations are not repeated.
 <第1の実施の形態>
 [分析システムの概略的な構成]
 図1は、分析システムの第1の実施の形態の全体構成を示す図である。分析システム1は、分析装置500と、搬送装置10とを含む。
<First Embodiment>
[Rough configuration of analysis system]
FIG. 1 is a diagram showing an overall configuration of a first embodiment of an analysis system. The analysis system 1 includes an analysis device 500 and a transfer device 10.
 搬送装置10は、分析装置500によって分析される検体を搬送する。図1の例では、検体は容器4に収容され、1以上の容器4はサンプルラック(ラック7)に収容される。搬送装置10は、搬送路を含み、当該搬送路においてラック7を搬送する。搬送装置10は、搬送路の終端部に、搬送装置10から着脱可能な支持部材10Xを含む。分析システムにおいて、搬送装置10による検体の搬送方法は図1に示されたものに限定されない。 The transport device 10 transports the sample analyzed by the analyzer 500. In the example of FIG. 1, the sample is housed in a container 4, and one or more containers 4 are housed in a sample rack (rack 7). The transport device 10 includes a transport path and transports the rack 7 in the transport path. The transport device 10 includes a support member 10X that can be attached to and detached from the transport device 10 at the end of the transport path. In the analysis system, the method of transporting the sample by the transport device 10 is not limited to that shown in FIG.
 分析装置500は、種々の検体の分析に利用され得る。分析される検体の一例は、尿である。他の例は髄液(例えば、腰椎髄液)である。さらに他の例は後頭下液である。さらに他の例は脳室液である。 The analyzer 500 can be used for the analysis of various samples. An example of a sample analyzed is urine. Another example is cerebrospinal fluid (eg, lumbar spinal fluid). Yet another example is the suboccipital fluid. Yet another example is ventricular fluid.
 分析装置500は、本体501を含む。本体501は、後述するバーコードリーダ224等の要素を含む。分析装置500は、容器4のそれぞれのバーコードをバーコードリーダ224で読み取ることにより、検査対象の検体のそれぞれを識別してもよい。 The analyzer 500 includes the main body 501. The main body 501 includes elements such as a barcode reader 224, which will be described later. The analyzer 500 may identify each of the samples to be inspected by reading each barcode of the container 4 with the barcode reader 224.
 [搬送装置の構成]
 次に、図2~図10を参照して搬送装置10の構成を説明する。
[Conveyor configuration]
Next, the configuration of the transport device 10 will be described with reference to FIGS. 2 to 10.
 図2は、搬送装置10の斜視図である。図3は、搬送装置10におけるサンプルラックの搬送経路を模式的に示す図である。搬送装置10は、搬送路を含む。搬送路は、主に図2および図3に示されるように、サンプルラック供給部11(ラック供給部)と、主搬送路12と、サンプルラック排出部13(ラック排出部)とを含む。主搬送路12は、サンプルラック横搬送開始部12A(搬送開始部)と、処理部12Bと、サンプルラック横搬送終了部12C(搬送終了部)とを含む。 FIG. 2 is a perspective view of the transport device 10. FIG. 3 is a diagram schematically showing a transport path of the sample rack in the transport device 10. The transport device 10 includes a transport path. The transport path mainly includes a sample rack supply section 11 (rack supply section), a main transport path 12, and a sample rack discharge section 13 (rack discharge section), as shown in FIGS. 2 and 3. The main transport path 12 includes a sample rack lateral transport start portion 12A (convey start portion), a processing portion 12B, and a sample rack horizontal transport end portion 12C (convey end portion).
 サンプルラック供給部11と主搬送路12とは、略直角をなすように、サンプルラック横搬送開始部12Aを介して連結されている。換言すれば、サンプルラック供給部11と主搬送路12とは、L字状に接続されている。主搬送路12とサンプルラック排出部13とは、略直角をなすように、サンプルラック横搬送終了部12Cを介して、連結されている。換言すれば、主搬送路12とサンプルラック排出部13とは、L字状に接続されている。その結果、サンプルラック供給部11と、主搬送路12と、サンプルラック排出部13とは、「コの字」状に接続されている(主に図3を参照)。なお、「略直角」とは、直角または実質的に直角であることを意味する。 The sample rack supply unit 11 and the main transport path 12 are connected via the sample rack horizontal transport start portion 12A so as to form a substantially right angle. In other words, the sample rack supply unit 11 and the main transport path 12 are connected in an L shape. The main transport path 12 and the sample rack discharge portion 13 are connected to each other via the sample rack lateral transport end portion 12C so as to form a substantially right angle. In other words, the main transport path 12 and the sample rack discharge unit 13 are connected in an L shape. As a result, the sample rack supply unit 11, the main transport path 12, and the sample rack discharge unit 13 are connected in a “U” shape (mainly see FIG. 3). In addition, "substantially right angle" means a right angle or a substantially right angle.
 サンプルラック供給部11、主搬送路12、およびサンプルラック排出部13は、ラック7を滑らせながら搬送できるように連続した平らなテーブル8面上に形成されている。 The sample rack supply unit 11, the main transport path 12, and the sample rack discharge unit 13 are formed on eight continuous flat tables so that the rack 7 can be transported while sliding.
 図4は、搬送装置10の内部構造を模式的に示す図である。主に図4に示されるように、搬送装置10は、サンプルラック供給部11に載置されたラック7を主搬送路12に搬入するためのサンプルラック送り込み機構30(第3搬送手段)と、主搬送路12に載置されたラック7を搬送するための横搬送機構50(第1搬送手段)と、サンプルラック横搬送終了部12Cに載置されたラック7をサンプルラック排出部13に搬出するためのサンプルラック排出機構100(第2搬送手段)とを含む。 FIG. 4 is a diagram schematically showing the internal structure of the transport device 10. Mainly as shown in FIG. 4, the transport device 10 includes a sample rack feeding mechanism 30 (third transport means) for carrying the rack 7 mounted on the sample rack supply unit 11 into the main transport path 12. The lateral transport mechanism 50 (first transport means) for transporting the rack 7 mounted on the main transport path 12 and the rack 7 mounted on the sample rack horizontal transport end portion 12C are carried out to the sample rack discharge section 13. Includes a sample rack discharge mechanism 100 (second transport means) for the purpose.
 搬送装置10では、ラック7がサンプルラック供給部11に載置される。このとき、ラック7は、長尺方向、言い換えれば、ラック7に保持された容器4が並んでいる列方向、が主搬送路12と実質的に平行となるように載置される。このように載置されたラック7は、サンプルラック送り込み機構30によって、ラック7の長尺方向に対して実質的に垂直な方向に、サンプルラック横搬送開始部12Aに向かって搬送される。 In the transfer device 10, the rack 7 is placed on the sample rack supply unit 11. At this time, the rack 7 is placed so that the elongated direction, in other words, the row direction in which the containers 4 held by the rack 7 are lined up, is substantially parallel to the main transport path 12. The rack 7 placed in this way is conveyed by the sample rack feeding mechanism 30 toward the sample rack lateral transfer start portion 12A in a direction substantially perpendicular to the elongated direction of the rack 7.
 搬送装置10には、サンプルラック供給部11の上流側に凹部90が設けられている。搬送装置10では、凹部90を介して外部からサンプルラック供給部11にラック7が導入されてもよい。 The transport device 10 is provided with a recess 90 on the upstream side of the sample rack supply unit 11. In the transfer device 10, the rack 7 may be introduced into the sample rack supply unit 11 from the outside via the recess 90.
 サンプルラック横搬送開始部12Aまで搬送されたラック7は、横搬送機構50によって、ラック7の長尺方向に、主搬送路12に沿って、サンプルラック横搬送終了部12Cまで搬送される。サンプルラック横搬送終了部12Cまで搬送されたラック7は、サンプルラック排出機構100によって、ラック7の長尺方向に対して実質的に垂直な方向に押され、サンプルラック排出部13に搬出される。このようにして、ラック7は、サンプルラック供給部11から主搬送路12を経てサンプルラック排出部13へと、「コの字」を描くように搬送される。 The rack 7 transported to the sample rack horizontal transport start portion 12A is transported to the sample rack horizontal transport end portion 12C along the main transport path 12 in the long direction of the rack 7 by the lateral transport mechanism 50. The rack 7 transported to the sample rack lateral transfer end portion 12C is pushed by the sample rack discharge mechanism 100 in a direction substantially perpendicular to the long direction of the rack 7 and is carried out to the sample rack discharge unit 13. .. In this way, the rack 7 is conveyed in a "U" shape from the sample rack supply unit 11 to the sample rack discharge unit 13 via the main transfer path 12.
 搬送装置10では、ラック7が主搬送路12の処理部12Bに位置するときに、ラック7に保持された試料に対して、様々な処理を行うことができる。処理は、特に限定されるものではなく、例えば、試料の分析、試料の観察、試料の採取、試料容器への試料の添加など、あらゆる処理が挙げられる。 In the transport device 10, when the rack 7 is located in the processing unit 12B of the main transport path 12, various treatments can be performed on the sample held in the rack 7. The treatment is not particularly limited, and examples thereof include all treatments such as sample analysis, sample observation, sample collection, and addition of a sample to a sample container.
 一実現例では、搬送装置10は分析装置(たとえば、図1の分析装置500)と組み合わされて用いられてもよい。ラック7が処理部12Bに位置するときに、当該分析装置は、ラック7内の所与の場所に位置する容器4内の試料の採取および測定を行なってもよい。一例では、ラック7は10本の容器4を保持する。搬送装置10は、ラック7を、処理部12Bにおいて10個の停止位置のそれぞれに停止させてもよい。10個の停止位置のそれぞれで、10本の容器4のそれぞれがバーコードリーダ224に対向してもよい。分析装置は、バーコードリーダ224に対向している容器4内の試料を採取して、処理を実行してもよい。すなわち、搬送装置10は、ラック7に保持された10本の容器4のそれぞれが処理対象となるように、処理部12Bで10回停止してもよい。他の例では、搬送装置10は、ラック7が処理部12B内の一カ所のみで停止してもよい。分析装置は、停止しているラック7に保持された10本の容器4のそれぞれから試料を採取し、それぞれの試料に対して処理を実行してもよい。 In one implementation example, the transport device 10 may be used in combination with an analyzer (for example, the analyzer 500 of FIG. 1). When the rack 7 is located in the processing unit 12B, the analyzer may collect and measure a sample in a container 4 located at a given location in the rack 7. In one example, the rack 7 holds 10 containers 4. The transport device 10 may stop the rack 7 at each of the 10 stop positions in the processing unit 12B. At each of the 10 stop positions, each of the 10 containers 4 may face the barcode reader 224. The analyzer may collect a sample in the container 4 facing the barcode reader 224 and perform the process. That is, the transfer device 10 may be stopped 10 times at the processing unit 12B so that each of the 10 containers 4 held in the rack 7 is to be processed. In another example, in the transport device 10, the rack 7 may be stopped at only one place in the processing unit 12B. The analyzer may collect samples from each of the ten containers 4 held in the stopped rack 7 and perform processing on each sample.
 他の実現例では、搬送装置10は前処理装置と組み合わされて用いられてもよい。ラック7が処理部12Bに位置するときに、当該前処理装置は、ラック7内の所与の場所に位置する1本以上の容器4のそれぞれの中の試料の採取や試料の測定などを行なってもよい。 In another embodiment, the transport device 10 may be used in combination with the pretreatment device. When the rack 7 is located in the processing unit 12B, the pretreatment device collects a sample in each of one or more containers 4 located in a given place in the rack 7, measures a sample, and the like. You may.
 さらに他の実現例では、搬送装置10は検査装置と組み合わされて用いられてもよい。ラック7が処理部12Bに位置するときに、当該検査装置はラック7内の所与の場所に位置する1本以上の容器4のそれぞれの中の試料の検査を行なってもよい。 In still another embodiment, the transport device 10 may be used in combination with the inspection device. When the rack 7 is located in the processing unit 12B, the inspection device may inspect the sample in each of one or more containers 4 located at a given location in the rack 7.
 さらに他の実現例では、搬送装置10は調製装置と組み合わされて用いられてもよい。ラック7が処理部12Bに位置するときに、当該調製装置は、ラック7内の所与の場所に位置する1本以上の容器4のそれぞれの中の試料を用いた試薬の調製を行なってもよい。 In still another embodiment, the transfer device 10 may be used in combination with the preparation device. When the rack 7 is located in the processing unit 12B, the preparation device may prepare reagents using samples in each of one or more containers 4 located in a given location in the rack 7. Good.
 ラック7が処理部12Bに位置するときに行われる処理は1種類に限定されず、複数種類の処理が連続的に行なわれてもよい。また、処理対象になる容器4の数は1に限定されない。2以上の容器4内の試料が、同時に、または時間差で、処理対象となってもよい。 The processing performed when the rack 7 is located in the processing unit 12B is not limited to one type, and a plurality of types of processing may be continuously performed. Further, the number of containers 4 to be processed is not limited to one. The samples in two or more containers 4 may be treated at the same time or at different times.
 搬送装置10において、サンプルラック横搬送開始部12Aからサンプルラック横搬送終了部12Cまでのラック7の搬送は、等速で行われてもよいし、変速しながら行われてもよい。搬送は、中断されることなく行われても良いし、途中で一時的に中断されてもよい。特に、処理部12Bにおける処理が円滑に行われるために、処理部12Bでは、処理の種類に応じて、速度が変更されたり、搬送が一旦停止されたりしてもよい。 In the transfer device 10, the transfer of the rack 7 from the sample rack horizontal transfer start portion 12A to the sample rack horizontal transfer end portion 12C may be performed at a constant speed or may be performed while shifting gears. The transport may be performed without interruption, or may be temporarily interrupted in the middle. In particular, in order for the processing in the processing unit 12B to be smoothly performed, the processing unit 12B may change the speed or temporarily stop the transportation depending on the type of processing.
 主に図4に示されるように、搬送装置10は、サンプルラック送り込み機構30、横搬送機構50、およびサンプルラック排出機構100を含む。サンプルラック送り込み機構30はサンプルラック供給部11の下方に位置し、横搬送機構50は主搬送路12の下方に位置し、サンプルラック排出機構100は主搬送路12の下方に位置する。 Mainly as shown in FIG. 4, the transport device 10 includes a sample rack feed mechanism 30, a lateral transport mechanism 50, and a sample rack discharge mechanism 100. The sample rack feeding mechanism 30 is located below the sample rack supply unit 11, the lateral transport mechanism 50 is located below the main transport path 12, and the sample rack discharge mechanism 100 is located below the main transport path 12.
 図5は、サンプルラックの斜視図である。図6は、サンプルラック送り込み機構30の構成を示す図である。図7~図9は、横搬送機構50の構成を示す図である。図10は、サンプルラック排出機構100の構成を示す図である。 FIG. 5 is a perspective view of the sample rack. FIG. 6 is a diagram showing a configuration of the sample rack feeding mechanism 30. 7 to 9 are views showing the configuration of the lateral transport mechanism 50. FIG. 10 is a diagram showing the configuration of the sample rack discharge mechanism 100.
 図5を参照して、ラック7の形状について説明する。ラック7は、直方体状の形状を有している。ラック7の上面には、複数の穴3が列状に形成されている。図5の例では、それぞれの穴3に試料を入れた容器4が挿入されることにより、ラック7は、試料を保持することができる。 The shape of the rack 7 will be described with reference to FIG. The rack 7 has a rectangular parallelepiped shape. A plurality of holes 3 are formed in a row on the upper surface of the rack 7. In the example of FIG. 5, the rack 7 can hold the sample by inserting the container 4 containing the sample into each hole 3.
 ラック7の長尺方向の側面には、貫通孔5が形成されている。貫通孔5は、穴3とつながっている。貫通孔5は、ラック7に保持されている容器4の側面の一方側から他方側まで貫通している。すなわち、ラック7は、当該ラック7の一方側から試料に照射された光を、容器4を経由して、ラック7の他方側へと透過させることができる。ラック7には、上方から光が照射されてもよい。搬送装置10および/または分析装置500は、容器4の側方における透過光を検出することにより、試料の光学的測定を行なうことができる。 A through hole 5 is formed on the side surface of the rack 7 in the long direction. The through hole 5 is connected to the hole 3. The through hole 5 penetrates from one side to the other side of the side surface of the container 4 held by the rack 7. That is, the rack 7 can transmit the light radiated to the sample from one side of the rack 7 to the other side of the rack 7 via the container 4. The rack 7 may be irradiated with light from above. The transport device 10 and / or the analyzer 500 can perform optical measurement of the sample by detecting the transmitted light on the side of the container 4.
 図5の例では、ラック7は、当該ラック7の底面部に1つの凹部を含むが、この凹部の数は1つに限られず、複数の凹部を含んでいてもよい。搬送装置10は、底面部に凹部を含まないラック7を搬送してもよい。さらに、搬送装置10は、貫通孔5を含まないラック7を搬送してもよい。貫通孔5の形状は、図5に限定されるものではなく、貫通孔5の利用形態に応じて適宜変更され得る。また、穴3の形状についても、図5では、円筒状の穴であるが、容器4の形状に応じて、適宜変更することが可能である。 In the example of FIG. 5, the rack 7 includes one recess on the bottom surface of the rack 7, but the number of the recesses is not limited to one and may include a plurality of recesses. The transport device 10 may transport the rack 7 whose bottom surface does not include a recess. Further, the transport device 10 may transport the rack 7 that does not include the through hole 5. The shape of the through hole 5 is not limited to FIG. 5, and may be appropriately changed depending on the usage pattern of the through hole 5. Further, the shape of the hole 3 is also a cylindrical hole in FIG. 5, but it can be appropriately changed according to the shape of the container 4.
 容器4の材質は、特に限定されない。容器4は、ガラス製容器、各種樹脂製容器、石英製容器、および金属製容器等、あらゆる材質の容器であってもよい。容器4の材質は、中に入れる試料の種類に応じて適宜選択され得る。容器4に入れるサンプルも、特に限定されるものではない。例えば、あらゆる生物試料、生体試料、化学試料などを挙げることができる。 The material of the container 4 is not particularly limited. The container 4 may be a container made of any material such as a glass container, various resin containers, a quartz container, and a metal container. The material of the container 4 can be appropriately selected according to the type of the sample to be put therein. The sample to be put in the container 4 is not particularly limited. For example, any biological sample, biological sample, chemical sample, etc. can be mentioned.
 主に、図7および図8に示されるように、横搬送機構50は、ラック7を後方から押して、図4の矢印AR04の向きにラック7を搬送する。そのため、横搬送機構50は、ラック7の形状に関係なく、ラック7を搬送できる。より具体的には、横搬送機構50は、処理部12B内でラック7を搬送している間に、ラック7の搬送を停止させたり、搬送速度を変更してもよい。搬送装置10は、横搬送機構50によるラック7の停止位置および/または搬送速度を変更するための設定を取得し得る。 Mainly, as shown in FIGS. 7 and 8, the lateral transport mechanism 50 pushes the rack 7 from the rear and transports the rack 7 in the direction of the arrow AR04 in FIG. Therefore, the lateral transport mechanism 50 can transport the rack 7 regardless of the shape of the rack 7. More specifically, the lateral transfer mechanism 50 may stop the transfer of the rack 7 or change the transfer speed while the rack 7 is being conveyed in the processing unit 12B. The transfer device 10 may acquire a setting for changing the stop position and / or the transfer speed of the rack 7 by the lateral transfer mechanism 50.
 次に、搬送装置10の、各構成部材(サンプルラック供給部11、主搬送路12、サンプルラック排出部13、サンプルラック送り込み機構30、横搬送機構50、およびサンプルラック排出機構100)について詳細に説明する。 Next, each component of the transport device 10 (sample rack supply section 11, main transport path 12, sample rack discharge section 13, sample rack feed mechanism 30, lateral transport mechanism 50, and sample rack discharge mechanism 100) is described in detail. explain.
 まず、サンプルラック供給部11およびサンプルラック送り込み機構30について説明する。 First, the sample rack supply unit 11 and the sample rack feeding mechanism 30 will be described.
 サンプルラック供給部11は、図2に示すように、側壁22(第2側壁)および側壁23(第3側壁)を含む。側壁22と側壁23とは、略平行に対向している。なお、「略平行」とは、平行または実質的に平行であることを意味する。側壁22と側壁23との間隔(幅)は、ラック7の長尺方向の長さに合わせて設定される。具体的には、ラック7を長尺方向に側壁22と側壁23との間に載置でき、かつ、当該ラック7が長尺方向に対して略垂直な方向に移動できるように、設定される。なお、「略垂直」とは、垂直または、実質的に垂直であることを意味する。この構成によれば、ラック7を縦方向にストックできる。 As shown in FIG. 2, the sample rack supply unit 11 includes a side wall 22 (second side wall) and a side wall 23 (third side wall). The side wall 22 and the side wall 23 face each other substantially in parallel. In addition, "substantially parallel" means parallel or substantially parallel. The distance (width) between the side wall 22 and the side wall 23 is set according to the length of the rack 7 in the elongated direction. Specifically, the rack 7 is set so that it can be placed between the side wall 22 and the side wall 23 in the long direction and the rack 7 can move in a direction substantially perpendicular to the long direction. .. In addition, "substantially vertical" means vertical or substantially vertical. According to this configuration, the rack 7 can be stocked in the vertical direction.
 側壁22および側壁23のそれぞれの幅は、ラック7を載置(ストック)したい数に応じて、設定すればよい。これにより、サンプルラック供給部11には、処理前のラック7を並列に並べて、複数個ストックすることが可能となる。 The widths of the side wall 22 and the side wall 23 may be set according to the number of racks 7 to be placed (stocked). As a result, the sample rack supply unit 11 can be stocked with a plurality of racks 7 before processing arranged in parallel.
 側壁22および側壁23には、それぞれ、切り欠き15(第3切り欠き、第4きり欠き)が形成されている。当該切り欠き15からは、サンプルラック送り込み機構30の突出部33(第3突起部)が、サンプルラック供給部11内に突出している(図2および図4を参照)。 Notches 15 (third notch, fourth notch) are formed on the side wall 22 and the side wall 23, respectively. From the notch 15, a protrusion 33 (third protrusion) of the sample rack feeding mechanism 30 projects into the sample rack supply portion 11 (see FIGS. 2 and 4).
 サンプルラック供給部11に載置されたラック7は、この2つの突出部33によって搬送方向(図2において紙面上方向)の後方の側面7Aの両端を押されることにより、サンプルラック横搬送開始部12Aまで搬送される。また、サンプルラック供給部11に複数のラック7が載置されている場合には、最も後方に載置されたラック7の搬送方向の後方の側面7Aの両端を、2つの突出部33が押すことにより、サンプルラック供給部11に載置された全てのラック7が、ラック7の長尺方向とは略垂直な方向(図2において紙面上方向)に移動する。 The rack 7 mounted on the sample rack supply unit 11 is pushed by both ends of the rear side surface 7A in the transport direction (upward on the paper surface in FIG. 2) by the two projecting portions 33, so that the sample rack lateral transport start portion It is transported up to 12A. When a plurality of racks 7 are mounted on the sample rack supply section 11, the two projecting portions 33 push both ends of the rear side surface 7A of the rearmost rack 7 in the transport direction. As a result, all the racks 7 mounted on the sample rack supply unit 11 move in a direction substantially perpendicular to the elongated direction of the rack 7 (in the direction on the paper surface in FIG. 2).
 供給部11の側壁23には、凸部が設けられていてもよい。そのような構成とすれば、凸部と噛み合う凹部をラック7に設けておくと、凸部と凹部とが噛み合った状態でラック7は搬送される。それゆえ、より安定した搬送が可能となる。 A convex portion may be provided on the side wall 23 of the supply portion 11. With such a configuration, if the rack 7 is provided with a concave portion that meshes with the convex portion, the rack 7 is conveyed in a state where the convex portion and the concave portion mesh with each other. Therefore, more stable transportation is possible.
 ここで、サンプルラック供給部11に載置されたラック7を移動させるための駆動機構であるサンプルラック送り込み機構30について、説明する。 Here, the sample rack feeding mechanism 30 which is a driving mechanism for moving the rack 7 mounted on the sample rack supply unit 11 will be described.
 サンプルラック送り込み機構30は、サンプルラック供給部11に載置されたラック7をサンプルラック横搬送開始部12Aに搬入するための駆動機構である。 The sample rack feeding mechanism 30 is a drive mechanism for carrying the rack 7 mounted on the sample rack supply unit 11 into the sample rack lateral transport start unit 12A.
 サンプルラック送り込み機構30は、図6に示すように、対をなす2つのレール31と、各レール31の上を前進後退することができる2つのステージ32と、当該2つのステージ32を駆動する搬送駆動部35(第3駆動手段)とを含む。さらに、各ステージ32の上には、各切り欠き15(図2を参照)からサンプルラック供給部11内に突出するように取り付けられる2つの突出部33が固定されている。 As shown in FIG. 6, the sample rack feeding mechanism 30 drives two pairs of rails 31, two stages 32 capable of moving forward and backward on each rail 31, and the two stages 32. It includes a drive unit 35 (third drive means). Further, on each stage 32, two projecting portions 33 attached so as to project from each notch 15 (see FIG. 2) into the sample rack supply portion 11 are fixed.
 搬送駆動部35は、主プーリ36と副プーリ37、主プーリ36と副プーリ37との間を接続するタイミングベルト38、タイミングベルト38とステージ32とを連結するための連結金具39、および主プーリ36の回転軸に直結するモータ34を2つずつ含む。これにより、各ステージ32に各モータ34の駆動力を伝達し、各ステージ32を駆動させることができる。 The transport drive unit 35 includes a main pulley 36 and a sub pulley 37, a timing belt 38 for connecting the main pulley 36 and the sub pulley 37, a connecting metal fitting 39 for connecting the timing belt 38 and the stage 32, and a main pulley. It includes two motors 34 that are directly connected to the rotating shafts of 36. As a result, the driving force of each motor 34 can be transmitted to each stage 32 to drive each stage 32.
 より詳しく説明すると、モータ34が回転すると、その回転駆動力は、タイミングベルト38に伝達される。タイミングベルト38の一部は、連結金具39を介して、ステージ32と連結されている。そのため、タイミングベルト38に伝達された回転駆動力は、ステージ32に伝達される。また、2つのモータ34は、同期して動作する。これにより、2つのステージ32は、同期して前進後退することができる。本実施形態にかかる搬送装置10では、2つのステージ32のそれぞれに設けられた突出部33がラック7の進行方向後方の側面7Aの両端を同時に、等しい力で押すことができるように、2つのステージ32は前進する。 More specifically, when the motor 34 rotates, the rotational driving force is transmitted to the timing belt 38. A part of the timing belt 38 is connected to the stage 32 via a connecting metal fitting 39. Therefore, the rotational driving force transmitted to the timing belt 38 is transmitted to the stage 32. Further, the two motors 34 operate in synchronization with each other. As a result, the two stages 32 can move forward and backward in synchronization. In the transport device 10 according to the present embodiment, two projecting portions 33 provided on each of the two stages 32 can simultaneously push both ends of the side surface 7A rearward in the traveling direction of the rack 7 with equal force. Stage 32 moves forward.
 2つのステージ32が前進すると、2つの突出部33は、サンプルラック供給部11内にストックされているラック7の進行方向後方の側面7Aの両端を同時に均等な力で押す。それゆえ、ラック7を長尺方向に略垂直な方向(図2において紙面上方向)に、サンプルラック横搬送開始部12Aに向けて移動させることができる。なお、ここでは、モータ34の回転駆動力を、プーリとタイミングベルトとで伝達する機構について説明したが、本発明は、これに限定されるものではない。具体的には、モータ34の回転駆動力の伝達機構としては、この機構以外にも、従来公知の多種多様な動力伝達機構を用いることが可能である。 When the two stages 32 move forward, the two projecting portions 33 simultaneously push both ends of the side surface 7A rearward in the traveling direction of the rack 7 stocked in the sample rack supply portion 11 with an equal force. Therefore, the rack 7 can be moved toward the sample rack lateral transport start portion 12A in a direction substantially perpendicular to the elongated direction (in the direction on the paper surface in FIG. 2). Although the mechanism for transmitting the rotational driving force of the motor 34 by the pulley and the timing belt has been described here, the present invention is not limited to this. Specifically, as a transmission mechanism for the rotational driving force of the motor 34, a wide variety of conventionally known power transmission mechanisms can be used in addition to this mechanism.
 搬送装置10は、サンプルラック横搬送開始部12Aにラック7が位置するとき、サンプルラック送り込み機構30(具体的にはモータ34)を停止することができる。このようなステージ32の動きは、駆動機構選択部110によりモータ34の動作が制御されることによって実現され得る。なお、サンプルラック送り込み機構30の駆動制御については、後述するので、ここでは詳細について述べない。 The transport device 10 can stop the sample rack feeding mechanism 30 (specifically, the motor 34) when the rack 7 is located at the sample rack lateral transport start portion 12A. Such movement of the stage 32 can be realized by controlling the operation of the motor 34 by the drive mechanism selection unit 110. Since the drive control of the sample rack feeding mechanism 30 will be described later, details will not be described here.
 次に、主搬送路12および横搬送機構50について説明する。なお、横搬送機構50と主搬送路12とからなる構成でサンプルラック横搬送装置と称することもできる。 Next, the main transport path 12 and the lateral transport mechanism 50 will be described. It should be noted that the configuration including the lateral transport mechanism 50 and the main transport path 12 can also be referred to as a sample rack horizontal transport device.
 主搬送路12は、主に図3に示されるように、直線上に配置されたサンプルラック横搬送開始部12A、処理部12B、およびサンプルラック横搬送終了部12Cが、この順で接続されてなる。換言すれば、サンプルラック横搬送開始部12A、処理部12B、およびサンプルラック横搬送終了部12Cがこの順で直列に連結されることにより、主搬送路12は形成されている。 In the main transport path 12, as shown mainly in FIG. 3, the sample rack lateral transport start portion 12A, the processing portion 12B, and the sample rack lateral transport end portion 12C arranged in a straight line are connected in this order. Become. In other words, the main transport path 12 is formed by connecting the sample rack lateral transport start portion 12A, the processing portion 12B, and the sample rack lateral transport end portion 12C in series in this order.
 サンプルラック横搬送開始部12Aはサンプルラック供給部11と直列に連結されている。サンプルラック供給部11の側壁23は、サンプルラック横搬送開始部12Aを構成するものでもある。言い換えれば、サンプルラック横搬送開始部12Aは、側壁23を介して、サンプルラック供給部11と直接に連結されているということもできる。これにより、サンプルラック供給部11から搬送されてきたラック7がサンプルラック横搬送開始部12Aに載置される。 The sample rack horizontal transfer start unit 12A is connected in series with the sample rack supply unit 11. The side wall 23 of the sample rack supply portion 11 also constitutes the sample rack lateral transport start portion 12A. In other words, it can be said that the sample rack lateral transfer start portion 12A is directly connected to the sample rack supply portion 11 via the side wall 23. As a result, the rack 7 conveyed from the sample rack supply unit 11 is placed on the sample rack lateral transfer start unit 12A.
 サンプルラック横搬送開始部12Aには、図2に示すように、第1センサ112(開始部センサ)が取り付けられている。第1センサ112は、サンプルラック横搬送開始部12A上に、ラック7が載置されているか否かを検出する。この検出信号は、駆動機構選択部110(後述する図14参照)に伝達される。第1センサ112は、特に限定されるものではなく、サンプルラック横搬送開始部12A上に、ラック7が載置されているか否かを検出できるものであればよい。第1センサ112は、例えば、レーザー光反射を用いたセンサ、または、サンプルラック横搬送開始部12Aに負荷された力(換言すれば、ラック7の重量)を検出するセンサであってもよい。 As shown in FIG. 2, a first sensor 112 (starting sensor) is attached to the sample rack lateral transport starting portion 12A. The first sensor 112 detects whether or not the rack 7 is mounted on the sample rack lateral transfer start portion 12A. This detection signal is transmitted to the drive mechanism selection unit 110 (see FIG. 14 described later). The first sensor 112 is not particularly limited as long as it can detect whether or not the rack 7 is mounted on the sample rack lateral transfer start portion 12A. The first sensor 112 may be, for example, a sensor that uses laser light reflection, or a sensor that detects a force (in other words, the weight of the rack 7) applied to the sample rack lateral transfer start unit 12A.
 図2では、第1センサ112は、サンプルラック横搬送開始部12Aの側壁20(第1側壁)上に設置されるが、本発明は、これに限定されるものではない。第1センサ112は、例えば、サンプルラック横搬送開始部12Aの底面のテーブル8上に設置されてもよいし、サンプルラック横搬送開始部12Aの側壁23に設置されてもよい。 In FIG. 2, the first sensor 112 is installed on the side wall 20 (first side wall) of the sample rack lateral transport start portion 12A, but the present invention is not limited thereto. The first sensor 112 may be installed, for example, on the table 8 on the bottom surface of the sample rack lateral transport start portion 12A, or may be installed on the side wall 23 of the sample rack lateral transport start portion 12A.
 一方、サンプルラック横搬送終了部12Cはサンプルラック排出部13と直列に連結されている。サンプルラック排出部13の側壁24は、サンプルラック横搬送終了部12Cを構成するものでもある。すなわち、サンプルラック横搬送終了部12Cは、側壁24を介して、サンプルラック排出部13と直列に連結されているということもできる。これにより、横搬送機構50により搬送され、サンプルラック横搬送終了部12Cに載置されたラック7がサンプルラック排出部13に搬出される。 On the other hand, the sample rack horizontal transfer end portion 12C is connected in series with the sample rack discharge portion 13. The side wall 24 of the sample rack discharge portion 13 also constitutes the sample rack lateral transport end portion 12C. That is, it can be said that the sample rack lateral transport end portion 12C is connected in series with the sample rack discharge portion 13 via the side wall 24. As a result, the rack 7 which is conveyed by the lateral transfer mechanism 50 and placed on the sample rack lateral transfer end portion 12C is carried out to the sample rack discharge portion 13.
 サンプルラック横搬送終了部12Cには、図2に示すように、第2センサ114(終了部センサ)が取り付けられている。第2センサ114は、サンプルラック横搬送終了部12C上に、ラック7が載置されているか否かを検出する。この検出信号は、駆動機構選択部110(後述する図14参照)に伝達する。第2センサ114は、特に限定されるものではなく、サンプルラック横搬送終了部12C上に、ラック7が載置されているか否かを検出できるものであればよい。例えば、第2センサ114は、レーザー光反射を用いたセンサ、または、サンプルラック横搬送終了部12Cに負荷された力(換言すれば、ラック7の重量)を検出するセンサであってもよい。 As shown in FIG. 2, a second sensor 114 (end sensor) is attached to the sample rack lateral transport end portion 12C. The second sensor 114 detects whether or not the rack 7 is mounted on the sample rack lateral transport end portion 12C. This detection signal is transmitted to the drive mechanism selection unit 110 (see FIG. 14 described later). The second sensor 114 is not particularly limited as long as it can detect whether or not the rack 7 is mounted on the sample rack lateral transport end portion 12C. For example, the second sensor 114 may be a sensor that uses laser light reflection, or a sensor that detects a force (in other words, the weight of the rack 7) applied to the sample rack lateral transport end portion 12C.
 図2では、第2センサ114は、サンプルラック横搬送終了部12Cの側壁24に設置されているが、本発明はこれに限定されるものではない。第2センサ114は、例えば、サンプルラック横搬送終了部12Cの底面のテーブル8上に設置されていてもよい。 In FIG. 2, the second sensor 114 is installed on the side wall 24 of the sample rack lateral transport end portion 12C, but the present invention is not limited thereto. The second sensor 114 may be installed on the table 8 on the bottom surface of the sample rack lateral transport end portion 12C, for example.
 サンプルラック横搬送終了部12Cの側壁20(第1側壁)には、切り欠き17(第2切り欠き)が形成されている。この切り欠き17からは、後述するサンプルラック排出機構100の板状の突起部102(第2突起部)が突出できるようになっている。サンプルラック横搬送終了部12Cに載置されたラック7は、この突起部102に押されることにより、サンプルラック横搬送終了部12Cから、サンプルラック排出部13に搬出される。なお、サンプルラック排出機構100およびサンプルラック排出部13については後述するので、ここでは詳細は説明しない。 A notch 17 (second notch) is formed on the side wall 20 (first side wall) of the sample rack lateral transport end portion 12C. A plate-shaped protrusion 102 (second protrusion) of the sample rack discharge mechanism 100, which will be described later, can protrude from the notch 17. The rack 7 mounted on the sample rack lateral transport end portion 12C is pushed out by the protrusion 102 and is carried out from the sample rack lateral transport end portion 12C to the sample rack discharge portion 13. Since the sample rack discharge mechanism 100 and the sample rack discharge unit 13 will be described later, details will not be described here.
 処理部12Bは、サンプルラック横搬送開始部12Aとサンプルラック横搬送終了部12Cとの間に位置する。処理部12B上をラック7が搬送されている間に、ラック7に保持された容器4または容器4に入れられた試料に対して、様々な処理が行われる。当該処理は、特に限定されるものではなく、上述した通りである。 The processing unit 12B is located between the sample rack horizontal transfer start unit 12A and the sample rack horizontal transfer end unit 12C. While the rack 7 is being conveyed on the processing unit 12B, various treatments are performed on the container 4 held in the rack 7 or the sample placed in the container 4. The process is not particularly limited and is as described above.
 処理部12Bには、側壁20および側壁21が設けられている。側壁20と側壁21とは、略平行に対向している。また、側壁20と側壁21との間隔(幅)は、ラック7の縦方向(短尺方向)の長さに合わせて設定される。具体的には、ラック7を縦方向に、側壁20と側壁21との間に載置でき、かつ、当該ラック7が横方向(サンプルラックの長尺方向)に移動できるように、設定される。これにより、ラック7を、サンプルラック横方向(サンプルラックの長尺方向、図2において左方向)に沿って、搬送することができる。なお、側壁20は、処理部12Bを構成するだけでなく、サンプルラック横搬送開始部12Aおよびサンプルラック横搬送終了部12Cを構成する。すなわち、サンプルラック横搬送開始部12A、処理部12B、およびサンプルラック横搬送終了部12Cは、側壁20を介して、連結されているということもできる。 The processing unit 12B is provided with a side wall 20 and a side wall 21. The side wall 20 and the side wall 21 face each other substantially in parallel. The distance (width) between the side wall 20 and the side wall 21 is set according to the length of the rack 7 in the vertical direction (short direction). Specifically, the rack 7 is set so that it can be placed vertically between the side wall 20 and the side wall 21 and the rack 7 can be moved in the horizontal direction (long direction of the sample rack). .. As a result, the rack 7 can be conveyed along the lateral direction of the sample rack (longward direction of the sample rack, left direction in FIG. 2). The side wall 20 not only constitutes the processing portion 12B, but also constitutes the sample rack lateral transport start portion 12A and the sample rack lateral transport end portion 12C. That is, it can be said that the sample rack lateral transport start portion 12A, the processing portion 12B, and the sample rack lateral transport end portion 12C are connected via the side wall 20.
 処理部12Bの幅、すなわち、側壁20と側壁21との間隔は、ラック7の短尺方向の長さに合わせて設定される。具体的には、ラック7を短尺方向に側壁20と側壁21との間に載置でき、かつ、当該ラック7が長尺方向に移動できるように、設定される。 The width of the processing unit 12B, that is, the distance between the side wall 20 and the side wall 21 is set according to the length of the rack 7 in the short direction. Specifically, the rack 7 is set so that it can be placed between the side wall 20 and the side wall 21 in the short direction and the rack 7 can move in the long direction.
 処理部12Bの長さは、特に限定されるものではなく、ラック7の長尺方向の長さや、搬送装置10の利用用途などに応じて適宜設定すればよい。具体的には、ラック7に保持される容器4の幅(直径)以上であればよい。例えば、処理部12Bにラック7を長尺方向に1つ配置できる長さとすればよい。 The length of the processing unit 12B is not particularly limited, and may be appropriately set according to the length of the rack 7 in the long direction, the intended use of the transport device 10, and the like. Specifically, it may be equal to or larger than the width (diameter) of the container 4 held in the rack 7. For example, the length may be such that one rack 7 can be arranged in the processing unit 12B in the long direction.
 処理部12Bには、分析装置500のバーコードリーダ224が取り付けられてもよい。これにより、容器4に貼付されているバーコードを読み取り、その情報を取り出すことが可能となる。これは、容器4に入っている試料の識別等の目的に利用することができる。バーコードリーダ224の設置位置は、特に限定されるものではない。バーコードリーダ224は、例えば、処理部12Bの側壁20または側壁21に設置されてもよい。 The bar code reader 224 of the analyzer 500 may be attached to the processing unit 12B. This makes it possible to read the barcode attached to the container 4 and retrieve the information. This can be used for the purpose of identifying the sample contained in the container 4. The installation position of the barcode reader 224 is not particularly limited. The barcode reader 224 may be installed on the side wall 20 or the side wall 21 of the processing unit 12B, for example.
 サンプルラック横搬送開始部12Aおよび処理部12Bにある側壁20には、切り欠き16(第1切り欠き)が主搬送路12に沿って形成されている。当該切り欠き16からは、横搬送機構50の突起部91(第1突起部)が、主搬送路12内に突出するようになっている(図2を参照)。 A notch 16 (first notch) is formed along the main transport path 12 on the side wall 20 in the sample rack lateral transport start portion 12A and the processing portion 12B. From the notch 16, the protrusion 91 (first protrusion) of the lateral transport mechanism 50 projects into the main transport path 12 (see FIG. 2).
 サンプルラック横搬送開始部12Aに載置されたラック7は、横搬送機構50が駆動すると、突起部91によって搬送方向の後方の側面7Aが押され、主搬送路12上を、サンプルラック横搬送終了部12Cに向かって、ラック7の長尺方向(図2において紙面左方向)に移動する。これにより、ラック7は、サンプルラック横搬送開始部12Aからサンプルラック横搬送終了部12Cまで搬送される。 When the lateral transport mechanism 50 drives the rack 7 mounted on the sample rack lateral transport start portion 12A, the rear side surface 7A in the transport direction is pushed by the protrusion 91, and the sample rack lateral transport is performed on the main transport path 12. The rack 7 moves toward the end portion 12C in the elongated direction (to the left of the paper in FIG. 2). As a result, the rack 7 is transported from the sample rack horizontal transport start portion 12A to the sample rack horizontal transport end portion 12C.
 また、側壁20には、凸部が設けられていてもよい。そのような構成とすれば、凸部と噛み合う凹部をラック7に設けておくと、凸部と凹部とが噛み合った状態でラック7は搬送される。それゆえ、より安定した搬送が可能となる。 Further, the side wall 20 may be provided with a convex portion. With such a configuration, if the rack 7 is provided with a concave portion that meshes with the convex portion, the rack 7 is conveyed in a state where the convex portion and the concave portion mesh with each other. Therefore, more stable transportation is possible.
 ここで、横搬送機構50について図7~図9を用いて、詳細に説明する。なお、図7は横搬送機構50の全体構造を示す正面図である。また、図8は、図7は横搬送機構50の右側面図である。図9は部材53を上方から見た図である。 Here, the lateral transport mechanism 50 will be described in detail with reference to FIGS. 7 to 9. Note that FIG. 7 is a front view showing the overall structure of the lateral transport mechanism 50. Further, FIG. 8 is a right side view of the lateral transport mechanism 50. FIG. 9 is a view of the member 53 as viewed from above.
 ラック7は、上述したサンプルラック送り込み機構30によって、ラック7の長尺方向に対して略垂直方向(図2において紙面上方向)に移動され、サンプルラック横搬送開始部12Aに搬送される。ラック7がサンプルラック横搬送開始部12Aに載置されると、モータ34は停止し、横搬送機構50が作動する。なお、これらサンプルラック送り込み機構30および横搬送機構50の動作制御は、駆動機構選択部110(後述する図14参照)によって行われる。制御の詳細については、後述するので、ここでは説明しない。 The rack 7 is moved in a direction substantially perpendicular to the elongated direction of the rack 7 (on the paper surface in FIG. 2) by the sample rack feeding mechanism 30 described above, and is transported to the sample rack lateral transport start portion 12A. When the rack 7 is placed on the sample rack lateral transfer start portion 12A, the motor 34 is stopped and the lateral transfer mechanism 50 is operated. The operation control of the sample rack feeding mechanism 30 and the lateral transport mechanism 50 is performed by the drive mechanism selection unit 110 (see FIG. 14 described later). The details of the control will be described later, and will not be described here.
 横搬送機構50は、サンプルラック横搬送開始部12Aからサンプルラック横搬送終了部12Cまでラック7を搬送するためのものであり、スライダ51と、スライダ51を駆動する搬送駆動部52(第1駆動手段)とを含む。さらに、スライダ51には突起部91を有する部材53が設けられている。上述したように、突起部91は、主搬送路12の側壁20に設けられた切り欠き16(図2参照)から突出するように取り付けられている。より詳しく説明すると、図9に示すように、突起部91が弾性体80(付勢部材)の付勢力によりストッパ84に当接して切り欠き16(図2参照)から主搬送路12内に突き出た状態では、搬送路と平行に位置しており、ラック7の側面7A(図5参照)を押すことができるようになっている。 The lateral transport mechanism 50 is for transporting the rack 7 from the sample rack lateral transport start portion 12A to the sample rack lateral transport end portion 12C, and is a transport drive unit 52 (first drive) that drives the slider 51 and the slider 51. Means) and. Further, the slider 51 is provided with a member 53 having a protrusion 91. As described above, the protrusion 91 is attached so as to project from the notch 16 (see FIG. 2) provided in the side wall 20 of the main transport path 12. More specifically, as shown in FIG. 9, the protrusion 91 abuts on the stopper 84 due to the urging force of the elastic body 80 (the urging member) and protrudes from the notch 16 (see FIG. 2) into the main transport path 12. In this state, it is positioned parallel to the transport path so that the side surface 7A (see FIG. 5) of the rack 7 can be pushed.
 一方、突起部91の突起部上面(言い換えれば、突起部91の先端)から反進行方向側(言い換えれば、主搬送路12内におけるラック7の搬送方向とは反対方向)に向けて傾斜面が形成されており、図9の矢印86方向(換言すれば、搬送開始部から搬送終了部に向かう方向)から外力が加わると付勢力に抗して突起部91が支軸77を軸に回転(図9においては時計回転方向)して切り欠き16内に埋没することができるようになっている。また、突起部91は、サンプルラック横搬送開始部12Aの側壁23に埋没できるようになっている。 On the other hand, the inclined surface of the protrusion 91 is inclined from the upper surface of the protrusion (in other words, the tip of the protrusion 91) toward the counterclockwise direction (in other words, the direction opposite to the transport direction of the rack 7 in the main transport path 12). It is formed, and when an external force is applied from the direction of arrow 86 in FIG. 9 (in other words, the direction from the transport start portion to the transport end portion), the protrusion 91 rotates around the support shaft 77 against the urging force (in other words, the direction from the transport start portion to the transport end portion). In FIG. 9, it can be buried in the notch 16 in the clockwise direction). Further, the protrusion 91 can be embedded in the side wall 23 of the sample rack lateral transport start portion 12A.
 また、突起部91の大きさは特に限定されるものではなく、ラック7の短尺方向の長さに応じて適宜設定されるものである。具体的には、突起部91の側壁20から突出している部分の長さが、ラック7の短尺方向の長さの50~100%であることが好ましい。範囲内であれば、安定してラック7を搬送することができる。一方、範囲よりも短いと、突起部91がラック7の搬送方向に移動するとき、ラック7の側壁20に対向する面の隙間などに突起部91が入り込み、ラック7が回転するといった問題が起こる可能性がある。逆に、範囲よりも長いと、ラック7の搬送方向とは逆方向に突起部91が移動しているときに、後方にあるラック7(次に搬送されてくるラック7)に接触しても、突起部91が側壁20に押し込まれない可能性がある。 Further, the size of the protrusion 91 is not particularly limited, and is appropriately set according to the length of the rack 7 in the short direction. Specifically, the length of the portion of the protrusion 91 protruding from the side wall 20 is preferably 50 to 100% of the length of the rack 7 in the short direction. If it is within the range, the rack 7 can be stably conveyed. On the other hand, if it is shorter than the range, when the protrusion 91 moves in the transport direction of the rack 7, the protrusion 91 enters the gap of the surface facing the side wall 20 of the rack 7, causing a problem that the rack 7 rotates. there is a possibility. On the contrary, if it is longer than the range, even if the protrusion 91 is moving in the direction opposite to the transport direction of the rack 7, it may come into contact with the rear rack 7 (the rack 7 to be transported next). , The protrusion 91 may not be pushed into the side wall 20.
 スライダ51は、搬送駆動部52の作用により移動することができる。具体的には、スライダ51が図2の紙面左方向に移動すると、スライダ51に取り付けられた部材53の突起部91が、ラック7の側面7Aを、図2の紙面左方向に後から押すことになる。その結果、主搬送路12上にあるラック7をサンプルラック横搬送開始部12Aからサンプルラック横搬送終了部12Cまで搬送することができる。 The slider 51 can be moved by the action of the transport drive unit 52. Specifically, when the slider 51 moves to the left of the paper surface in FIG. 2, the protrusion 91 of the member 53 attached to the slider 51 pushes the side surface 7A of the rack 7 to the left of the paper surface of FIG. become. As a result, the rack 7 on the main transport path 12 can be transported from the sample rack horizontal transport start portion 12A to the sample rack horizontal transport end portion 12C.
 搬送駆動部52は、主プーリ60と副プーリ61、主プーリ60と副プーリ61との間を接続するタイミングベルト62、タイミングベルト62とスライダ51とを連結するための連結金具63、および主プーリ60の回転軸に直結するモータ64を含む。 The transport drive unit 52 includes a main pulley 60 and a sub pulley 61, a timing belt 62 for connecting the main pulley 60 and the sub pulley 61, a connecting metal fitting 63 for connecting the timing belt 62 and the slider 51, and a main pulley. Includes a motor 64 that is directly connected to the rotating shaft of 60.
 構成によれば、モータ64が回転することにより、主プーリ60と副プーリ61との間に張られたベルト62が動く。その結果、タイミングベルト62に固定された連結金具63を介してスライダ51も同時に動く。それゆえ、上述したように、ラック7を長尺方向(図2において紙面左方向)に移動させることができる。 According to the configuration, the rotation of the motor 64 causes the belt 62 stretched between the main pulley 60 and the sub pulley 61 to move. As a result, the slider 51 also moves at the same time via the connecting metal fitting 63 fixed to the timing belt 62. Therefore, as described above, the rack 7 can be moved in the elongated direction (leftward on the paper surface in FIG. 2).
 本実施形態では、横搬送機構50について、部材53(突起部91を1つ含む実施形態)が説明されたが、本発明は、これに限定されるものではない。例えば、複数の部材53を含み、切り欠き16から複数の突起部91が順々に突出する構成とすることもできる。このような構成では、1つの突起部91は、1つのラック7を後ろから押し、連続的に搬送されてくるラック7を次々と搬送することができる。 In the present embodiment, the member 53 (the embodiment including one protrusion 91) has been described for the lateral transport mechanism 50, but the present invention is not limited thereto. For example, a plurality of members 53 may be included, and the plurality of protrusions 91 may be sequentially projected from the notch 16. In such a configuration, one protrusion 91 can push one rack 7 from behind and can convey the racks 7 that are continuously conveyed one after another.
 次に、サンプルラック排出部13およびサンプルラック排出機構100について説明する。 Next, the sample rack discharge unit 13 and the sample rack discharge mechanism 100 will be described.
 サンプルラック排出部13は、側壁24および側壁25を含む。側壁24と側壁25とは、略平行に対向している。また、側壁24と側壁25との間隔(幅)は、ラック7の長尺方向の長さに合わせて設定される。具体的には、側壁24と側壁25との間に、ラック7を長尺方向に載置でき、かつ、当該ラック7が長尺方向に対して略垂直な方向(図2において紙面下方向)に移動できるように、設定される。構成によれば、サンプルラック横搬送終了部12Cから搬出されたラック7を縦方向にストックすることができる。 The sample rack discharge unit 13 includes a side wall 24 and a side wall 25. The side wall 24 and the side wall 25 face each other substantially in parallel. Further, the distance (width) between the side wall 24 and the side wall 25 is set according to the length of the rack 7 in the elongated direction. Specifically, the rack 7 can be placed between the side wall 24 and the side wall 25 in the elongated direction, and the rack 7 is substantially perpendicular to the elongated direction (downward on the paper surface in FIG. 2). It is set so that it can be moved to. According to the configuration, the rack 7 carried out from the sample rack horizontal transfer end portion 12C can be stocked in the vertical direction.
 側壁24および側壁25のそれぞれの幅は、ラック7を載置(ストック)したい数に応じて、設定すればよい。これにより、サンプルラック排出部13には、処理後のラック7を並列に並べて、複数個ストックすることが可能となる。 The widths of the side wall 24 and the side wall 25 may be set according to the number of racks 7 to be placed (stocked). As a result, a plurality of processed racks 7 can be arranged in parallel and stocked in the sample rack discharge unit 13.
 サンプルラック横搬送終了部12Cからサンプルラック排出部13へのラック7の搬出は、サンプルラック排出機構100によって行われる。具体的には、サンプルラック排出機構100が駆動すると、サンプルラック横搬送終了部12Cの側壁20の切り欠き17から突出した突起部102が、ラック7の搬出方向に対して後方の側面換言すれば、側壁20に隣接しているラック7の側面を、当該側面に対して略垂直方向に押す。これにより、ラック7を図2の紙面下方向に移動させ、サンプルラック横搬送終了部12Cからサンプルラック排出部13に搬出する。 The rack 7 is carried out from the sample rack horizontal transfer end portion 12C to the sample rack discharge portion 13 by the sample rack discharge mechanism 100. Specifically, when the sample rack discharge mechanism 100 is driven, the protrusion 102 protruding from the notch 17 of the side wall 20 of the sample rack lateral transport end portion 12C is rearward sideways with respect to the carry-out direction of the rack 7. , The side surface of the rack 7 adjacent to the side wall 20 is pushed in a direction substantially perpendicular to the side surface. As a result, the rack 7 is moved downward on the paper surface of FIG. 2, and is carried out from the sample rack lateral transfer end portion 12C to the sample rack discharge portion 13.
 側壁25には、凸部が設けられていてもよい。そのような構成とすれば、凸部と噛み合う凹部をラック7に設けておくと、凸部と凹部とが噛み合った状態でラック7は搬送される。それゆえ、より安定した搬出が可能となる。 The side wall 25 may be provided with a convex portion. With such a configuration, if the rack 7 is provided with a concave portion that meshes with the convex portion, the rack 7 is conveyed in a state where the convex portion and the concave portion mesh with each other. Therefore, more stable carry-out is possible.
 サンプルラック横搬送終了部12Cに載置されたラック7を移動させるための駆動機構であるサンプルラック排出機構100について、図10に基づき、詳細に説明する。図10はサンプルラック排出機構100の全体構造を示す右側面図である。 The sample rack discharge mechanism 100, which is a drive mechanism for moving the rack 7 mounted on the sample rack lateral transport end portion 12C, will be described in detail with reference to FIG. FIG. 10 is a right side view showing the overall structure of the sample rack discharge mechanism 100.
 サンプルラック排出機構100は、サンプルラック横搬送終了部12Cの側壁20(図2参照)の裏に取り付けられている。サンプルラック排出機構100は、スライダ104と、スライダ104を駆動する搬送駆動部65(第2駆動手段)とを含む。さらに、スライダ104には、ラック7をサンプルラック排出部13に押し出すための板状の突起部102が設けられている。突起部102は、サンプルラック横搬送終了部12Cの側壁20の切り欠き17から突出できるように配置されている。なお、突起部102は、板状であるが、ラック7の側面を押す面の形状は、特に限定されるものではない。例えば、平面でもよいが、その他ラック7の側面を押すことが可能な形状とすることも可能である。 The sample rack discharge mechanism 100 is attached to the back of the side wall 20 (see FIG. 2) of the sample rack lateral transport end portion 12C. The sample rack discharge mechanism 100 includes a slider 104 and a transport drive unit 65 (second drive means) for driving the slider 104. Further, the slider 104 is provided with a plate-shaped protrusion 102 for pushing the rack 7 to the sample rack discharge portion 13. The protrusion 102 is arranged so as to be able to protrude from the notch 17 of the side wall 20 of the sample rack lateral transport end portion 12C. Although the protrusion 102 has a plate shape, the shape of the surface that pushes the side surface of the rack 7 is not particularly limited. For example, it may be a flat surface, but it may also have a shape that allows the side surface of the rack 7 to be pushed.
 突起部102の大きさは特に限定されるものではないが、ラック7の押す面の2/3程度の面積を押すことが可能な大きさであることが好ましい。突起部102は、ラック7の側面を後から押すとき、ラック7の重心位置よりも下方の側面を押すことが好ましい。これにより、安定してラック7を搬出することができる。 The size of the protrusion 102 is not particularly limited, but it is preferably a size capable of pushing an area of about 2/3 of the pushing surface of the rack 7. When pushing the side surface of the rack 7 afterwards, the protrusion 102 preferably pushes the side surface below the position of the center of gravity of the rack 7. As a result, the rack 7 can be stably carried out.
 搬送駆動部65は、主プーリ40と副プーリ41、主プーリ40と副プーリ41との間を接続するタイミングベルト42、およびタイミングベルト42とスライダ104とを連結するための連結金具43、および主プーリ40の回転軸に直結するモータ44を含む。そのため、モータ44が回転すると、その回転駆動力は、タイミングベルト42に伝達される。また、タイミングベルト42の一部は、連結金具43を介して、スライダ104と連結されている。そのため、タイミングベルト42に伝達された回転駆動力は、スライダ104に伝達される。その結果、スライダ104は、前進後退することが可能となる。ここでは、モータ44の回転駆動力についてプーリとタイミングベルトとで伝達する機構を説明したが、本発明は、これに限定されるものではない。具体的には、モータ44の回転駆動力の伝達機構としては、上記機構以外にも、従来公知の多種多様な動力伝達機構が適用され得る。 The transport drive unit 65 includes a main pulley 40 and a sub pulley 41, a timing belt 42 for connecting the main pulley 40 and the sub pulley 41, a connecting metal fitting 43 for connecting the timing belt 42 and the slider 104, and a main fitting. Includes a motor 44 that is directly connected to the rotating shaft of the pulley 40. Therefore, when the motor 44 rotates, the rotational driving force is transmitted to the timing belt 42. A part of the timing belt 42 is connected to the slider 104 via the connecting metal fitting 43. Therefore, the rotational driving force transmitted to the timing belt 42 is transmitted to the slider 104. As a result, the slider 104 can move forward and backward. Here, the mechanism for transmitting the rotational driving force of the motor 44 by the pulley and the timing belt has been described, but the present invention is not limited thereto. Specifically, as a transmission mechanism for the rotational driving force of the motor 44, a wide variety of conventionally known power transmission mechanisms can be applied in addition to the above mechanism.
 搬送装置10は、上述した構成により、ラック7を、サンプルラック供給部11から、主搬送路12を経て、サンプルラック排出部13まで搬送できる。 With the above-described configuration, the transport device 10 can transport the rack 7 from the sample rack supply unit 11 to the sample rack discharge unit 13 via the main transport path 12.
 搬送装置10は、図3に主に示されるように、支持部材10Xに装着された第3センサ118(ラックセンサ)をさらに含む。第3センサ118は、物体が第3センサ118に対して所与の距離以内まで近接したことを検出する。これにより、搬送装置10では、第3センサ118の検出出力に基づいて、サンプルラック排出部13がラックで充満されたことを検出し得る。より具体的には、サンプルラック排出部13に搬送されてきたラック7でサンプルラック排出部13が充満されることにより、1つのラック7が支持部材10Xにまで到達した状態が発生したときに、第3センサ118の検出出力に基づいて当該状態の発生が検出され得る。 The transport device 10 further includes a third sensor 118 (rack sensor) mounted on the support member 10X, as mainly shown in FIG. The third sensor 118 detects that the object is close to the third sensor 118 within a given distance. As a result, the transport device 10 can detect that the sample rack discharge unit 13 is filled with the rack based on the detection output of the third sensor 118. More specifically, when the sample rack discharge unit 13 is filled with the rack 7 conveyed to the sample rack discharge unit 13 and a state occurs in which one rack 7 reaches the support member 10X. The occurrence of the state can be detected based on the detection output of the third sensor 118.
 第3センサ118は、いかなる種類のセンサであってもよい。第3センサ118は、例えば、レーザー光反射を用いたセンサ、サンプルラック排出部13に負荷された力(換言すれば、ラック7の重量)を検出するセンサ、または、支持部材10Xの表面に設置されたボタンの押圧を検出するセンサであってもよい。 The third sensor 118 may be any kind of sensor. The third sensor 118 is installed on the surface of, for example, a sensor that uses laser light reflection, a sensor that detects a force (in other words, the weight of the rack 7) applied to the sample rack discharge unit 13, or a support member 10X. It may be a sensor that detects the pressing of the pressed button.
 [搬送路の拡張部材]
 搬送装置10において、支持部材10Xは搬送路から着脱可能である。搬送装置10では、支持部材10Xが装着されていた場所に拡張用のユニットが設置されることによって、実質的にサンプルラック排出部13が延長され得る。これにより、搬送装置10において貯留され得るラック7の数が増加し得る。
[Transportation path expansion member]
In the transport device 10, the support member 10X is removable from the transport path. In the transfer device 10, the sample rack discharge unit 13 can be substantially extended by installing the expansion unit at the place where the support member 10X is mounted. This can increase the number of racks 7 that can be stored in the transfer device 10.
 図11は、拡張用のユニットの一例である拡張部材300の斜視図である。図11に示されるように、拡張部材300は、拡張経路301と、側壁311,312と、端壁313と、脚321,322とを含む。 FIG. 11 is a perspective view of the expansion member 300, which is an example of the expansion unit. As shown in FIG. 11, the expansion member 300 includes an expansion path 301, side walls 311, 312, end walls 313, and legs 321 and 322.
 図12は、拡張部材300が搬送装置10に装着された状態を示す図である。図12をさらに参照して、拡張部材300は、拡張経路301の端部301Aが搬送装置10の支持部材10Xが装着されていた部分に連結されることによって、搬送装置10に装着される。搬送装置10から取り外された支持部材10Xは、端壁313に内接するように拡張部材300に装着され得る。 FIG. 12 is a diagram showing a state in which the expansion member 300 is attached to the transport device 10. Further referring to FIG. 12, the expansion member 300 is attached to the transfer device 10 by connecting the end portion 301A of the expansion path 301 to the portion where the support member 10X of the transfer device 10 is mounted. The support member 10X removed from the transfer device 10 can be attached to the expansion member 300 so as to be inscribed in the end wall 313.
 図12の例では、サンプルラック排出部13まで搬送されたラック7は、後続のラック7の搬送に従って拡張経路301へと送り出される。拡張経路301にラック7が充満すると、拡張部材300に設置された支持部材10Xにおいて第3センサ118がラック7を検出する。この検出出力が駆動機構選択部110(後述する図14参照)に送信されることにより、駆動機構選択部110は、搬送装置10の搬送路および拡張経路301において、ラック7が充満していることを検出し得る。 In the example of FIG. 12, the rack 7 conveyed to the sample rack discharge unit 13 is sent out to the expansion path 301 according to the subsequent transfer of the rack 7. When the rack 7 is filled in the expansion path 301, the third sensor 118 detects the rack 7 in the support member 10X installed in the expansion member 300. By transmitting this detection output to the drive mechanism selection unit 110 (see FIG. 14 described later), the drive mechanism selection unit 110 is filled with the rack 7 in the transfer path and the expansion path 301 of the transfer device 10. Can be detected.
 [分析装置500の制御ブロック]
 図13は、分析装置500の制御ブロック図である。図13に示されるように、分析装置500は、制御部210と、通信部221と、試料調製部222と、撮像部223と、バーコードリーダ224と、操作部226とを含む。制御部210は、CPU(Central Processing Unit)211と記憶部212とを有する。
[Control block of analyzer 500]
FIG. 13 is a control block diagram of the analyzer 500. As shown in FIG. 13, the analyzer 500 includes a control unit 210, a communication unit 221, a sample preparation unit 222, an imaging unit 223, a barcode reader 224, and an operation unit 226. The control unit 210 includes a CPU (Central Processing Unit) 211 and a storage unit 212.
 CPU211は、記憶部212に記憶されているコンピュータプログラムを実行すると共に、分析装置500の各部を制御する。記憶部212は、ROM(Read Only Memory)、RAM(Random Access Memory)、ハードディスク等の記憶装置を含む。以下の説明において、記憶部212は、情報の記憶場所の一例として説明される。つまり、「記憶部212に記憶される」情報は、CPU211等の、本明細書において処理を実行するプロセッサがアクセス可能な記憶装置に格納されていれば、必ずしも記憶部212に記憶されている必要はない。 The CPU 211 executes a computer program stored in the storage unit 212 and controls each unit of the analyzer 500. The storage unit 212 includes a storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), and a hard disk. In the following description, the storage unit 212 will be described as an example of a storage location for information. That is, the information "stored in the storage unit 212" needs to be stored in the storage unit 212 as long as it is stored in an accessible storage device such as a CPU 211 or a processor that executes processing in the present specification. There is no.
 通信部221は、制御部210からのデータを他の機器に送信し、他の機器からの情報を制御部210に入力する。通信部221は、たとえばネットワークインタフェースカードによって実現される。 The communication unit 221 transmits the data from the control unit 210 to another device, and inputs the information from the other device to the control unit 210. The communication unit 221 is realized by, for example, a network interface card.
 試料調製部222は、分析に必要な試料を調製する。試料は、たとえば、容器4内の検体と測定に必要な試薬とが混合攪拌されることによって、調製される。 The sample preparation unit 222 prepares a sample necessary for analysis. The sample is prepared, for example, by mixing and stirring the sample in the container 4 and the reagent required for measurement.
 撮像部223は、試料調製部222によって調製された試料の画像を撮像する。撮像部223は、自動ピント合わせの機構を有する。これにより、試料調製部222で調製された試料は、撮像部223によって自動的に撮像される。撮像部223は、撮像された画像を、制御部210へ出力する。 The imaging unit 223 acquires an image of the sample prepared by the sample preparation unit 222. The imaging unit 223 has an automatic focusing mechanism. As a result, the sample prepared by the sample preparation unit 222 is automatically imaged by the imaging unit 223. The image pickup unit 223 outputs the captured image to the control unit 210.
 バーコードリーダ224は、容器4に付されたバーコードを読み、読み出した情報を制御部210へ出力する。 The barcode reader 224 reads the barcode attached to the container 4 and outputs the read information to the control unit 210.
 CPU211は、撮像された画像を解析することによって、検体の分析結果を特定する。画像の解析の一例は、有形成分分析である。有形成分分析では、たとえば、CPU211は、検体の画像において予め記憶された有形成分の画像パターンが含まれるか否かを判断する。その後、CPU211は、検体の画像が有形成分の画像パターンを含むと判断すると、画像における当該有形成分の個数を計数し、当該個数を出力する。 The CPU 211 identifies the analysis result of the sample by analyzing the captured image. An example of image analysis is formation analysis. In the formed component analysis, for example, the CPU 211 determines whether or not the pre-stored image pattern of the formed component is included in the image of the sample. After that, when the CPU 211 determines that the image of the sample contains the image pattern of the formed portion, the CPU 211 counts the number of the formed portion in the image and outputs the number.
 撮像部223は、1つの検体に対して、複数枚の画像を撮像し、制御部210へ出力してもよい。CPU211は、1つの検体に対する複数の画像のうち、予め定められた記憶部212に格納された画像パターン(たとえば、尿に関する特定の有形成分の画像パターン)を含む画像を、検体ごとに、当該有形成分に関連付けて、記憶部212に記憶してもよい。 The imaging unit 223 may capture a plurality of images for one sample and output them to the control unit 210. Among a plurality of images for one sample, the CPU 211 displays an image including an image pattern (for example, an image pattern of a specific formed portion related to urine) stored in a predetermined storage unit 212 for each sample. It may be stored in the storage unit 212 in association with the formed portion.
 操作部226は、たとえば、本体501に設けられたハードウェアボタン等によって実現される。操作部226は、当該操作部226が操作されると、操作されたボタン等の種類に応じた信号をCPU210へ出力する。 The operation unit 226 is realized by, for example, a hardware button provided on the main body 501. When the operation unit 226 is operated, the operation unit 226 outputs a signal corresponding to the type of the operated button or the like to the CPU 210.
 一実現例では、操作部226を介してユーザからの分析の指示を入力されると、制御部210は、通信部221を介して搬送装置10に、ラック7の搬送の指示を出力してもよい。 In one implementation example, when an analysis instruction from the user is input via the operation unit 226, the control unit 210 outputs the transfer instruction of the rack 7 to the transfer device 10 via the communication unit 221. Good.
 [搬送装置のブロック図]
 図14は、搬送装置10のブロック図である。次に、図14を参照して、搬送装置10におけるラック7の搬送の制御について説明する。
[Block diagram of transport device]
FIG. 14 is a block diagram of the transport device 10. Next, the control of transporting the rack 7 in the transport device 10 will be described with reference to FIG.
 図14に示すように、駆動機構選択部110は、第1通信部120と、第2通信部121と、駆動制御部111と、第3通信部122と、第4通信部123と、第5通信部124と、第6通信部125と、第7通信部126とを含む。 As shown in FIG. 14, the drive mechanism selection unit 110 includes a first communication unit 120, a second communication unit 121, a drive control unit 111, a third communication unit 122, a fourth communication unit 123, and a fifth. The communication unit 124, the sixth communication unit 125, and the seventh communication unit 126 are included.
 第1通信部120および第2通信部121は、それぞれ、駆動機構選択部110が第1センサ112および第2センサ114と通信するためのインターフェースである。第3通信部122、第4通信部123、および第5通信部124は、それぞれ、駆動機構選択部110がサンプルラック送り込み機構30、横搬送機構50、およびサンプルラック排出機構100と通信するためのインターフェースである。その結果、第1センサ112および第2センサ114は、それぞれ、第1通信部120および第2通信部121を介して、駆動制御部111と接続されている。また、サンプルラック送り込み機構30、横搬送機構50、およびサンプルラック排出機構100は、それぞれ、第3通信部122、第4通信部123、および第5通信部124を介して、駆動制御部111と接続されている。 The first communication unit 120 and the second communication unit 121 are interfaces for the drive mechanism selection unit 110 to communicate with the first sensor 112 and the second sensor 114, respectively. In the third communication unit 122, the fourth communication unit 123, and the fifth communication unit 124, the drive mechanism selection unit 110 communicates with the sample rack feeding mechanism 30, the lateral transport mechanism 50, and the sample rack discharging mechanism 100, respectively. It is an interface. As a result, the first sensor 112 and the second sensor 114 are connected to the drive control unit 111 via the first communication unit 120 and the second communication unit 121, respectively. Further, the sample rack feeding mechanism 30, the lateral transport mechanism 50, and the sample rack discharging mechanism 100 are connected to the drive control unit 111 via the third communication unit 122, the fourth communication unit 123, and the fifth communication unit 124, respectively. It is connected.
 第6通信部125は、駆動機構選択部110が第3センサ118と通信するためのインターフェースである。第7通信部126は、駆動機構選択部110が通知用デバイス200と通信するためのインターフェースである。 The sixth communication unit 125 is an interface for the drive mechanism selection unit 110 to communicate with the third sensor 118. The seventh communication unit 126 is an interface for the drive mechanism selection unit 110 to communicate with the notification device 200.
 通知用デバイス200は、搬送装置10においてラックが満杯であることを示す情報を出力する機器であり、ディスプレイ、ランプ、および/またはスピーカであってもよい。 The notification device 200 is a device that outputs information indicating that the rack is full in the transport device 10, and may be a display, a lamp, and / or a speaker.
 駆動機構選択部110は、第1センサ112および第2センサ114からのラック7の有無の検出信号を、第1通信部120および第2通信部121を介して受信し、駆動制御部111に送ることができる。駆動機構選択部110は、第3センサ118からのラック7の有無の検出信号を、第6通信部125を介して受信し、駆動制御部111に送ることができる。 The drive mechanism selection unit 110 receives the detection signal of the presence / absence of the rack 7 from the first sensor 112 and the second sensor 114 via the first communication unit 120 and the second communication unit 121, and sends the detection signal to the drive control unit 111. be able to. The drive mechanism selection unit 110 can receive the detection signal of the presence / absence of the rack 7 from the third sensor 118 via the sixth communication unit 125 and send it to the drive control unit 111.
 第1センサ112は、サンプルラック横搬送開始部12A上に載置されたラック7を検出する機器である。第2センサ114は、サンプルラック横搬送終了部12C上に載置されたラック7を検出する機器である。第3センサ118は、支持部材10Xに到達したラック7を検出する機器である。 The first sensor 112 is a device that detects the rack 7 mounted on the sample rack horizontal transfer start portion 12A. The second sensor 114 is a device that detects the rack 7 mounted on the sample rack lateral transport end portion 12C. The third sensor 118 is a device that detects the rack 7 that has reached the support member 10X.
 第1センサ112、第2センサ114、および第3センサ118は、それぞれ、図14に示されるように、検出部115、センサ制御部116、およびセンサ通信部117を含む。 The first sensor 112, the second sensor 114, and the third sensor 118 include a detection unit 115, a sensor control unit 116, and a sensor communication unit 117, respectively, as shown in FIG.
 検出部115は、サンプルラック横搬送開始部12Aもしくはサンプルラック横搬送終了部12C上にラック7が載置されているか否か、または、支持部材10Xにラック7が到達したか否かの情報を検出する。検出部115にて検出された情報は、センサ制御部116へと送信される。 The detection unit 115 provides information on whether or not the rack 7 is mounted on the sample rack horizontal transfer start unit 12A or the sample rack horizontal transfer end unit 12C, or whether or not the rack 7 has reached the support member 10X. To detect. The information detected by the detection unit 115 is transmitted to the sensor control unit 116.
 センサ制御部116は、検出部115にて検出した情報を受信すると、検出部115が検出した情報が所与の事象を示すものであるか否かを判断する。より具体的には、第1センサ112では、センサ制御部116は、事象「サンプルラック横搬送開始部12A上にラック7が載置されていること」を示すものであるか否かを判断する。第2センサ114では、センサ制御部116は、事象「サンプルラック横搬送終了部12C上にラック7が載置されていること」を示すものであるか否かを判断する。第3センサ118では、センサ制御部116は、事象「支持部材10Xにラック7が到達したこと」を示すものであるか否かを判断する。 When the sensor control unit 116 receives the information detected by the detection unit 115, the sensor control unit 116 determines whether or not the information detected by the detection unit 115 indicates a given event. More specifically, in the first sensor 112, the sensor control unit 116 determines whether or not it indicates the event "the rack 7 is mounted on the sample rack lateral transport start unit 12A". .. In the second sensor 114, the sensor control unit 116 determines whether or not it indicates the event "the rack 7 is mounted on the sample rack lateral transport end unit 12C". In the third sensor 118, the sensor control unit 116 determines whether or not it indicates the event "the rack 7 has reached the support member 10X".
 センサ制御部116には、予め、検出部115にて検出された情報が上記事象を示すものであるか否かを判定するための基準が記憶されている。このため、センサ制御部116は、検出部115からの検出出力を上記基準に照らし合わせることにより、検出出力が上記事象を示すものであるか否かを判定する。センサ制御部116は、その判定結果を駆動機構選択部110に送信する。センサ制御部116からの判定結果の通知はセンサ通信部117を介して行われる。 The sensor control unit 116 stores in advance a reference for determining whether or not the information detected by the detection unit 115 indicates the above-mentioned event. Therefore, the sensor control unit 116 determines whether or not the detection output indicates the above-mentioned event by comparing the detection output from the detection unit 115 with the above-mentioned reference. The sensor control unit 116 transmits the determination result to the drive mechanism selection unit 110. Notification of the determination result from the sensor control unit 116 is performed via the sensor communication unit 117.
 センサ通信部117は、第1センサ112、第2センサ114、および第3センサ118が駆動機構選択部110と通信を行うためのインターフェースである。センサ制御部116からの判定結果の通知は、センサ通信部117から駆動機構選択部110へと送信される。 The sensor communication unit 117 is an interface for the first sensor 112, the second sensor 114, and the third sensor 118 to communicate with the drive mechanism selection unit 110. The notification of the determination result from the sensor control unit 116 is transmitted from the sensor communication unit 117 to the drive mechanism selection unit 110.
 第1センサ112、第2センサ114、および第3センサ118と駆動機構選択部110との間の通信は、各センサから駆動機構選択部110への単方向通信であってもよいし、双方向通信であってもよい。 The communication between the first sensor 112, the second sensor 114, and the third sensor 118 and the drive mechanism selection unit 110 may be unidirectional communication from each sensor to the drive mechanism selection unit 110, or bidirectionally. It may be communication.
 第1センサ112、第2センサ114、および第3センサ118の各部材を駆動させるための電源部については、図示していないが、本実施形態にかかる搬送装置10の電源から、電力が供給されることが好ましい。 Although the power supply unit for driving each member of the first sensor 112, the second sensor 114, and the third sensor 118 is not shown, electric power is supplied from the power supply of the transfer device 10 according to the present embodiment. Is preferable.
 駆動制御部111は、第1センサ112、第2センサ114、および第3センサ118からの検出信号に基づいて、サンプルラック送り込み機構30、横搬送機構50、サンプルラック排出機構100、および通知用デバイス200を制御する。一実現例では、駆動制御部111は、CPU、RAM、およびROMを含む。CPUが所与のプログラムを実行することによって、駆動制御部111は本明細書に記載された機能を実現する。 The drive control unit 111 includes a sample rack feeding mechanism 30, a lateral transport mechanism 50, a sample rack discharging mechanism 100, and a notification device based on the detection signals from the first sensor 112, the second sensor 114, and the third sensor 118. 200 is controlled. In one embodiment, the drive control unit 111 includes a CPU, RAM, and ROM. When the CPU executes a given program, the drive control unit 111 realizes the functions described in the present specification.
 駆動制御部111は、情報解析部113と、第1指令部130と、第2指令部131と、第3指令部132と、第4指令部134とを含む。情報解析部113は、第1センサ112、第2センサ114、および第3センサ118から伝送された信号に基づいて、サンプルラック送り込み機構30、横搬送機構50、サンプルラック排出機構100、および通知用デバイス200のいずれを作動させるかを判断し、その結果を、信号として、第1指令部130、第2指令部131、第3指令部132、および第4指令部134に通知する。 The drive control unit 111 includes an information analysis unit 113, a first command unit 130, a second command unit 131, a third command unit 132, and a fourth command unit 134. Based on the signals transmitted from the first sensor 112, the second sensor 114, and the third sensor 118, the information analysis unit 113 includes a sample rack feeding mechanism 30, a lateral transport mechanism 50, a sample rack discharging mechanism 100, and a notification. It is determined which of the devices 200 is to be operated, and the result is notified to the first command unit 130, the second command unit 131, the third command unit 132, and the fourth command unit 134 as signals.
 第1指令部130は、情報解析部113からの信号に基づき、サンプルラック送り込み機構30を駆動させたり、停止させたりするための信号を生成し、第3通信部122を介して、その信号をサンプルラック送り込み機構30に伝送する。 The first command unit 130 generates a signal for driving or stopping the sample rack feeding mechanism 30 based on the signal from the information analysis unit 113, and transmits the signal via the third communication unit 122. It is transmitted to the sample rack feeding mechanism 30.
 第2指令部131は、情報解析部113からの信号に基づき、横搬送機構50を駆動させたり、停止させたりするための信号を生成し、第4通信部123を介して、その信号を横搬送機構50に伝送する。 The second command unit 131 generates a signal for driving or stopping the lateral transport mechanism 50 based on the signal from the information analysis unit 113, and laterally transmits the signal via the fourth communication unit 123. It is transmitted to the transport mechanism 50.
 第3指令部132は、情報解析部113からの信号に基づき、サンプルラック排出機構100を駆動させたり、停止させたりするための信号を生成し、第5通信部124を介して、その信号をサンプルラック排出機構100に伝送する。 The third command unit 132 generates a signal for driving or stopping the sample rack discharge mechanism 100 based on the signal from the information analysis unit 113, and transmits the signal via the fifth communication unit 124. It is transmitted to the sample rack discharge mechanism 100.
 第4指令部134は、情報解析部113からの信号に基づき、通知用デバイス200を駆動させたり、停止させたりするための信号を生成し、第7通信部126を介して、その信号を通知用デバイス200に伝送する。 The fourth command unit 134 generates a signal for driving or stopping the notification device 200 based on the signal from the information analysis unit 113, and notifies the signal via the seventh communication unit 126. It is transmitted to the device 200.
 一実現例では、第1指令部130、第2指令部131、第3指令部132、および第4指令部134のそれぞれは、CPUが予めメモリに記憶されたプログラムを実行することによって実現される、駆動制御部111の機能として実現されてもよい。 In one implementation example, each of the first command unit 130, the second command unit 131, the third command unit 132, and the fourth command unit 134 is realized by the CPU executing a program stored in the memory in advance. , May be realized as a function of the drive control unit 111.
 一実現例では、第3通信部122、第4通信部123、第5通信部124、および第7通信部126は、サンプルラック送り込み機構30等の要素と駆動制御部111との間の通信を行うための通信インターフェースによって実現される。 In one implementation example, the third communication unit 122, the fourth communication unit 123, the fifth communication unit 124, and the seventh communication unit 126 communicate between elements such as the sample rack feeding mechanism 30 and the drive control unit 111. Realized by a communication interface to do.
 搬送装置10は、さらに第8通信部127を含む。第8通信部127は、駆動制御部111を分析装置500等の外部機器と通信させるためのインターフェースである。 The transport device 10 further includes an eighth communication unit 127. The eighth communication unit 127 is an interface for communicating the drive control unit 111 with an external device such as the analyzer 500.
 [ラック搬送用の処理の流れ]
 図15は、搬送装置10においてラック7の搬送のために実行される処理のフローチャートである。一実現例では、搬送装置10は、駆動制御部111のCPUが所与のプログラムを実行することによって図15の処理を実現してもよい。駆動制御部111は、分析装置500からのラックの搬送の指示を第8通信部127(図14参照)を介して取得してもよい。駆動制御部111のCPUは、分析装置500から搬送の指示を受信したことに応じて図15の処理を開始してもよい。
[Processing flow for rack transfer]
FIG. 15 is a flowchart of processing executed for transporting the rack 7 in the transport device 10. In one implementation example, the transfer device 10 may realize the process of FIG. 15 by executing a given program by the CPU of the drive control unit 111. The drive control unit 111 may acquire an instruction for transporting the rack from the analyzer 500 via the eighth communication unit 127 (see FIG. 14). The CPU of the drive control unit 111 may start the process of FIG. 15 in response to receiving the transfer instruction from the analyzer 500.
 ステップS1において、駆動制御部111は、第1センサ112、第2センサ114、および第3センサ118にラック7の有無の検出を指示する。 In step S1, the drive control unit 111 instructs the first sensor 112, the second sensor 114, and the third sensor 118 to detect the presence or absence of the rack 7.
 当該指示により、第1センサ112および第2センサ114では、検出部115は、サンプルラック横搬送開始部12Aおよびサンプルラック横搬送終了部12C上にラック7が載置されているか否かを表す検出出力を生成する。検出部115によって生成された検出出力が、サンプルラック横搬送開始部12Aまたはサンプルラック横搬送終了部12C上にラック7が載置されていることを示すものであるのか、それとも、載置されていないことを示すものであるのかを、センサ制御部116が判定する。第1センサ112および第2センサ114は、センサ通信部117を介して、その判定結果を駆動機構選択部110に通知する。 According to the instruction, in the first sensor 112 and the second sensor 114, the detection unit 115 detects whether or not the rack 7 is mounted on the sample rack horizontal transfer start unit 12A and the sample rack horizontal transfer end unit 12C. Produce output. Does the detection output generated by the detection unit 115 indicate that the rack 7 is mounted on the sample rack lateral transport start portion 12A or the sample rack lateral transport end portion 12C, or is mounted. The sensor control unit 116 determines whether or not it indicates that there is no such thing. The first sensor 112 and the second sensor 114 notify the drive mechanism selection unit 110 of the determination result via the sensor communication unit 117.
 当該指示により、第3センサ118では、検出部115は、第3センサ118に物体が到達したか否かを表す検出出力を生成する。センサ制御部116は、検出部115によって生成された検出出力が支持部材10Xに物体が到達したことを示すものであるか否かを判定する。第3センサ118は、センサ通信部117を介して、その判定結果を駆動機構選択部110に通知する。 According to the instruction, in the third sensor 118, the detection unit 115 generates a detection output indicating whether or not an object has reached the third sensor 118. The sensor control unit 116 determines whether or not the detection output generated by the detection unit 115 indicates that the object has reached the support member 10X. The third sensor 118 notifies the drive mechanism selection unit 110 of the determination result via the sensor communication unit 117.
 ステップS2では、駆動制御部111は、第3センサ118から駆動機構選択部110に通知された上記判定結果が、支持部材10Xに物体が到達したことを示すものであるか否か、すなわち、搬送装置10(または搬送装置10および拡張部材300)においてラック7が満杯であるか否かを判断する。 In step S2, the drive control unit 111 indicates whether or not the determination result notified from the third sensor 118 to the drive mechanism selection unit 110 indicates that the object has reached the support member 10X, that is, the transport. In the device 10 (or the transfer device 10 and the expansion member 300), it is determined whether or not the rack 7 is full.
 一実現例では、駆動制御部111は、第3センサ118からの判定結果が支持部材10Xに物体が到達したことを示すものである場合、搬送装置10(または搬送装置10および拡張部材300)においてラック7が満杯であると判断してもよい。駆動制御部111は、第3センサ118からの判定結果が支持部材10Xに物体が到達したことを示さないものである場合、搬送装置10(または搬送装置10および拡張部材300)においてラック7が満杯ではないと判断してもよい。 In one implementation example, when the determination result from the third sensor 118 indicates that the object has reached the support member 10X, the drive control unit 111 in the transfer device 10 (or the transfer device 10 and the extension member 300). It may be determined that the rack 7 is full. When the determination result from the third sensor 118 does not indicate that the object has reached the support member 10X, the drive control unit 111 fills the rack 7 in the transfer device 10 (or the transfer device 10 and the expansion member 300). You may judge that it is not.
 駆動制御部111は、ラックが満杯であると判断すると(ステップS2にてYES)、ステップS3へ制御を進め、そうでなければ(ステップS2にてNO)、ステップS4へ制御を進める。 If the drive control unit 111 determines that the rack is full (YES in step S2), the control proceeds to step S3, and if not (NO in step S2), the control proceeds to step S4.
 ステップS4では、駆動制御部111は、第1センサ112および第2センサ114から駆動機構選択部110へ通知された上記判定結果が、サンプルラック横搬送開始部12Aおよびサンプルラック横搬送終了部12Cの少なくとも一方にラック7が載置されていることを示すものであるのか否かを判断する。 In step S4, the drive control unit 111 receives the determination result notified from the first sensor 112 and the second sensor 114 to the drive mechanism selection unit 110 of the sample rack lateral transfer start unit 12A and the sample rack lateral transfer end unit 12C. It is determined whether or not it indicates that the rack 7 is mounted on at least one of them.
 駆動制御部111は、サンプルラック横搬送開始部12Aおよびサンプルラック横搬送終了部12Cのいずれにもラック7が載置されていないと判断すると(ステップS4にてNO)、ステップS9で、第3通信部122を介して、サンプルラック送り込み機構30へ信号を送信することにより、サンプルラック送り込み機構30を駆動させる。 When the drive control unit 111 determines that the rack 7 is not mounted on either the sample rack horizontal transfer start unit 12A or the sample rack horizontal transfer end unit 12C (NO in step S4), the drive control unit 111 determines in step S9 that the third The sample rack feeding mechanism 30 is driven by transmitting a signal to the sample rack feeding mechanism 30 via the communication unit 122.
 一方、ステップS4において、サンプルラック横搬送開始部12Aおよびサンプルラック横搬送終了部12Cの少なくとも一方にラック7が載置されていると判断すると(ステップS4にてYES)、駆動制御部111は、ステップS5において、ラック7がサンプルラック横搬送開始部12A上にあるのか否かを判断する。 On the other hand, if it is determined in step S4 that the rack 7 is mounted on at least one of the sample rack horizontal transfer start unit 12A and the sample rack horizontal transfer end unit 12C (YES in step S4), the drive control unit 111 determines. In step S5, it is determined whether or not the rack 7 is on the sample rack lateral transfer start portion 12A.
 ここで、サンプルラック横搬送開始部12A上にラック7が載置されていないと判断されると、駆動制御部111は、ラック7がサンプルラック横搬送終了部12C上にのみ載置されているとみなしてもよい。そして、駆動制御部111は、ステップS8およびステップS9を実行する。具体的には、ステップS8では、駆動制御部111は、第5通信部124を介してサンプルラック排出機構100へ信号を送信し、サンプルラック排出機構100を駆動させる。また、ステップS9では、駆動制御部111は、第3通信部122を介してサンプルラック送り込み機構30へ信号を送信し、サンプルラック送り込み機構30を駆動させる。なお、ここでは、ステップS5において、サンプルラック横搬送開始部12A上にラック7が載置されていないと判断すると、駆動制御部111は、ステップS8およびステップS9を実行する実施形態について説明したが、ステップS8のみを実行してもよい。 Here, if it is determined that the rack 7 is not mounted on the sample rack horizontal transport start portion 12A, the drive control unit 111 mounts the rack 7 only on the sample rack horizontal transport end portion 12C. May be regarded as. Then, the drive control unit 111 executes step S8 and step S9. Specifically, in step S8, the drive control unit 111 transmits a signal to the sample rack discharge mechanism 100 via the fifth communication unit 124 to drive the sample rack discharge mechanism 100. Further, in step S9, the drive control unit 111 transmits a signal to the sample rack feeding mechanism 30 via the third communication unit 122 to drive the sample rack feeding mechanism 30. Here, if it is determined in step S5 that the rack 7 is not mounted on the sample rack lateral transfer start unit 12A, the drive control unit 111 has described an embodiment in which steps S8 and S9 are executed. , Only step S8 may be executed.
 一方、ステップS5において、サンプルラック横搬送開始部12Aにラック7が載置されていると判断すると、駆動制御部111は、ステップS6で、ラック7がさらにサンプルラック横搬送終了部12C上にも載置されているか否かを判断する。サンプルラック横搬送終了部12C上にはラック7が載置されていないと判断すると、駆動制御部111は、ステップS7において、第4通信部123を介して横搬送機構50へ信号を送信し、横搬送機構50を駆動させる。 On the other hand, if it is determined in step S5 that the rack 7 is mounted on the sample rack horizontal transfer start unit 12A, the drive control unit 111 further moves the rack 7 onto the sample rack horizontal transfer end unit 12C in step S6. Judge whether it is placed or not. When it is determined that the rack 7 is not mounted on the sample rack lateral transport end unit 12C, the drive control unit 111 transmits a signal to the lateral transport mechanism 50 via the fourth communication unit 123 in step S7. The lateral transport mechanism 50 is driven.
 一方、ステップS6において、サンプルラック横搬送終了部12Cにもラック7が載置されていると判断すると、駆動制御部111は、ステップS7およびステップS8の双方を実行する。具体的には、ステップS7で、駆動制御部111は、第4通信部123を介して横搬送機構50へ信号を送信し、横搬送機構50を駆動させる。また、ステップS8で、駆動制御部111は、第5通信部124を介してサンプルラック排出機構100へ信号を送信し、サンプルラック排出機構100を駆動させる。 On the other hand, if it is determined in step S6 that the rack 7 is also mounted on the sample rack lateral transport end unit 12C, the drive control unit 111 executes both steps S7 and S8. Specifically, in step S7, the drive control unit 111 transmits a signal to the lateral transport mechanism 50 via the fourth communication unit 123 to drive the lateral transport mechanism 50. Further, in step S8, the drive control unit 111 transmits a signal to the sample rack discharge mechanism 100 via the fifth communication unit 124 to drive the sample rack discharge mechanism 100.
 ステップS3では、駆動制御部111は、第7通信部126を介して通知用デバイス200へ信号を送信し、通知用デバイス200に満杯を報知させて、図15の処理を終了させる。 In step S3, the drive control unit 111 transmits a signal to the notification device 200 via the seventh communication unit 126, notifies the notification device 200 of the fullness, and ends the process of FIG. 15.
 一実現例では、満杯の報知に応じて、ユーザは、搬送装置10において貯留されたラック7を取り出し、新たなラック7をサンプルラック供給部11にセットしてもよい。その後、ユーザは、分析装置500の操作部226を操作することによって、検体の分析の指示を入力してもよい。分析装置500の制御部210は、当該指示の入力に応じて、搬送装置10へラックの搬送の指示を送信してもよい。駆動制御部111は、分析装置500からの新たな指示を取得したことに応じて、図15の処理を再度開始してもよい。 In one implementation example, the user may take out the rack 7 stored in the transfer device 10 and set a new rack 7 in the sample rack supply unit 11 in response to the notification of fullness. After that, the user may input an instruction for analysis of the sample by operating the operation unit 226 of the analyzer 500. The control unit 210 of the analyzer 500 may transmit an instruction for transporting the rack to the transport device 10 in response to the input of the instruction. The drive control unit 111 may restart the process of FIG. 15 in response to the acquisition of a new instruction from the analyzer 500.
 図15を参照して説明された処理によれば、第1センサ112および第2センサ114により、サンプルラック横搬送開始部12Aおよびサンプルラック横搬送終了部12Cに載置されたラック7が検出され、当該検出に基づいて駆動機構が制御される。これにより、搬送装置10は、ラック7を転倒させることなく、サンプルラック供給部11から主搬送路12を経てサンプルラック排出部13まで安定して、ラック7を搬送することができる。 According to the process described with reference to FIG. 15, the first sensor 112 and the second sensor 114 detect the rack 7 mounted on the sample rack lateral transfer start portion 12A and the sample rack lateral transfer end portion 12C. , The drive mechanism is controlled based on the detection. As a result, the transport device 10 can stably transport the rack 7 from the sample rack supply unit 11 to the sample rack discharge unit 13 via the main transport path 12 without overturning the rack 7.
 また、搬送装置10は、図1~図10を参照して説明された構成を有することにより、サンプルラックの形状に全く左右されることなく、あらゆるタイプのサンプルラックを確実に搬送することができる。また、サンプルラックの搬送中に他の外力が加わったとしても脱調や損傷が生じにくい。したがって、搬送装置10は、安全性や操作性に優れる。 Further, since the transport device 10 has the configuration described with reference to FIGS. 1 to 10, it is possible to reliably transport all types of sample racks regardless of the shape of the sample rack. .. Further, even if another external force is applied during the transportation of the sample rack, step-out or damage is unlikely to occur. Therefore, the transport device 10 is excellent in safety and operability.
 そのため、搬送装置10は、サンプルラックの自動搬送を必要とするあらゆる装置、例えば、各種の分析装置、診断装置、前処理装置、検査装置、調整装置、製造装置等と組み合わせられた場合でも、好適にサンプルラックを搬送できる。たとえば、生体試料容器を列状に保持するサンプルラックを用いて生体試料の前処理、調製、測定等の各種処理工程が行なわれるう際に、サンプルラックを搬送するサンプルラック搬送装置として用いることができる。上記分析装置には、尿中有形成分分析装置のような体外診断用分析装置も含まれる。 Therefore, the transfer device 10 is suitable even when combined with any device that requires automatic transfer of the sample rack, for example, various analyzers, diagnostic devices, pretreatment devices, inspection devices, adjustment devices, manufacturing devices, and the like. Can transport sample racks to. For example, it can be used as a sample rack transfer device for transporting a sample rack when various processing steps such as pretreatment, preparation, and measurement of a biological sample are performed using a sample rack that holds biological sample containers in a row. it can. The analyzer also includes an in vitro diagnostic analyzer such as a urinary formation analyzer.
 搬送装置10は、上記例示したような各種装置とを一体化させることによって分析システムの一部となり得る。さらに、上記例示したような各種装置を構成する一部の部材のみを搬送装置10に取り付け、残りの部材を備える各種分析装置、診断装置、製造装置等に接続されることも想定される。 The transport device 10 can be a part of the analysis system by integrating various devices as illustrated above. Further, it is assumed that only some of the members constituting the various devices as illustrated above are attached to the transport device 10 and connected to various analyzers, diagnostic devices, manufacturing devices and the like including the remaining members.
 [ラック貯留用のスペースの拡張]
 特に図12を参照して説明されたように、搬送装置10は、支持部材10Xが取り外され、その代わりに拡張部材300を取り付けられることにより、ラック7を貯留するためのスペースが拡張される。図16および図17を参照して、ラック貯留用スペースの拡張について説明する。
[Expansion of space for rack storage]
In particular, as described with reference to FIG. 12, in the transport device 10, the space for storing the rack 7 is expanded by removing the support member 10X and attaching the expansion member 300 in its place. The expansion of the rack storage space will be described with reference to FIGS. 16 and 17.
 図16は、拡張部材300が装着される前の状態を表す。図16に示された状態では、処理部12Bを通過した後のラック7は、サンプルラック横搬送終了部12Cを介してサンプルラック排出部13へ排出される。サンプルラック排出部13においてラック7が満杯になると、第3センサ118がラック7の到達を検出する。これにより、搬送装置10は、ラック7の搬送を中断し、満杯を報知する。 FIG. 16 shows a state before the expansion member 300 is mounted. In the state shown in FIG. 16, the rack 7 after passing through the processing unit 12B is discharged to the sample rack discharge unit 13 via the sample rack lateral transport end unit 12C. When the rack 7 is full in the sample rack discharge unit 13, the third sensor 118 detects the arrival of the rack 7. As a result, the transport device 10 interrupts the transport of the rack 7 and notifies that it is full.
 図17は、拡張部材300が装着された後の状態を表す。図17に示された状態では、処理部12Bを通過した後のラック7は、サンプルラック横搬送終了部12Cおよびサンプルラック排出部13を介して、拡張経路301へと送られる。すなわち、拡張部材300を装着されると、ラック7は、サンプルラック排出部13だけでなく拡張経路301でも貯留され得る。拡張経路301においてラック7が満杯になると、拡張経路301に装着された支持部材10Xにおいて第3センサ118がラック7の到達を検出する。これにより、搬送装置10は、ラック7の搬送を中断し、満杯を報知する。 FIG. 17 shows a state after the expansion member 300 is attached. In the state shown in FIG. 17, the rack 7 after passing through the processing unit 12B is sent to the expansion path 301 via the sample rack lateral transfer end unit 12C and the sample rack discharge unit 13. That is, when the expansion member 300 is attached, the rack 7 can be stored not only in the sample rack discharge unit 13 but also in the expansion path 301. When the rack 7 is full in the expansion path 301, the third sensor 118 detects the arrival of the rack 7 in the support member 10X mounted on the expansion path 301. As a result, the transport device 10 interrupts the transport of the rack 7 and notifies that it is full.
 搬送装置10は、満杯の検出後も、処理部12Bに位置するラック7内のすべての容器4に対する処理が完了するまではラック7の搬送を継続してもよい。 Even after the fullness is detected, the transport device 10 may continue transporting the rack 7 until the processing for all the containers 4 in the rack 7 located in the processing unit 12B is completed.
 以上、図16および図17を参照して説明されたように、搬送装置10では、支持部材10Xが搬送装置10から拡張部材300へと付け替えられることにより、拡張部材300が装着された状態でも、支持部材10Xに装着される第3センサ118の検出出力がサンプルラックの満杯の検出に利用され得る。 As described above with reference to FIGS. 16 and 17, in the transport device 10, the support member 10X is replaced from the transport device 10 to the expansion member 300, so that even when the expansion member 300 is mounted, the support member 10X is replaced with the expansion member 300. The detection output of the third sensor 118 mounted on the support member 10X can be used to detect the fullness of the sample rack.
 搬送装置10において、第3センサ118のセンサ通信部117と駆動機構選択部110の第6通信部125とは、無線で通信してもよいし、有線で通信してもよい。無線で通信する場合、支持部材10Xが拡張部材300に装着されてもセンサ通信部117と第6通信部125とが通信可能範囲に位置するように、拡張部材300の形状が選択され、また、通信方式が選択されることが好ましい。有線で通信する場合、拡張部材300は、センサ通信部117と第6通信部125とを接続する配線を収容するための筐体を含むことが好ましい。 In the transport device 10, the sensor communication unit 117 of the third sensor 118 and the sixth communication unit 125 of the drive mechanism selection unit 110 may communicate wirelessly or by wire. In the case of wireless communication, the shape of the expansion member 300 is selected so that the sensor communication unit 117 and the sixth communication unit 125 are located within the communicable range even if the support member 10X is attached to the expansion member 300. It is preferable that the communication method is selected. When communicating by wire, the expansion member 300 preferably includes a housing for accommodating the wiring connecting the sensor communication unit 117 and the sixth communication unit 125.
 <第2の実施の形態>
 [拡張部材の変形例]
 図18は、拡張部材の変形例を示す図である。図18に示された拡張部材350は、拡張経路351と、タブ部351Aと、壁部353とを含む。
<Second embodiment>
[Modification example of expansion member]
FIG. 18 is a diagram showing a modified example of the expansion member. The expansion member 350 shown in FIG. 18 includes an expansion path 351, a tab portion 351A, and a wall portion 353.
 図19は、図18の拡張部材350の搬送装置への装着例を示す図である。図19には2台の搬送装置10A,10Bが示される。搬送装置10Aおよび搬送装置10Bのそれぞれは、特記された場合を除いて、第1の実施の形態の搬送装置10と同様の構成を有する。 FIG. 19 is a diagram showing an example of mounting the expansion member 350 of FIG. 18 on the transport device. FIG. 19 shows two transport devices 10A and 10B. Each of the transfer device 10A and the transfer device 10B has a configuration similar to that of the transfer device 10 of the first embodiment, unless otherwise specified.
 図19の例では、2台の搬送装置10A,10Bの中の右側の搬送装置10Aにおいて、サンプルラック排出部13の端部に拡張部材350が装着されている。拡張部材350の装着前にサンプルラック排出部13の端部に装着されていた支持部材10Xは、壁部353に当接するように、拡張部材350に装着されている。 In the example of FIG. 19, in the transport device 10A on the right side of the two transport devices 10A and 10B, the expansion member 350 is attached to the end of the sample rack discharge unit 13. The support member 10X, which was attached to the end of the sample rack discharge portion 13 before the expansion member 350 is attached, is attached to the expansion member 350 so as to abut the wall portion 353.
 図19の例では、拡張部材350のタブ部351Aが、左側の搬送装置10Bの凹部90にはめ込まれている。これにより、搬送装置10A内のラック7は、拡張経路351およびタブ部351Aを介して、搬送装置10Bのサンプルラック供給部11へと導入され得る。 In the example of FIG. 19, the tab portion 351A of the expansion member 350 is fitted in the recess 90 of the transport device 10B on the left side. As a result, the rack 7 in the transport device 10A can be introduced into the sample rack supply section 11 of the transport device 10B via the expansion path 351 and the tab section 351A.
 [追加搬送機構]
 図19に主に示されるように、搬送装置10Aは、拡張経路351へ導入されたラック7を排出するための追加搬送機構400を含む。
[Additional transport mechanism]
As mainly shown in FIG. 19, the transport device 10A includes an additional transport mechanism 400 for ejecting the rack 7 introduced into the expansion path 351.
 追加搬送機構400は、押出部材401と、ベルト402と、プーリ410と、連結部材403とを含む。押出部材401はたとえば樹脂で構成される棒状の部材である。連結部材403は押出部材401とベルト402とを連結させる。 The additional transfer mechanism 400 includes an extrusion member 401, a belt 402, a pulley 410, and a connecting member 403. The extruded member 401 is, for example, a rod-shaped member made of resin. The connecting member 403 connects the extrusion member 401 and the belt 402.
 搬送装置10Aがプーリ410を図19の反時計方向に回転させると、連結部材403が左方に移動し、連結部材403の移動に応じて、押出部材401が左方に移動する。これにより、押出部材401は、拡張経路351上のラック7を左方に押圧する。これにより、拡張経路351上のラック7は、タブ部351Aを介して搬送装置10Bへ導入される。図20および図21を参照して、搬送装置10Bへのラック7の導入をより具体的に説明する。 When the transport device 10A rotates the pulley 410 counterclockwise in FIG. 19, the connecting member 403 moves to the left, and the extrusion member 401 moves to the left in accordance with the movement of the connecting member 403. As a result, the extrusion member 401 pushes the rack 7 on the expansion path 351 to the left. As a result, the rack 7 on the expansion path 351 is introduced into the transfer device 10B via the tab portion 351A. The introduction of the rack 7 into the transfer device 10B will be described more specifically with reference to FIGS. 20 and 21.
 図20および図21は、プーリ410の回転に応じた押出部材401および連結部材403の位置の変化を説明するための図である。図20および図21には、ラック7がさらに示されている。図19に示された状態からプーリ410が反時計方向に回転すると、押出部材401および連結部材403は、図20に示されたように左方に移動する。図20に示された状態からプーリ410がさらに反時計方向に回転すると、押出部材401および連結部材403は、図21に示されたように左方に移動する。図21に示された状態では、ラック7は、搬送装置10Bのサンプルラック供給部11へ導入されている。 20 and 21 are diagrams for explaining changes in the positions of the extrusion member 401 and the connecting member 403 in response to the rotation of the pulley 410. The rack 7 is further shown in FIGS. 20 and 21. When the pulley 410 rotates counterclockwise from the state shown in FIG. 19, the extrusion member 401 and the connecting member 403 move to the left as shown in FIG. When the pulley 410 further rotates counterclockwise from the state shown in FIG. 20, the extrusion member 401 and the connecting member 403 move to the left as shown in FIG. In the state shown in FIG. 21, the rack 7 is introduced into the sample rack supply unit 11 of the transfer device 10B.
 ラック7を搬送装置10Bへ導入させた後、搬送装置10Aはプーリ410を時計方向に回転させる。これにより、連結部材403および押出部材401は、右方に移動し、図19に示されたそれぞれの位置へと戻る。 After introducing the rack 7 into the transfer device 10B, the transfer device 10A rotates the pulley 410 clockwise. As a result, the connecting member 403 and the extruded member 401 move to the right and return to their respective positions shown in FIG.
 [搬送装置のブロック構成の変形例]
 図22は、第2の実施の形態の搬送装置10の部分的な構成を示すブロック図である。図22では、第1の実施の形態の搬送装置10に対して追加された部分が示される。
[Modification example of block configuration of transport device]
FIG. 22 is a block diagram showing a partial configuration of the transport device 10 according to the second embodiment. In FIG. 22, a portion added to the transfer device 10 of the first embodiment is shown.
 図22に示されるように、第2の実施の形態では、搬送装置10の駆動制御部111は第5指令部135をさらに含む。駆動機構選択部110は、第5指令部135からの指示を追加搬送機構400に伝達するための第9通信部128を含む。 As shown in FIG. 22, in the second embodiment, the drive control unit 111 of the transfer device 10 further includes a fifth command unit 135. The drive mechanism selection unit 110 includes a ninth communication unit 128 for transmitting an instruction from the fifth command unit 135 to the additional transfer mechanism 400.
 一実現例では、駆動制御部111は、第3センサ118からの検出出力に基づいてラック7が第3センサ118に到達したことが検出されると、通知用デバイス200に満杯を報知させる代わりに、または、通知用デバイス200に満杯を報知させることに加えて、追加搬送機構400に、拡張経路351上のラック7を搬送装置10の外部へ導入することを指示する。「搬送装置10の外部」の一例は、図19~図21を参照して説明されたように、搬送装置10Aに対する搬送装置10Bであってもよい。他の例は、搬送機構を持たない貯留用の筐体であってもよい。 In one embodiment, when the drive control unit 111 detects that the rack 7 has reached the third sensor 118 based on the detection output from the third sensor 118, the drive control unit 111 instead causes the notification device 200 to notify the fullness. Alternatively, in addition to notifying the notification device 200 of the fullness, the additional transport mechanism 400 is instructed to introduce the rack 7 on the expansion path 351 to the outside of the transport device 10. An example of "outside the transport device 10" may be a transport device 10B with respect to the transport device 10A, as described with reference to FIGS. 19 to 21. Another example may be a storage housing that does not have a transport mechanism.
 駆動制御部111は、当該駆動制御部111を含む搬送装置(たとえば、図19の搬送装置10A)より下流側に設置された搬送装置(たとえば、図19の搬送装置10B)から、ラックの満杯状態に関する情報を取得してもよい。駆動制御部111は、下流側の搬送装置においてラックが満杯であれば、当該下流側の搬送装置へのラックの導入を行わなくてもよい。たとえば、下流側の搬送装置から、第1センサ112、第2センサ114、および第3センサ118のすべてがラックを検出していることを表す情報を取得すると、駆動制御部111は、第3センサ118にラック7が到達していても、追加搬送機構400に、拡張経路351上のラック7を搬送装置10の外部へ導入することを指示しなくてもよい。この場合、駆動制御部111は、通知用デバイス200に満杯を報知することを指示してもよい。 The drive control unit 111 is in a rack full state from a transfer device (for example, the transfer device 10B in FIG. 19) installed on the downstream side of the transfer device (for example, the transfer device 10A in FIG. 19) including the drive control unit 111. You may get information about. If the rack is full in the downstream transfer device, the drive control unit 111 does not have to introduce the rack into the downstream transfer device. For example, when information indicating that all of the first sensor 112, the second sensor 114, and the third sensor 118 are detecting the rack is acquired from the transport device on the downstream side, the drive control unit 111 uses the third sensor 111. Even if the rack 7 reaches 118, it is not necessary to instruct the additional transfer mechanism 400 to introduce the rack 7 on the expansion path 351 to the outside of the transfer device 10. In this case, the drive control unit 111 may instruct the notification device 200 to notify the fullness.
 図19に示された搬送装置10Aと搬送装置10Bは、互いに異なる分析装置に装着されてもよい。すなわち、搬送装置10Aは第1の分析装置に装着され、搬送装置10Bは第2の分析装置に装着されてもよい。搬送装置10Aは、搬送装置10Aにセットされたラックを拡張部材350を介して搬送装置10Bへと導入できることから、第1の分析装置と第2の分析装置とを連携した分析システムに利用され得る。すなわち、搬送装置10Aの駆動制御部111は、搬送装置10Aのサンプルラック供給部11にセットされた一部のラック7を、搬送装置10Aの処理部12Bにおける処理の対象とすることなく、搬送装置10Bに導入してもよい。これにより、ユーザは、第1の分析装置による分析対象のラックと第2の分析装置による分析対象のラックとを、一括して、搬送装置10Aにセットできる。 The transfer device 10A and the transfer device 10B shown in FIG. 19 may be mounted on different analyzers. That is, the transport device 10A may be mounted on the first analyzer, and the transport device 10B may be mounted on the second analyzer. Since the transfer device 10A can introduce the rack set in the transfer device 10A into the transfer device 10B via the expansion member 350, it can be used in an analysis system in which the first analysis device and the second analysis device are linked. .. That is, the drive control unit 111 of the transfer device 10A does not target a part of the racks 7 set in the sample rack supply unit 11 of the transfer device 10A to be processed by the processing unit 12B of the transfer device 10A. It may be introduced in 10B. As a result, the user can collectively set the rack to be analyzed by the first analyzer and the rack to be analyzed by the second analyzer in the transport device 10A.
 連結される搬送装置の数は「2」に限定されない。3以上の搬送装置が連結されてもよい。搬送装置は、他の搬送装置の処理部で処理されるラックを自装置ではスルーすることができるので、3以上の搬送装置のそれぞれが互いに異なる分析装置に装着された場合でも、ユーザは、全分析装置の処理対象のラックを、最も上流側に設置された搬送装置に一括してセットできる。 The number of connected transport devices is not limited to "2". Three or more transport devices may be connected. Since the transfer device can pass through the rack processed by the processing unit of the other transfer device by its own device, even if each of the three or more transfer devices is mounted on different analyzers, the user can use all of them. The racks to be processed by the analyzer can be collectively set in the transport device installed on the most upstream side.
 なお、追加搬送機構400は、必ずしもセンサの検出出力に応じて駆動されなくてもよい。たとえば、ユーザが所与の情報を搬送装置10または分析装置500に入力したことに応じて、または、予め設定された時刻が到来したことに応じて、駆動制御部111は、追加搬送機構400の駆動を開始してもよい。 The additional transport mechanism 400 does not necessarily have to be driven according to the detection output of the sensor. For example, in response to the user inputting given information into the transfer device 10 or the analyzer 500, or in response to the arrival of a preset time, the drive control unit 111 may use the additional transfer mechanism 400. The drive may be started.
 今回開示された各実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、実施の形態および各変形例において説明された発明は、可能な限り、単独でも、組合わせても、実施することが意図される。 It should be considered that each embodiment disclosed this time is an example in all respects and is not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended that all modifications within the meaning and scope equivalent to the claims are included. In addition, the inventions described in the embodiments and the modifications are intended to be implemented, either alone or in combination, wherever possible.
 1 分析システム、4 容器、7 ラック、7A 側面、8 テーブル、10,10A,10B 搬送装置、10X 支持部材、11 サンプルラック供給部、12 主搬送路、12A サンプルラック横搬送開始部、12B 処理部、12C サンプルラック横搬送終了部、13 サンプルラック排出部、110 駆動機構選択部、111 駆動制御部、112 第1センサ、113 情報解析部、114 第2センサ、118 第3センサ、224 バーコードリーダ、300,350 拡張部材、301,351 拡張経路、301A 端部、313 端壁、321,322 脚、351A タブ部、353 壁部、400 追加搬送機構、401 押出部材、403 連結部材、410 プーリ、500 分析装置。 1 analysis system, 4 containers, 7 racks, 7A side surfaces, 8 tables, 10, 10A, 10B transport equipment, 10X support members, 11 sample rack supply section, 12 main transport path, 12A sample rack horizontal transport start section, 12B processing section , 12C sample rack horizontal transfer end unit, 13 sample rack discharge unit, 110 drive mechanism selection unit, 111 drive control unit, 112 first sensor, 113 information analysis unit, 114 second sensor, 118 third sensor, 224 barcode reader , 300,350 expansion member, 301,351 expansion path, 301A end, 313 end wall, 321,322 legs, 351A tab, 353 wall, 400 additional transport mechanism, 401 extrusion member, 403 connecting member, 410 pulley, 500 analyzer.

Claims (9)

  1.  ラックに保持された試料に対する処理が行われる位置である処理部を含む搬送路と、
     前記搬送路においてラックを移動させるための搬送手段と、
     前記搬送路において前記処理部より下流側に設けられた、ラックを支持する支持部材とを備え、
     前記支持部材は、前記搬送路に対して着脱可能に構成されている、搬送装置。
    A transport path including a processing unit, which is a position where processing is performed on the sample held in the rack, and
    A transport means for moving the rack in the transport path, and
    A support member for supporting the rack, which is provided on the downstream side of the processing unit in the transport path, is provided.
    The support member is a transport device configured to be detachable from the transport path.
  2.  前記支持部材は、前記支持部材へのラックの到達を検出するためのラックセンサを含み、
     前記ラックセンサの検出出力に基づいて、前記搬送路におけるラックの充満を検知するように構成された制御手段をさらに備え、
     前記ラックセンサは、前記支持部材が前記搬送路から取り外された状態であっても、前記制御手段に検出出力を取得できるように構成されている、請求項1に記載の搬送装置。
    The support member includes a rack sensor for detecting the arrival of the rack at the support member.
    Further comprising control means configured to detect rack fullness in the transport path based on the detection output of the rack sensor.
    The transport device according to claim 1, wherein the rack sensor is configured so that the control means can acquire a detection output even when the support member is removed from the transport path.
  3.  前記搬送路は、搬送開始部および搬送終了部を含み、
     前記処理部は、前記搬送開始部より下流側に位置し、
     前記搬送終了部は、前記処理部より下流側に位置し、
     前記搬送手段は、ラックを前記搬送開始部から前記搬送終了部まで搬送するための第1搬送手段と、ラックを前記搬送終了部から搬出するための第2搬送手段と、を含み、
     前記搬送路は、
      前記第2搬送手段により前記搬送終了部から搬出されたラックを載置可能なラック排出部と、
      ラックを載置可能なラック供給部と、を含み、
     前記搬送手段は、前記ラック供給部に載置されたラックを前記搬送開始部に搬入するための第3搬送手段を含み、
     前記搬送開始部に載置されたラックを検出するための開始部センサと、
     前記搬送終了部に載置されたラックを検出するための終了部センサと、
     前記第1搬送手段、前記第2搬送手段、および前記第3搬送手段を制御する駆動機構選択手段とを備え、
     前記搬送路は、前記搬送開始部から前記搬送終了部までつながった第1側壁を含み、
     前記搬送開始部および前記処理部の前記第1側壁には、第1切り欠きが形成され、
     前記第1搬送手段は、第1突起部を有する第1スライダと、前記第1スライダを前進後進駆動させる第1駆動手段とを備え、
     前記第1突起部は、前記第1切り欠きから前記搬送路内に突出しており、
     前記第1突起部がラックの搬送方向に対して下流側の側面に当接し、前記第1駆動手段を用いて前記側面を押すことにより、ラックを前記搬送開始部から、前記処理部を通過して、前記搬送終了部まで搬送するように構成されており、
     前記駆動機構選択手段は、
      前記開始部センサおよび終了部センサが検知したラックの存否情報に基づき、前記搬送開始部および搬送終了部の少なくとも一方にラックが載置されているか否かを判断し、
      (i)前記搬送開始部および搬送終了部のいずれにもラックが載置されていないと判断すると、前記第3搬送手段を駆動し、
      (ii)前記搬送開始部および搬送終了部の少なくとも一方にラックが載置されていると判断すると、次にラックが前記搬送開始部にあるか否かを判断し、ラックが前記搬送開始部にないと判断すると、(a)前記第2搬送手段および第3搬送手段を駆動、あるいは(b)前記第2搬送手段のみを駆動し、
      (iii)前記搬送開始部および搬送終了部の少なくとも一方にラックが載置されていると判断すると、次にラックが前記搬送開始部にあるか否かを判断し、ラックが前記搬送開始部に載置されていると判断すると、次いで前記搬送終了部にラックが載置されているか否かを判断し、ラックが前記搬送終了部にないと判断すると、前記第1搬送手段を駆動し、
      (iv)前記搬送開始部および搬送終了部の少なくとも一方にラックが載置されていると判断すると、次にラックが前記搬送開始部にあるか否かを判断し、ラックが前記搬送開始部に載置されていると判断すると、次いで前記搬送終了部にラックが載置されているか否かを判断し、ラックが前記搬送終了部に載置されていると判断すると、前記第1搬送手段および第2搬送手段を駆動する、ように構成されている、請求項1または請求項2に記載の搬送装置。
    The transport path includes a transport start portion and a transport end portion.
    The processing unit is located on the downstream side of the transport start unit.
    The transport end portion is located on the downstream side of the processing portion.
    The transport means includes a first transport means for transporting the rack from the transport start portion to the transport end portion, and a second transport means for transporting the rack from the transport end portion.
    The transport path is
    A rack discharge section on which a rack carried out from the transport end portion by the second transport means can be placed, and a rack discharge section.
    Including a rack supply unit on which a rack can be placed,
    The transport means includes a third transport means for carrying the rack mounted on the rack supply unit into the transport start unit.
    A start sensor for detecting the rack mounted on the transfer start, and a start sensor.
    An end sensor for detecting the rack mounted on the transfer end, and an end sensor.
    The first transport means, the second transport means, and the drive mechanism selection means for controlling the third transport means are provided.
    The transport path includes a first side wall connected from the transport start portion to the transport end portion.
    A first notch is formed in the first side wall of the transport start portion and the processing portion.
    The first transport means includes a first slider having a first protrusion and a first drive means for driving the first slider forward and backward.
    The first protrusion protrudes into the transport path from the first notch.
    The first protrusion abuts on the side surface on the downstream side with respect to the transport direction of the rack, and by pushing the side surface using the first driving means, the rack is passed from the transport start portion through the processing portion. It is configured to transport to the end of the transport.
    The drive mechanism selection means is
    Based on the existence / non-existence information of the rack detected by the start portion sensor and the end portion sensor, it is determined whether or not the rack is mounted on at least one of the transfer start portion and the transport end portion.
    (I) If it is determined that the rack is not mounted on either the transport start portion or the transport end portion, the third transport means is driven to drive the rack.
    (Ii) When it is determined that the rack is mounted on at least one of the transport start portion and the transport end portion, it is then determined whether or not the rack is in the transport start portion, and the rack is placed on the transport start portion. If it is determined that there is no such method, (a) the second transport means and the third transport means are driven, or (b) only the second transport means is driven.
    (Iii) When it is determined that the rack is mounted on at least one of the transport start portion and the transport end portion, it is then determined whether or not the rack is in the transport start portion, and the rack is placed on the transport start portion. If it is determined that the rack is mounted, then it is determined whether or not the rack is mounted on the transport end portion, and if it is determined that the rack is not on the transport end portion, the first transport means is driven.
    (Iv) When it is determined that the rack is mounted on at least one of the transport start portion and the transport end portion, it is then determined whether or not the rack is in the transport start portion, and the rack is placed on the transport start portion. If it is determined that the rack is mounted, then it is determined whether or not the rack is mounted on the transport end portion, and if it is determined that the rack is mounted on the transport end portion, the first transport means and the first transport means and The transport device according to claim 1 or 2, which is configured to drive a second transport means.
  4.  請求項1~請求項3のいずれか1項に記載の搬送装置と、
     前記搬送装置によって搬送されるラックに保持された試料の分析を実行する分析装置とを備える、体外診断用分析装置。
    The transport device according to any one of claims 1 to 3,
    An in-vitro diagnostic analyzer comprising an analyzer that executes analysis of a sample held in a rack conveyed by the transfer apparatus.
  5.  前記搬送路において前記支持部材が取り外された場所に取り付けられる拡張部材をさらに備え、
     前記支持部材は、前記拡張部材に取り付けられるように構成されている、請求項4に記載の体外診断用分析装置。
    Further provided with an extension member attached to the place where the support member was removed in the transport path.
    The analyzer for in-vitro diagnostics according to claim 4, wherein the support member is configured to be attached to the expansion member.
  6.  試料を保持するように構成されたラックを搬送するための搬送装置と、
     前記搬送装置に取り付けられる拡張部材とを備え、
     前記搬送装置は、
      ラックによって保持された試料に対する処理が行われる位置である処理部を含む搬送路と、
      前記搬送路においてラックを移動させるための搬送手段と、
      前記搬送路において前記処理部より下流側に設けられた、ラックを支持する支持部材とを含み、
     前記支持部材は、前記搬送路に対して着脱可能に構成されていおり、
     前記拡張部材は、前記搬送路において前記支持部材が取り外された場所に取り付けられるように構成され、
     前記支持部材は、前記拡張部材に取り付けられるように構成されている、搬送システム。
    A transport device for transporting racks configured to hold samples, and
    It is provided with an expansion member attached to the transport device.
    The transport device is
    A transport path including a processing unit, which is a position where processing is performed on the sample held by the rack, and
    A transport means for moving the rack in the transport path, and
    Including a support member for supporting the rack provided on the downstream side of the processing unit in the transport path.
    The support member is configured to be removable from the transport path.
    The expansion member is configured to be attached to a location in the transport path where the support member has been removed.
    A transport system in which the support member is configured to be attached to the expansion member.
  7.  前記支持部材は、前記支持部材へのラックの到達を検出するためのラックセンサを含み、
     前記ラックセンサの検出出力に基づいて、前記搬送路におけるラックの充満を検知するように構成された制御手段をさらに備え、
     前記ラックセンサは、前記支持部材が前記拡張部材に装着された状態であっても、前記制御手段に検出出力を取得できるように構成されている、請求項6に記載の搬送システム。
    The support member includes a rack sensor for detecting the arrival of the rack at the support member.
    Further comprising control means configured to detect rack fullness in the transport path based on the detection output of the rack sensor.
    The transport system according to claim 6, wherein the rack sensor is configured so that the control means can acquire a detection output even when the support member is mounted on the expansion member.
  8.  前記拡張部材の上のラックを前記搬送路とは異なる側へ搬送するために駆動する駆動部をさらに備え、
     前記制御手段は、前記ラックセンサが前記支持部材へのラックの到達を検出したことに応じて、前記駆動部を駆動させる、請求項7に記載の搬送システム。
    Further provided with a drive unit for driving the rack on the expansion member to transport it to a side different from the transport path.
    The transfer system according to claim 7, wherein the control means drives the drive unit in response to the rack sensor detecting the arrival of the rack at the support member.
  9.  前記拡張部材の上のラックを前記搬送路とは異なる方向へ搬送するために駆動する駆動部をさらに備える、請求項6または請求項7に記載の搬送システム。 The transport system according to claim 6 or 7, further comprising a drive unit that drives the rack on the expansion member to transport the rack in a direction different from the transport path.
PCT/JP2020/035974 2019-09-26 2020-09-24 Transport device, in vitro diagnostic analysis device, and transport system WO2021060356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021548972A JP7215590B2 (en) 2019-09-26 2020-09-24 In vitro diagnostic analyzer and delivery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019175802 2019-09-26
JP2019-175802 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021060356A1 true WO2021060356A1 (en) 2021-04-01

Family

ID=75167005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035974 WO2021060356A1 (en) 2019-09-26 2020-09-24 Transport device, in vitro diagnostic analysis device, and transport system

Country Status (2)

Country Link
JP (1) JP7215590B2 (en)
WO (1) WO2021060356A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565773Y2 (en) * 1992-06-29 1998-03-18 日本電子株式会社 Sample tube collection device of automatic dispensing device
JP4797842B2 (en) * 2006-07-10 2011-10-19 東洋紡績株式会社 Rack transport apparatus and in-vitro diagnostic analyzer having the same
JP6535486B2 (en) * 2015-03-18 2019-06-26 シスメックス株式会社 Sample measurement system and method for searching tray specific information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565773Y2 (en) * 1992-06-29 1998-03-18 日本電子株式会社 Sample tube collection device of automatic dispensing device
JP4797842B2 (en) * 2006-07-10 2011-10-19 東洋紡績株式会社 Rack transport apparatus and in-vitro diagnostic analyzer having the same
JP6535486B2 (en) * 2015-03-18 2019-06-26 シスメックス株式会社 Sample measurement system and method for searching tray specific information

Also Published As

Publication number Publication date
JPWO2021060356A1 (en) 2021-04-01
JP7215590B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
JP5378859B2 (en) Sample testing system
JP5339853B2 (en) Sample processing system
JP3873039B2 (en) Automatic analyzer
JP5372732B2 (en) Sample analyzer and sample rack transport method
WO2009110583A1 (en) Analysis apparatus and measurement unit
JP5530613B2 (en) Sample processing system and sample transport system
EP3349013B1 (en) Automated analyzer
KR20060132729A (en) Device for supplying blood tubes to a whole blood analyser
JP2008039554A (en) Autoanalyzer
EP2299281B1 (en) Rack collecting unit and sample processing apparatus
JP5439107B2 (en) Rack collection unit
JP2004279357A (en) Autoanalyzer
US20120222773A1 (en) Analyzer and position confirming method
US20100166606A1 (en) Transporting apparatus and sample analyzer
US9285383B2 (en) Specimen analyzer
JP2007240223A (en) Automatic analyzer
JP2006337386A (en) Automatic analyzer
JP6549983B2 (en) Sample rack transport device and automatic analysis system
JP5310610B2 (en) Sample analyzer
JP5178891B2 (en) Automatic analyzer
WO2021060356A1 (en) Transport device, in vitro diagnostic analysis device, and transport system
JP2010204129A (en) Automatic analyzer and rack conveying method
JP4797842B2 (en) Rack transport apparatus and in-vitro diagnostic analyzer having the same
WO2020085272A1 (en) Autosampler, automatic analysis device, sampling method, and automatic inspection method
WO2020085271A1 (en) Autosampler, automatic analysis device, sampling method, and automatic inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868917

Country of ref document: EP

Kind code of ref document: A1