WO2021059590A1 - 原子力プラント - Google Patents

原子力プラント Download PDF

Info

Publication number
WO2021059590A1
WO2021059590A1 PCT/JP2020/020864 JP2020020864W WO2021059590A1 WO 2021059590 A1 WO2021059590 A1 WO 2021059590A1 JP 2020020864 W JP2020020864 W JP 2020020864W WO 2021059590 A1 WO2021059590 A1 WO 2021059590A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure vessel
reactor pressure
reactor
support structure
power plant
Prior art date
Application number
PCT/JP2020/020864
Other languages
English (en)
French (fr)
Inventor
梢 松川
文仁 廣川
祐一郎 今村
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Publication of WO2021059590A1 publication Critical patent/WO2021059590A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C11/00Shielding structurally associated with the reactor
    • G21C11/02Biological shielding ; Neutron or gamma shielding
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/024Supporting constructions for pressure vessels or containment vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a nuclear plant.
  • Patent Document 1 As a technology related to a nuclear power plant, there is a technology disclosed in Patent Document 1 below.
  • RSV ctor pressure vessel
  • the support structure 5 supports the load of the cylindrical body 6 through the convex portion support 7 projecting from the lower outer periphery of the cylindrical body 6 of the reactor pressure vessel 4 and the convex portion support 7. It is composed of a follow-up support member 11 and a support member 8 that follow (absorb) the radial thermal expansion and contraction of the cylindrical body 6 by rotation, and ... ".
  • the reactor pressure vessel becomes hot and the reactor pressure vessel thermally expands. Therefore, in the structure in which the reactor pressure vessel is supported at the lower part of the cylindrical body as described above, the height position of the pipe connected above the reactor pressure vessel fluctuates greatly.
  • the pipe connected above the reactor pressure vessel penetrates the wall of the reactor containment vessel accommodating the reactor pressure vessel and is pulled out of the reactor containment vessel, and the side wall of the reactor pressure vessel. And the wall of the reactor containment vessel. Therefore, if the height position of the pipe connected to the reactor pressure vessel fluctuates greatly due to the thermal expansion of the reactor pressure vessel, a load is applied to the fixed portion of the pipe. Therefore, in order to reduce the load on the fixed part of the piping, the route is extended by installing an elbow in the piping from the reactor pressure vessel to the reactor containment vessel, which is the miniaturization of the nuclear power plant. It is a factor that hinders.
  • an object of the present invention is to provide a nuclear power plant that can be miniaturized by shortening the path of a pipe connected to a reactor pressure vessel and fixed to a reactor containment vessel.
  • the present application includes a plurality of means for solving the above problems, and to give an example thereof, the reactor pressure vessel, the pressure vessel support structure for supporting the reactor pressure vessel, and the pressure vessel support structure are supported.
  • Reactor pressure vessel accommodating the reactor pressure vessel, and piping connected to the side peripheral wall of the reactor pressure vessel above the center of gravity of the reactor pressure vessel and fixed to the reactor pressure vessel.
  • the pressure vessel support structure is a nuclear plant that supports the reactor pressure vessel above the center of gravity of the reactor pressure vessel.
  • FIG. 1 is a configuration diagram of a nuclear power plant 1 according to the first embodiment, and shows a diagram when the present invention is applied to an improved boiling water reactor.
  • the nuclear power plant 1 shown in this figure includes a reactor pressure vessel 10 in which a core is housed, a pipe 11 fixed to the reactor pressure vessel 10, and a pressure vessel support structure 20 for supporting the reactor pressure vessel 10. .
  • the nuclear power plant 1 includes a reactor containment vessel 30 that houses the reactor pressure vessel 10, and a reactor building 40 that further houses the reactor containment vessel 30.
  • the nuclear power plant 1 is characterized by the support state of the reactor pressure vessel 10 by the pressure vessel support structure 20.
  • the configuration of the nuclear power plant 1 will be described in order from the reactor pressure vessel 10.
  • the reactor pressure vessel 10 accommodates a core, which is an aggregate of nuclear fuel, and a coolant, and has a shape in which both side openings of a cylindrical member arranged in the vertical direction are closed.
  • a reactor pressure vessel 10 is made of steel, and for example, a cylindrical material obtained by welding an upper cylindrical body and a lower cylindrical body, an upper mirror portion that closes the upper portion of the cylindrical material arranged in the vertical direction, and It is composed of a lower mirror portion that closes the lower part of the cylindrical material.
  • a plurality of pipes 11 to be described next are connected at different heights in the vertical direction.
  • the pipe 11 is connected to the reactor pressure vessel 10 and fixed to the reactor containment vessel 30. Such a pipe 11 is provided so that one end thereof communicates with the inside of the reactor pressure vessel 10 and is connected to the side peripheral wall of the reactor pressure vessel 10. The connection point of each pipe 11 to the reactor pressure vessel 10 is above the center of gravity of the reactor pressure vessel 10 and is a side peripheral wall of the reactor pressure vessel 10.
  • the pipe 11 is arranged in a state where the other end penetrates the reactor containment vessel 30 described below, is fixed to the reactor containment vessel 30 at the penetration point, and is further taken out from the reactor building 40. Has been done. It is assumed that the penetration portion of the pipe 11 in the reactor containment vessel 30 is approximately the same height as the connection height of the pipe 11 to the reactor pressure vessel 10.
  • these pipes 11 are a steam pipe 11a, a condensate pipe 11b, and other pipes.
  • the steam pipe 11a is a pipe for supplying steam S obtained by heating water, which is a coolant, from the reactor pressure vessel 10 to an external device such as a turbine.
  • the condensate pipe 11b is a pipe for returning the water L obtained by cooling the steam S that has passed through the external device to the reactor pressure vessel 10.
  • Each of these pipes 11 is provided as many as necessary, and is typically arranged at a plurality of locations in the circumferential direction of the reactor pressure vessel 10 above the center of gravity Cg of the reactor pressure vessel 10. ..
  • the steam pipe 11a it is arranged at a position higher than the liquid level of the coolant in the reactor pressure vessel 10. Further, the condensate pipe 11b is arranged at a position lower than the liquid level of the coolant in the reactor pressure vessel 10.
  • the above is not limited to the improved type as shown in the boiling water type nuclear power plant 1, and is the same regardless of whether it is a conventional type or a natural circulation type.
  • these pipes 11 are connected to the reactor pressure vessel 10 via a steam generator and are fixed through the reactor containment vessel 30. To do.
  • the pipe 11 may be composed of a nozzle portion provided in the reactor pressure vessel 10 and a pipe portion connected to the nozzle portion.
  • the piping portion may include elbow piping for bending and arranging the piping 11 as needed.
  • the reactor pressure vessel 10 communicates with the reactor pressure vessel 10 in addition to the pipe 11 taken out of the reactor containment vessel 30, unlike these pipes 11, but inside the reactor containment vessel 30. It may also be provided with internal piping arranged only in the reactor.
  • the pressure vessel support structure 20 includes a support structure 21 and a support member 22.
  • the support structure 21 is provided with a stabilizer 23.
  • the details of these components will be described below.
  • the support structure 21 is, for example, a cylindrical foundation portion formed by rising from a solid foundation constituting the floor surface 30a of the reactor containment vessel 30.
  • Such a support structure 21 also serves as a shielding wall for radioactive substances, and is configured as a shielding wall having a shielding function against ⁇ -rays, more preferably a biological shielding function.
  • Such a support structure 21 is composed of a composite structure of a reinforcing bar material and a concrete material, and covers and accommodates the reactor pressure vessel 10 from the lower side.
  • the support structure 21 By configuring the support structure 21 to also serve as a shielding wall in this way, it is not necessary to dispose a ⁇ -shield as a separate body between the reactor pressure vessel 10 and the reactor containment vessel 30, and the reactor is stored. Space can be saved in the container 30.
  • the support structure 21 has a cylindrical opening edge portion which is the upper end edge thereof and is configured as a pedestal 21a for supporting the reactor pressure vessel 10. By configuring the upper end edge of the support structure 21 as the pedestal 21a, the diameter of the support structure 21 can be reduced.
  • a support member 22 is fixed to the pedestal 21a, and the reactor pressure vessel 10 is fixed to the pedestal 21a of the support structure 21 via the support member 22.
  • the support structure 21 may be provided with an opening 21b for penetrating the pipe 11.
  • the nuclear power plant 1 is a boiling water reactor, as an example, it has an opening 21b for penetrating a condensate pipe 11b arranged below the pipe 11.
  • an opening 21b is provided at a height position that matches the connection height of the condensate pipe 11b to the reactor pressure vessel 10. Further, the opening 21b in the state of penetrating the pipe 11 is preferably embedded with a material having a shielding function against radioactive substances, particularly a material having a shielding function against ⁇ -rays, more preferably a biological shielding function. Cement is used as such a material.
  • the opening 21b does not hinder the vertical and horizontal movement of the condensate pipe 11b. It may be.
  • the support member 22 is a member for fixing the reactor pressure vessel 10 to the support structure 21, and the position where the support member 22 is attached to the reactor pressure vessel 10 is the position of the reactor pressure vessel 10. It becomes the support part P.
  • a support member 22 has, for example, the skirt shape of a truncated cone that extends downward.
  • the upper edge is fixed to the side peripheral wall of the reactor pressure vessel 10, and the lower edge is fixed on the pedestal 21a of the support structure 21, in the vertical and horizontal directions. It has a structure that supports the load.
  • the upper edge of the support member 22 is fixed to the side peripheral wall of the reactor pressure vessel 10 above the center of gravity Cg of the reactor pressure vessel 10.
  • the reactor pressure vessel 10 is fixed in the reactor containment vessel 30 in a state of being supported by the support member 22 at the support portion P above the center of gravity Cg.
  • the upper edge of the support member 22 is fixed to the side peripheral wall of the reactor pressure vessel 10 at a height similar to the connection height of the pipe 11. If a plurality of pipes 11 are connected to different height positions of the reactor pressure vessel 10, the upper edge of the support member 22 is within the range of the height positions to which these pipes 11 are connected. Is fixed. More preferably, the upper end edge of the support member 22 is fixed at a height in the middle of the range of height positions where the plurality of pipes 11 are connected.
  • the pipe 11 connected to the reactor pressure vessel 10 is the steam pipe 11a and the condensate pipe 11b, it is within the range of the height position where the steam pipe 11a and the condensate pipe 11b are connected.
  • the upper edge of the support member 22 is fixed to the side peripheral wall of the reactor pressure vessel 10.
  • the upper edge of the support member 22 is fixed to the side peripheral wall of the reactor pressure vessel 10. It is assumed that it has been done.
  • the support portion P of the reactor pressure vessel 10 becomes as high as the connection height of the pipe 11, and the vertical movement of the pipe 11 due to thermal expansion and contraction of the reactor pressure vessel 10 can be suppressed to a small value. it can.
  • the stabilizer 23 is for stabilizing the shaking of the reactor containment vessel 30 and the reactor pressure vessel 10, and is provided at a plurality of locations.
  • Some of such stabilizers 23 are RPV stabilizers 23a arranged between the reactor pressure vessel 10 and the support structure 21 in the circumferential direction of the cylindrical material constituting the reactor pressure vessel 10. Multiple are arranged along the line.
  • some of the stabilizers 23 are PCV stabilizers 23b (PVV: Primary Containment Vessel) arranged between the support structure 21 and the side peripheral wall of the reactor containment vessel 30, and the support structure 21. Multiple are arranged along the circumferential direction.
  • the reactor containment vessel 30 is a vessel that accommodates the reactor pressure vessel 10 in a state of being supported by the pressure vessel support structure 20.
  • the reactor containment vessel 30 functions as a pressure barrier to the reactor pressure vessel 10 in the event of an accident such as loss of cooling material, and also serves as a barrier to the diffusion of radioactive substances to the outside.
  • Such a reactor containment vessel 30 has a configuration that covers the entire circumference of the reactor pressure vessel 10 and has a composite structure of a reinforcing bar material and a concrete material. For example, the circumference of a steel container is covered with concrete. Will be done.
  • the reactor containment vessel 30 has a through hole 31 from which the pipe 11 is taken out.
  • the through hole 31 is an opening for taking out the pipe 11 connected to the reactor pressure vessel 10 to the outside of the reactor containment vessel 30.
  • the through holes 31 are provided corresponding to each pipe 11, and are preferably provided at the same height position according to the connection height of each pipe 11 to the reactor pressure vessel 10. Further, it is preferable that each through hole 31 in a state of penetrating the individual pipes 11 is embedded with a material having a shielding function against radioactive substances, particularly a material having a shielding function against ⁇ -rays, and more preferably a material having a biological shielding function. Cement is used as such a material.
  • the reactor building 40 is a structure that houses the reactor containment vessel 30.
  • the reactor building 40 functions as a pressure barrier to the reactor containment vessel 30 in the event of an accident such as loss of coolant, and also serves as a barrier to the diffusion of radioactive materials to the outside.
  • Such a reactor building 40 is made of concrete that covers the reactor containment vessel 30, and is arranged with a gap between the reactor containment vessel 30 and the reactor containment vessel 30 housed therein.
  • the reactor building 40 has an opening 41 from which the pipe 11 is taken out.
  • the pipe 11 taken out from the opening 41 is connected to an external device such as a turbine or a condenser (not shown here).
  • the nuclear power plant 1 of the first embodiment described above has a configuration in which the support height P of the reactor pressure vessel 10 is above the center of gravity Cg of the reactor pressure vessel 10.
  • the support height P of the reactor pressure vessel 10 can be set to a position closer to the connection height of the pipe 11 to the reactor pressure vessel 10. Therefore, the fluctuation of the connection height position of the pipe 11 due to the thermal expansion and contraction of the reactor pressure vessel 10 can be suppressed to be small.
  • the support structure 21 has been described as a structure formed as a shielding wall, but the present invention is not limited thereto.
  • the support structure 21 may be provided separately from the shielding wall.
  • the support structure 21 may be composed of a foundation portion serving as a cylindrical shielding wall raised from the floor surface 30a of the reactor containment vessel 30 and a pedestal structure erected on the upper part of the shielding wall. Good.
  • the pedestal structure may have a wall structure, a pillar structure, or another structure as long as the support member 22 can be fixed.
  • the reactor pressure vessel 10 can be supported at a support height P that does not depend on the height of the shielding wall of the conventional design.
  • the support structure 21 has been described as a structure for fixing the support member 22 with the upper end edge as the pedestal 21a, but the structure is not limited to this.
  • the support structure 21 may have a configuration in which a pedestal 21a projecting toward the reactor pressure vessel 10 side is provided at an intermediate height of the shielding wall. Even with such a configuration, the reactor pressure vessel 10 can be supported at a support height P that does not depend on the height of the shielding wall.
  • FIG. 2 is a block diagram of the nuclear power plant 2 according to the second embodiment.
  • the difference between the nuclear power plant 2 shown in this figure and the nuclear power plant 1 of the first embodiment shown in FIG. 1 is that the pressure vessel support structure 20'for supporting the reactor pressure vessel 10 in the reactor containment vessel 30
  • the configuration is the same as that of the first embodiment, particularly in the configuration of the support member 102, and other components including the modified example. Therefore, in the following, only the configuration of the support member 102 will be described.
  • the support member 102 is a member for supporting the reactor pressure vessel 10 on the support structure 21, and is fixed to the reactor pressure vessel 10 in a state of protruding outward from the side peripheral wall of the reactor pressure vessel 10. It is a block-shaped member.
  • the support member 102 may have a flange shape continuous in the circumferential direction of the reactor pressure vessel 10. Such a support member 102 is placed on the pedestal 21a of the support structure 21, and by sliding on the pedestal 21a, the reactor pressure vessel 10 absorbs the horizontal movement of the reactor pressure vessel 10 due to thermal expansion, and the reactor. It has a structure that supports the pressure vessel 10.
  • the fixing position of the support member 102 with respect to the side peripheral wall of the reactor pressure vessel 10 is the same as the fixing position of the support member of the first embodiment, and the fixing position of the support member 102 is the support portion P of the reactor pressure vessel 10. It becomes. That is, the support member 102 is fixed to the side peripheral wall of the reactor pressure vessel 10 above the center of gravity Cg of the reactor pressure vessel 10, preferably at a height similar to the connection height of the piping 11. It is fixed to the side peripheral wall of the container 10. As a specific example, it is an intermediate position between the steam pipe 11a and the condensate pipe 11b.
  • the support height P of the reactor pressure vessel 10 is set above the center of gravity Cg of the reactor pressure vessel 10, and the support height P of the reactor pressure vessel 10 is set. Since it is close to the connection height of the pipe 11 with respect to the reactor pressure vessel 10, it is possible to reduce the size of the nuclear power plant 1 as in the first embodiment.
  • the present invention is not limited to the above-described embodiments and modifications, and further includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

原子炉圧力容器と、前記原子炉圧力容器を支持する圧力容器支持構造と、前記圧力容器支持構造に支持された前記原子炉圧力容器を収容する原子炉格納容器と、前記原子炉圧力容器の重心よりも上方において前記原子炉圧力容器の側周壁に接続され、かつ前記原子炉格納容器に固定された配管とを備え、前記圧力容器支持構造は、前記原子炉圧力容器の重心よりも上方において、前記原子炉圧力容器を支持する原子力プラントである。

Description

原子力プラント
 本発明は、原子力プラントに関する。
 原子力プラントに関する技術として、下記特許文献1に開示の技術がある。この特許文献1には、「原子炉圧力容器(RPV)4は、その円筒胴6の下部に支持構造5を介してペデスタイル3上に立設され、図示しない配管を介して高温高圧の流体を内蔵及び流通する。…支持構造5は、原子炉圧力容器4の円筒胴6の下部外周に突設した凸部サポート7と、この凸部サポート7を介して円筒胴6の荷重を支持すると共に円筒胴6の径方向の熱膨張、収縮を回動により追従(吸収)する追従サポート部材11及びサポート部材8と、…から構成される。」と記載されている。
特開2009-229289号公報
 ところで、原子炉の運転中は原子炉圧力容器が高温となり、原子炉圧力容器が熱膨張する。このため、上述のように原子炉圧力容器を円筒胴の下部において支持する構造では、原子炉圧力容器の上方に接続された配管の高さ位置が大きく変動する。
 ここで、原子炉圧力容器の上方に接続された配管は、原子炉圧力容器を収容する原子炉格納容器の壁部を貫通して原子炉格納容器の外に引き出され、原子炉圧力容器の側壁と原子炉格納容器の壁部とに固定された状態となっている。このため、原子炉圧力容器の熱膨張により、原子炉圧力容器に接続された配管の高さ位置が大きく変動すると、配管の固定部に負荷が掛かる。そこで、配管の固定部に掛かる負荷を軽減するために、原子炉圧力容器から原子炉格納容器までの配管にエルボーを設けるなどして経路を延長する構成としており、このことが原子力プラントの小型化を妨げる要因となっている。
 そこで本発明は、原子炉圧力容器に接続され原子炉格納容器に固定された配管の経路短縮を可能とし、これにより小型化が可能な原子力プラントを提供することを目的とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、原子炉圧力容器と、前記原子炉圧力容器を支持する圧力容器支持構造と、前記圧力容器支持構造に支持された前記原子炉圧力容器を収容する原子炉格納容器と、前記原子炉圧力容器の重心よりも上方において前記原子炉圧力容器の側周壁に接続され、かつ前記原子炉格納容器に固定された配管とを備え、前記圧力容器支持構造は、前記原子炉圧力容器の重心よりも上方において、前記原子炉圧力容器を支持する原子力プラントである。
 本発明によれば、原子炉圧力容器に接続され原子炉格納容器に固定された配管の経路短縮を可能とし、これにより小型化が可能な原子力プラントを提供することができる。
第1実施形態の原子力プラントの構成図である。 第2実施形態の原子力プラントの構成図である。
 以下、本発明の原子力プラントの各実施の形態を、図面に基づいて詳細に説明する。なお、以下に説明する各実施形態においては、同一の構成要素に同一の符号を付し、重複する説明は省略する。
≪第1実施形態≫
 図1は、第1実施形態に係る原子力プラント1の構成図であって、本発明を改良沸騰水型の原子力プラントに適用した場合の図を示している。この図に示す原子力プラント1は、炉心が収容された原子炉圧力容器10と、原子炉圧力容器10に固定された配管11と、原子炉圧力容器10を支持する圧力容器支持構造20とを備える。また原子力プラント1は、原子炉圧力容器10を収容する原子炉格納容器30と、さらに原子炉格納容器30を収容する原子炉建屋40とを備えている。
 このような構成において、この原子力プラント1は、圧力容器支持構造20による原子炉圧力容器10の支持状態が特徴的である。以下、原子力プラント1の構成を、原子炉圧力容器10から順に説明する。
<原子炉圧力容器10>
 原子炉圧力容器10は、核燃料の集合体である炉心と冷却材とを収容するものであり、鉛直方向に配置された円筒材の両側開口を閉塞した形状を有する。このような原子炉圧力容器10は、鋼鉄製であって、例えば上部円筒胴と下部円筒胴とを溶接した円筒材と、鉛直方向に配置された円筒材の上部を閉塞する上鏡部と、円筒材の下部を閉塞する下鏡部とによって構成されている。
 また原子炉圧力容器10は、次に説明する配管11が、鉛直方向の異なる高さに複数接続されている。
<配管11>
 配管11は、原子炉圧力容器10に接続されると共に、原子炉格納容器30に固定されたものである。このような配管11は、一方の端部が、原子炉圧力容器10の内部に連通する状態で、原子炉圧力容器10の側周壁に接続して設けられている。原子炉圧力容器10に対する各配管11の接続箇所は、原子炉圧力容器10の重心よりも上方であって、原子炉圧力容器10の側周壁である。
 また配管11は、他方の端部が、以降に説明する原子炉格納容器30を貫通し、貫通箇所において原子炉格納容器30に固定され、さらに原子炉建屋40から外側に取り出された状態で配置されている。原子炉格納容器30における配管11の貫通箇所は、おおむね、原子炉圧力容器10に対する配管11の接続高さと同程度の高さであることとする。
 例えばこの原子力プラント1が、図示したような沸騰水型の場合、これらの配管11は、蒸気配管11aと復水配管11bと、さらにその他の配管である。蒸気配管11aは、冷却材である水が加熱された蒸気Sを、原子炉圧力容器10からタービンなどの外部機器に供給するための配管である。復水配管11bは、外部機器を通過した蒸気Sを冷却した水Lを、原子炉圧力容器10に戻すための配管である。これらの配管11は、それぞれが必要に応じた数だけ設けられ、典型的には原子炉圧力容器10の重心Cgよりも上方において、原子炉圧力容器10の周方向の複数個所に配置されている。
 例えば蒸気配管11aであれば、原子炉圧力容器10内の冷却材の液面よりも高い位置に配置されている。また復水配管11bであれば、原子炉圧力容器10内の冷却材の液面よりも低い位置に配置されている。以上は、沸騰水型の原子力プラント1であれば、図示したような改良型に限定されることはなく、従来型であっても、自然循環型であっても同様である。
 また、この原子力プラント1が加圧水型の場合、これらの配管11は、蒸気発生器を介して原子炉圧力容器10に接続され、原子炉格納容器30を貫通して固定された配管であることとする。
 なお、ここでの図示は省略したが、配管11は、原子炉圧力容器10に設けられたノズル部分と、このノズル部分に接続された配管部分とで構成されていてよい。配管部分は、必要に応じて配管11を屈曲して配置するためのエルボー配管を含んでよい。また原子炉圧力容器10は、原子炉格納容器30の外に取り出される配管11の他にも、これらの配管11とは異なり、原子炉圧力容器10に連通するが、原子炉格納容器30の内部のみに配設された内部配管も備えていてよい。
<圧力容器支持構造20>
 圧力容器支持構造20は、支持構造体21と支持部材22とを備える。支持構造体21には、スタビライザ23が設けられている。以下、これらの構成要素の詳細を説明する。[支持構造体21]
 支持構造体21は、例えば原子炉格納容器30の床面30aを構成するベタ基礎からの立ち上がりによって構成された円筒形状の基礎部分である。このような支持構造体21は、放射性物質の遮蔽壁を兼ねたものであり、特にγ線に対する遮蔽機能、さらに好ましくは生体遮蔽機能を有する遮蔽壁として構成されていることとする。このような支持構造体21は、鉄筋材料とコンクリート材料との複合構造によって構成され、原子炉圧力容器10を下部側から覆って収容する。このように支持構造体21が遮蔽壁を兼ねる構成とすることにより、原子炉圧力容器10と原子炉格納容器30との間に、別体としてγ-シールドを配置する必要がなく、原子炉格納容器30内の省スペース化を図ることができる。
 また支持構造体21は、その上端縁であって円筒形状の開口縁部分が、原子炉圧力容器10を支持するための台座21aとして構成されている。支持構造体21の上端縁を台座21aとして構成することにより、支持構造体21の径を小型化できる。この台座21aには支持部材22が固定され、この支持部材22を介して原子炉圧力容器10が支持構造体21の台座21aに固定された状態となっている。
 また支持構造体21は、配管11を貫通させるための開口部21bが設けられていてもよい。この原子力プラント1が沸騰水型の場合、一例として配管11のうち下方に配置された復水配管11bを貫通させるための開口部21bを有する。
 このような開口部21bは、原子炉圧力容器10に対する復水配管11bの接続高さに合わせ、同程度の高さ位置に設けられていることが好ましい。また配管11を貫通させた状態の開口部21bは、放射性物質に対する遮蔽機能を有する材料、特にγ線に対する遮蔽機能さらに好ましくは生体遮蔽機能を有する材料によって埋め込まれていることが好ましい。このような材料としては、セメントが用いられる。
 なお、原子炉圧力容器10の縦方向の熱膨張・収縮によって配管11に掛かる負荷の軽減を考慮した場合、開口部21bは、復水配管11bの垂直及び水平方向の動きを妨げることのない構成であってもよい。
[支持部材22]
 支持部材22は、原子炉圧力容器10を支持構造体21に対して固定するための部材であり、原子炉圧力容器10に対して支持部材22が取り付けられた位置が、原子炉圧力容器10の支持部Pとなる。このような支持部材22は、例えば下方に向かって広がる円錐台のスカート形状を有する。スカート形状の支持部材22は、上方側の端縁が原子炉圧力容器10の側周壁に固定され、下方側の端縁が支持構造体21の台座21a上に固定され、鉛直方向及び水平方向の荷重を支持する構造となっている。
 より詳しくは、支持部材22における上方側の端縁は、原子炉圧力容器10の重心Cgよりも上方において、原子炉圧力容器10の側周壁に固定されている。これにより、原子炉圧力容器10は、重心Cgよりも上方の支持部Pにおいて、支持部材22によって支持された状態で、原子炉格納容器30内に固定された状態となっている。
 また好ましくは、支持部材22における上方側の端縁は、配管11の接続高さと同程度の高さにおいて、原子炉圧力容器10の側周壁に固定されていることとする。原子炉圧力容器10の異なる高さ位置に複数の配管11が接続されている場合であれば、これらの配管11が接続された高さ位置の範囲内に、支持部材22における上方側の端縁が固定されていることとする。さらに好ましくは、複数の配管11が接続された高さ位置の範囲の中間の高さに、支持部材22における上方側の端縁が固定されていることとする。
 具体的な一例として、原子炉圧力容器10に接続された配管11が蒸気配管11aと復水配管11bとである場合、蒸気配管11aと復水配管11bとが接続された高さ位置の範囲内において、支持部材22における上方側の端縁が、原子炉圧力容器10の側周壁に固定されていることとする。この場合の好ましい例としては、蒸気配管11aの接続高さと、復水配管11bの接続高さの中間位置において、支持部材22における上方側の端縁が、原子炉圧力容器10の側周壁に固定されていることとする。
 これにより、原子炉圧力容器10の支持部Pは、配管11の接続高さと同程度の高さとなり、原子炉圧力容器10の熱膨張・収縮による配管11の鉛直方向の移動を小さく抑えることができる。
[スタビライザ23]
 スタビライザ23は、原子炉格納容器30および原子炉圧力容器10の揺れを安定化させるためのものであって、複数箇所に設けられている。このようなスタビライザ23のうちの幾つかは、原子炉圧力容器10と支持構造体21との間に配置されたRPVスタビライザ23aであって、原子炉圧力容器10を構成する円筒材の周方向に沿って複数配置されている。またスタビライザ23のうちの他の幾つかは、支持構造体21と原子炉格納容器30の側周壁と間に配置されたPCVスタビライザ23b(PVV:Primary Containment Vessel)であって、支持構造体21の周方向に沿って複数配置されている。
<原子炉格納容器30>
 原子炉格納容器30は、圧力容器支持構造20で支持された状態の原子炉圧力容器10を収容する容器である。この原子炉格納容器30は、冷却材喪失などの事故発生時において原子炉圧力容器10に対する圧力障壁として機能するとともに、外部への放射性物質の拡散に対する障壁となる。このような原子炉格納容器30は、原子炉圧力容器10の全周を覆う構成であって、鉄筋材料とコンクリート材料との複合構造であり、例えば鋼鉄製の容器の周囲をコンクリートで覆って構成される。
 また原子炉格納容器30は、配管11を取り出す貫通孔31を有する。貫通孔31は、原子炉圧力容器10に接続された配管11を、原子炉格納容器30の外側に取り出すための開口である。貫通孔31は、各配管11に対応して設けられており、原子炉圧力容器10に対する各配管11の接続高さに合わせ、同程度の高さ位置に設けられていることが好ましい。また個々の配管11を貫通させた状態の各貫通孔31は、放射性物質に対する遮蔽機能を有する材料、特にγ線に対する遮蔽機能さらに好ましくは生体遮蔽機能を有する材料によって埋め込まれていることが好ましい。このような材料としては、セメントが用いられる。
<原子炉建屋40>
 原子炉建屋40は、原子炉格納容器30を収容する建造物である。この原子炉建屋40は、冷却材喪失などの事故発生時において原子炉格納容器30に対する圧力障壁として機能するとともに、外部への放射性物質の拡散に対する障壁となる。このような原子炉建屋40は、原子炉格納容器30の覆うコンクリート製のものであり、内部に収容する原子炉格納容器30との間に取り合いを設けて配置されている。
 さらに原子炉建屋40は、配管11を取り出す開口41を有する。この開口41から取り出された配管11が、ここでの図示を省略したタービンや復水器などの外部機器に接続された構成となっている。
<第1実施形態の効果>
 以上説明した第1実施形態の原子力プラント1は、原子炉圧力容器10の支持高さPを、原子炉圧力容器10の重心Cgよりも上方とした構成である。これにより、原子炉圧力容器10の支持高さPを、原子炉圧力容器10に対する配管11の接続高さに対して、より近接した位置とすることができる。このため、原子炉圧力容器10の熱膨張・収縮による配管11の接続高さ位置の変動を小さく抑えることができる。
 したがって、原子炉圧力容器10と原子炉格納容器30との間で配管11を引き回すことなく、原子炉圧力容器10が熱膨張・収縮した際に配管11の固定部に掛かる負荷を軽減することができる。これにより、原子炉圧力容器10から原子炉格納容器30までの配管11の経路を短縮することが可能になる。この結果、原子炉圧力容器10と原子炉格納容器30との間の、配管11を引き回すためのスペースを縮小することができ、原子力プラント1の小型化を図ることが可能となる。
≪変形例≫
 以上説明した第1実施形態において、支持構造体21は、遮蔽壁として形成された構造物として説明したが、これに限定されることはない。例えば、支持構造体21は、遮蔽壁と別体で設けたものであってもよい。また支持構造体21は、原子炉格納容器30の床面30aからの立ち上げた円筒形状の遮蔽壁となる基礎部分と、遮蔽壁の上部に立設させた台座構造体とで構成されてもよい。台座構造体は、支持部材22を固定できる構成であれば、壁構造であってもよいが柱構造であってもよく、他の構成であってもよい。これにより従来設計の遮蔽壁の高さに依存することのない支持高さPにおいて原子炉圧力容器10を支持することができる。
 さらに支持構造体21は、上端縁を台座21aとして支持部材22を固定する構造物として説明したが、これに限定されるとはない。例えば、支持構造体21は、遮蔽壁の中間高さに原子炉圧力容器10側に向かって突出する台座21aが設けられた構成であってもよい。このような構成であtっても、遮蔽壁の高さに依存することのない支持高さPにおいて原子炉圧力容器10を支持することができる。
≪第2実施形態≫
 図2は、第2実施形態に係る原子力プラント2の構成図である。この図に示す原子力プラント2が、図1に示した第1実施形態の原子力プラント1と異なるところは、原子炉格納容器30内において原子炉圧力容器10を支持するための圧力容器支持構造20’の構成であって、特に支持部材102の構成にあり、他の構成要素は変形例も含めて第1実施形態と同様である。このため、以下においては支持部材102の構成のみを説明する。
<圧力容器支持構造20’>
[支持部材102]
 支持部材102は、原子炉圧力容器10を支持構造体21に支持させるための部材であって、原子炉圧力容器10の側周壁から外側に向かって突出する状態で原子炉圧力容器10に固定さられたブロック状の部材である。この支持部材102は、原子炉圧力容器10の周方向に連続するフランジ形状であってもよい。このような支持部材102は、支持構造体21の台座21a上に載置され、台座21a上でスライドすることにより、熱膨張による原子炉圧力容器10の水平方向の移動を吸収しつつ、原子炉圧力容器10を支持する構造となっている。
 原子炉圧力容器10の側周壁に対する支持部材102の固定位置は、第1実施形態の支持部材の固定位置と同様であり、この支持部材102の固定位置が、原子炉圧力容器10の支持部Pとなる。すなわち、支持部材102は、原子炉圧力容器10の重心Cgよりも上方において、原子炉圧力容器10の側周壁に固定され、好ましくは、配管11の接続高さと同程度の高さにおいて原子炉圧力容器10の側周壁に固定されている。具体的な一例としては、蒸気配管11aと復水配管11bとの間であって中間位置である。
<第2実施形態の効果>
 以上説明した第2実施形態の構成であっても、原子炉圧力容器10の支持高さPを、原子炉圧力容器10の重心Cgよりも上方とし、原子炉圧力容器10の支持高さPを、原子炉圧力容器10に対する配管11の接続高さに対して近接させているため、第1実施形態と同様に原子力プラント1の小型化を図ることが可能となる。
 なお、本発明は上記した実施形態および変形例に限定されるものではなく、さらに様々な変形例が含まれる。例えば、上記した実施形態は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1,2…原子力プラント
 10…原子炉圧力容器
 11…配管
 11a…蒸気配管
 11b…復水配管
 20,20’…圧力容器支持構造
 21…支持構造体
 21a  台座
 21b…開口部
 22,102…支持部材
 30…原子炉格納容器
 30a  床面
 31  貫通孔

Claims (11)

  1.  原子炉圧力容器と、
     前記原子炉圧力容器を支持する圧力容器支持構造と、
     前記圧力容器支持構造に支持された前記原子炉圧力容器を収容する原子炉格納容器と、 前記原子炉圧力容器の重心よりも上方において前記原子炉圧力容器の側周壁に接続され、かつ前記原子炉格納容器に固定された配管とを備え、
     前記圧力容器支持構造は、前記原子炉圧力容器の重心よりも上方において、前記原子炉圧力容器を支持する
     原子力プラント。
  2.  前記配管は、前記原子炉格納容器を貫通して前記原子炉格納容器に固定されている
     請求項1に記載の原子力プラント。
  3.  前記原子炉圧力容器には、異なる高さ位置において複数の前記配管が接続され、
     前記圧力容器支持構造は、前記複数の配管が接続された高さ位置の範囲内において前記原子炉圧力容器を支持する
     請求項1に記載の原子力プラント。
  4.  前記配管は、前記原子炉圧力容器内の蒸気を外部機器に供給するための蒸気配管と、前記蒸気を冷却した冷却材を前記原子炉圧力容器内に供給する復水配管とを含む
     請求項1に記載の原子力プラント。
  5.  前記圧力容器支持構造は、前記原子炉圧力容器に対する前記蒸気配管の接続高さと前記復水配管の接続高さとの間の高さ位置において、前記原子炉圧力容器を支持する
     請求項4に記載の原子力プラント。
  6.  前記圧力容器支持構造は、前記原子炉格納容器の床面から立ち上げた支持構造体と、前記原子炉圧力容器に固定され前記支持構造体に支持された支持部材とを備えた
     請求項1~5の何れか1項に記載の原子力プラント。
  7.  前記支持部材は、円錐台のスカート形状を有し、一方の端縁が前記原子炉圧力容器に固定され、他方の端縁が前記支持構造体に固定されている
     請求項6に記載の原子力プラント。
  8.  前記支持部材は、前記原子炉圧力容器から外側に向かって突出して設けられ、突出した先端側が前記支持構造体に載置されている
     請求項6に記載の原子力プラント。
  9.  前記支持構造体は、生体遮蔽機能を有する遮蔽壁として構成された
     請求項6に記載の原子力プラント。
  10.  前記支持構造体は、鉄筋材料とコンクリート材料との複合構造である
     請求項9に記載の原子力プラント。
  11.  前記支持構造体は、前記配管を貫通させる開口部を有し、
    前記開口部が生体遮蔽機能を有する材料によって埋め込まれている
     請求項9に記載の原子力プラント。
PCT/JP2020/020864 2019-09-26 2020-05-27 原子力プラント WO2021059590A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019174942A JP7321045B2 (ja) 2019-09-26 2019-09-26 原子力プラント
JP2019-174942 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021059590A1 true WO2021059590A1 (ja) 2021-04-01

Family

ID=75157657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020864 WO2021059590A1 (ja) 2019-09-26 2020-05-27 原子力プラント

Country Status (2)

Country Link
JP (1) JP7321045B2 (ja)
WO (1) WO2021059590A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883296A (ja) * 1972-02-09 1973-11-06
JPS61290389A (ja) * 1985-06-19 1986-12-20 株式会社東芝 原子炉圧力容器の支持装置
JPH1114779A (ja) * 1997-06-24 1999-01-22 Hitachi Ltd 原子炉格納容器内下部構造物の建設方法とその建設方法に用いるモジュール構造物
JP2000329888A (ja) * 1999-05-20 2000-11-30 Ishikawajima Harima Heavy Ind Co Ltd 原子炉圧力容器の支持スカート構造
JP2001513895A (ja) * 1997-03-07 2001-09-04 エービービー アトム アクチボラグ 原子力プラント
JP2004085234A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd 原子炉格納設備

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57588A (en) * 1980-06-03 1982-01-05 Ishikawajima Harima Heavy Ind Supporting device of nuclear reactor pressure vessel
JPH01160396U (ja) * 1988-04-27 1989-11-07

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883296A (ja) * 1972-02-09 1973-11-06
JPS61290389A (ja) * 1985-06-19 1986-12-20 株式会社東芝 原子炉圧力容器の支持装置
JP2001513895A (ja) * 1997-03-07 2001-09-04 エービービー アトム アクチボラグ 原子力プラント
JPH1114779A (ja) * 1997-06-24 1999-01-22 Hitachi Ltd 原子炉格納容器内下部構造物の建設方法とその建設方法に用いるモジュール構造物
JP2000329888A (ja) * 1999-05-20 2000-11-30 Ishikawajima Harima Heavy Ind Co Ltd 原子炉圧力容器の支持スカート構造
JP2004085234A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd 原子炉格納設備

Also Published As

Publication number Publication date
JP7321045B2 (ja) 2023-08-04
JP2021051029A (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
US3568379A (en) Prestressed concrete pressure vessel
US20180082759A1 (en) Nuclear Reactor Support And Seismic Restraint With In-Vessel Core Retention Cooling Features
US9589685B2 (en) Passive reactor cooling system
WO2021059590A1 (ja) 原子力プラント
US8681922B2 (en) Pressurizer with a mechanically attached surge nozzle thermal sleeve
US7813464B1 (en) Permanent seal ring for a nuclear reactor cavity
KR20120091340A (ko) 원자력 시설 건물의 기초판 및 원자력 시설
KR101925267B1 (ko) 선박용 증기 터빈 모듈 구조
GB2541475B (en) Structural layout of primary loop of nuclear reactor coolant system
US4681731A (en) Nuclear reactor construction with bottom supported reactor vessel
JP7434141B2 (ja) 原子炉圧力容器ペデスタル及び原子炉圧力容器ペデスタルを有する原子炉格納容器
US20190115115A1 (en) Chimney and loading/unloading methods for the same in nuclear reactors
JP4643599B2 (ja) 鋼板コンクリート製復水器一体型タービン建屋及びその構築方法
JP3462911B2 (ja) 原子炉建屋
JP4479088B2 (ja) 格納容器
US4645638A (en) Hanging core support system for a nuclear reactor
JP2004085234A (ja) 原子炉格納設備
KR20090098979A (ko) 원자로 캐비티용 영구 시일 링
JP4467531B2 (ja) 原子炉建屋
JP2015045586A (ja) 格納容器用耐座屈構造
JPH01265197A (ja) 原子炉格納容器
JP3658510B2 (ja) 原子炉格納容器
US6563900B2 (en) Ring plate around openings in reinforced concrete containment vessel
JPH07218676A (ja) 原子炉格納容器
JP2008039403A (ja) 原子炉格納施設及び原子炉建屋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869965

Country of ref document: EP

Kind code of ref document: A1