WO2021059425A1 - 自動車車体部品の衝突性能評価試験方法および装置 - Google Patents

自動車車体部品の衝突性能評価試験方法および装置 Download PDF

Info

Publication number
WO2021059425A1
WO2021059425A1 PCT/JP2019/037784 JP2019037784W WO2021059425A1 WO 2021059425 A1 WO2021059425 A1 WO 2021059425A1 JP 2019037784 W JP2019037784 W JP 2019037784W WO 2021059425 A1 WO2021059425 A1 WO 2021059425A1
Authority
WO
WIPO (PCT)
Prior art keywords
translation
collision
plate
vehicle body
control mechanism
Prior art date
Application number
PCT/JP2019/037784
Other languages
English (en)
French (fr)
Inventor
健太郎 佐藤
小日置 英明
貴之 二塚
智宏 堺谷
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020227005551A priority Critical patent/KR20220035479A/ko
Priority to CN201980099137.8A priority patent/CN114245865B/zh
Priority to JP2020509566A priority patent/JP6694171B1/ja
Priority to US17/639,627 priority patent/US12031955B2/en
Priority to EP19946660.8A priority patent/EP4036549B1/en
Priority to PCT/JP2019/037784 priority patent/WO2021059425A1/ja
Priority to MX2022003136A priority patent/MX2022003136A/es
Publication of WO2021059425A1 publication Critical patent/WO2021059425A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/307Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by a compressed or tensile-stressed spring; generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/0078Shock-testing of vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/04Door pillars ; windshield pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/06Fixed roofs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/04Chucks, fixtures, jaws, holders or anvils

Definitions

  • the present invention relates to a method and an apparatus for performing an evaluation test of collision performance of automobile body parts.
  • Collision performance is one of the performances required for the car body, and it is required to protect the occupants while reducing damage to the car body in the event of a collision.
  • evaluation of the collision performance of the vehicle body is indispensable, and performance prediction is carried out by computer simulation.
  • automobile manufacturers manufacture prototype vehicles for collision tests, and if the performance is not satisfied, take measures and remanufacture the prototype vehicle. Therefore, it is necessary to carry out the collision test again, which requires a great deal of development cost and development time.
  • a collision performance evaluation test (hereinafter, also referred to as "parts collision test”) for a single body component has been conventionally performed instead of the collision performance evaluation test for the entire vehicle body.
  • a test method is desired in which the parts restraint state and the load load state are controlled and the test is performed according to the actual deformation of the entire vehicle body. It is rare.
  • the front pillar and roof rail parts which play an important role in protecting occupants in the event of a small overlap collision, are parts that are connected in an arch shape to the front and center pillars, and the automobile is viewed from the front. It has a function to minimize the intrusion into the vehicle by transmitting the collision load generated in the center pillar portion by the front tire colliding with the front portion to the rear part of the vehicle body while suppressing the deformation as much as possible. At that time, the entire front part is greatly crushed by the collision load of the tire, so the load received by the roof rail parts changes in a complicated manner during the collision process. It is necessary to do.
  • Patent Document 1 proposes a collision performance evaluation test method for vehicle body parts of an automobile and a parts collision tester used for the evaluation test method.
  • the deformation resistance on the vehicle body side is simulated by attaching a restraint jig that combines a flywheel and a one-way clutch to each support point of the vehicle body parts.
  • Patent Document 2 proposes a component support jig capable of applying torque in a component collision test.
  • a rack and pinion type gear and a spring are combined to deform a vehicle body component of a spring. It can be restrained by force, and the restraint state of the body parts is adjusted by changing the strength of the spring.
  • the jig used for the member collision test is required to have a structure and strength capable of corresponding to each speed.
  • economic rationality is also emphasized.
  • Patent Document 1 since the technique proposed in Patent Document 1 applies a binding force to the vehicle body parts by the inertial force of the flywheel, it is difficult to perform the test in a low speed region under desired conditions in which the inertial force can be obtained. Is. Further, even in the high speed region, it is necessary to adjust the mass of the flywheel due to the change in speed, and there is a concern that the test will be costly.
  • Patent Document 2 is based on a rack and pinion and a spring-type restraint mechanism to obtain a restraining force of vehicle body parts, so that the mechanism is complicated and a high-speed region exceeding 50 km / h In this test, there are problems in that the mechanism does not operate due to a shocking load, and in the worst case, the device itself is damaged.
  • the present invention proposes a collision performance evaluation test method for automobile parts that advantageously solves the above-mentioned restrictions on test speed and problems of economic rationality, and provides a collision performance evaluation test apparatus suitable for the method.
  • the purpose is.
  • the collision performance evaluation test method for automobile body parts which achieves the above object, supports and cures the front end portion, the middle portion, and the rear end portion of the automobile body parts when performing the collision performance evaluation test of the automobile body parts.
  • a support jig that is supported by a tool and supports the tip portion is provided with a translation control / rotation control mechanism
  • a support jig that supports the intermediate portion is provided with a translation control mechanism
  • the translation control / rotation control mechanism collides with each other.
  • a pair of support members having two rows of horizontal guide grooves parallel to each other, an L-shaped plate in which the tip of the vehicle body component is fixed to the upper surface and a collision punch collides with the front surface, and both sides of the L-shaped plate are provided.
  • a rotating box having a side plate and sandwiched between the supporting members, and a rotating shaft pin penetrating one of the side plate of the rotating box and the two rows of horizontal guide grooves as the rotating shaft of the rotating box.
  • An arc-shaped guide groove provided on the side plate of the rotating box with the central axis of the rotating shaft pin as the center of the arc, a first compression pin penetrating the other of the two rows of horizontal guide grooves, and the rotating shaft. It has a connecting plate for connecting the pin and the first compression pin so as to be rotatable and movable along the horizontal guide groove, and the first energy absorbing member is arranged in the arc-shaped guide groove.
  • the translation control mechanism slidably sandwiches the outer peripheral end portion between the support plate fixed to the support jig, the pair of slide guides provided on the support plate, and the support plate and the slide guide.
  • the rotation axis pin and the first compression pin are horizontally moved along the two rows of horizontal guide grooves of the translation control and rotation control mechanism, and the first energy absorbing member is compressed by the first compression.
  • the reaction force compressed by the pin controls the translational movement and rotation of the tip of the vehicle body component, and the second compression pin presses the second energy absorbing member. It is characterized in that the translational movement of the intermediate portion of the vehicle body component is controlled by the contracting reaction force.
  • the collision performance evaluation test device for automobile body parts of the present invention that achieves the above object is a device for performing an evaluation test for collision performance of automobile body parts, and is a front end portion, an intermediate portion, and a rear end portion of the vehicle body parts.
  • the translation control mechanism and the rotation control mechanism are provided with a collision punch that collides with the front surface of the L-shaped plate included in the translation control and rotation control mechanism at a test speed, and the translation control and rotation control mechanism has two rows of horizontal parallel to the collision direction.
  • An arc-shaped guide groove provided on the side plate of the rotating box with the central axis of the shaft pin as the center of the arc, a first compression pin penetrating the other of the two rows of horizontal guide grooves, and the rotating shaft.
  • the translation control mechanism is arranged and slides on the support plate fixed to the support jig, a pair of slide guides provided on the support plate, and the support plate and the slide guide at the outer peripheral end portion. Both ends are slidably sandwiched between the disc for fixing the intermediate portion of the vehicle body parts, the support plate and the slide guide, and arranged in contact with the upper portion of the disc.
  • a second compression pin having a translation plate and projecting from one of the support plate and the translation plate toward the other is formed on the other of the support plate and the translation plate.
  • the first translation control and rotation control mechanism is provided in the translational control and rotation control mechanism, which extends in the slidable direction of the translation plate and is fitted in a linear guide portion in which a second energy absorbing member is arranged.
  • the compression pin deforms the first energy absorbing member by the rotation of the rotating box around the rotating axis, and applies a torque opposite to the rotation direction to the rotating box.
  • the second compression pin provided in the translation control mechanism deforms the second energy absorbing member by the translation of the translation plate, and exerts a reaction force in the direction opposite to the translation direction. It is characterized in that it is configured to be applied to the translation plate.
  • the front end portion, the middle portion and the rear end portion of the vehicle body parts are supported by support jigs, respectively.
  • a translation control / rotation control mechanism is provided on the support jig that supports the tip portion
  • a translation control mechanism is provided on the support jig that supports the intermediate portion
  • the translation control / rotation control mechanism is parallel to the collision direction.
  • a pair of support members having horizontal guide grooves in a row, an L-shaped plate in which the tip of the vehicle body component is fixed to the upper surface and a collision punch collides with the front surface, and side plates provided on both side surfaces of the L-shaped plate.
  • the translation control mechanism has a connecting plate for connecting the compression pins of the above rotatably and movably along the horizontal guide groove, and a first energy absorbing member is arranged in the arc-shaped guide groove.
  • the outer peripheral end is slidably sandwiched between the support plate fixed to the support jig, the pair of slide guides provided on the support plate, and the support plate and the slide guide, and the vehicle body component. It has a disk for fixing the intermediate portion of the above plate, and a translation plate whose both ends are slidably sandwiched between the support plate and the slide guide and arranged in contact with the upper portion of the disk.
  • a second compression pin projecting from one of the plate and the translation plate toward the other is formed on the other of the support plate and the translation plate in the slidable direction of the translation plate.
  • the translation control and rotation control mechanism is caused by causing the collision punch to collide with a rotation box having a fixed tip portion of the body parts at a test speed. And the translation control and rotation control mechanism and the translation control mechanism apply a reaction force in the opposite direction to the part of the vehicle body part supported by the support jig provided with the translation control mechanism to control the translation and rotation of the part.
  • the simple and durable structure in which the energy absorbing member is placed in the translation control / rotation control mechanism or translation control mechanism of the support jig enables testing in a high-speed region of 50 km / h or more, and further, energy absorption.
  • the economical rationality of the test can be enhanced.
  • the collision performance evaluation test apparatus for an automobile body part of the present invention includes a support jig for supporting the tip, middle and rear ends of the body part, and a support for supporting the tip.
  • the translation control / rotation control mechanism provided on the tool, the translation control mechanism provided on the support jig for supporting the intermediate portion, and the test speed on the front surface of the L-shaped plate included in the translation control / rotation control mechanism.
  • the translation control and rotation control mechanism has a pair of support members having two rows of horizontal guide grooves parallel to the collision direction, and the tip of the vehicle body component is fixed to the upper surface thereof.
  • the L-shaped plate on which the collision punch collides with the front surface and side plates provided on both side surfaces of the L-shaped plate are provided, and the rotary box sandwiched between the support members and the rotary shaft of the rotary box are used.
  • the arc-shaped guide groove, the first compression pin penetrating the other of the two rows of horizontal guide grooves, the rotary shaft pin, and the first compression pin are rotatable and move along the horizontal guide groove.
  • a support plate having a connecting plate for enabling connection, a first energy absorbing member is arranged in the arcuate guide groove, and the translation control mechanism is fixed to the support jig, and the support plate.
  • a pair of slide guides provided on the support plate, a disk slidably sandwiched between the support plate and the slide guide at the outer peripheral end portion to fix an intermediate portion of the vehicle body parts, and the support.
  • a translation plate having both ends slidably sandwiched between the plate and the slide guide and arranged in contact with the upper portion of the disk, and one of the support plate and the translation plate on the other.
  • a second compression pin projecting toward the support plate is formed on the other of the support plate and the translation plate, extends in the slidable direction of the translation plate, and has a second energy absorbing member inside.
  • the first compression pin provided in the translation control and rotation control mechanism is fitted in the linear guide portion in which the is arranged, and the first energy absorbing member is caused by the rotation of the rotation box around the rotation axis.
  • the second compression pin provided in the translation control mechanism is configured to apply a torque opposite to the rotation direction to the rotation box by deforming the rotation box. By the translation of the translation plate, the second energy absorbing member is deformed and a reaction force in the direction opposite to the translation direction is applied to the translation plate.
  • the translation control and rotation control mechanism is caused by causing the collision punch to collide with a rotation box having a fixed tip portion of the body parts at a test speed.
  • a support jig provided with a translation control mechanism by applying a reaction force in the opposite direction from the translation control / rotation control mechanism or the translation control mechanism. Therefore, it is possible to realize a collision performance evaluation test of a vehicle body component alone while satisfactorily reproducing the component restraint state and the load load state at the time of an actual vehicle body collision.
  • the simple and durable structure in which the energy absorbing member is placed in the translation control / rotation control mechanism or translation control mechanism of the support jig enables testing in a high-speed region of 50 km / h or more, and further, energy absorption.
  • the economical rationality of the test can be enhanced.
  • the body parts are automobile front pillars and roof rail parts. This is because automobile front pillars and roof rail parts are greatly affected by the parts restraint state and the load-bearing state during the parts collision test. Further, it is preferable that the translation control / rotation control mechanism and the translation control mechanism reproduce the deformed state of the vehicle body parts that occurs in an actual vehicle body collision. This is because the accuracy of collision performance evaluation of vehicle body parts can be improved.
  • the support jigs that support the intermediate portion and the rear end portion of the vehicle body parts each have load cells for load measurement, respectively. It is preferable to measure the distribution of the deformation load generated at the time of collision deformation of the vehicle body component by the collision punch with the load cell of. This is because it is possible to know the load applied from the vehicle body part to other parts of the vehicle body at the time of collision deformation of the vehicle body part.
  • the energy absorbing member is preferably a commercially available metal circular tube. This is because commercially available metal circular tubes are inexpensively available and have a stable energy absorption capacity.
  • FIG. 1 It is a perspective view which shows typically the collision performance evaluation test apparatus of the automobile body part of one Embodiment of this invention used in the collision performance evaluation test method of the automobile body part of one Embodiment of this invention. It is a perspective view which shows the support jig which supports the tip part of the front pillar as a body part in the collision performance evaluation test apparatus of the automobile body part of the said embodiment. It is a perspective view which shows the function of the translation control and rotation control mechanism in the said embodiment, (a) a schematic diagram which shows the state before a collision test, (b) a schematic diagram which shows the state after a collision test, and (c). ) It is a schematic diagram which shows the state of deformation of the energy absorbing member after a collision test in an enlarged manner.
  • FIG. 1 It is a perspective view which shows the support jig which supports the roof side as the intermediate part of the vehicle body parts in the collision performance evaluation test apparatus of the automobile body parts of the said embodiment. It is a perspective view which shows the function of the translation control mechanism in the said embodiment, (a) a schematic diagram which shows the state before a collision test, (b) a schematic diagram which shows the state after a collision test, and (c) a collision test. It is a schematic diagram which shows the state of the deformation of the energy absorbing member later in an enlarged manner. It is a perspective view which shows typically the structure of the collision test of the automobile body part used in an Example.
  • FIG. 1 is a perspective view schematically showing a collision performance evaluation test apparatus for an automobile body part according to an embodiment of the present invention, which is used in the collision performance evaluation test method for an automobile body part according to the embodiment of the present invention.
  • 2 and 4 show support jigs that support the tip of the front pillar as the vehicle body component and the roof side as the intermediate portion of the vehicle body component in the collision performance evaluation test device for the vehicle body component of the above embodiment, respectively. It is an enlarged perspective view.
  • the collision performance evaluation test device 1 for automobile body parts of this embodiment conducts a test for evaluating the frontal collision performance of a part 10 including an automobile front pillar and a roof rail as an automobile body part, as shown in FIG.
  • the front portion support jig 2 that supports the tip portion 10a of the front pillar, which is the tip portion of the component 10 composed of the front pillar and the roof rail, and the roof side 10b as an intermediate portion of the component 10 composed of the front pillar and the roof rail are supported.
  • the roof side support jig 3 Provided on the roof side support jig 3, the roof rail rear end support jig 4 that supports the rear end 10c of the roof rail, which is the rear end of the component 10 including the front pillar and the roof rail, and the front support jig 2.
  • the translation control and rotation control mechanism 5 provided, the translation control mechanism 6 provided on the roof side support jig 3, and the L-shaped plate 5d included in the translation control and rotation control mechanism 5 are horizontal at a test speed toward the front surface. It is equipped with a collision punch 7 that collides with the vehicle.
  • FIG. 2 is an enlarged perspective view showing a translation control and rotation control mechanism 5 of the front portion support jig 2 with a part cut out.
  • the translation control and rotation control mechanism 5 is sandwiched between a pair of left and right front support members 5a fixed to the structure 1a of the device and having two rows of horizontal guide grooves 5b parallel to the collision direction, and a front support member 5a.
  • the rotation box 5c having the L-shaped plate 5d in which the tip portion 10a of the front pillar is fixed to the upper surface and the collision punch collides with the front surface and the side plates 5e provided on both side surfaces of the L-shaped plate 5d, and the rotation of the rotation box 5c.
  • a rotating shaft pin 5f penetrating one of a side plate 5e of the rotating box 5c and two rows of horizontal guide grooves 5b and a rotating shaft pin 5f are provided on the side plate 5e of the rotating box 5c with the rotating shaft pin 5f as the center of an arc.
  • a plurality of circular tubular metal pipes 5h such as short steel pipes are slidably fitted inside the arcuate guide groove 5i between them as the first energy absorbing member.
  • FIG. 3 is a perspective view schematically showing the function of the translation control and rotation control mechanism 5.
  • FIG. 3A shows the state of the translation control / rotation control mechanism 5 before the collision test, and shows the L-shaped plate 5d, the rotation shaft pin 5f, the compression pin 5g, and the metal pipe of the rotation box 5c of the translation control / rotation control mechanism 5.
  • the state of the arrangement of 5h is schematically shown in a perspective view.
  • FIG. 3B shows the state of the translation control and rotation control mechanism 5 after the collision test.
  • the rotation axis pin 5f and the compression pin 5g move in the horizontal translation direction 5k in parallel with the collision direction 7a, and the rotation box 5c It rotates around the rotation axis pin 5f, which is the rotation axis, in the direction of the rotation axis 5l.
  • the first compression pin 5g since the movement of the first compression pin 5g in the rotation direction 5l is restricted by the horizontal guide groove 5b of the support member 5a and the connecting plate 5j, the first compression pin 5g has an arc shape as shown in an enlarged manner in FIG. 3C.
  • the metal pipes 5h (three in this example) in the guide groove 5i are compressed and deformed by the end of the arcuate guide groove 5i and the first compression pin 5g.
  • FIG. 4 is an enlarged perspective view showing the translation control mechanism 6 of the support jig 3 that supports the roof side 10b as an intermediate portion of the vehicle body parts.
  • the translation control mechanism 6 is fixed to the support jig 3, and in this embodiment, the support plate 6b having two parallel rows of linear vertical guide grooves 6g and the support plate 6b are opposed to each other with a gap provided on the support plate 6b.
  • a disk 6a (see FIG. 1) in which the outer peripheral end is slidably sandwiched between the pair of attached slide guides 6c and the gap between the support plate 6b and the slide guide 6c to fix the roof side 10b.
  • Both ends are slidably sandwiched between the support plate 6b and the slide guide 6c, and the translation plate 6d is arranged in contact with the upper part of the fixing disk 6a, and in this embodiment, the translation plate 6d is penetrated.
  • It has two second compression pins 6e, each of which has a tip penetrating into two rows of vertical guide grooves 6g, and in this embodiment between the upper end of the vertical guide grooves 6g and the second compression pin 6e.
  • a plurality of circular tubular metal pipes 6f such as short steel pipes are slidably fitted inside the vertical guide groove 6g of the above as a second energy absorbing member.
  • the load cell 8a (not shown) is arranged between the support plate 6b and the structure 1a (not shown) via the load cell box 8 to apply a load in the direction perpendicular to the support plate 6a. I try to measure it. This makes it possible to measure the deformation force of the vehicle body parts acting in the direction perpendicular to the vertical plane including the collision direction 7a.
  • the linear guide groove 6g may be arranged in the translation plate 6d, and the second compression pin 6e may be installed in the support plate 6b to be fitted into the guide groove 6g. Further, in this embodiment, two rows of linear vertical guide grooves are used, but there is no problem with one or three or more. Further, the number of metal pipes 5h and 6f to be arranged in the guide groove can be freely selected.
  • FIG. 5 is a perspective view schematically showing the function of the translation control mechanism 6 in the above embodiment.
  • FIG. 5A shows the state of the translation control mechanism 6 before the collision test, and shows the arrangement of the disk 6a for fixing the roof side 10b, the compression pin 6e, and the metal pipe 6f in a perspective view.
  • FIG. 5B is a perspective view showing the state of the translation control mechanism 6 after the collision test. Due to the deformation of the vehicle body parts due to the collision, the roof side, which is an intermediate portion of the vehicle body parts, moves in the vertical translation direction 6i and slightly in the horizontal translation direction 6h, and rotates in the rotation direction 6j.
  • the translation plate 6d and the compression pin 6e are pushed up vertically by the movement of the disk 6a in the vertical translation direction 6i.
  • the metal pipes 6f (three in this example) in the circular vertical guide groove 6g are compressed and deformed by the upper end of the vertical guide groove 6g and the compression pin 6e.
  • the reaction force of the deformation of the metal pipe acts on the fixing disk 6a via the translation plate, and gives a reaction force to the vehicle body parts. In this way, even in a collision test using only vehicle body parts, it is possible to perform a test in line with an actual vehicle in consideration of the influence of peripheral members.
  • the roof rail rear end support jig 4 has a fixing plate 4a for fixing the roof rail rear end 10c.
  • a load cell 8a is arranged between the fixed plate 4a and the structure 1a (not shown) via a load cell box 8 so that the load in the plane perpendicular direction, that is, in the collision direction 7a is measured on the fixed plate.
  • the metal pipe as an energy absorbing member is made by cutting a commercially available steel pipe and needs to be replaced every test, but the cost required for the test can be kept low.
  • the present invention is not limited to the above examples.
  • the metal pipes 5h and 6f are used as the energy absorbing member, but instead of or in addition to the metal pipes 5h and 6f. It is also possible to use other shapes and materials.
  • the intermediate portion support jig of the vehicle body part after grasping the deformation direction of the vehicle body component by CAE analysis in advance, the translation direction of the translation control mechanism can be changed as appropriate, or a plurality of intermediate portion support jigs can be used. Can also be used.
  • the vehicle body parts are not limited to the parts including the front pillar and the roof rail, and even other vehicle body parts can be applied to a collision test against a load from a direction close to parallel to the axis of the vehicle body parts.
  • FIG. 6 shows an embodiment of the present invention.
  • a part collision test of a part 10 composed of an automobile front pillar and a roof rail is performed by simulating a head-on collision of an automobile using the above-mentioned collision performance evaluation test device for automobile body parts.
  • the tip portion 10a of the front pillar is supported by the front side support jig 2
  • the roof side 10b is supported by the roof side side support jig 3
  • the roof rail rear end portion 10c is supported by the rear end support jig 4.
  • the collision punch 7 collides with the front surface (vertical surface) of the L-shaped plate 5d in which the tip portion 10a of the front pillar is fixed to the upper surface (horizontal plane) at a test speed horizontally and face-to-face, and occurs at the time of the collision.
  • the side load applied to the support jig 3 on the roof side side and the horizontal load applied to the rear end support jig 4 of the roof rail were measured by the load cell 8a, respectively. Further, as shown in FIGS. 7A and 7B, the shape change of the component 10 including the front pillar and the roof rail before and after the collision is measured.
  • the state of a head-on collision that actually occurs is simulated, and the front pillar tip portion 10a restrains rotation and movement in the vertical and horizontal directions by using a translation control and rotation control mechanism 5.
  • the translation control mechanism 6 restrains the movement in the vertical direction as well as the rotation.
  • the binding force generated on the roof side 10b is predicted, and the plate thickness and number of steel pipes 6f are determined so that a reaction force equivalent to the binding force is generated, and the front The plate thickness and the number of steel pipes 5h are determined so that the torque generated at the tip of the pillar 10a is predicted and the torque equivalent to the torque is generated.
  • steel cylindrical pipes 5h and 6f having a plate thickness of 1.2 mm, a diameter of 16 mm, and a length of 20 mm are placed in the arcuate guide groove 5i of the translational control and rotation control mechanism 5.
  • Three steel pipes were arranged one by one and three each in the vertical guide groove of the translation control mechanism 6, and a total of 12 steel pipes were arranged.
  • the collision punch determined the shape and the collision position of the collision punch 7 by simulating the bogie used in the vehicle body collision test of the actual vehicle.
  • a collision punch 7 collides with the vertical surface of the L-shaped plate 5d provided in the rotation box 5c of the translational control and rotation control mechanism 5 at a speed of 40 km / h using a high-speed deformation tester of the hydraulic servo type.
  • FIG. 7B it can be seen that the vehicle body component 10 is bent due to the deformation portion 10d generated on the roof rail on the front side from the roof side.
  • FIG. 8 is a graph showing the change over time of the load during the component collision test of the collision performance evaluation test method for the automobile body parts of this embodiment
  • FIG. 8A shows the load cell 8a of the rear end support jig 4 of the roof rail. It is a graph which shows the time-dependent change of the collision load transmitted to the body part of the collision direction 7a of the collision punch 7 measured, and (b) is the direction perpendicular to the vertical plane including the collision direction 7a with the deformation of a body part.
  • the horizontal axis is the elapsed time (s) from the time of collision
  • the vertical axis is the magnitude of the load (kN).
  • FIGS. 8A and 8B it was possible to know the change with time of the collision load based on the deformation of the vehicle body parts after the collision.
  • FIG. 9 shows a schematic side view of the deformed state of the vehicle body parts during the small overlap test as an actual vehicle collision test.
  • FIG. 9A shows the vehicle body parts (front pillars and roof rails) before the collision test
  • FIG. 9B shows the deformation of the vehicle body parts after the collision test. Comparing FIGS. 7 and 9, the deformed portion 10d of the vehicle body part is generated in substantially the same portion, and the collision performance evaluation test method and the collision performance evaluation test device for the automobile body part according to the present invention are an actual automobile. It can be seen that the deformation that occurs in the head-on collision of is well reproduced.
  • the translation control / rotation control mechanism and the translation control are performed as the collision punch collides with the body parts at a test speed.
  • the translation or rotation of the part is controlled.
  • the simple and durable structure in which the energy absorbing member is placed in the translation control / rotation control mechanism or translation control mechanism of the support jig enables testing in a high-speed region of 50 km / h or more, and further, energy absorption.
  • the economical rationality of the test can be enhanced.
  • Collision performance test device 1a Structure 10 Specimen (part consisting of front pillar and roof rail) 10a Front pillar tip 10b Roof side middle 10c Roof rail rear end 10d Deformation 2 Front pillar tip support jig 3 Roof side middle support jig 4 Roof rail rear end support jig 4a Roof rail rear end fixing Plate 5 Translation control and rotation control mechanism 5a Support member 5b Horizontal guide groove 5c Rotation box 5d Rotation box L-shaped plate 5e Rotation box side plate 5f Rotation shaft pin 5g First compression pin 5h First energy absorption member (metal pipe) 5i Arc-shaped guide groove 5j Pin connecting plate 5k Horizontal translation direction 5l Rotation direction 6 Translation control mechanism 6a Roof side intermediate part fixing disk 6b Support plate (slide base) 6c translation plate (slide guide) 6d Slider 6e Second compression pin 6f Second energy absorbing member (metal pipe) 6g Vertical guide groove 6h Horizontal translation direction 6i Vertical translation direction 6j Rotation direction 7 Collision punch 7a Collision direction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Vibration Dampers (AREA)

Abstract

車体部品の先端部を支持するための支持治具に設けた並進制御兼回転制御機構が一対の支持部材と、車体部品固定用L形プレートを有する回転ボックスと、回転軸ピンと、圧縮ピンと、連結プレートとを有し、車体部品の中間部を支持するための支持治具に設けた並進制御機構が、支持プレートと、スライドガイドと、車体部品固定用円板と、並進プレートと、圧縮ピンとを有し、回転ボックスの側面の円弧状ガイド溝および支持プレートまたは並進プレートに配した直線状ガイド溝にエネルギー吸収部材を配置し、回転ボックスのL形プレートに試験速度で衝突する衝突パンチを具え、圧縮ピンがエネルギー吸収部材を変形させて、その回転方向と逆のトルクおよびその並進方向と逆方向の反力を付与するものである。

Description

自動車車体部品の衝突性能評価試験方法および装置
 本発明は、自動車の車体部品の衝突性能の評価試験を行う方法および装置に関するものである。
 自動車の車体に必要な性能の1つとして衝突性能があり、衝突時には車体の損傷を軽減させつつ乗員を保護することが求められる。自動車の開発設計段階においては、車体の衝突性能の評価が不可欠であり、コンピュータ上のシミュレーションによる性能予測が実施されている。また、目的の衝突性能の達成を確認する手段として、自動車メーカーでは試作車を製作して衝突試験に供しており、もしも性能を満足しなかった場合は、対策を施し、試作車を製作し直して、再度衝突試験を実施する必要があり、多大な開発コストや開発時間を要することになる。
 そこで、開発コストや開発時間を節約するために、自動車の車体全体の衝突性能評価試験の代わりに、車体部品単体での衝突性能評価試験(以下、「部品衝突試験」ともいう。)が従来から行われており、車体部品単体の試験で車体全体の衝突性能を評価するためには、部品拘束状態や荷重負荷状態を制御して実際の車体全体の変形に即した試験を行う試験方法が望まれている。
 自動車の車体部品のうち、特にスモールオーバーラップ衝突時に乗員を保護する重要な役目を負うフロントピラーおよびルーフレール部品は、フロント部とセンターピラー部にアーチ形状に結合された部品であり、前面方向から自動車が衝突した場合にフロントタイヤがフロント部に衝突することでセンターピラー部に発生する衝突荷重を、できるだけ変形を抑えて車体後部に伝えることで車内への侵入を最小限に抑える機能を有する。その時、フロント部全体がタイヤの衝突荷重によって大きく押しつぶされるため、ルーフレール部品が受ける荷重は衝突過程で複雑に変化するため、ルーフレール部品の衝突試験では、対象とする部品周囲の変形や負荷状態を再現することが必要となる。
 部品周囲の変形や負荷状態を再現可能な部材衝突試験については、過去から多くの研究・開発が行われている。例えば、特許文献1には、自動車の車体部品の衝突性能評価試験方法およびこれに用いられる部品衝突試験機が提案されている。この評価試験方法および試験機では、車体部品の各支持点にフライホイールとワンウェイクラッチを組み合わせた拘束治具を取り付けることで車体側の変形抵抗を模擬している。
 また特許文献2には、部品衝突試験においてトルク付与可能な部品支持治具が提案されており、この部品支持治具では、ラックアンドピニオン方式の歯車とバネを組み合わせて車体部品の変形をバネの力で拘束可能とし、バネの強さを変化させることで車体部品の拘束状態を調整している。
国際公開第2011/016499号 特開2016-061725号公報
 ところで、自動車部品の衝突性能は,時速数kmから時速100km程度までの様々な速度で実施することが望まれる。したがって、部材衝突試験に用いられる治具はそれぞれの速度に対応できる構造と強度が求められる。また、部材衝突試験は、様々な条件で複数回の試験を行うことが必要であるため,経済的合理性も重視される。
 しかしながら、特許文献1で提案されている技術は、フライホィールの慣性力により車体部品に拘束力を与えるものであるため、低速領域での試験では、慣性力が得られる所望の条件で試験が困難である.また、高速領域においても、速度の変化によりフライホィールの質量を調整することが必要になり、試験に費用がかかる懸念がある。
 また、特許文献2で提案されている技術は、ラックアンドピニオンとバネ方式の拘束機構におり車体部品の拘束力を得るものであるため、機構が複雑であり、時速50kmを超えるような高速領域の試験では,衝撃的な荷重によりその機構が動作しないことや、最悪の場合装置自体を破損してしまうという点で問題がある。
 それゆえ本発明は、上述の如き試験速度の制約や経済的合理性の課題を有利に解決する自動車部品の衝突性能評価試験方法を提案し、その方法に適した衝突性能評価試験装置を提供することを目的とする。
 上記目的を達成する本発明の自動車車体部品の衝突性能評価試験方法は、自動車の車体部品の衝突性能の評価試験を行うに際し、前記車体部品の先端部、中間部および後端部をそれぞれ支持治具で支持し、前記先端部を支持する支持治具に並進制御兼回転制御機構を設け、前記中間部を支持する支持治具に並進制御機構を設け、前記並進制御兼回転制御機構が、衝突方向に平行な二列の水平ガイド溝を持つ一対の支持部材と、上面に前記車体部品の先端部を固定し、前面に衝突パンチを衝突させるL形プレートおよび該L形プレートの両側面に設けられた側面プレートを持ち、前記支持部材に挟持された回転ボックスと、前記回転ボックスの回転軸として、前記回転ボックスの前記側面プレートおよび、前記二列の水平ガイド溝の一方を貫通する回転軸ピンと、前記回転軸ピンの中心軸を円弧の中心として前記回転ボックスの側面プレートに設けられた円弧状ガイド溝および、前記二列の水平ガイド溝の他方を貫通する第1の圧縮ピンと、前記回転軸ピンおよび前記第1の圧縮ピンを回転可能、かつ前記水平ガイド溝に沿って移動可能に連結する連結プレートと、を有し、前記円弧状ガイド溝内に第1のエネルギー吸収部材を配置し、前記並進制御機構が、前記支持治具に固定された支持プレートと、該支持プレート上に設けられた一対のスライドガイドと、前記支持プレートと前記スライドガイドとに外周端部を摺動可能に挟持され、前記車体部品の中間部を固定する円板と、前記支持プレートと前記スライドガイドとに両端部を摺動可能に挟持され、前記円板の上部に接して配置された並進プレートと、を有し、前記支持プレートと前記並進プレートとのうち一方に他方に向けて突設された第2の圧縮ピンが、前記支持プレートと前記並進プレートとのうちの他方に形成されて前記並進プレートの摺動可能方向に延在するとともに内部に第2のエネルギー吸収部材を配置された直線状ガイド部内に嵌入しており、前記回転ボックスのL形プレートの前記前面に対し試験速度で衝突パンチを衝突させるとともに、前記並進制御兼回転制御機構の前記二列の水平ガイド溝に沿った前記回転軸ピンおよび前記第1の圧縮ピンの水平移動と、前記第1のエネルギー吸収部材を前記第1の圧縮ピンが圧縮する反力によって前記車体部品の先端部の並進移動と回転とを制御し、前記第2のエネルギー吸収部材を第2の圧縮ピンが圧縮する反力によって前記車体部品の中間部の並進移動を制御することを特徴としている。
 また、上記目的を達成する本発明の自動車車体部品の衝突性能評価試験装置は、自動車の車体部品の衝突性能の評価試験を行う装置であって、前記車体部品の先端部、中間部および後端部をそれぞれ支持するための支持治具と、前記先端部を支持するための支持治具に設けられた並進制御兼回転制御機構と、前記中間部を支持するための支持治具に設けられた並進制御機構と、前記並進制御兼回転制御機構に有するL形プレートの前面に試験速度で衝突する衝突パンチと、を具え、前記並進制御兼回転制御機構が、衝突方向に平行な二列の水平ガイド溝を持つ一対の支持部材と、上面に前記車体部品の先端部を固定させ、前記前面に前記衝突パンチを衝突させる前記L形プレートおよび該L形プレートの両側面に設けられた側面プレートを持ち、前記支持部材に挟持された回転ボックスと、前記回転ボックスの回転軸として、前記回転ボックスの前記側面プレートおよび、前記二列の水平ガイド溝の一方を貫通している回転軸ピンと、前記回転軸ピンの中心軸を円弧の中心として前記回転ボックスの前記側面プレートに設けられた円弧状ガイド溝および、前記二列の水平ガイド溝の他方を貫通している第1の圧縮ピンと、前記回転軸ピンおよび前記第1の圧縮ピンを回転可能、かつ、前記水平ガイド溝に沿って移動可能に連結するための連結プレートと、を有し、前記円弧状ガイド溝内に第1のエネルギー吸収部材を配置し、前記並進制御機構が、前記支持治具に固定された支持プレートと、該支持プレート上に設けられた一対のスライドガイドと、前記支持プレートと前記スライドガイドとに外周端部で摺動可能に挟持され、前記車体部品の中間部を固定するための円板と、前記支持プレートと前記スライドガイドとに両端部を摺動可能に挟持され、前記円板の上部に接して配置された並進プレートと、を有し、前記支持プレートと前記並進プレートとのうち一方に他方に向けて突設された第2の圧縮ピンが、前記支持プレートと前記並進プレートとのうちの他方に形成されて前記並進プレートの摺動可能方向に延在するとともに内部に第2のエネルギー吸収部材を配置された直線状ガイド部内に嵌入しており、前記並進制御兼回転制御機構に設けられた前記第1の圧縮ピンが前記回転軸回りの回転ボックスの回転により、前記第1のエネルギー吸収部材を変形させてその回転方向と逆のトルクを前記回転ボックスに付与するように構成され、前記並進制御機構に設けられた前記第2の圧縮ピンが前記並進プレートの並進により、前記第2のエネルギー吸収部材を変形させてその並進方向と逆方向の反力を前記並進プレートに付与するように構成されていることを特徴としている。
 本発明の自動車車体部品の衝突性能評価試験方法は、自動車の車体部品の衝突性能の評価試験を行うに際し、前記車体部品の先端部、中間部および後端部をそれぞれ支持治具で支持し、前記先端部を支持する支持治具に並進制御兼回転制御機構を設け、前記中間部を支持する支持治具に並進制御機構を設け、前記並進制御兼回転制御機構が、衝突方向に平行な二列の水平ガイド溝を持つ一対の支持部材と、上面に前記車体部品の先端部を固定し、前面に衝突パンチを衝突させるL形プレートおよび該L形プレートの両側面に設けられた側面プレートを持ち、前記支持部材に挟持された回転ボックスと、前記回転ボックスの回転軸として、前記回転ボックスの前記側面プレートおよび、前記二列の水平ガイド溝の一方を貫通する回転軸ピンと、前記回転軸ピンの中心軸を円弧の中心として前記回転ボックスの側面プレートに設けられた円弧状ガイド溝および、前記二列の水平ガイド溝の他方を貫通する第1の圧縮ピンと、前記回転軸ピンおよび前記第1の圧縮ピンを回転可能、かつ前記水平ガイド溝に沿って移動可能に連結する連結プレートと、を有し、前記円弧状ガイド溝内に第1のエネルギー吸収部材を配置し、前記並進制御機構が、前記支持治具に固定された支持プレートと、該支持プレート上に設けられた一対のスライドガイドと、前記支持プレートと前記スライドガイドとに外周端部を摺動可能に挟持され、前記車体部品の中間部を固定する円板と、前記支持プレートと前記スライドガイドとに両端部を摺動可能に挟持され、前記円板の上部に接して配置された並進プレートと、を有し、前記支持プレートと前記並進プレートとのうち一方に他方に向けて突設された第2の圧縮ピンが、前記支持プレートと前記並進プレートとのうちの他方に形成されて前記並進プレートの摺動可能方向に延在するとともに内部に第2のエネルギー吸収部材を配置された直線状ガイド部内に嵌入しており、前記回転ボックスのL形プレートの前記前面に対し試験速度で衝突パンチを衝突させるとともに、前記並進制御兼回転制御機構の前記二列の水平ガイド溝に沿った前記回転軸ピンおよび前記第1の圧縮ピンの水平移動と、前記第1のエネルギー吸収部材を前記第1の圧縮ピンが圧縮する反力によって前記車体部品の先端部の並進移動と回転とを制御し、前記第2のエネルギー吸収部材を第2の圧縮ピンが圧縮する反力によって前記車体部品の中間部の並進移動を制御する。
 それゆえ本発明の自動車車体部品の衝突性能評価試験方法によれば、前記衝突パンチを前記車体部品の先端部を固定した回転ボックスに試験速度で衝突させるのに伴い、前記並進制御兼回転制御機構や並進制御機構が設けられた支持治具で支持する前記車体部品の部分にその並進制御兼回転制御機構や並進制御機構から前記逆方向の反力を与えてその部分の並進や回転を制御することで、実際の車体衝突時の部品拘束状態や荷重負荷状態を良好に再現しつつ車体部品単体での衝突性能評価試験を実現することができる。また、エネルギー吸収部材を支持治具の並進制御兼回転制御機構や並進制御機構に配置する簡単かつ丈夫な構造により、時速50km以上の高速領域の試験を可能とすることができ、さらに、エネルギー吸収部材に安価な部材を適用することで、試験の経済的な合理性も高めることができる。
 また、本発明の自動車車体部品の衝突性能評価試験装置は、前記車体部品の先端部、中間部および後端部をそれぞれ支持するための支持治具と、前記先端部を支持するための支持治具に設けられた並進制御兼回転制御機構と、前記中間部を支持するための支持治具に設けられた並進制御機構と、前記並進制御兼回転制御機構に有するL形プレートの前面に試験速度で衝突する衝突パンチと、を具え、前記並進制御兼回転制御機構が、衝突方向に平行な二列の水平ガイド溝を持つ一対の支持部材と、上面に前記車体部品の先端部を固定させ、前記前面に前記衝突パンチを衝突させる前記L形プレートおよび該L形プレートの両側面に設けられた側面プレートを持ち、前記支持部材に挟持された回転ボックスと、前記回転ボックスの回転軸として、前記回転ボックスの前記側面プレートおよび、前記二列の水平ガイド溝の一方を貫通している回転軸ピンと、前記回転軸ピンの中心軸を円弧の中心として前記回転ボックスの前記側面プレートに設けられた円弧状ガイド溝および、前記二列の水平ガイド溝の他方を貫通している第1の圧縮ピンと、前記回転軸ピンおよび前記第1の圧縮ピンを回転可能、かつ、前記水平ガイド溝に沿って移動可能に連結するための連結プレートと、を有し、前記円弧状ガイド溝内に第1のエネルギー吸収部材を配置し、前記並進制御機構が、前記支持治具に固定された支持プレートと、該支持プレート上に設けられた一対のスライドガイドと、前記支持プレートと前記スライドガイドとに外周端部で摺動可能に挟持され、前記車体部品の中間部を固定するための円板と、前記支持プレートと前記スライドガイドとに両端部を摺動可能に挟持され、前記円板の上部に接して配置された並進プレートと、を有し、前記支持プレートと前記並進プレートとのうち一方に他方に向けて突設された第2の圧縮ピンが、前記支持プレートと前記並進プレートとのうちの他方に形成されて前記並進プレートの摺動可能方向に延在するとともに内部に第2のエネルギー吸収部材を配置された直線状ガイド部内に嵌入しており、前記並進制御兼回転制御機構に設けられた前記第1の圧縮ピンが前記回転軸回りの回転ボックスの回転により、前記第1のエネルギー吸収部材を変形させてその回転方向と逆のトルクを前記回転ボックスに付与するように構成され、前記並進制御機構に設けられた前記第2の圧縮ピンが前記並進プレートの並進により、前記第2のエネルギー吸収部材を変形させてその並進方向と逆方向の反力を前記並進プレートに付与するように構成されている。
 それゆえ本発明の自動車車体部品の衝突性能評価試験装置によれば、前記衝突パンチを前記車体部品の先端部を固定した回転ボックスに試験速度で衝突させるのに伴い、前記並進制御兼回転制御機構や並進制御機構を設けた支持治具で支持する前記車体部品の部分にその並進制御兼回転制御機構や並進制御機構から前記逆方向の反力を与えてその部分の並進や回転を制御することで、実際の車体衝突時の部品拘束状態や荷重負荷状態を良好に再現しつつ車体部品単体での衝突性能評価試験を実現することができる。また、エネルギー吸収部材を支持治具の並進制御兼回転制御機構や並進制御機構に配置する簡単かつ丈夫な構造により、時速50km以上の高速領域の試験を可能とすることができ、さらに、エネルギー吸収部材に安価な部材を適用することで、試験の経済的な合理性も高めることができる。
 なお、本発明の自動車車体部品の衝突性能評価試験方法および装置においては、前記車体部品は自動車フロントピラーおよびルーフレール部品であると好ましい。自動車フロントピラーおよびルーフレール部品は部品衝突試験の際に部品拘束状態や荷重負荷状態の影響を大きく受けるからである。また、前記並進制御兼回転制御機構および前記並進制御機構は、実際の車体衝突で発生する前記車体部品の変形状態を再現するものであると好ましい。車体部品の衝突性能評価の精度を高め得るからである。
 さらに、本発明の自動車車体部品の衝突性能評価試験方法および装置においては、前記車体部品の中間部および後端部を支持する支持治具は、それぞれ個別に荷重測定用のロードセルを有し、それらのロードセルで、前記衝突パンチによる前記車体部品の衝突変形時に発生する変形荷重の分布を計測すると好ましい。車体部品の衝突変形時に車体部品から車体の他の部分に加わる荷重も知ることができるからである。また、前記エネルギー吸収部材は市販の金属製円管であると好ましい。市販の金属製円管は安価に入手でき、エネルギー吸収能力も安定しているからである。
本発明の一実施形態の自動車車体部品の衝突性能評価試験方法に用いられる本発明の一実施形態の自動車車体部品の衝突性能評価試験装置を模式的に示す斜視図である。 上記実施形態の自動車車体部品の衝突性能評価試験装置における車体部品としてのフロントピラーの先端部を支持する支持治具を示す斜視図である。 上記実施形態における並進制御兼回転制御機構の働きを示す斜視図であって、(a)衝突試験前の状態を示す模式図、(b)衝突試験後の状態を示す模式図、および、(c)衝突試験後のエネルギー吸収部材の変形の様子を拡大して示す模式図である。 上記実施形態の自動車車体部品の衝突性能評価試験装置における車体部品の中間部としてのルーフサイドを支持する支持治具を示す斜視図である。 上記実施形態における並進制御機構の働きを示す斜視図であって、(a)衝突試験前の状態を示す模式図、(b)衝突試験後の状態を示す模式図、および、(c)衝突試験後のエネルギー吸収部材の変形の様子を拡大して示す模式図である。 実施例で用いる自動車車体部品の衝突試験の構成を模式的に示す斜視図である。 上記衝突試験の結果を示す車体部品の側面図であって、(a)衝突試験前の車体部品形状、および、(b)衝突試験後の車体部品形状を表す。 上記衝突試験で測定されたルーフレール後端部に設置したロードセルの荷重変化を示すグラフであって、(a)車体部品の後端部を支持する支持治具に設置したロードセルの荷重変化を表し、(b)車体部品の中間部を支持する支持治具に設置したロードセルの荷重変化を表す。 自動車の実車衝突試験結果を示す図であって、(a)衝突試験前の車体部品形状を模式的に示す側面図、および、(b)衝突試験後の車体部品形状を模式的に示す側面図を表す。
 以下、本発明の実施形態につき、図面に基づき詳細に説明する。ここに、図1は、本発明の一実施形態の自動車車体部品の衝突性能評価試験方法に用いられる本発明の一実施形態の自動車車体部品の衝突性能評価試験装置を模式的に示す斜視図であり、図2および4は、上記実施形態の自動車車体部品の衝突性能評価試験装置における車体部品としてのフロントピラーの先端部および車体部品の中間部としてのルーフサイドをそれぞれ支持する支持治具を示す拡大斜視図である。
 この実施形態の自動車車体部品の衝突性能評価試験装置1は、自動車の車体部品としての自動車フロントピラーおよびルーフレールからなる部品10の正面衝突性能を評価する試験を行うものであり、図1に示すように、フロントピラーおよびルーフレールからなる部品10の先端部であるフロントピラーの先端部10aを支持するフロント部支持治具2と、フロントピラーおよびルーフレールからなる部品10の中間部としてルーフサイド10bを支持するルーフサイド側支持治具3と、フロントピラーおよびルーフレールからなる部品10の後端部であるルーフレールの後端部10cを支持するルーフレール後端部支持治具4と、フロント部支持治具2に設けられた並進制御兼回転制御機構5と、ルーフサイド側支持治具3に設けられた並進制御機構6と、並進制御兼回転制御機構5に有するL形プレート5dの前面に向かって試験速度で水平に衝突する衝突パンチ7と、を具えている。
 図2は、フロント部支持治具2の並進制御兼回転制御機構5を拡大し、一部切り欠いて示す斜視図である。この並進制御兼回転制御機構5は、装置の構造体1aに固定され衝突方向に平行な二列の水平ガイド溝5bを持つ左右一対のフロント部支持部材5aと、フロント部支持部材5aによって挟持され、上面にフロントピラーの先端部10aが固定され前面に衝突パンチが衝突するL形プレート5dおよびL形プレート5dの両側面に設けられた側面プレート5eを持つ回転ボックス5cと、回転ボックス5cの回転軸として、回転ボックス5cの側面プレート5eおよび二列の水平ガイド溝5bの一方を貫通している回転軸ピン5fと、回転軸ピン5fを円弧の中心として回転ボックス5cの側面プレート5eに設けられた円弧状ガイド溝5iおよび二列の水平ガイド溝5bの他方を貫通している第1の圧縮ピン5gと、回転軸ピン5fおよび第1の圧縮ピン5gを円弧状ガイド5iの半径の距離で離隔して、個々に回転可能、かつ水平ガイド溝5bに沿って移動可能に連結するための連結プレート5jと、を有し、この実施形態では、円弧状ガイド溝5iの一端と圧縮ピン5gの間の円弧状ガイド溝5i内部に第1のエネルギー吸収部材として短い鋼管等の円管状の金属パイプ5hを複数本、摺動自在に嵌入している。
 図3は、並進制御兼回転制御機構5の働きを模式的に示す斜視図である。図3(a)は衝突試験前の並進制御兼回転制御機構5の状態を表し、並進制御兼回転制御機構5の回転ボックス5cのL形プレート5d、回転軸ピン5f、圧縮ピン5gおよび金属パイプ5hの配置の様子を模式的に透視図で示している。図3(b)は衝突試験後の並進制御兼回転制御機構5の状態を表し、回転軸ピン5fおよび圧縮ピン5gは衝突方向7aに平行に水平並進方向5kに移動するとともに、回転ボックス5cは回転軸である回転軸ピン5fを中心に回転軸方向5lに向かって回転する。このとき、第1の圧縮ピン5gは支持部材5aの水平ガイド溝5bおよび連結プレート5jによって回転方向5lへの移動が拘束されているので、図3(c)に拡大して示すように円弧状ガイド溝5i内の金属パイプ5h(この例では3個)は円弧状ガイド溝5iの終端と第1の圧縮ピン5gによって圧縮変形される。この金属パイプ変形の反力が回転ボックス5cの回転に対し逆方向のトルクを与えることになる。したがって、回転ボックス5cに固定されたフロントピラー先端部10aの並進移動と回転とを制御することができる。このようにして、車体部品のみによる衝突試験であっても、周辺部材の影響を考慮した実車に即した試験が行えることになる。
 図4は、車体部品の中間部としてのルーフサイド10bを支持する支持治具3の並進制御機構6を拡大して示す斜視図である。この並進制御機構6は、支持治具3に固定され、この実施形態では平行な二列の直線状の垂直ガイド溝6gを持つ支持プレート6bと、支持プレート6b上に隙間を設けて対向して取り付けられた一対のスライドガイド6cと、支持プレート6bとスライドガイド6cとの隙間に外周端部を摺動可能に挟持され、ルーフサイド10bを固定している円板6a(図1参照)と、支持プレート6bとスライドガイド6cとの隙間に両端部を摺動可能に挟持され、固定用円板6aの上部に接して配置された並進プレート6dと、この実施形態では並進プレート6dを貫通して先端が二列の垂直ガイド溝6gにそれぞれ貫入している二本の第2の圧縮ピン6eと、を有し、この実施形態では、垂直ガイド溝6gの上端と第2の圧縮ピン6eの間の垂直ガイド溝6g内部に第2のエネルギー吸収部材として短い鋼管等の円管状の金属パイプ6fを複数本、摺動自在に嵌入している。また、この実施形態では、支持プレート6bと構造体1a(図示せず)の間にロードセルボックス8を介して、ロードセル8a(図示せず)を配置し、支持プレート6aに垂直な方向の荷重を測定するようにしている。これにより、衝突方向7aを含む鉛直面に垂直な方向に働く、車体部品の変形力を測定することができる。なお、直線状のガイド溝6gを並進プレート6dに配し、第2の圧縮ピン6eを支持プレート6bに設置して、ガイド溝6gに嵌入させてもよい。また、この実施形態では、二列の直線状垂直ガイド溝としたが、1本でも、3本以上でも問題ない。さらに、ガイド溝に配置する金属パイプ5h、6fの数も自由に選択できる。
 図5は、上記実施形態における並進制御機構6の働きを模式的に示す斜視図である。図5(a)は衝突試験前の並進制御機構6の状態を表し、ルーフサイド10bを固定する円板6a、圧縮ピン6eおよび金属パイプ6fの配置を透視図で示す。図5(b)は衝突試験後の並進制御機構6の状態を表す透視図である。衝突による車体部品の変形により、車体部品の中間部であるルーフサイドは垂直並進方向6iおよびわずかに水平並進方向6hに移動し、回転方向6jに回転する。このうち、垂直並進方向6iへの円板6aの移動により並進プレート6dおよび圧縮ピン6eが垂直上方に押し上げられる。このとき図5(c)に拡大して示すように円垂直ガイド溝6g内の金属パイプ6f(この例では3個)は垂直ガイド溝6gの上端と圧縮ピン6eによって圧縮変形される。この金属パイプ変形の反力が並進プレートを介して固定用円板6aに作用し、車体部品に反力を与えることになる。このようにして、車体部品のみによる衝突試験であっても、周辺部材の影響を考慮した実車に即した試験が行えることになる。
 図1に示す実施形態では、ルーフレール後端部支持治具4は、ルーフレール後端部10cを固定する固定板4aを有している。固定板4aと構造体1a(図示せず)の間にロードセルボックス8を介して、ロードセル8aを配置し、固定板に面直方向、つまり、衝突方向7aの荷重を測定するようにしている。
 エネルギー吸収部材としての金属パイプは市販の鋼製パイプを切断したものであり、試験毎に交換が必要となるが、試験にかかる費用は安価に抑えることができる。
 以上、図示例に基づき説明したが、本発明は上述の例に限定されるものでなく、例えば上記実施形態ではエネルギー吸収部材として金属パイプ5hや6fを用いているが、これに代えてあるいは加えて、他の形状や材質のものを用いることもできる。また、車体部品の中間部支持治具については、事前のCAE解析等により、車体部品の変形方向を把握したうえで、適宜、並進制御機構の並進方向を変えたり、複数の中間部支持治具を用いることもできる。また、車体部品についても、フロントピラーおよびルーフレールからなる部品に限定されず、他の車体部品であってもその車体部品の軸に平行に近い方向からの荷重に対する衝突試験に適用できる。
 図6に本発明の実施例を示す。この実施例の自動車車体部品の衝突性能評価試験方法では、自動車の正面衝突を模擬して、上記自動車車体部品の衝突性能評価試験装置を用いて自動車フロントピラーおよびルーフレールからなる部品10の部品衝突試験を実施した。その試験の際、フロントピラーの先端部10aをフロント側支持治具2で支持し、ルーフサイド10bをルーフサイド側支持治具3で支持し、ルーフレール後端部10cを後端部支持治具4で支持し、上面(水平面)にフロントピラーの先端部10aを固定したL形プレート5dの前面(垂直面)に、衝突パンチ7を水平かつ面直に試験速度で衝突させ、その衝突時に発生する荷重分布を計測するために、ルーフサイド側の支持治具3に加わった側面荷重およびルーフレール後端部支持治具4に加わった水平荷重をそれぞれロードセル8aで測定した。さらに、図7(a)および(b)に示す如く、その衝突の前後のフロントピラーおよびルーフレールからなる部品10の形状変化を測定する。
 この部品衝突試験では、実際に発生する正面衝突の状態を模擬し、フロントピラー先端部10aは並進制御兼回転制御機構5を用いて回転および上下左右方向の動きを拘束している。一方、ルーフレール部は、正面衝突時に車体上下方向を変位する変形が発生するため、並進制御機構6で回転とともに上下方向の動きを拘束している。予め、CAE(コンピュータ支援エンジニアリング)解析により、ルーフサイド10bに発生する拘束力を予測してその拘束力と同等の反力が発生するように鋼管6fの板厚および本数を決定し、また、フロントピラー先端部10aに発生するトルクを予測してそのトルクと同等のトルクが発生するように鋼管5hの板厚および本数を決定する。
 本実施例では、板厚1.2mm、直径16mm、長さ20mmの鋼製円筒パイプ5h、6fを、並進制御兼回転制御機構5の円弧状ガイド溝5iに3
本ずつおよび並進制御機構6の垂直ガイド溝に3本ずつそれぞれ配置し、合計で12本の鋼管を配置した。また、衝突パンチは、実車の車体衝突試験で用いられる台車を模擬して、衝突パンチ7の形状および衝突する位置を決定した。
 本実施例の部品衝突試験では、油圧サーボ方式の高速変形試験機を用いて、時速40kmで衝突パンチ7を並進制御兼回転制御機構5の回転ボックス5cに有するL形プレート5dの垂直面に衝突させ、その結果、図7(b)に示すように、車体部品10は、ルーフサイドよりフロント側のルーフレールに変形部10dが生じ、折れ曲がっていることがわかる。
 図8は、本実施例の自動車車体部品の衝突性能評価試験方法の部品衝突試験時の荷重の経時変化を示すグラフであり、(a)は、ルーフレールの後端支持治具4のロードセル8aで測定した、衝突パンチ7の衝突方向7aの車体部品に伝わった衝突荷重の経時変化を示すグラフであり、(b)は車体部品の変形に伴い、衝突方向7aを含む鉛直面に垂直な方向に働く変形荷重の経時変化を表す。それぞれ横軸は衝突時からの経過時間(s)であり、縦軸は荷重の大きさ(kN)である。この図8(a)および(b)に示すように衝突後の車体部品の変形に基づく衝突荷重の経時変化を知ることができた。
 図9に実車衝突試験として、スモールオーバーラップ試験時の車体部品の変形状態を模式的側面図で示す。図9(a)は、衝突試験前の車体部品(フロントピラー・ルーフレール)の表し、図9(b)は、衝突試験後の車体部品の変形の様子を表す。図7と図9を比較して、車体部品の変形部10dはほぼ同じ部分に発生しており、本発明に係る自動車車体部品の衝突性能評価試験方法および衝突性能評価試験装置は、実際の自動車の正面衝突で発生する変形をよく再現できていることがわかる。
 かくして本発明の本発明の自動車車体部品の衝突性能評価試験方法および装置によれば、前記衝突パンチを前記車体部品に試験速度で衝突させるのに伴い、前記並進制御兼回転制御機構や前記並進制御機構を設けた支持治具で支持する前記車体部品の各部にその並進制御兼回転制御機構や並進制御機構から前記逆方向の反力やトルクを与えてその部分の並進や回転を制御することで、実際の車体衝突時の部品拘束状態や荷重負荷状態を良好に再現しつつ車体部品単体での衝突性能評価試験を実現することができる。また、エネルギー吸収部材を支持治具の並進制御兼回転制御機構や並進制御機構に配置する簡単かつ丈夫な構造により、時速50km以上の高速領域の試験を可能とすることができ、さらに、エネルギー吸収部材に安価な部材を適用することで、試験の経済的な合理性も高めることができる。
1 衝突性能試験装置
1a 構造体
10 試験体(フロントピラーおよびルーフレールからなる部品)
10a フロントピラー先端部
10b ルーフサイド側中間部
10c ルーフレール後端部
10d 変形部
2 フロントピラー先端部支持治具
3 ルーフサイド側中間部支持治具
4 ルーフレール後端部支持治具
4a ルーフレール後端部固定板
5 並進制御兼回転制御機構
5a 支持部材
5b 水平ガイド溝
5c 回転ボックス
5d 回転ボックスL形プレート
5e 回転ボックス側面プレート
5f 回転軸ピン
5g 第1の圧縮ピン
5h 第1のエネルギー吸収部材(金属パイプ)
5i 円弧状ガイド溝
5j ピン連結プレート
5k 水平並進方向
5l 回転方向
6 並進制御機構
6a ルーフサイド側中間部固定用円板
6b 支持プレート(スライドベース)
6c 並進プレート(スライドガイド)
6d スライダー
6e 第2の圧縮ピン
6f 第2のエネルギー吸収部材(金属パイプ)
6g 垂直ガイド溝
6h 水平並進方向
6i 垂直並進方向
6j 回転方向
7 衝突パンチ
7a 衝突方向
8 ロードセルボックス
8a ロードセル

 

Claims (10)

  1.  自動車の車体部品の衝突性能の評価試験を行うに際し、
     前記車体部品の先端部、中間部および後端部をそれぞれ支持治具で支持し、
     前記先端部を支持する支持治具に並進制御兼回転制御機構を設け、
     前記中間部を支持する支持治具に並進制御機構を設け、
     前記並進制御兼回転制御機構が、衝突方向に平行な二列の水平ガイド溝を持つ一対の支持部材と、上面に前記車体部品の先端部を固定し、前面に衝突パンチを衝突させるL形プレートおよび該L形プレートの両側面に設けられた側面プレートを持ち、前記支持部材に挟持された回転ボックスと、前記回転ボックスの回転軸として、前記回転ボックスの前記側面プレートおよび、前記二列の水平ガイド溝の一方を貫通する回転軸ピンと、前記回転軸ピンの中心軸を円弧の中心として前記回転ボックスの側面プレートに設けられた円弧状ガイド溝および、前記二列の水平ガイド溝の他方を貫通する第1の圧縮ピンと、前記回転軸ピンおよび前記第1の圧縮ピンを回転可能、かつ前記水平ガイド溝に沿って移動可能に連結する連結プレートと、を有し、前記円弧状ガイド溝内に第1のエネルギー吸収部材を配置し、
     前記並進制御機構が、前記支持治具に固定された支持プレートと、該支持プレート上に設けられた一対のスライドガイドと、前記支持プレートと前記スライドガイドとに外周端部を摺動可能に挟持され、前記車体部品の中間部を固定する円板と、前記支持プレートと前記スライドガイドとに両端部を摺動可能に挟持され、前記円板の上部に接して配置された並進プレートと、を有し、
     前記支持プレートと前記並進プレートとのうち一方に他方に向けて突設された第2の圧縮ピンが、前記支持プレートと前記並進プレートとのうちの他方に形成されて前記並進プレートの摺動可能方向に延在するとともに内部に第2のエネルギー吸収部材を配置された直線状ガイド部内に嵌入しており、
     前記回転ボックスのL形プレートの前記前面に対し試験速度で衝突パンチを衝突させるとともに、前記並進制御兼回転制御機構の前記二列の水平ガイド溝に沿った前記回転軸ピンおよび前記第1の圧縮ピンの水平移動と、前記第1のエネルギー吸収部材を前記第1の圧縮ピンが圧縮する反力によって前記車体部品の先端部の並進移動と回転とを制御し、
     前記第2のエネルギー吸収部材を第2の圧縮ピンが圧縮する反力によって前記車体部品の中間部の並進移動を制御することを特徴とする自動車車体部品の衝突性能評価試験方法
  2.  前記車体部品は、フロントピラーおよびルーフレールからなる部品とすることを特徴とする、請求項1記載の自動車車体部品の衝突性能評価試験方法。
  3.  前記並進制御兼回転制御機構および前記並進制御機構は、実際の車体衝突で発生する前記車体部品の変形状態を再現することを特徴とする請求項1または2記載の自動車車体部品の衝突性能評価試験方法。
  4.  前記車体部品の中間部および後端部を支持する支持治具は、それぞれ個別に荷重測定用のロードセルを有し、
     それぞれのロードセルで、前記衝突パンチによる前記車体部品の衝突変形時に発生する変形荷重の分布を計測することを特徴とする請求項1から3までの何れか1項記載の自動車車体部品の衝突性能評価試験方法。
  5.  前記第1または第2のエネルギー吸収部材に円管状の金属パイプを用いることを特徴とする請求項1~4のいずれか1項記載の自動車車体部品の衝突性能評価試験方法。
  6.  自動車の車体部品の衝突性能の評価試験を行う装置であって、
     前記車体部品の先端部、中間部および後端部をそれぞれ支持するための支持治具と、
     前記先端部を支持するための支持治具に設けられた並進制御兼回転制御機構と、
     前記中間部を支持するための支持治具に設けられた並進制御機構と、
     前記並進制御兼回転制御機構に有するL形プレートの前面に試験速度で衝突する衝突パンチと、
    を具え、
     前記並進制御兼回転制御機構が、衝突方向に平行な二列の水平ガイド溝を持つ一対の支持部材と、上面に前記車体部品の先端部を固定させ、前記前面に前記衝突パンチを衝突させる前記L形プレートおよび該L形プレートの両側面に設けられた側面プレートを持ち、前記支持部材に挟持された回転ボックスと、前記回転ボックスの回転軸として、前記回転ボックスの前記側面プレートおよび、前記二列の水平ガイド溝の一方を貫通している回転軸ピンと、前記回転軸ピンの中心軸を円弧の中心として前記回転ボックスの前記側面プレートに設けられた円弧状ガイド溝および、前記二列の水平ガイド溝の他方を貫通している第1の圧縮ピンと、前記回転軸ピンおよび前記第1の圧縮ピンを回転可能、かつ、前記水平ガイド溝に沿って移動可能に連結するための連結プレートと、を有し、前記円弧状ガイド溝内に第1のエネルギー吸収部材を配置し、
     前記並進制御機構が、前記支持治具に固定された支持プレートと、該支持プレート上に設けられた一対のスライドガイドと、前記支持プレートと前記スライドガイドとに外周端部で摺動可能に挟持され、前記車体部品の中間部を固定するための円板と、前記支持プレートと前記スライドガイドとに両端部を摺動可能に挟持され、前記円板の上部に接して配置された並進プレートと、を有し、
     前記支持プレートと前記並進プレートとのうち一方に他方に向けて突設された第2の圧縮ピンが、前記支持プレートと前記並進プレートとのうちの他方に形成されて前記並進プレートの摺動可能方向に延在するとともに内部に第2のエネルギー吸収部材を配置された直線状ガイド部内に嵌入しており、
     前記並進制御兼回転制御機構に設けられた前記第1の圧縮ピンが前記回転軸回りの回転ボックスの回転により、前記第1のエネルギー吸収部材を変形させてその回転方向と逆のトルクを前記回転ボックスに付与するように構成され、
     前記並進制御機構に設けられた前記第2の圧縮ピンが前記並進プレートの並進により、前記第2のエネルギー吸収部材を変形させてその並進方向と逆方向の反力を前記並進プレートに付与するように構成されていることを特徴とする自動車車体部品の衝突性能評価試験装置。
  7.  前記車体部品は、フロントピラーおよびルーフレールからなる部品であることを特徴とする請求項6記載の自動車車体部品の衝突性能評価試験装置。
  8.  前記並進制御兼回転制御機構および前記並進制御機構は、実際の車体衝突で発生する前記車体部品の変形状態を再現するように構成されていることを特徴とする請求項6または7記載の自動車車体部品の衝突性能評価試験装置。
  9.  前記車体部品の中間部および後端部を支持する支持治具は、それぞれ個別に荷重測定用のロードセルを有し、
     それぞれのロードセルで、前記衝突パンチによる前記車体部品の衝突変形時に発生する変形荷重の分布を計測するように構成されていることを特徴とする請求項6~8のいずれか1項記載の自動車車体部品の衝突性能評価試験装置。
  10. 前記第1または第2のエネルギー吸収部材が円管状の金属パイプであることを特徴とする請求項6~9のいずれか1項記載の自動車車体部品の衝突性能評価試験装置。
PCT/JP2019/037784 2019-09-26 2019-09-26 自動車車体部品の衝突性能評価試験方法および装置 WO2021059425A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020227005551A KR20220035479A (ko) 2019-09-26 2019-09-26 자동차 차체 부품의 충돌 성능 평가 시험 방법 및 장치
CN201980099137.8A CN114245865B (zh) 2019-09-26 2019-09-26 汽车车身部件的碰撞性能评价试验方法以及装置
JP2020509566A JP6694171B1 (ja) 2019-09-26 2019-09-26 自動車車体部品の衝突性能評価試験方法および装置
US17/639,627 US12031955B2 (en) 2019-09-26 Collision performance evaluation test method and apparatus for automobile body part
EP19946660.8A EP4036549B1 (en) 2019-09-26 2019-09-26 Method and device for collision performance evaluation test of vehicle body component
PCT/JP2019/037784 WO2021059425A1 (ja) 2019-09-26 2019-09-26 自動車車体部品の衝突性能評価試験方法および装置
MX2022003136A MX2022003136A (es) 2019-09-26 2019-09-26 Metodo y aparato de prueba de evaluacion del desempe?o de colision para partes de carroceria de automovil.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037784 WO2021059425A1 (ja) 2019-09-26 2019-09-26 自動車車体部品の衝突性能評価試験方法および装置

Publications (1)

Publication Number Publication Date
WO2021059425A1 true WO2021059425A1 (ja) 2021-04-01

Family

ID=70549846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037784 WO2021059425A1 (ja) 2019-09-26 2019-09-26 自動車車体部品の衝突性能評価試験方法および装置

Country Status (6)

Country Link
EP (1) EP4036549B1 (ja)
JP (1) JP6694171B1 (ja)
KR (1) KR20220035479A (ja)
CN (1) CN114245865B (ja)
MX (1) MX2022003136A (ja)
WO (1) WO2021059425A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383867A (zh) * 2021-12-29 2022-04-22 东风汽车集团股份有限公司 一种汽车前托架连接点测试装置及测试方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323528A (zh) * 2021-11-15 2022-04-12 北京理工大学 适于槽键式块体的板车式碰撞试验装置及试验方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492027B1 (ja) * 1970-07-31 1974-01-18
WO2011016499A1 (ja) 2009-08-04 2011-02-10 新日本製鐵株式会社 自動車部材の衝突性能評価方法及びこれに用いられる部材衝突試験機
KR20120001003A (ko) * 2010-06-29 2012-01-04 현대제철 주식회사 차량용 센터필러 보강재의 좌굴강도 평가용 고정 지그 장치
JP2016061725A (ja) 2014-09-19 2016-04-25 新日鐵住金株式会社 支持治具及び構造部材の衝突試験方法
KR20180077924A (ko) * 2016-12-29 2018-07-09 주식회사 신영 시험 지그 및 그 시험 지그를 이용한 센터 필러의 충돌 시험 방법
CN207751665U (zh) * 2017-12-31 2018-08-21 无锡市麦希恩机械制造有限公司 一种汽车后保险杠的检具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10022091A1 (de) * 2000-05-08 2001-11-15 Willi Elbe Gelenkwellen Gmbh & Simulationsvorrichtung
ES2303806B1 (es) * 2008-03-17 2009-05-05 Fundacion Cidaut Sistema de ensayo de las puertas de un vehiculo ante una colision lateral y procedimiento de ajuste.
DE102010014521A1 (de) * 2010-04-10 2010-10-28 Daimler Ag Prüfstand mit einem Befestigungselement zur Befestigung eines Fahrzeugseitenteiles, insbesondere einer Fahrzeugtür, zur Simulation einer Seitenkollision eines Fahrzeuges
US20130061652A1 (en) * 2011-09-13 2013-03-14 Seattle Safety Llc Crash test method and apparatus including pitch simulation
US9126550B2 (en) * 2013-07-17 2015-09-08 Ford Global Technologies, Llc Sliding deflector assembly
US10753826B2 (en) * 2013-12-05 2020-08-25 Nippon Steel Corporation Collision test apparatus using test sample support for structural member
JP6341044B2 (ja) * 2014-10-02 2018-06-13 新日鐵住金株式会社 センターピラーの側面衝突試験のための、センターピラーの上端部の支持治具
US9816898B2 (en) * 2015-02-04 2017-11-14 Ford Global Technologies, Llc Testing fixture for vehicle rollover simulation
US9976935B2 (en) * 2016-06-07 2018-05-22 Ford Global Technologies, Llc Method and system for evaluating structural vehicle component performance
CN106813928A (zh) * 2017-03-31 2017-06-09 马鞍山钢铁股份有限公司 B柱碰撞试验装置及应用所述装置进行碰撞试验的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492027B1 (ja) * 1970-07-31 1974-01-18
WO2011016499A1 (ja) 2009-08-04 2011-02-10 新日本製鐵株式会社 自動車部材の衝突性能評価方法及びこれに用いられる部材衝突試験機
KR20120001003A (ko) * 2010-06-29 2012-01-04 현대제철 주식회사 차량용 센터필러 보강재의 좌굴강도 평가용 고정 지그 장치
JP2016061725A (ja) 2014-09-19 2016-04-25 新日鐵住金株式会社 支持治具及び構造部材の衝突試験方法
KR20180077924A (ko) * 2016-12-29 2018-07-09 주식회사 신영 시험 지그 및 그 시험 지그를 이용한 센터 필러의 충돌 시험 방법
CN207751665U (zh) * 2017-12-31 2018-08-21 无锡市麦希恩机械制造有限公司 一种汽车后保险杠的检具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383867A (zh) * 2021-12-29 2022-04-22 东风汽车集团股份有限公司 一种汽车前托架连接点测试装置及测试方法
CN114383867B (zh) * 2021-12-29 2024-04-02 东风汽车集团股份有限公司 一种汽车前托架连接点测试装置及测试方法

Also Published As

Publication number Publication date
JP6694171B1 (ja) 2020-05-13
EP4036549B1 (en) 2023-10-25
KR20220035479A (ko) 2022-03-22
JPWO2021059425A1 (ja) 2021-10-07
MX2022003136A (es) 2022-04-06
CN114245865B (zh) 2024-04-05
CN114245865A (zh) 2022-03-25
EP4036549A4 (en) 2022-10-12
EP4036549A1 (en) 2022-08-03
US20220291103A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2020067244A1 (ja) 自動車車体部品の衝突性能評価試験方法および装置
US6962245B2 (en) Variable force energy dissipater and decelerator
WO2021059425A1 (ja) 自動車車体部品の衝突性能評価試験方法および装置
KR102608583B1 (ko) 자동차의 센터필러의 측면 충돌 시험 장치 및 측면 충돌 시험 조건 결정 방법
JP6070862B2 (ja) 試験体支持具、並びにその支持具を用いた構造部材の衝突試験装置及び衝突試験方法
CN102854021A (zh) 汽车碰撞模拟台车装置
JP6331921B2 (ja) 支持治具及び構造部材の衝突試験方法
KR101927051B1 (ko) 시험 지그 및 그 시험 지그를 이용한 센터 필러의 충돌 시험 방법
US10436689B2 (en) Test pendulum arrangement and method for operating a test pendulum arrangement
US20110226037A1 (en) Vehicle occupant support testing methodology - assessment of both the car and the restraint
JP2005106701A (ja) 車両拘束装置
US12031955B2 (en) Collision performance evaluation test method and apparatus for automobile body part
JP7486926B2 (ja) センターピラー単体の側面衝突試験方法、それに用いられる支持治具、情報処理装置及びプログラム
CN216771058U (zh) 一种用于汽车工程的车体抗冲击检测装置
JP2021117027A (ja) 衝突試験装置
CN219715103U (zh) 一种适用于新能源动力电池底部球击试验测试台架
JP7484861B2 (ja) 3点曲げ評価試験方法および3点曲げ評価試験装置
Kaleto et al. An Innovative Approach to Component Testing Using an Impact Sled
CN110646213A (zh) 一种模拟汽车侧面碰撞的台车装置
CN115307934A (zh) 移动平台及滑台试验装置
JP2022106096A (ja) 試験治具、試験装置及び試験方法
JP2014002044A (ja) 自動車衝突模擬試験装置
Griswold Jr The development and application of side impact component test methods

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020509566

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227005551

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019946660

Country of ref document: EP

Effective date: 20220426