WO2021057935A1 - 一种修缮文物建筑的混凝土配方体系及其使用方法 - Google Patents

一种修缮文物建筑的混凝土配方体系及其使用方法 Download PDF

Info

Publication number
WO2021057935A1
WO2021057935A1 PCT/CN2020/117955 CN2020117955W WO2021057935A1 WO 2021057935 A1 WO2021057935 A1 WO 2021057935A1 CN 2020117955 W CN2020117955 W CN 2020117955W WO 2021057935 A1 WO2021057935 A1 WO 2021057935A1
Authority
WO
WIPO (PCT)
Prior art keywords
index value
concrete
value
concrete sample
sample
Prior art date
Application number
PCT/CN2020/117955
Other languages
English (en)
French (fr)
Inventor
张以红
Original Assignee
赵之祯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵之祯 filed Critical 赵之祯
Priority to US17/763,819 priority Critical patent/US20220332647A1/en
Publication of WO2021057935A1 publication Critical patent/WO2021057935A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/184Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type based on an oxide other than lime
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/90Programming languages; Computing architectures; Database systems; Data warehousing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/54Substitutes for natural stone, artistic materials or the like
    • C04B2111/547Imitating ancient compositions, e.g. mediaeval mortars; Compositions specially designed for restauration of ancient buildings or building elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/40Searching chemical structures or physicochemical data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical field of cultural relics restoration, in particular to a concrete formula system for the restoration of cultural relics buildings and a method of use thereof.
  • the renovation of cultural relics generally requires that they be repaired in accordance with "raw materials and original craftsmanship” and maintain "cultural importance", and the original old materials of cultural relics should be used as much as possible.
  • the concrete material for cultural relic construction is a kind of building material made by mixing, calcining and compounding multiple formulas and multiple raw materials. It generally contains mortar or mortar. It is difficult to find old materials. Therefore, for cultural relic buildings of concrete materials, When repairing, repair materials that are close to the workability, durability, mechanical properties, and chemical properties of the old materials should be used as much as possible to restore the formula of the old materials.
  • the compressive strength, setting time, and dry shrinkage resistance of the repair materials are generally considered. However, the degree of reduction of the old materials of concrete materials is low, which is difficult to achieve. According to the "raw materials, original craftsmanship" repair and the purpose of maintaining "cultural importance”.
  • the application number is 201810267192.0, and the name is: a marl used to repair modern cultural relics and architectural decorations. It discloses water, fly ash, quicklime, washed sand, active silica, active calcium oxide, silicic acid, and carbonic acid.
  • the marl formula of calcium hydroxide and titanium oxide is mainly for the type of marl with a large amount of sand in the water washing, but for the marl with a large amount of fly ash or a large amount of quicklime, it cannot be formulated. Thus restricting the use of this formula.
  • the reduction degree of the old materials is relatively low.
  • the content of each compound in the old materials is determined by some spectral detection analysis or chemical analysis methods, and the existing materials are used for mixing and preparation.
  • the raw materials of the same type or name are quite different from the existing materials.
  • the physical properties of the cement clinker produced due to the difference in the production process between the previous cement clinker and the existing cement clinker There are certain differences in chemical properties, so that the cement clinker in the existing materials cannot be truly reduced to the cement clinker in the old materials. Therefore, only measuring the content of each compound in the old materials cannot achieve the old
  • the restoration of old materials cannot achieve the purpose of repairing according to "raw materials and original craftsmanship" and maintaining the cultural relic protection of "cultural importance”.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, provide a concrete formula system for repairing cultural relics and a method of use thereof, and solve the problem that the prior art cannot be formulated to contain more silicates or more carbonates or hydroxides
  • marl or concrete
  • fly ash or more quicklime The problem of marl (or concrete) with more or more fly ash or more quicklime; at the same time, it solves the problem of not being able to restore the raw material formula of old materials, resulting in failure to achieve "raw materials, original technology” restoration and maintaining "cultural importance”
  • the issue of the purpose of cultural relic protection is to overcome the shortcomings of the prior art, provide a concrete formula system for repairing cultural relics and a method of use thereof, and solve the problem that the prior art cannot be formulated to contain more silicates or more carbonates or hydroxides
  • the technical scheme of the present invention is as follows: a concrete formula system for repairing cultural relics and a method of use thereof.
  • the concrete formula system is composed of a solid phase and an aqueous phase, and the solid phase and the water phase are in a mass percentage ratio.
  • the solid phase composition is: gel matrix and additives, gel matrix 0.1% to 99.9%, additives: 99.9% to 0.1%
  • the gel matrix is: cement, pozzolan, At least one of fly ash, gypsum, silica fume, kaolin, metakaolin, diatomaceous earth, slag powder, siliceous slag powder, and burnt clay
  • the additives include: lime, aggregate, active silica, At least one of activated calcium oxide, activated magnesium oxide, calcium bicarbonate, silicic acid, and titanium oxide
  • the method of use includes the following steps:
  • the first index value of the cultural relic building concrete sample is the silicate and/or hydroxide and/or carbonate and/or sulfate in the concrete detected and analyzed by a spectrum analyzer
  • the second index value of the cultural relic building concrete sample is the chloride ion mobility coefficient and/or the average carbonization degree value and/or the mass percentage value of the oxides detected and analyzed by chemical analysis method .
  • the third index value is the strength value and/or early strength value and/or porosity and/or elasticity value and/or of the concrete detected and analyzed by the mechanical analysis method The creep value and/or the volume change value and/or the frost resistance value and/or the average water seepage height value.
  • step S6 According to the raw material composition and content of the cultural relic concrete obtained in step S5, the materials of the concrete formula system are used to prepare a repaired concrete sample.
  • S7 Use spectrum analyzer, chemical analysis method, mechanical analysis method to detect and analyze the first index value, second index value, and third index value of the repaired concrete sample, and check and analyze the concrete building concrete obtained from steps S2-S4 The first index value, the second index value, and the third index value of the sample are compared and analyzed.
  • the standard operating procedures of the spectrum analyzer, chemical analysis method, and mechanical analysis method can refer to the standard operations of "Cement Chemical Analysis Method” and "Standard for Long-term Performance and Durability Test Method of Ordinary Concrete”.
  • composition of the solid phase is: 0.1% to 99.9% of gel matrix, 0.01% to 85% by weight of lime, 0.01% to 70% by weight of aggregate, 0.01% to 40% by weight of active silica, and active oxidation Calcium 0.01wt%-30wt%, active magnesium oxide 0.01wt%-5wt%, calcium bicarbonate 0.01wt%-20wt%, silicic acid 0.01wt%-10wt%, titanium oxide 0.01wt%-10wt%.
  • the database of the concrete formula system is made, and the database includes: a first index value, a second index value, and a third index value; the first index value is detected and analyzed using a spectrum analyzer to detect and analyze silicate and/or concrete in the concrete Or the mass percentage value of hydroxide and/or carbonate and/or sulfate and/or iron aluminate and/or aluminate and/or sulfoaluminate and/or chloride; the second index The value is the chloride ion mobility coefficient and/or the average carbonization degree value and/or the mass percentage value of the oxides of the concrete detected and analyzed by chemical analysis; the third index value is the strength of the concrete detected and analyzed by the mechanical analysis method Value and/or early strength value and/or porosity and/or elasticity value and/or creep value and/or volume change value and/or frost resistance value and/or average water penetration height value.
  • the aggregate is at least one of water-washed medium sand, coarse sand, and stone chips.
  • the spectrum analyzer is: an XRF analyzer or an X-ray diffractometer or a laser-induced breakdown spectrometer or a Raman spectrometer;
  • the chemical analysis method is: a burning subtraction method or a titration method or a rapid chloride ion diffusion coefficient of concrete Determination method, phenolphthalein test method; mechanical analysis method: shear pressure method or creep test method or water penetration height method.
  • the active silica is nano silica
  • the active calcium oxide is nano calcium oxide.
  • the present invention provides a concrete formula system for repairing cultural relics and its use method.
  • the first index value and the second index of the concrete samples of cultural relics are detected by using spectrum analyzer, chemical analysis method, and mechanical analysis method.
  • Value, the third index value and compare the detected results of the first index value, second index value, and third index value with the data in the concrete formula system database to obtain the first index value, second index value,
  • the third index value is different from the first index value, second index value, and third index value of the cultural relic building concrete sample by no more than 20% of the raw material composition and content of the cultural relic concrete.
  • Prepare the repaired concrete sample According to the raw material composition and content of the obtained cultural relic concrete.
  • the first index value, the second index value, and the third index value of the repaired concrete sample are detected by a spectrum analyzer, chemical analysis method, and mechanical analysis method.
  • the obtained first index value, second index value, and third index value are compared and analyzed with the first index value, second index value, and third index value of the cultural relic building concrete sample. If the comparison result is the repaired concrete sample and the cultural relic building
  • the first index value of the concrete sample is greater than 20% and/or the second index value is greater than 60% and/or the third index value is greater than 60%, which means that the composition and properties of the repaired concrete and the heritage building concrete sample are quite different.
  • Adjust the mass percentage of the raw material components in the repaired concrete sample to prepare a repaired concrete sample with adjusted raw material components; if the comparison result is that the first index value of the repaired concrete sample and the cultural relic building concrete sample is not more than 20%, the second index value
  • the difference between the third index value is not more than 60% and the third index value is not more than 60%, it indicates that the prepared repaired concrete sample meets the requirements and is close to the composition and properties of the cultural relic building concrete sample.
  • the repaired concrete sample can be used to correspond to the cultural relic building concrete sample.
  • the cultural relics are repaired, so as to realize the restoration of the raw material formula of the old materials, and achieve the purpose of repairing according to the "raw materials and original technology" and maintaining the cultural importance of the cultural relics; the solid phase and the water phase have a mass percentage ratio of 1:0.5 ⁇ 2
  • calcium silicate hydrate is quickly formed between active silica, active calcium oxide and water and hardens and shrinks to form a hardened frame.
  • the hardened frame can limit the later generation of fly ash, quicklime and water.
  • Hydrated calcium aluminate, hydrated calcium ferroaluminate, hydrated calcium sulfoaluminate, due to the reduced drying shrinkage, can form a good match with the original cultural relics; active silica, active calcium oxide added
  • active silica active calcium oxide added
  • the different ratios of hydration and the different speeds of the curing process produce concrete materials with different workability.
  • the types and contents of calcium-containing compounds in the hydration products are different, which can form concrete materials with different early strengths.
  • the repaired concrete was prepared according to the formula of the above concrete formula system, and the first index value, the second index value, and the third index value of the detected cultural relic building concrete samples were prepared with a higher amount of fly ash or a higher amount of lime.
  • different types of concrete can be prepared by adjusting the ratio of each component in the concrete formula system formula.
  • the invention provides a concrete formula system for repairing cultural relics and a method of use thereof.
  • the concrete formula system consists of a solid phase and an aqueous phase; the solid phase and the aqueous phase are in a mass percentage ratio of 1:0.5 ⁇ 2 Mixing;
  • the solid phase composition is: 27wt% to 95wt% of gel matrix, 2wt% to 40wt% of active silica, and 2wt% to 30wt% of active calcium oxide.
  • the specific method of use includes the following steps:
  • Step 1 Take on-site sampling to prepare concrete samples for cultural relics
  • Step 2 Detect the chemical composition and content of the concrete samples of cultural relics by XRF spectrometer and Raman spectrometer: make frit and pressed tablets of concrete samples of cultural relics; use XRF spectrometer and Raman spectrometer for standard operation to detect the concrete samples of cultural relics Melting and pressing, it was detected that the components of the cultural relic concrete contained calcium silicate and calcium sulfate; using regression analysis method, it was found that calcium silicate was 44% by weight and calcium sulfate was 34% by weight.
  • Step 3 Use the titration method to detect the mass percentages of the chemical components of magnesium oxide, aluminum oxide, and iron oxide: prepare a sample solution with pH 1.8 and heat it to 60°C; use indicator and EDTA standard titration solvent to titrate To bright yellow, record the volume of titrant 1 used; prepare pH3 sample solution and boil; titrate the solvent with indicator and EDTA standard, titrate to bright yellow, record the volume of titrant 2 used; according to the volume of titrant 1 and titrant 2 Record the data and calculate 10wt% of magnesium oxide, 1wt% of aluminum oxide, and 4wt% of iron oxide.
  • Step 4 Detect the average water seepage height value of the cultural relic building concrete sample by the water seepage height method: make the concrete sample test piece of the cultural relic building; install the sample test piece on the impermeability instrument, inject water and pressurize, and after the water seepage is completed, The water mark is drawn on the longitudinal section; the water penetration height value of 12 water penetration points in the water mark is measured at equal intervals. The results are shown in Table 1. The average water penetration height value is 38.6 mm.
  • Step 5 The measured calcium silicate 44wt%, calcium sulfate 34wt%, magnesium oxide 10wt%, aluminum oxide 1wt%, iron oxide 4wt% and the average water penetration height 38.6 mm are combined with the concrete formula system The first index value, the second index value, and the third index value in the database are compared. The comparison result is that the first index value, the second index value, and the third index value are not more than 20%.
  • the corresponding data group is: silicic acid Calcium 20-40wt%, calcium sulfate 20-55wt%, magnesium oxide 3-20wt%, aluminum oxide 1-15wt%, water seepage height 17-39mm, the raw material components and content of cultural relic concrete are Portland cement and gypsum
  • the mass percentage ratio is 0.5 to 1.2: 0.5 to 2.0.
  • Step 6 Mix Portland cement, gypsum, activated calcium oxide, and activated silica at a mass percentage ratio of 1:1:0.1:0.1, and add 1.5 times of water to prepare a repaired concrete sample 1.
  • Step 7 Use XRF analyzer and Raman spectrometer to detect and analyze that the repaired concrete sample 1 contains 45% by weight of calcium silicate and 39% by weight of calcium sulfate; titration is used to detect that the repaired concrete sample 1 contains 9% by weight of magnesium oxide and two oxides Aluminum 0.9% by weight, iron trioxide 3.6% by weight; the water penetration height value of 12 water penetration points of the repaired concrete sample 1 was detected by the water penetration height method. As shown in Table 2, the average water penetration height is 35.3 mm.
  • Step 8 Calcium silicate 45wt%, calcium sulfate 39wt% compared with calcium silicate 44wt% and calcium sulfate 34wt%, the difference is not more than 20%; magnesium oxide 9wt%, aluminum oxide 0.9wt%, and ferric oxide 3.6 Compared with 10wt% of magnesium oxide, 1wt% of aluminum oxide, and 4wt% of iron trioxide, the difference is no more than 60%; the average water seepage height of 35.3 mm and the average water seepage height of 38.6 mm, the difference is no more than 60% .
  • Step 9 Apply repair concrete sample 1 to repair the cultural relic building corresponding to the cultural relic building concrete sample.
  • the present invention provides a concrete formula system for repairing cultural relics and a method of use thereof.
  • the specific method of use includes the following steps:
  • Step 1 Take on-site sampling to prepare concrete samples for cultural relics
  • Step 2 Detect the chemical composition and content of the concrete samples of cultural relics by XRF spectrometer and Raman spectrometer: make frit and pressed tablets of concrete samples of cultural relics; use XRF spectrometer and Raman spectrometer for standard operation to detect the concrete samples of cultural relics Melting and pressing, it is detected that the components of the cultural relic concrete contain calcium silicate and calcium sulfate; regression analysis method is used to obtain 40wt% calcium silicate and 64wt% calcium sulfate.
  • Step 3 Use the titration method to detect the mass percentages of the chemical components of magnesium oxide, aluminum oxide, and iron oxide: prepare a sample solution with pH 1.8 and heat it to 60°C; use indicator and EDTA standard titration solvent to titrate To bright yellow, record the volume of titrant 1 used; prepare pH3 sample solution and boil; titrate the solvent with indicator and EDTA standard, titrate to bright yellow, record the volume of titrant 2 used; according to the volume of titrant 1 and titrant 2 Record the data, and calculate 7wt% magnesium oxide, 1.1wt% aluminum oxide, and 3wt% iron oxide.
  • Step 4 Detect the average water seepage height value of the cultural relic building concrete sample by the water seepage height method: make the concrete sample test piece of the cultural relic building; install the sample test piece on the impermeability instrument, inject water and pressurize, and after the water seepage is completed, The water mark is drawn on the longitudinal section; the water penetration height values of 12 water penetration points in the water mark are measured at equal intervals. The results are shown in Table 3, and the average water penetration height value is 29.4 mm.
  • Step 5 Combine the measured calcium silicate 40wt%, calcium sulfate 64wt%, magnesium oxide 7wt%, aluminum oxide 1.1wt%, ferric oxide 3wt% and the average water penetration height of 29.4 mm with the concrete formula
  • the first index value, the second index value, and the third index value are compared in the database of the system.
  • the comparison result is that the first index value, the second index value, and the third index value are not more than 20%.
  • the corresponding data group is: silicon Calcium acid 20-40wt%, calcium sulfate 20-55wt%, magnesium oxide 3-20wt%, aluminum oxide 1-15wt%, water seepage height 17-39mm, the raw material composition and content of cultural relic concrete are Portland cement and The mass percentage ratio of gypsum is 0.5 to 1.2: 0.5 to 2.0.
  • Step 6 Use Portland cement and gypsum to mix with a mass percentage ratio of 1:1, and add 1 times the amount of water to prepare a repaired concrete sample 1.
  • Step 7 Use XRF analyzer and Raman spectrometer to detect and analyze that the repaired concrete sample 1 contains 39 wt% calcium silicate and 41 wt% of calcium sulfate; titration is used to detect that the repaired concrete sample 1 contains 5 wt% magnesium oxide and dioxide Aluminum 1.2wt%, ferric oxide 3.5wt%; the water seepage height value of the 12 water seepage points of the repaired concrete sample 1 was detected by the water seepage height method. As shown in Table 4, the average value of the water seepage height is 32.8 mm.
  • Step 8 Calcium silicate 39wt%, calcium sulfate 41wt%, calcium silicate 40wt%, calcium sulfate 64wt%, the difference is greater than 20%; magnesium oxide 5wt%, aluminum oxide 1.2wt%, and ferric oxide 3.5wt% Compared with 7wt% magnesium oxide, 1.1wt% aluminum oxide, and 3wt% iron trioxide, the difference is greater than 60%; the average water seepage height is 32.8 mm and the average water seepage height is 29.4 mm, the difference is greater than 60%.
  • Step 9 Adjust the mass percentages of the raw material components in the repaired concrete sample 1, using Portland cement, gypsum, activated calcium oxide, and activated silica at a mass percentage ratio of 0.7:1.8:0.3:0.3, and add 1 time Of water to prepare a repaired concrete sample 2.
  • Step 10 Use XRF analyzer and Raman spectrometer to detect 36wt% calcium silicate and 52wt% calcium sulfate in the reconstituted repaired concrete sample 2; use the titration method to detect 4wt% magnesium oxide in the reconstituted repaired concrete sample 2 %, aluminum oxide 1.4wt%, iron oxide 3wt%; the water seepage height value of 12 water seepage points of the reconstituted repaired concrete sample 2 was detected by the water seepage height method, as shown in Table 5, the average value of the water seepage height Is 28.5 mm.
  • Step 11 36wt% calcium silicate, 52wt% calcium sulfate, 40wt% calcium silicate, 64wt% calcium sulfate, the difference is no more than 20%; magnesium oxide 4wt%, aluminum oxide 1.4wt%, and iron trioxide 3wt% Compared with 7wt% magnesium oxide, 1.1wt% aluminum oxide, and 3wt% iron trioxide, the difference is no more than 60%; the average water seepage height is 28.5 mm and the average water seepage height 29.4 mm, the difference is no more than 60%.
  • Step 12 Apply the new repaired concrete sample 2 to repair the cultural relic building corresponding to the concrete sample of the cultural relic building.
  • the comparison result is that the first index value is not more than 20%, the second index value is not more than 60%, and the difference between the third index value is not more than 60% between the repaired concrete sample and the cultural relic building concrete sample, it indicates that the prepared The repaired concrete sample meets the requirements and is close to the composition and properties of the cultural relic building concrete sample.
  • the repaired concrete sample can be used to repair the cultural relics corresponding to the cultural relic building concrete sample, so as to realize the restoration of the raw material formula of the old material and achieve the , The original craftsmanship "repair and maintain the cultural relic protection purpose of "cultural importance”.

Abstract

一种修缮文物建筑的混凝土配方体系及其使用方法,包括:获取文物建筑混凝土样品的第一指标值、第二指标值、第三指标值并与混凝土配方体系的数据库中的第一指标值、第二指标值、第三指标值进行对照,获取文物混凝土原制作配方的原材料成分、含量,配制修缮混凝土样品;检测修缮混凝土样品的第一指标值、第二指标值、第三指标值并与文物建筑混凝土样品的第一指标值、第二指标值、第三指标值进行对比;若结果为第一指标值相差不大于20%、第二指标值相差不大于60%、第三指标值相差不大于60%,则采用修缮混凝土样品进行文物修缮。

Description

一种修缮文物建筑的混凝土配方体系及其使用方法 技术领域
本发明涉及文物修复技术领域,尤其涉及一种修缮文物建筑的混凝土配方体系及其使用方法。
背景技术
文物建筑的修缮一般要求按“原材料、原工艺”修缮以及保持“文化重要性”,尽可能采用文物建筑原来的老旧材料。文物建筑的混凝土材料,是一种多配方、多原材料经过混合、煅烧、化合而成的建筑材料,一般包含砂浆或灰泥,很难找到老旧材料,因此对于混凝土材料类的文物建筑,在修缮时应尽可能采用与老旧材料的和易性、耐久性、力学性能、化学性能等较接近的修缮材料,以还原老旧材料的配方。现有技术中,混凝土材料类的修缮材料在配制时,一般会考虑修缮材料的抗压强度、凝结时间及抗干缩性的问题,但对于混凝土材料的老旧材料还原程度较低,难以达到按“原材料、原工艺”修缮以及保持“文化重要性”的目的。
申请号为201810267192.0,名称为:一种用于修复近代文物建筑装饰的泥灰,公开了包括水、粉煤灰、生石灰、水洗中砂、活性二氧化硅、活性而氧化钙、硅酸、碳酸氢钙和氧化钛的泥灰配方,该配方主要针对含水洗中砂量较多的一类泥灰,而对于含粉煤灰量较多或生石灰量较多的泥灰,则无法进行配制,从而限制该配方的使用。
另一方面,现有技术中对于老旧材料的还原程度较低,一般只是通过一些光谱检测分析或化学分析方法测定出老旧材料中各个化合物成分的含量,采用现有材料进行混合配制,然而,随着时间的推移,同样种类或名称的原材料与现有材料区别较大,例如,以前的水泥熟料与现有的水泥熟料,由于制作工艺不同,导致生产出来的水泥熟料物理性质、化学性质存在一定区别,从而采用现有材料中的水泥熟料无法正真还原为老旧材料中的水泥熟料,因此,仅仅测出老旧材料中各个化合物成分的含量,无法做到老旧材料的还原,从而无法达到按“原材料、原工艺”修缮以及保持“文化重要性”的文物保护目的。
因此,现有技术存在缺陷,需要改进。
发明内容
本发明的目的是克服现有技术的不足,提供一种修缮文物建筑的混凝土配方体系及其使用方法,解决现有技术,无法配制含硅酸盐较多或碳酸盐较多或氢氧化物较多或粉煤灰量较多或生石灰量较多的泥灰(或混凝土)的问题;同时解决无法还原老旧材料的原材料配方,导致无法达到“原材料、原工艺”修复以及保持“文化重要性”的文物保护目的的问题。
本发明的技术方案如下:一种修缮文物建筑的混凝土配方体系及其使用方法,所述混凝土配方体系的组成为:固相、水相,所述固相与所述水相按照质量百分数比为1:0.5~2混合;所述固相组成为:凝胶基质和添加物,凝胶基质0.1%~99.9%、添加物:99.9%~0.1%,所述凝胶基质为:水泥、火山灰、粉煤灰、石膏、硅灰、高岭土、偏高岭土、硅藻土、矿渣 粉、硅质渣粉、烧粘土中的至少一种;所述添加物包括:石灰、骨料、活性二氧化硅、活性氧化钙、活性氧化镁、碳酸氢钙、硅酸、氧化钛中的至少一种;所述使用方法包括以下步骤:
S1:获取文物建筑的混凝土样品。
S2:获取文物建筑混凝土样品的第一指标值,所述第一指标值为采用光谱分析仪检测分析出混凝土中硅酸盐和/或氢氧化物和/或碳酸盐和/或硫酸盐和/或铁铝酸盐和/或铝酸盐和/或硫铝酸盐和/或氯化物/的质量百分数值。
S3:获取文物建筑混凝土样品的第二指标值,所述第二指标值为采用化学分析法检测分析出混凝土的氯离子迁移度系数和/或平均碳化程度值和/或氧化物的质量百分数值。
S4:获取文物建筑混凝土样品的第三指标值,所述第三指标值为采用力学分析法检测分析出混凝土的强度值和/或早期强度值和/或孔隙率和/或弹性值和/或徐变值和/或体积变化值和/或抗冻性值和/或平均渗水高度值。
S5:将文物建筑混凝土样品的第一指标值、第二指标值、第三指标值与所述混凝土配方体系的数据库中的第一指标值、第二指标值、第三指标值数据进行对照,获得第一指标值、第二指标值、第三指标值分别与文物建筑混凝土样品的第一指标值、第二指标值、第三指标值相差不超过20%的文物混凝土的原材料成分、含量。
S6:根据步骤S5中获得的文物混凝土的原材料成分、含量,应用所述混凝土配方体系的材料,配制出修缮混凝土样品。
S7:分别采用光谱分析仪、化学分析法、力学分析法检测分析修缮混凝土样品的第一指标值、第二指标值、第三指标值,并与步骤S2-S4检测分析得出的文物建筑混凝土样品的第一指标值、第二指标值、第三指标值进行对比分析。
S8:若对比分析结果为所述修缮混凝土样品与文物建筑混凝土样品的第一指标值相差大于20%和/或第二指标值相差大于60%和/或第三指标值相差大于60%,则根据所述混凝土配方体系,调整所述修缮混凝土样品中的材料成分及其质量百分数,配制出调整了材料成分、含量的修缮混凝土样品,并重复步骤S7。
S9:若对比分析结果为所述修缮混凝土样品与文物建筑混凝土样品的第一指标值相差不大于20%、第二指标值相差不大于60%、第三指标值相差不大于60%,则采用所述修缮混凝土样品进行文物修缮。
所述光谱分析仪、化学分析法、力学分析法的标准操作步骤可参照《水泥化学分析方法》、《普通混凝土长期性能和耐久性能试验方法标准》标准操作。
进一步地,所述固相的组成为:凝胶基质0.1%~99.9%、石灰0.01wt%~85wt%、骨料0.01wt%~70wt%、活性二氧化硅0.01wt%~40wt%、活性氧化钙0.01wt%~30wt%、活性氧化镁0.01wt%~5wt%、碳酸氢钙0.01wt%~20wt%、硅酸0.01wt%~10wt%、氧化钛0.01wt%~10wt%。制作所述混凝土配方体系的数据库,所述数据库包括:第一指标值、第二指标值、第三指标值;所述第一指标值为采用光谱分析仪检测分析出混凝土中硅酸盐和/或氢氧化物和/或碳酸盐和/或硫酸盐和/或铁铝酸盐和/或铝酸盐和/或硫铝酸盐和/或氯化物的质量百分数值;所述第二指标值为采用化学分析法检测分析出混凝土的氯离子迁移度系数和/或平均碳化程度值和/或氧化物的质量百分数值;所述第三指标值为采用力学分析法检测分析出混凝土的强度值和/或早期强度值和/或孔隙率和/或弹性 值和/或徐变值和/或体积变化值和/或抗冻性值和/或平均渗水高度值。
进一步地,所述骨料为水洗中砂、粗砂、石屑中的至少一种。
进一步地,所述光谱分析仪为:XRF分析仪或X射线衍射仪或激光诱导击穿光谱仪或拉曼光谱仪;所述化学分析法为:灼烧差减法或滴定法或混凝土氯离子扩散系数快速测定法、酚酞测试法;力学分析法为:剪压法或徐变试验法或渗水高度法。
进一步地,所述活性二氧化硅为纳米二氧化硅,所述活性氧化钙为纳米氧化钙。
采用上述方案,本发明提供一种修缮文物建筑的混凝土配方体系及其使用方法,通过分别采用光谱分析仪、化学分析法、力学分析法检测出文物建筑混凝土样品的第一指标值、第二指标值、第三指标值,并将检测出的第一指标值、第二指标值、第三指标值的结果与混凝土配方体系数据库中的数据进行对照,获得第一指标值、第二指标值、第三指标值分别与文物建筑混凝土样品的第一指标值、第二指标值、第三指标值相差不超过20%的文物混凝土的原材料成分、含量,根据获得的文物混凝土的原材料成分、含量,配制出修缮混凝土样品,在配制出修缮混凝土样品后,进一步采用光谱分析仪、化学分析法、力学分析法检测出修缮混凝土样品的第一指标值、第二指标值、第三指标值,并将得到的第一指标值、第二指标值、第三指标值与文物建筑混凝土样品的第一指标值、第二指标值、第三指标值进行对比分析,若对比结果为修缮混凝土样品与文物建筑混凝土样品的第一指标值大于20%和/或第二指标值大于60%和/或第三指标值相差大于60%,则说明该修缮混凝土与文物建筑混凝土样品的成分及性质相差较大,调整所述修缮混凝土样品中原材料成分的质量百分数,配制出调整了原材料成分的修缮混凝土样品;若对比结果为修缮混凝土样品与文物建筑混凝土样品的第一指标值不大于20%、第二指标值不大于60%、第三指标值相差不大于60%时,说明配制的修缮混凝土样品符合要求,与文物建筑混凝土样品的成分及性质接近,可采用该修缮混凝土样品对文物建筑混凝土样品所对应的文物进行修缮,从而实现老旧材料的原材料配方的还原,达到按“原材料、原工艺”修缮以及保持“文化重要性”的文物保护目的;固相与水相以质量百分数比为1:0.5~2进行混合,活性二氧化硅、活性氧化钙与水之间快速生成水化硅酸钙并硬化干缩形成硬化框架,硬化框架可限制后期粉煤灰、生石灰与水生成的水化硅酸钙、水化铝酸钙、水化铁铝酸钙、水化硫铝酸钙的干缩,由于减小了干缩,能够与文物原物形成好的匹配;活性二氧化硅、活性氧化钙加入的比例不同,水化及固化过程的速度不同,产生和易性不同的混凝土材料,同时水化产物中的含钙化合物的种类和含量不同,能形成早期强度不同的混凝土材料。根据上述混凝土配方体系的配方配制出修缮混凝土,针对检测出的文物建筑混凝土样品的第一指标值、第二指标值、第三指标值,分别配制出含粉煤灰量较多或石灰量较多或石膏较多或其他含钙化合物较多或水洗中砂量较多的混凝土,通过调整混凝土配方体系配方中各个成分的比例,从而配制出不同类别的混凝土。
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
实施例1
本发明提供一种修缮文物建筑的混凝土配方体系及其使用方法,所述混凝土配方体系的组成为:固相、水相;所述固相与所述水相按照质量百分数比为1:0.5~2混合;所述 固相组成为:凝胶基质27wt%~95wt%、活性二氧化硅2wt%~40wt%、活性氧化钙2wt%~30wt%。
具体的使用方法,包括以下步骤:
步骤1:现场取样,制备文物建筑混凝土样品;
步骤2:通过XRF光谱仪、拉曼光谱仪检测文物建筑混凝土样品的化学成分及含量:制作文物建筑混凝土样品的熔片和压片;采用XRF光谱仪、拉曼光谱仪进行标准操作,检测文物建筑混凝土样品的熔片和压片,检测出文物混凝土的成分中含有硅酸钙、硫酸钙;运用回归分析法得出硅酸钙44wt%、硫酸钙34wt%。
步骤3:采用滴定法检测出化学组分氧化镁、三氧化二铝、三氧化二铁的质量百分数:制备pH1.8的样品溶液,加热至60℃;用指示剂和EDTA标准滴定溶剂,滴定至亮黄色,记录所用滴定剂1的体积;制备pH3样品溶液并煮沸;用指示剂和EDTA标准滴定溶剂,滴定至亮黄色,记录所用滴定剂2的体积;根据滴定剂1和滴定剂2的记录数据,计算出氧化镁10wt%、三氧化二铝1wt%、三氧化二铁4wt%。
步骤4:通过渗水高度法,检测文物建筑混凝土样品的平均渗水高度值:制作文物建筑混凝土样品试件;将样品试件安装在抗渗仪上,注水加压,渗水完成后在样品试件的纵断面上画出水痕;等间距测量水痕中12个渗水点的渗水高度值,结果如表1所示,平均值渗水高度值为38.6毫米。
表1
Figure PCTCN2020117955-appb-000001
步骤5:将测得的硅酸钙44wt%、硫酸钙34wt%、氧化镁10wt%、三氧化二铝1wt%、三氧化二铁4wt%及渗水高度平均值38.6毫米,与所述混凝土配方体系的数据库中第一指标值、第二指标值、第三指标值进行对照,对照结果为第一指标值、第二指标值、第三指标值不大于20%所对应的数据组为:硅酸钙20~40wt%、硫酸钙20~55wt%、氧化镁3~20wt%、三氧化二铝1~15wt%、渗水高度17~39毫米,文物混凝土的原材料成分、含量为硅酸盐水泥与石膏的质量百分数比为0.5~1.2:0.5~2.0。
步骤6:采用硅酸盐水泥、石膏、活性氧化钙、活性二氧化硅以质量百分数比为1:1:0.1:0.1进行混合,并加入1.5倍的水,配制出修缮混凝土样品1。
步骤7:采用XRF分析仪、拉曼光谱仪检测分析出修缮混凝土样品1中含硅酸钙45wt%、硫酸钙39wt%;采用滴定法检测出修缮混凝土样品1中含氧化镁9wt%、三氧化二铝0.9wt%、三氧化二铁3.6wt%;采用渗水高度法检测出修缮混凝土样品1的12个渗水点的渗水高度值,如表2所示,渗水高度平均值为35.3毫米。
表2
Figure PCTCN2020117955-appb-000002
步骤8:硅酸钙45wt%、硫酸钙39wt%与硅酸钙44wt%、硫酸钙34wt%对比,相差不大于20%;氧化镁9wt%、三氧化二铝0.9wt%、三氧化二铁3.6wt%与氧化镁10wt%、三氧化二铝1wt%、三氧化二铁4wt%对比,相差不大于60%;渗水高度平均值35.3毫米与渗水高度平均值38.6毫米相比,相差不大于60%。
步骤9:应用修缮混凝土样品1修缮文物建筑混凝土样品所对应的文物建筑。
实施例2
本发明提供一种修缮文物建筑的混凝土配方体系及其使用方法,具体的使用方法,包括以下步骤:
步骤1:现场取样,制备文物建筑混凝土样品;
步骤2:通过XRF光谱仪、拉曼光谱仪检测文物建筑混凝土样品的化学成分及含量:制作文物建筑混凝土样品的熔片和压片;采用XRF光谱仪、拉曼光谱仪进行标准操作,检测文物建筑混凝土样品的熔片和压片,检测出文物混凝土的成分中含有硅酸钙、硫酸钙;运用回归分析法得出硅酸钙40wt%、硫酸钙64wt%。
步骤3:采用滴定法检测出化学组分氧化镁、三氧化二铝、三氧化二铁的质量百分数:制备pH1.8的样品溶液,加热至60℃;用指示剂和EDTA标准滴定溶剂,滴定至亮黄色,记录所用滴定剂1的体积;制备pH3样品溶液并煮沸;用指示剂和EDTA标准滴定溶剂,滴定至亮黄色,记录所用滴定剂2的体积;根据滴定剂1和滴定剂2的记录数据,计算出氧化镁7wt%、三氧化二铝1.1wt%、三氧化二铁3wt%。
步骤4:通过渗水高度法,检测文物建筑混凝土样品的平均渗水高度值:制作文物建筑混凝土样品试件;将样品试件安装在抗渗仪上,注水加压,渗水完成后在样品试件的纵断面上画出水痕;等间距测量水痕中12个渗水点的渗水高度值,结果如表3所示,平均值渗水高度值为29.4毫米。
表3
Figure PCTCN2020117955-appb-000003
步骤5:将测得的硅酸钙40wt%、硫酸钙64wt%、氧化镁7wt%、三氧化二铝1.1wt%、三氧化二铁3wt%及渗水高度平均值29.4毫米,与所述混凝土配方体系的数据库中第一指标值、第二指标值、第三指标值进行对照,对照结果为第一指标值、第二指标值、第三指标值不大于20%所对应的数据组为:硅酸钙20~40wt%、硫酸钙20~55wt%、氧化镁3~20wt%、三氧化二铝1~15wt%、渗水高度17~39毫米,文物混凝土的原材料成分、含量为硅酸盐水泥与石膏的质量百分数比为0.5~1.2:0.5~2.0。
步骤6:采用硅酸盐水泥、石膏以质量百分数比为1:1进行混合,并加入1倍的水,配 制出修缮混凝土样品1。
步骤7:采用XRF分析仪、拉曼光谱仪检测分析出修缮混凝土样品1中含硅酸钙39wt%、硫酸钙41wt%;采用滴定法检测出修缮混凝土样品1中含氧化镁5wt%、三氧化二铝1.2wt%、三氧化二铁3.5wt%;采用渗水高度法检测出修缮混凝土样品1的12个渗水点的渗水高度值,如表4所示,渗水高度平均值为32.8毫米。
表4
Figure PCTCN2020117955-appb-000004
步骤8:硅酸钙39wt%、硫酸钙41wt%与硅酸钙40wt%、硫酸钙64wt%,相差大于20%;氧化镁5wt%、三氧化二铝1.2wt%、三氧化二铁3.5wt%与氧化镁7wt%、三氧化二铝1.1wt%、三氧化二铁3wt%对比,相差大于60%;渗水高度平均值为32.8毫米与渗水高度平均值29.4毫米对比,相差大于60%。
步骤9:调整所述修缮混凝土样品1中原材料成分的质量百分数,采用硅酸盐水泥、石膏、活性氧化钙、活性二氧化硅以质量百分数比为0.7:1.8:0.3:0.3,并加入1倍的水,配制出修缮混凝土样品2。
步骤10:采用XRF分析仪、拉曼光谱仪检测出重新配制的修缮混凝土样品2中含硅酸钙36wt%、硫酸钙52wt%;采用滴定法检测出重新配制的修缮混凝土样品2中含氧化镁4wt%、三氧化二铝1.4wt%、三氧化二铁3wt%;采用渗水高度法检测出重新配制的修缮混凝土样品2的12个渗水点的渗水高度值,如表5所示,渗水高度平均值为28.5毫米。
表5
Figure PCTCN2020117955-appb-000005
步骤11:硅酸钙36wt%、硫酸钙52wt%与硅酸钙40wt%、硫酸钙64wt%,相差不大于20%;氧化镁4wt%、三氧化二铝1.4wt%、三氧化二铁3wt%与氧化镁7wt%、三氧化二铝1.1wt%、三氧化二铁3wt%对比,相差不大于60%;渗水高度平均值为28.5毫米与渗水高度平均值29.4毫米对比,相差不大于60%。
步骤12:应用新的修缮混凝土样品2修缮文物建筑混凝土样品所对应的文物建筑。
综上所述,当对比结果为修缮混凝土样品与文物建筑混凝土样品的第一指标值不大于20%、第二指标值不大于60%、第三指标值相差不大于60%时,说明配制的修缮混凝土样品符合要求,与文物建筑混凝土样品的成分及性质接近,可采用该修缮混凝土样品对文物建筑混凝土样品所对应的文物进行修缮,从而实现老旧材料的原材料配方的还原,达到按“原材料、原工艺”修缮以及保持“文化重要性”的文物保护目的。
以上仅为本发明的示意实施例而已,并不用于限制本发明,凡在本发明的精神和 原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种修缮文物建筑的混凝土配方体系及其使用方法,其特征在于,所述混凝土配方体系的组成为:固相、水相,所述固相与所述水相按照质量百分数比为1:0.5~2混合;所述固相组成为:凝胶基质和添加物,凝胶基质0.1%~99.9%、添加物:99.9%~0.1%,所述凝胶基质为:水泥、火山灰、粉煤灰、石膏、硅灰、高岭土、偏高岭土、硅藻土、矿渣粉、硅质渣粉、烧粘土中的至少一种;所述添加物包括:石灰、骨料、活性二氧化硅、活性氧化钙、活性氧化镁、碳酸氢钙、硅酸、氧化钛中的至少一种;所述使用方法包括以下步骤:
    S1:获取文物建筑的混凝土样品;
    S2:获取文物建筑混凝土样品的第一指标值,所述第一指标值为采用光谱分析仪检测分析出混凝土中硅酸盐和/或氢氧化物和/或碳酸盐和/或硫酸盐和/或铁铝酸盐和/或铝酸盐和/或硫铝酸盐和/或氯化物的质量百分数值;
    S3:获取文物建筑混凝土样品的第二指标值,所述第二指标值为采用化学分析法检测分析出混凝土的氯离子迁移度系数和/或平均碳化程度值和/或氧化物的质量百分数值;
    S4:获取文物建筑混凝土样品的第三指标值,所述第三指标值为采用力学分析法检测分析出混凝土的强度值和/或早期强度值和/或孔隙率和/或弹性值和/或徐变值和/或体积变化值和/或抗冻性值和/或平均渗水高度值;
    S5:将文物建筑混凝土样品的第一指标值、第二指标值、第三指标值与所述混凝土配方体系的数据库中的第一指标值、第二指标值、第三指标值数据进行对照,获得第一指标值、第二指标值、第三指标值分别与文物建筑混凝土样品的第一指标值、第二指标值、第三指标值相差不超过20%的文物混凝土的原材料成分、含量;
    S6:根据步骤S5中获得的文物混凝土的原材料成分、含量,应用所述混凝土配方体系的材料,配制出修缮混凝土样品;
    S7:分别采用光谱分析仪、化学分析法、力学分析法检测分析修缮混凝土样品的第一指标值、第二指标值、第三指标值,并与步骤S2-S4检测分析得出的文物建筑混凝土样品的第一指标值、第二指标值、第三指标值进行对比分析;
    S8:若对比分析结果为所述修缮混凝土样品与文物建筑混凝土样品的第一指标值相差大于20%和/或第二指标值相差大于60%和/或第三指标值相差大于60%,则根据所述混凝土配方体系,调整所述修缮混凝土样品中的材料成分及其质量百分数,配制出调整了材料成分、含量的修缮混凝土样品,并重复步骤S7;
    S9:若对比分析结果为所述修缮混凝土样品与文物建筑混凝土样品的第一指标值相差不大于20%、第二指标值相差不大于60%、第三指标值相差不大于60%,则采用所述修缮混凝土样品进行文物修缮。
  2. 根据权利要求1所述的一种修缮文物建筑的混凝土配方体系及其使用方法,其特征在于,所述固相的组成为:凝胶基质0.1%~99.9%、石灰0.01wt%~85wt%、骨料0.01wt%~70wt%、活性二氧化硅0.01wt%~40wt%、活性氧化钙0.01wt%~30wt%、活性氧化镁0.01wt%~5wt%、碳酸氢钙0.01wt%~20wt%、硅酸0.01wt%~10wt%、氧化钛0.01wt%~10wt%。
  3. 根据权利要求1所述的一种修缮文物建筑的混凝土材料及修缮方法,其特征在于,所述骨料为水洗中砂、粗砂、石屑中的至少一种。
  4. 根据权利要求1所述的一种修缮文物建筑的混凝土配方体系及其使用方法,其特征 在于,所述光谱分析仪为:XRF分析仪或X射线衍射仪或激光诱导击穿光谱仪或拉曼光谱仪;所述化学分析法为:灼烧差减法或滴定法或混凝土氯离子扩散系数快速测定法、酚酞测试法;力学分析法为:剪压法或徐变试验法或渗水高度法。
  5. 根据权利要求1所述的一种修缮文物建筑的混凝土配方体系及其使用方法,其特征在于,所述活性二氧化硅为纳米二氧化硅,所述活性氧化钙为纳米氧化钙。
PCT/CN2020/117955 2019-09-27 2020-09-26 一种修缮文物建筑的混凝土配方体系及其使用方法 WO2021057935A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/763,819 US20220332647A1 (en) 2019-09-27 2020-09-26 Concrete formulation system for repairing cultural relic building and use method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910927349.2 2019-09-27
CN201910927349.2A CN110627437A (zh) 2019-09-27 2019-09-27 一种修缮文物建筑的混凝土配方体系及其使用方法

Publications (1)

Publication Number Publication Date
WO2021057935A1 true WO2021057935A1 (zh) 2021-04-01

Family

ID=68973317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117955 WO2021057935A1 (zh) 2019-09-27 2020-09-26 一种修缮文物建筑的混凝土配方体系及其使用方法

Country Status (3)

Country Link
US (1) US20220332647A1 (zh)
CN (1) CN110627437A (zh)
WO (1) WO2021057935A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117363152A (zh) * 2023-10-10 2024-01-09 武汉中材科技有限公司 一种srn憎水离子剂及其制备方法和使用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627437A (zh) * 2019-09-27 2019-12-31 赵之祯 一种修缮文物建筑的混凝土配方体系及其使用方法
CN113526978A (zh) * 2021-09-02 2021-10-22 沈阳工业大学 一种含煤矸石、铁尾矿的蒸压加气混凝土及其制备方法
CN116041003A (zh) * 2022-11-25 2023-05-02 上海鑫栈建筑材料有限公司 一种建筑表皮修复用界面处理材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4325829C1 (de) * 1993-07-31 1995-03-23 Waldkirch Inst Baustoffpruef Verfahren zur Herstellung kalkhydratreicher Bindemittel für Betone, Mörtel, Putze, Estriche oder Schlämme und Verwendung der so hergestellten Bindemittel
JP2006124216A (ja) * 2004-10-27 2006-05-18 Sumitomo Kinzoku Kozan Siporex Kk 高耐炭酸化性軽量気泡コンクリート
CN101864843A (zh) * 2009-04-14 2010-10-20 武汉建工股份有限公司 历史建筑水刷石花饰线条修复的方法
CN106927776A (zh) * 2017-03-14 2017-07-07 北京化工大学 一种岩土建筑加固修复用高性能耐久性天然水硬性石灰砂浆及其制备方法
CN108386000A (zh) * 2018-02-11 2018-08-10 宁夏大学 一种历史文物建筑修补方法
CN108439931A (zh) * 2018-03-28 2018-08-24 江门市五邑大学建筑设计所 一种用于修复近代文物建筑装饰的泥灰
CN109231915A (zh) * 2018-10-10 2019-01-18 江苏大美天第文化产业有限公司 一种古建筑修缮用加固复合材料及其施工方法
CN110627437A (zh) * 2019-09-27 2019-12-31 赵之祯 一种修缮文物建筑的混凝土配方体系及其使用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815631A1 (de) * 1998-04-07 1999-10-14 Hasit Trockenmoertel Gmbh Verfahren zur Herstellung eines einem historischen Mörtel entsprechenden Mörtels
KR101554165B1 (ko) * 2014-12-19 2015-09-21 한국건설기술연구원 화재손상 콘크리트 구조물의 잔존수명 예측 시스템 및 그 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4325829C1 (de) * 1993-07-31 1995-03-23 Waldkirch Inst Baustoffpruef Verfahren zur Herstellung kalkhydratreicher Bindemittel für Betone, Mörtel, Putze, Estriche oder Schlämme und Verwendung der so hergestellten Bindemittel
JP2006124216A (ja) * 2004-10-27 2006-05-18 Sumitomo Kinzoku Kozan Siporex Kk 高耐炭酸化性軽量気泡コンクリート
CN101864843A (zh) * 2009-04-14 2010-10-20 武汉建工股份有限公司 历史建筑水刷石花饰线条修复的方法
CN106927776A (zh) * 2017-03-14 2017-07-07 北京化工大学 一种岩土建筑加固修复用高性能耐久性天然水硬性石灰砂浆及其制备方法
CN108386000A (zh) * 2018-02-11 2018-08-10 宁夏大学 一种历史文物建筑修补方法
CN108439931A (zh) * 2018-03-28 2018-08-24 江门市五邑大学建筑设计所 一种用于修复近代文物建筑装饰的泥灰
CN109231915A (zh) * 2018-10-10 2019-01-18 江苏大美天第文化产业有限公司 一种古建筑修缮用加固复合材料及其施工方法
CN110627437A (zh) * 2019-09-27 2019-12-31 赵之祯 一种修缮文物建筑的混凝土配方体系及其使用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117363152A (zh) * 2023-10-10 2024-01-09 武汉中材科技有限公司 一种srn憎水离子剂及其制备方法和使用方法
CN117363152B (zh) * 2023-10-10 2024-04-16 武汉中材科技有限公司 一种srn憎水离子剂及其制备方法和使用方法

Also Published As

Publication number Publication date
US20220332647A1 (en) 2022-10-20
CN110627437A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2021057935A1 (zh) 一种修缮文物建筑的混凝土配方体系及其使用方法
Lee et al. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature
Thomas et al. Alkali-activated slag cement concrete
Kocak et al. The effect of using fly ash on the strength and hydration characteristics of blended cements
Hooton et al. Portland-limestone cement: state-of-the-art report and gap analysis for CSA A 3000
Maravelaki-Kalaitzaki et al. Hydraulic lime mortars for the restoration of historic masonry in Crete
Gao et al. Effects of different mineral admixtures on carbonation resistance of lightweight aggregate concrete
US6695910B2 (en) Sulfoaluminous clinker without iron and without free lime, its process of preparation and its use in white binders
Boubekeur et al. Prediction of the durability performance of ternary cement containing limestone powder and ground granulated blast furnace slag
Dabai et al. Studies on the effect of rice husk ash as cement admixture
Velosa et al. Hydraulic-lime based concrete: Strength development using a pozzolanic addition and different curing conditions
Wu et al. Analyzing the filler and activity effect of fly ash and slag on the early hydration of blended cement based on calorimetric test
WO2021106876A1 (ja) 粉体急結剤
Bektas et al. Use of ground clay brick as a pozzolanic material in concrete
Ansari et al. A novel approach to improve carbonation resistance of calcium sulfoaluminate cement by assimilating fine cement-sand mix
JP4777937B2 (ja) コンクリート劣化判定方法
Felekoğlu et al. Sulfate resistances of different types of Turkish Portland cements by selecting the appropriate test methods
JP5513947B2 (ja) モルタル又はコンクリートの乾燥収縮量の予測方法
Quarcioni et al. Optmization of calculation method for determination of composition of hardened mortars of Portland cement and hydrated lime made in laboratory
Yuan et al. Effect of fly ash and early strength agent on durability of concrete exposed to the cyclic sulfate environment
Figueiredo et al. Mechanical properties of standard and commonly formulated NHL mortars used for retrofitting
Kaszynska et al. The influence of TIO2 nanoparticles on the properties of self-cleaning cement mortar
Fu et al. The influences of siliceous waste on blended cement properties
Borosnyói Development of compressive strength of HPC with the use of supplementary cementing material (SCM) combination
Ahmad et al. Durability of concrete using rice husk ash as cement substitution exposed to acid rain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869311

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20869311

Country of ref document: EP

Kind code of ref document: A1