WO2021057828A1 - 照射参数选取装置及其使用方法、含该装置的控制系统及其使用方法 - Google Patents

照射参数选取装置及其使用方法、含该装置的控制系统及其使用方法 Download PDF

Info

Publication number
WO2021057828A1
WO2021057828A1 PCT/CN2020/117285 CN2020117285W WO2021057828A1 WO 2021057828 A1 WO2021057828 A1 WO 2021057828A1 CN 2020117285 W CN2020117285 W CN 2020117285W WO 2021057828 A1 WO2021057828 A1 WO 2021057828A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
angles
points
angle
evaluation value
Prior art date
Application number
PCT/CN2020/117285
Other languages
English (en)
French (fr)
Inventor
刘渊豪
Original Assignee
中硼(厦门)医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910908127.6A external-priority patent/CN112546455B/zh
Priority claimed from CN201910908121.9A external-priority patent/CN112546454A/zh
Priority claimed from CN201910908146.9A external-priority patent/CN112546456B/zh
Application filed by 中硼(厦门)医疗器械有限公司 filed Critical 中硼(厦门)医疗器械有限公司
Priority to CA3150365A priority Critical patent/CA3150365C/en
Priority to EP20867547.0A priority patent/EP4035731A4/en
Priority to JP2022518985A priority patent/JP7437491B2/ja
Priority to AU2020355832A priority patent/AU2020355832B2/en
Publication of WO2021057828A1 publication Critical patent/WO2021057828A1/zh
Priority to US17/690,134 priority patent/US20220193452A1/en
Priority to AU2024200068A priority patent/AU2024200068A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1039Treatment planning systems using functional images, e.g. PET or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons

Definitions

  • the present invention relates to the field of radiotherapy, in particular to an irradiation parameter selection device and its use method, a control system containing the device and its use method.
  • radiotherapy such as cobalt sixty, linear accelerator, and electron beam has become one of the main methods of cancer treatment.
  • traditional photon or electron therapy is limited by the physical conditions of radiation itself. While killing tumor cells, it will also cause damage to a large number of normal tissues along the beam path.
  • traditional radiotherapy For more radiation-resistant malignant tumors (such as: glioblastoma multiforme, melanoma), the treatment effect is often poor.
  • neutron capture therapy is a combination of the above two concepts, such as Boron Neutron Capture Therapy (BNCT), through the specific aggregation of boron-containing drugs in tumor cells, and precise beam control, providing A better cancer treatment option than traditional radiation.
  • BNCT Boron Neutron Capture Therapy
  • Boron neutron capture therapy uses boron-containing ( 10 B) drugs to have a high capture cross section for thermal neutrons.
  • the 10 B(n, ⁇ ) 7 Li neutron capture and nuclear fission reactions produce 4 He and 7 Li. Heavily charged particles.
  • the total range of the two particles is about the size of a cell. Therefore, the radiation damage to organisms can be limited to the cell level.
  • boron-containing drugs are selectively aggregated in tumor cells, with an appropriate neutron source , It can achieve the purpose of killing tumor cells locally without causing too much damage to normal tissues.
  • the irradiation geometric angle is manually judged and defined based on experience. Due to the complex structure of the human body, the sensitivity of various tissues or organs to radiation is also very different, so relying solely on manual judgment is likely to ignore the better irradiation angle, which will result in a greatly reduced treatment effect. With the development of technology, software has been used to calculate the evaluation values of several different illumination angles and the best illumination point and illumination angle are selected accordingly. However, the best illumination point and illumination angle selected by the software calculation result are the theoretically best. Good, there is the possibility of impossible implementation in the actual operation process. In order to achieve the optimization of the treatment effect and the implementability of the treatment plan, the selection of the irradiation point and the irradiation angle of the beam needs to be further optimized.
  • the positioning process of the mounting table needs to be further optimized.
  • an irradiation parameter selection device capable of selecting the best feasible irradiation point and irradiation angle.
  • the irradiation parameter includes the irradiation point and the irradiation angle.
  • the irradiation parameter The selection device includes: a sampling part, which selects multiple sets of irradiation points and irradiation angles; a calculation part, which calculates the evaluation value corresponding to each group of irradiation points and irradiation angles; Select a group of best practicable irradiation points and irradiation angles from the irradiation point and irradiation angle.
  • the calculation unit calculates the depth of incidence of the neutron beam after entering the patient and the type of organ that it passes through, and then determines whether the tumor falls on the group of irradiation points and irradiation angles based on the track information of the neutron beam passing through the human body Corresponding to the maximum treatable depth range, if yes, use the track information as the basis to calculate the group of irradiation points and irradiation angle corresponding to the data of the organ boron concentration, organ radiation sensitivity factor and neutron beam characteristic information set by the user The evaluation value.
  • the optimal selection part eliminates the irradiation points and irradiation angles that cannot be implemented in the actual irradiation process from all the sampled irradiation points and irradiation angles, and selects a set of optimal irradiation points and irradiation angles that can be implemented.
  • Another aspect of the present application also provides a method for using the above-mentioned irradiation parameter selection device, which includes the following steps: the sampling part reads the patient's images with clear human anatomy such as CT or MRI or PET-CT, and defines each organ and tissue one by one. And the contour of the tumor, and for the set material type and density, after completing the definition of the contour, material and density, select the irradiation point and the irradiation angle of the neutron beam; the calculation part calculates the track of the organ through which the neutron beam passes , That is, calculate the type and thickness of the organ that the neutron beam passes through after entering the human body.
  • This track information is based on combining the information of the organ boron concentration, organ radiation sensitivity factor and neutron beam characteristics set by the user to calculate the evaluation value corresponding to the irradiation point and the irradiation angle; if not, the worst evaluation value is given , After completing the calculation of the evaluation value, record the irradiation point, the irradiation angle and the corresponding evaluation value; the selection department selects a set of optimal and implementable irradiation parameters from all the sampled irradiation parameters.
  • the selection of the irradiation point and the irradiation angle can be forward selection or reverse selection.
  • the forward selection determines the position of the irradiation point outside the human body and can be sampled sequentially according to a fixed angle or distance interval, or Sampling is performed by random sampling; inverse selection is to determine the irradiation point within the tumor range.
  • the irradiation point can be the center of mass or the deepest part of the tumor, and the irradiation angle can be randomly sampled or sampled at a predetermined interval angle. Proceed; the neutron beam angle can be set to the vector direction from the irradiation point to the center of mass of the tumor or the deepest part of the tumor.
  • the optimal selection unit After the optimal selection unit ranks the pros and cons of each group of irradiation points and angles, it verifies whether each group of irradiation points and angles can be implemented in order from the best to the worst, until it finds a set of the best that can be implemented. Excellent irradiation point and angle.
  • the preferential selection unit first finds out all the unimplementable irradiation points and irradiation angles, and then eliminates these unimplementable irradiation points and irradiation angles, and finally, in the remaining irradiation points and irradiation angles. Choose the best set of angles.
  • the optimal selection unit precludes irradiation points and irradiation angles that cannot be implemented, and then selects the optimal group after the calculation is completed.
  • the calculation unit outputs the data of the irradiation point, the irradiation angle, and the corresponding evaluation value in the form of a 3D or 2D image.
  • the selection process of the selection unit may be performed automatically by related equipment, or may be partially interspersed with manual operation.
  • a third aspect of the present application provides a control system that can quickly adjust the placement table in place, the control system is used to control the neutron capture treatment equipment, the neutron capture treatment equipment includes the placement table for placing the patient, so
  • the control system includes: an irradiation parameter selection device for selecting the best irradiation point and irradiation angle that can be implemented; a conversion part that converts the parameters of the best irradiation point and irradiation angle that can be implemented into coordinate parameters that the stage needs to move into place ; And the adjustment part to adjust the stage to the coordinate position obtained from the conversion part.
  • the irradiation parameter selection device includes a sampling part, a calculation part and a selection part.
  • the sampling part selects multiple sets of irradiation points and irradiation angles
  • the calculation part calculates the evaluation value corresponding to each group of irradiation points and irradiation angles,
  • the optimal selection unit selects a set of best feasible irradiation points and irradiation angles from all the sampled irradiation points and irradiation angles.
  • the conversion unit combines the patient's CT/MRI/PET-CT information, positioning information, structural information of the mounting table, etc., to convert the parameters of the best irradiation point and irradiation angle that can be implemented into the mounting table during the irradiation process The coordinate parameters that need to be moved into place.
  • the fourth aspect of the present application provides a method for using the above-mentioned control system, which includes the following steps: the irradiation parameter selection device selects the best irradiation point and the irradiation angle that can be implemented; the conversion part changes the parameters of the best irradiation point and the irradiation angle that can be implemented Converted into coordinate parameters that the stage needs to move into place; the adjustment part adjusts the stage to the coordinate position obtained from the conversion part.
  • the irradiation parameter selection device includes a sampling part, a calculation part, and a selection part.
  • the method of using the irradiation parameter selection device is as follows: First, the sampling part selects multiple sets of irradiation points and irradiation angles, and then the calculation part calculates The evaluation value corresponding to each group of irradiation points and irradiation angles, and then the optimal selection unit selects a set of best feasible irradiation points and irradiation angles from all the sampled irradiation points and irradiation angles according to the evaluation value calculated by the calculation unit.
  • the neutron capture treatment equipment uses neutron beams to irradiate the patient to achieve treatment, and the sampling unit reads the patient’s CT/MRI/PET-CT and other images with clear human anatomy, and defines the status of each organ, tissue, and tumor one by one. Contour, and for the set material type and density, after completing the definition of the contour, material and density, select multiple groups of neutron beam irradiation points and irradiation angles.
  • the calculation unit calculates the track of the patient's organ through which the neutron beam passes, that is, calculates the type and thickness of the organ that the neutron beam passes through after entering the human body, and obtains the track of the neutron beam through the human body. After information, it is determined whether the tumor falls within the maximum treatable depth range. If so, the track information is used as the basis to combine the organ boron concentration, organ radiation sensitivity factor and neutron beam characteristics set by the user to calculate the The evaluation value corresponding to the irradiation point and the irradiation angle; if not, the worst evaluation value is given. After the calculation of the evaluation value is completed, each group of irradiation points and irradiation angles and their corresponding evaluation values are recorded.
  • the calculation unit outputs the data of each group of irradiation points and irradiation angles and their corresponding evaluation values in the form of 3D or 2D images.
  • the optimal selection unit After the optimal selection unit ranks the pros and cons of each group of irradiation points and angles, it verifies whether each group of irradiation points and angles can be implemented in order from the best to the worst, until it finds a set of the best that can be implemented. Excellent irradiation point and angle.
  • the prioritization unit first finds out all unimplementable irradiation points and irradiation angles, and then eliminates these unimplementable irradiation points and irradiation angles, and finally, selects the optimal group from the remaining irradiation points and irradiation angles .
  • the fifth aspect of the present application provides a neutron capture treatment device capable of judging the pros and cons of the irradiation point and the irradiation angle, which includes: a neutron beam generating assembly, an irradiation room for irradiating a neutron beam to an irradiated body, A management room for implementing irradiation control, a placing table for placing patients, and a control system for controlling and managing the treatment process, the control system including an irradiation parameter selection device for selecting the optimal irradiation point and irradiation angle,
  • the irradiation parameter selection device includes a sampling part and a calculation part. The sampling part selects multiple groups of irradiation points and irradiation angles.
  • the calculation part calculates the evaluation values corresponding to each group of irradiation points and irradiation angles and outputs a report.
  • the calculation unit calculates the depth of incidence of the neutron beam after entering the patient and the type of organ that it passes through, and then determines whether the tumor falls on the group of irradiation points and irradiation angles based on the track information of the neutron beam passing through the human body Corresponding to the maximum treatable depth range, if yes, use the track information as the basis to calculate the group of irradiation points and irradiation angle corresponding to the data of the organ boron concentration, organ radiation sensitivity factor and neutron beam characteristic information set by the user If not, give the worst evaluation value.
  • the calculation unit outputs the data of the irradiation point, the irradiation angle and the corresponding evaluation value in the form of a 3D or 2D image.
  • weighting factor (W(i)) of organ i corresponding to a certain irradiation point and irradiation angle and a certain irradiation track is calculated using formula 1:
  • I(i), S(i) and C(i) are the neutron intensity, the radiation sensitivity factor of organ i, and the boron concentration of organ i, respectively.
  • I(i) is calculated by using formula 2 which simulates the depth intensity of the human body or the integral of the dose curve according to the beam used:
  • i(x) is the depth intensity or dose curve function of the therapeutic beam in the approximate human body
  • x0-x is the depth range of the organ (i) in the beam track.
  • Q (x, y, z, ⁇ , ⁇ ) as the evaluation factor is equal to the sum of the weight factors of each organ in the organ track.
  • the ratio of the evaluation factor to the tumor evaluation factor (QR(x,y,z, ⁇ , ⁇ )) is calculated using formula 4:
  • W tumor is the weighting factor of tumor.
  • the sixth aspect of the present application provides a method for using the above-mentioned irradiation parameter selection device, which includes the following steps: a sampling part reads a patient such as CT or MRI or PET-CT with a clear human anatomy image, and defines the contours of each organ, tissue and tumor one by one , And for the set material type and density, after completing the definition of the contour, material and density, select the irradiation point and irradiation angle of the neutron beam; the calculation part calculates the track of the organ through which the neutron beam passes, that is, it calculates The type and thickness of the organ that the neutron beam passes through after entering the human body.
  • the track information After obtaining the track information of the neutron beam passing through the human body, it is determined whether the tumor falls within the maximum treatable depth range, and if so, the track information is used In order to calculate the evaluation value corresponding to the irradiation point and the irradiation angle based on the information of the organ boron concentration, the organ radiation sensitivity factor and the neutron beam characteristics set by the user; if not, a special evaluation value is given to complete the evaluation value After the calculation, record the irradiation point, irradiation angle and corresponding evaluation value.
  • the selection of the irradiation point and the irradiation angle can be forward selection or reverse selection.
  • the forward selection determines the position of the irradiation point outside the human body and can be sampled sequentially according to a fixed angle or distance interval, or Sampling is performed by random sampling; inverse selection is to determine the irradiation point within the tumor range.
  • the irradiation point can be the center of mass or the deepest part of the tumor, and the irradiation angle can be randomly sampled or sampled at a predetermined interval angle. Proceed; the neutron beam angle can be set to the vector direction from the irradiation point to the center of mass of the tumor or the deepest part of the tumor.
  • the calculation unit outputs the data of the irradiation point, the irradiation angle and the corresponding evaluation value in the form of a 3D or 2D image.
  • Figure 1 is a schematic diagram of the boron neutron capture reaction.
  • Figure 2 is the 10 B(n, ⁇ ) 7 Li neutron capture nuclear reaction equation.
  • Fig. 3 is a schematic diagram of a neutron capture treatment device in an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a control system in an embodiment of the present invention.
  • Fig. 5 is a logical block diagram of the calculation of the evaluation value of the irradiation parameter of the neutron beam in the embodiment of the present invention.
  • Fig. 6 is a schematic diagram of organ tracks during neutron beam irradiation in an embodiment of the present invention.
  • boron neutron capture therapy is the most common, and the neutrons for boron neutron capture therapy can be supplied by nuclear reactors or accelerators.
  • Boron Neutron Capture Therapy is the use of boron-containing ( 10 B) drugs to have high thermal neutron capture cross-section characteristics, through 10 B (n, ⁇ ) 7 Li neutron capture and nuclear fission reaction Two types of heavily charged particles, 4 He and 7 Li, are produced. 1 and 2, which respectively show the schematic diagram of the boron neutron capture reaction and the 10 B(n, ⁇ ) 7 Li neutron capture nuclear reaction equation.
  • the average energy of the two heavily charged particles is about 2.33 MeV, which has a high Linear Energy Transfer (LET) and short-range characteristics.
  • the linear energy and range of ⁇ particles are 150keV/ ⁇ m and 8 ⁇ m, respectively, while the 7 Li heavy-load particles are 175keV/ ⁇ m and 5 ⁇ m.
  • the total range of the two particles is approximately It is equivalent to the size of a cell, so the radiation damage to organisms can be limited to the cell level.
  • boron-containing drugs selectively accumulate in tumor cells, with an appropriate neutron radiation source, they can accurately kill tumor cells without causing too much damage to normal tissues.
  • the resulting mixed radiation field that is, the beam contains low to high energy neutrons and photons; for deep tumors, boron neutrons
  • the human head tissue prosthesis is used to calculate the dose distribution, and the prosthetic beam quality factor is used as the medium. Design reference for sub-beams.
  • the International Atomic Energy Agency has given five recommendations for air beam quality factors for neutron sources used in clinical boron neutron capture therapy. These five recommendations can be used to compare the pros and cons of different neutron sources and serve as Reference basis for selecting neutron generation methods and designing beam shaping bodies. The five recommendations are as follows:
  • Thermal neutron to epithermal neutron flux ratio thermal to epithermal neutron flux ratio ⁇ 0.05
  • the energy range of superthermal neutrons is between 0.5eV and 40keV, the energy range of thermal neutrons is less than 0.5eV, and the energy range of fast neutrons is greater than 40keV.
  • the neutron beam flux and the concentration of boron-containing drugs in the tumor jointly determine the clinical treatment time. If the concentration of the boron-containing drug in the tumor is high enough, the requirement for the neutron beam flux can be reduced; on the contrary, if the concentration of the boron-containing drug in the tumor is low, a high flux of superthermal neutrons is required to give the tumor a sufficient dose.
  • the IAEA's requirement for the flux of the superthermal neutron beam is that the number of superthermal neutrons per square centimeter per second is greater than 10 9.
  • the neutron beam under this flux can roughly control the treatment of current boron-containing drugs. Within one hour, the short treatment time not only has advantages in patient positioning and comfort, but also can more effectively utilize the limited residence time of boron-containing drugs in the tumor.
  • fast neutrons can cause unnecessary normal tissue doses, they are regarded as pollution.
  • the dose is positively correlated with neutron energy. Therefore, the content of fast neutrons should be minimized in the design of neutron beams.
  • Fast neutron pollution is defined as the dose of fast neutrons per unit of superthermal neutron flux.
  • the IAEA's recommendation for fast neutron pollution is less than 2 x 10 -13 Gy-cm 2 /n.
  • Gamma rays are strong penetrating radiation, which will non-selectively cause the dose deposition of all tissues along the path of the neutron beam. Therefore, reducing the gamma-ray content is also a necessary requirement for beam design.
  • Gamma-ray pollution is defined as the unit superheated neutron flux The accompanying gamma-ray dose, the IAEA's recommendation for gamma-ray pollution is less than 2 x 10 -13 Gy-cm 2 /n.
  • thermal neutrons Due to the fast attenuation speed and poor penetration ability of thermal neutrons, most of the energy is deposited in the skin tissues after entering the human body. Except for epidermal tumors such as melanoma, which need to use thermal neutrons as the neutron source for boron neutron capture therapy, the brain Deep tumors such as tumors should reduce the content of thermal neutrons.
  • the IAEA recommends that the ratio of thermal neutron to superthermal neutron flux is less than 0.05.
  • the ratio of neutron current to flux represents the directionality of the beam. The larger the ratio, the better the forward direction of the beam.
  • the high forward neutral beam can reduce the surrounding normal tissue dose caused by neutron divergence. Improve the depth of treatment and flexibility of posture.
  • the IAEA recommends that the ratio of neutron current to flux is greater than 0.7.
  • the prosthesis is used to obtain the dose distribution in the tissue, and the beam quality factors of the prosthesis are derived according to the dose-depth curve of the normal tissue and the tumor.
  • the following three parameters can be used to compare the therapeutic benefits of different neutron beams.
  • the tumor dose is equal to the depth of the maximum dose of normal tissue. After this depth, the dose of tumor cells is less than the maximum dose of normal tissue, that is, the advantage of boron neutron capture is lost. This parameter represents the penetration ability of the beam. The larger the effective treatment depth, the deeper the tumor depth that can be treated, and the unit is cm.
  • the tumor dose rate of effective treatment depth is also equal to the maximum dose rate of normal tissue. Because the total dose received by normal tissue is a factor that affects the total dose that can be given to the tumor, the parameter affects the length of the treatment time. The larger the effective treatment depth and the dose rate, the shorter the irradiation time required to give a certain dose to the tumor, and the unit is Gy/mA -min.
  • the effective treatment dose ratio received by the tumor and normal tissue is called the effective treatment dose ratio; the average dose can be calculated by integrating the dose-depth curve.
  • Irradiation time ⁇ 30min (the proton current used by the accelerator is 10mA)
  • RBE Relative Biological Effectiveness
  • the neutron capture treatment equipment 100 for realizing neutron capture treatment is equipped with a neutron beam generating assembly 1, an irradiation room for irradiating a neutron beam to an irradiated object, such as a patient, 2.
  • a neutron beam generating assembly 1 for preparation work, communication room 4 connecting the irradiation room 2 and preparation room 3, management room 5 for implementing irradiation control, positioning device (not shown) for positioning the patient, for placing the patient
  • the mounting table 6 that moves in the preparation room 3 and the irradiation room 2 and a control system 7 for controlling and managing the treatment process.
  • the neutron beam generating module 1 is configured to generate a neutron beam outside the irradiation chamber 2 and be capable of irradiating the neutron beam to a patient placed in the irradiation chamber 2, and a collimator 20 is provided in the irradiation chamber 2.
  • the preparation room 3 is a room for performing the preparation work required before irradiating the neutron beam to the patient.
  • the preparation room 3 is equipped with a simulated collimator 30.
  • the preparation work includes fixing the patient on the mounting table 6 and treating the patient's tumor. Carry out positioning and make three-dimensional positioning marks, etc.
  • the management room 5 is a room used to manage and control the overall treatment process performed by the boron neutron capture therapy device 100.
  • the system 7 controls the start and stop of the irradiation of the neutron beam, the position adjustment of the mounting table 6, and the like.
  • the mounting table 6 is used to carry the patient to perform rotation, translation, and lifting movements together.
  • the control system 7 is only a general term here, it can be a set of general control system, that is, the start and stop of the neutron beam irradiation, the position adjustment of the mounting table 6, etc. are all controlled by a set of systems, or There are multiple control systems, that is, the start and stop of neutron beam irradiation, and the position adjustment of the mounting table 6 are controlled by one control system.
  • the stage 6 on which the patient is placed is adjusted to the corresponding position.
  • the control system 7 includes an irradiation parameter selection device 71 that selects the best possible irradiation point and irradiation angle, and a conversion unit 72 that converts the parameters of the feasible best irradiation point and irradiation angle into the coordinate parameters of the mounting table 6.
  • the adjustment section 73 that adjusts the mounting table 6 to the coordinate position obtained from the conversion section 72, and the start-stop section 74 that controls the start and stop of the irradiation of the neutron beam.
  • each set of irradiation parameters includes the irradiation point and irradiation angle of the neutron beam.
  • the irradiation parameter selection device 71 includes a sampling unit 711, a calculation unit 712, and a selection unit 713. First, the sampling unit 711 selects multiple groups of irradiation Point and irradiation angle. Next, the calculation unit 712 calculates the evaluation value corresponding to each group of irradiation points and irradiation angles. Then, the optimization unit 713 uses the evaluation value calculated by the calculation unit 712 to select all the sampled irradiation points and irradiation angles. A set of optimal practicable irradiation parameters is selected.
  • the optimal selection unit 713 eliminates the irradiation parameters that cannot be implemented in the actual treatment process and selects a set of optimal practicable irradiation parameters.
  • the sampling unit 711 selects the irradiation point and the irradiation angle can be random or regular.
  • the calculation of the evaluation value is to calculate the organ track of the patient through which the neutron beam passes. That is, the calculation unit 712 calculates that the neutron beam enters The depth of incidence behind the human body and the type of organ that it passes through, and then according to the track information of the neutron beam passing through the human body, it is judged whether the tumor falls within the maximum treatable depth range corresponding to the set of irradiation parameters.
  • the information is to calculate the corresponding evaluation value of the group of irradiation points and irradiation angles based on data such as organ boron concentration, organ radiation sensitivity factor and neutron beam characteristic information set by the user; if not, give the irradiation point and irradiation angle a value Special evaluation value, re-sampling and calculation of neutron beam irradiation point and irradiation angle.
  • the optimal selection unit 713 needs to eliminate these unavailable irradiation points and irradiation angles.
  • the sampling part 711 reads the patient’s CT/MRI/PET-CT and other images with clear human anatomy, one by one Define the contours of various organs, tissues and tumors, and set the type and density of materials. After completing the definition of the contour, material and density, select the irradiation point and irradiation angle of the neutron beam, and the selection of the irradiation point and the irradiation angle. It can be forward selection or reverse selection. The forward selection determines the location of the irradiation point outside the body and can be sampled sequentially at a fixed angle or distance interval.
  • neutron beam angle It can be set as the vector direction from the irradiation point to the center of mass of the tumor or the deepest part of the tumor; inverse selection is to determine the irradiation point within the range of the tumor.
  • the irradiation point can be the center of mass of the tumor or the deepest part, and the neutron beam angle can be used Random sampling or sampling at a predetermined interval angle; after determining the irradiation point and irradiation angle of the neutron beam, the calculation unit 712 calculates the track of the organ through which the neutron beam passes, that is, calculates that the neutron beam enters The type and thickness of the organ that the human body passes through.
  • the track information After obtaining the track information of the neutron beam passing through the human body, it is judged whether the tumor falls within the maximum treatable depth range. If so, the track information is used as the basis to combine with the user Set the organ boron concentration, organ radiation sensitivity factor and neutron beam characteristics, and calculate the evaluation value corresponding to the irradiation point and the irradiation angle; if not, give a special evaluation value and re-irradiate the neutron beam Sampling of points and irradiation angles, after completing the calculation of the evaluation value, record the irradiation point, the irradiation angle and the corresponding evaluation value.
  • the report is output; the optimal part 713 selects a set of optimal and implementable irradiation parameters from all the sampled irradiation parameters.
  • the calculation unit 712 can output the data of the irradiation point and the irradiation angle and the corresponding evaluation value in the form of 3D or 2D images. In this case, the doctor or physicist can more intuitively judge the pros and cons of the irradiation point and the irradiation angle .
  • the optimal selection unit 713 After the optimal selection unit 713 ranks the pros and cons of each group of irradiation points and angles, it verifies whether each group of irradiation points and angles can be implemented in order from the best to the worst, until it finds the best set of implementable.
  • the irradiation point and the irradiation angle may also, after calculating the evaluation value, first find out all the impractical irradiation points and irradiation angles, and then eliminate these impractical irradiation points and irradiation angles, and finally, in the remaining irradiation points and irradiation angles.
  • the optimal group of angles is selected for neutron capture treatment; the optimal part 713 can also pre-exclude unimplementable irradiation points and irradiation angles before calculating the evaluation value, and then the optimal group can be selected after the calculation is completed
  • the irradiation point and the irradiation angle are used for neutron capture treatment.
  • the process of selecting the best can be performed automatically by related equipment, or partially interspersed with manual manual work, or it can be performed completely manually, that is, no selection part 713 is provided.
  • the irradiation points and irradiation angles that cannot be implemented can be listed by experienced doctors. It can also be determined by the simulation of related equipment. The same applies to the ranking of the evaluation value and the selection of the optimal irradiation point and the irradiation angle after excluding the non-implementable irradiation point and the irradiation angle.
  • the conversion unit 72 After obtaining the optimal irradiation point and irradiation angle that can be implemented, the conversion unit 72 combines the patient's CT/MRI/PET-CT information, positioning information, structural information of the stage 6 and so on to convert the parameters of the irradiation point and irradiation angle For the coordinate parameters that the mounting table 6 needs to move into position during the irradiation process, the adjustment unit 73 adjusts the mounting table 6 to a predetermined position based on the coordinate information obtained from the conversion unit 72.
  • the positioning device further confirms whether the irradiation point and irradiation angle of the neutron beam relative to the patient's tumor are the same as the preselected optimal irradiation point and irradiation angle, if not, Manually adjust the position of the patient or the position of the mounting table 6 to ensure that the neutron neutron beam irradiates the patient's tumor at the best irradiation point and irradiation angle, or drive the adjustment unit 73 to adjust the position of the mounting table 6 to ensure that the neutron neutron beam is at its best Optimal irradiation point and irradiation angle to irradiate the patient's tumor.
  • a first screen door 21 is provided between the irradiation room 2 and the communication room 4, and a second screen door 31 is provided between the communication room 4 and the preparation room 3.
  • a shield wall with a maze can be used instead of the first shield door 21 and the second shield door 31.
  • the shape of the maze includes, but is not limited to, a "Z" shape, a "bow” shape, and a "self” shape. shape.
  • the evaluation value is calculated based on the characteristics of the neutron beam, the organ radiation sensitivity factor and the organ boron concentration. Corresponding to a certain irradiation point and irradiation angle, the weighting factor (W(i)) of organ i is calculated as shown in formula 1. I(i), S(i) and C(i) are the neutron intensity, the radiation sensitivity factor of organ i, and the boron concentration of organ i, respectively.
  • I(i) is obtained by integrating the depth intensity or dose curve of the neutron beam used in the simulated human body, as shown in formula 2, where i(x) is the depth of the therapeutic neutron beam in the approximate human body Intensity or dose curve function, x 0 -x is the depth range of organ i in the neutron beam track.
  • the evaluation value corresponding to the neutron beam can be obtained, as shown in formula 3, in this calculation, the tumor The weighting factor of should not be included in the calculation.
  • the degree of harm to normal tissues during treatment can be judged more intuitively.
  • the evaluation ratio factor can also be used for evaluation, which is defined as the ratio of the evaluation value to the tumor weight factor. The expected therapeutic effect of the angle.
  • I(i), S(i) and C(i) are transformed from multiplication to phase.
  • Add; I(i), S(i) and C(i) are respectively multiplied by the power of n, n depends on the situation, can be an integer multiple of 1 or other multiples;
  • i(x) can be x 0- The average or median between x is multiplied by (x 0 -x), or any calculation method that can be consistent with the calculation result of the intensity integral.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种照射参数选取装置(71)及使用方法、含照射参数选取装置(71)的控制系统(7)及使用方法,照射参数包括照射点和照射角度,照射参数选取装置(71)包括:取样部(711),选取多组照射点和照射角度;计算部(712),计算出每组照射点和照射角度对应的评价值;择优部(713),根据计算部(712)计算出的评价值,在所有取样的照射点和照射角度中选取一组最佳的可实施的照射点和照射角度。

Description

照射参数选取装置及其使用方法、含该装置的控制系统及其使用方法 技术领域
本发明涉及放射性治疗领域,尤其涉及照射参数选取装置及其使用方法、含该装置的控制系统及其使用方法。
背景技术
随着原子科学的发展,例如钴六十、直线加速器、电子射束等放射线治疗已成为癌症治疗的主要手段之一。然而传统光子或电子治疗受到放射线本身物理条件的限制,在杀死肿瘤细胞的同时,也会对射束途径上大量的正常组织造成伤害;另外由于肿瘤细胞对放射线敏感程度的不同,传统放射治疗对于较具抗辐射性的恶性肿瘤(如:多行性胶质母细胞瘤(glioblastoma multiforme)、黑色素细胞瘤(melanoma))的治疗成效往往不佳。
为了减少肿瘤周边正常组织的辐射伤害,化学治疗(chemotherapy)中的标靶治疗概念便被应用于放射线治疗中;而针对高抗辐射性的肿瘤细胞,目前也积极发展具有高相对生物效应(relative biological effectiveness,RBE)的辐射源,如质子治疗、重粒子治疗、中子捕获治疗等。其中,中子捕获治疗便是结合上述两种概念,如硼中子捕获治疗(Boron Neutron Capture Therapy,BNCT),借由含硼药物在肿瘤细胞的特异性集聚,配合精准的射束调控,提供比传统放射线更好的癌症治疗选择。
硼中子捕获治疗是利用含硼( 10B)药物对热中子具有高捕获截面的特性,借由 10B(n,α) 7Li中子捕获及核分裂反应产生 4He和 7Li两个重荷电粒子,两粒子的总射程约相当于一个细胞大小,因此对于生物体造成的辐射伤害能局限在细胞层级,当含硼药物选择性地聚集在肿瘤细胞中,搭配适当的中子射源,便能在不对正常组织造成太大伤害的前提下,达到局部杀死肿瘤细胞的目的。
现有中子捕获治疗计划系统中,其照射几何角度皆为人工根据经验判断及定义。由于人体结构相当复杂,各种组织或器官对辐射的敏感度也大不相同,因此单单靠人工判断很可能忽略更好的照射角度,而导致治疗效果大打折扣。随着技术的发展,开始采用软件计算若干不同照射角度的评价值并依此选取最佳的照射点和照射角度,然而,通过软件计算结果选取的最佳照射点和照射角度属于理论上的最佳,实际操作过程中存在不可能实施的可能性,为了达到治疗效果的优化和治疗计划的可实施性,射束的照射点和照射角度的选取需要进一步优化。
因此,有必要提出一种选取最佳的可实施的照射点和照射角度的照射参数选取装置。
另外,在进行中子捕获治疗之前,需要找出射束的可实施的最佳照射点和照射角度,然后将载置患者的载置台移动到照射室内进行位置调整,直到载置台和患者的摆位使射束能够以预先找出的可实施的最佳照射点和照射角度进行照射为止。此过程比较繁琐、耗时,降低了中子捕获治疗设备的使用效率,同时长时间的不停调整摆位使患者难以承受、使操作人员也比较疲累。为了减少摆位时间、提高设备使用效率,载置台的摆位过程需要进一步优化。
因此,有必要提出一种能够实现载置台快速调整到位的方法。
发明内容
为了克服现有技术的缺陷,本申请的一方面提供一种能够选取最佳的可实施的照射点和照射角度的照射参数选取装置,所述照射参数包括照射点和照射角度,所述照射参数选取装置包括:取样部,选取多组照射点和照射角度;计算部,计算出每组照射点和照射角度对应的评价值;及择优部,根据计算部计算出的评价值,在所有取样的照射点和照射角度中选取一组最佳的可实施的照射点和照射角度。
进一步地,所述计算部计算出中子束进入患者后入射的深度和所经过的器官的种类,然后根据中子束通过人体的径迹信息则判断肿瘤是否落于该组照射点和照射角度对应的最大可治疗深度范围内,若是,则以此径迹信息为依据配合用户设定的器官含硼浓度、器官辐射敏感因数及中子束特性信息等数据计算该组照射点和照射角度对应的评价值。
进一步地,所述择优部在所有取样的照射点和照射角度中剔除在实际照射过程中不可实施的照射点和照射角度并选取一组最优的可实施的照射点和照射角度。
本申请的另一方面还提供一种上述的照射参数选取装置的使用方法,包括以下步骤:取样部读取患者如CT或MRI或PET-CT具有明确人体解剖的影像,逐一定义各个器官、组织及肿瘤的轮廓,并给设定的材料种类及密度,在完成轮廓、材料及密度的定义后,选取中子束的照射点及照射角度;计算部计算中子束所通过的器官的径迹,即计算出中子束进入人体后所经过的器官的种类及其厚度,在取得中子束通过人体的径迹信息后,则判断肿瘤是否落于最大可治疗深度范围内,若是,则以此径迹信息为依据结合用户设定的器官含硼浓度、器官辐射敏感因数及中子束特性等信息,计算该照射点和照射角度对应的评价值;若否,则给予最差的评价值,完成评价值的计算后,对照射点、照射角度及对应的评价值进行纪录;择优部在所有取样的照射参数中选取一组最优的可实施的照射参数。
进一步地,所述照射点与照射角度的选取,可以是顺向选取或逆向选取,顺向选取是将照射点决定于人体外的位置并可按照固定的角度或距离间隔依序取样,也可以透过随机取样 的方式进行取样;逆向选取则是将照射点决定于肿瘤范围内,其照射点可以是肿瘤质心或最深处,而照射角度则可以利用随机取样或依预定的间隔角度取样的方式进行;中子束角度则可设定为照射点至肿瘤质心或肿瘤最深处的向量方向。
进一步地,所述择优部将每一组照射点和照射角度的优劣的进行排序之后,从优到劣依次验证每一组照射点和照射角度是否可实施,直到找出一组可实施的最优的照射点和照射角度。
进一步地,在进行评价值的计算之后,所述择优部先找出所有的不可实施的照射点和照射角度,然后剔除这些不可实施的照射点和照射角度,最后,在留下的照射点和照射角度中选取最优的一组。
进一步地,所述择优部在进行评价值的计算之前,预先排除不可实施的照射点和照射角度,则计算完成之后选取最优的一组。
进一步地,所述计算部将照射点、照射角度及对应的评价值的数据以3D或2D图像的形式输出。
进一步地,所述择优部择优过程可以是完全由相关设备自动进行,也可以部分穿插人工手动。
本申请第三方面提供一种能够将载置台快速调整到位的控制系统,所述控制系统用于控制中子捕获治疗设备,所述中子捕获治疗设备包括用于载置患者的载置台,所述控制系统包括:照射参数选取装置,用于选取可实施的最佳照射点和照射角度;转换部,将可实施的最佳照射点和照射角度的参数转换为载置台需要移动到位的坐标参数;及调整部,将载置台调整到从转换部得到的坐标位置。
进一步地,所述照射参数选取装置包括取样部、计算部和择优部,所述取样部选取多组照射点和照射角度,所述计算部计算出每组照射点和照射角度对应的评价值,所述择优部根据计算部计算出的评价值,在所有取样的照射点和照射角度中选取一组最佳的可实施的照射点和照射角度。
进一步地,所述转换部结合患者的CT/MRI/PET-CT信息、摆位信息、载置台的结构信息等将可实施的最佳照射点和照射角度的参数转换为在照射过程中载置台需要移动到位的坐标参数。
本申请第四方面提供一种上述控制系统的使用方法,包括以下步骤:照射参数选取装置选取可实施的最佳照射点和照射角度;转换部将可实施的最佳照射点和照射角度的参数转换为载置台需要移动到位的坐标参数;调整部将载置台调整到从转换部得到的坐标位置。
进一步地,所述照射参数选取装置包括取样部、计算部和择优部,所述照射参数选取装置的使用方法如下:首先,取样部选取多组照射点和照射角度,接下来,计算部计算出每组照射点和照射角度对应的评价值,然后,择优部根据计算部计算出的评价值,在所有取样的照射点和照射角度中选取一组最佳的可实施的照射点和照射角度。
进一步地,所述中子捕获治疗设备采用中子束照射患者实现治疗,所述取样部读取患者CT/MRI/PET-CT等具有明确人体解剖的影像,逐一定义各个器官、组织及肿瘤的轮廓,并给设定的材料种类及密度,在完成轮廓、材料及密度的定义后,选取多组中子束的照射点和照射角度。
进一步地,所述计算部计算中子束所通过的患者的器官的径迹,即计算出中子束进入人体后所经过的器官的种类及其厚度,在取得中子束通过人体的径迹信息后,则判断肿瘤是否落于最大可治疗深度范围内,若是,则以此径迹信息为依据结合用户设定的器官含硼浓度、器官辐射敏感因数及中子束特性等信息,计算该照射点和照射角度对应的评价值;若否,则给予最差的评价值,完成评价值的计算后,对每组照射点和照射角度及其对应的评价值进行纪录。
进一步地,所述计算部将每组照射点和照射角度及其对应的评价值的数据以3D或2D图像的形式输出。
进一步地,所述择优部将每一组照射点和照射角度的优劣的进行排序之后,从优到劣依次验证每一组照射点和照射角度是否可实施,直到找出一组可实施的最优的照射点和照射角度。
进一步地,所述择优部先找出所有的不可实施的照射点和照射角度,然后剔除这些不可实施的照射点和照射角度,最后,在留下的照射点和照射角度中选取最优的一组。
本申请第五方面提供一种能够执行的判断照射点和照射角度的优劣的中子捕获治疗设备,其包括:中子束产生组件、用于向被照射体照射中子束的照射室、用于实施照射控制的管理室、用于载置患者的载置台及用于对治疗过程进行控制、管理的控制系统,所述控制系统包括选取最佳照射点和照射角度的照射参数选取装置,所述照射参数选取装置包括取样部和计算部,所述取样部选取多组照射点和照射角度,所述计算部计算出每组照射点和照射角度对应的评价值并输出报表。
进一步地,所述计算部计算出中子束进入患者后入射的深度和所经过的器官的种类,然后根据中子束通过人体的径迹信息则判断肿瘤是否落于该组照射点和照射角度对应的最大可治疗深度范围内,若是,则以此径迹信息为依据配合用户设定的器官含硼浓度、器官辐射敏感因数及中子束特性信息等数据计算该组照射点和照射角度对应的评价值;若否,则给予最 差的评价值。
进一步地,所述计算部将照射点和照射角度及其对应的评价值的数据以3D或2D图像的形式输出。
进一步地,对应某照射点及照射角度及某照射径迹中,器官i的权重因数(W(i))采用公式一进行计算:
W(i)=I(i)×S(i)×C(i)  (公式一)
其中,I(i)、S(i)及C(i)分别为中子强度、器官i的辐射敏感因数及器官i的含硼浓度。
进一步地,所述I(i)采用根据所用的射束模拟人体的深度强度或剂量曲线积分的公式二进行计算:
Figure PCTCN2020117285-appb-000001
其中,i(x)为治疗用射束在近似人体中的深度强度或剂量曲线函数,x0-x为器官(i)在射束径迹中的深度范围。
进一步地,所述评价因数采用公式三进行计算:
Figure PCTCN2020117285-appb-000002
其中,Q(x,y,z,Φ,θ)作为评价因数等于器官径迹中各器官的权重因数总和。
进一步地,所述评价因数与肿瘤评价因数之比(QR(x,y,z,Φ,θ))采用公式四进行计算:
Figure PCTCN2020117285-appb-000003
其中,W(tumor)为肿瘤的权重因数。
本申请第六方面提供上述照射参数选取装置的使用方法,其包括以下步骤:取样部读取患者如CT或MRI或PET-CT具有明确人体解剖的影像,逐一定义各个器官、组织及肿瘤的轮廓,并给设定的材料种类及密度,在完成轮廓、材料及密度的定义后,选取中子束的照射点及照射角度;计算部计算中子束所通过的器官的径迹,即计算出中子束进入人体后所经过的器官的种类及其厚度,在取得中子束通过人体的径迹信息后,则判断肿瘤是否落于最大可治疗深度范围内,若是,则以此径迹信息为依据结合用户设定的器官含硼浓度、器官辐射敏感因数及中子束特性等信息,计算该照射点和照射角度对应的评价值;若否,则给予一个特别 的评价值,完成评价值的计算后,对照射点、照射角度及对应的评价值进行纪录。
进一步地,所述照射点与照射角度的选取,可以是顺向选取或逆向选取,顺向选取是将照射点决定于人体外的位置并可按照固定的角度或距离间隔依序取样,也可以透过随机取样的方式进行取样;逆向选取则是将照射点决定于肿瘤范围内,其照射点可以是肿瘤质心或最深处,而照射角度则可以利用随机取样或依预定的间隔角度取样的方式进行;中子束角度则可设定为照射点至肿瘤质心或肿瘤最深处的向量方向。
进一步地,所述计算部将照射点和照射角度及其对应的评价值的数据以3D或2D图像的形式输出。
附图说明
图1是硼中子捕获反应示意图。
图2是 10B(n,α) 7Li中子捕获核反应方程式。
图3是本发明实施例中的中子捕获治疗设备的示意图。
图4是本发明实施例中的控制系统的示意图。
图5是本发明实施例中的中子束的照射参数的评价值的计算的逻辑框图。
图6是本发明实施例中的中子束照射时的器官径迹示意图。
具体实施方式
下面结合附图对本发明的实施例做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
中子捕获治疗作为一种有效的治疗癌症的手段近年来的应用逐渐增加,其中以硼中子捕获治疗最为常见,供应硼中子捕获治疗的中子可以由核反应堆或加速器供应。硼中子捕获治疗(Boron Neutron Capture Therapy,BNCT)是利用含硼( 10B)药物对热中子具有高捕获截面的特性,借由 10B(n,α) 7Li中子捕获及核分裂反应产生 4He和 7Li两种重荷电粒子。参照图1和图2,其分别示出了硼中子捕获反应的示意图和 10B(n,α) 7Li中子捕获核反应方程式,两种重荷电粒子的平均能量约为2.33MeV,具有高线性转移(Linear Energy Transfer,LET)和短射程的特征,α粒子的线性能量与射程分别为150keV/μm、8μm,而 7Li重荷粒子则为175keV/μm、5μm,两种粒子的总射程约相当于一个细胞大小,因此对于生物体造成的辐射伤害能局限在细胞层级。当含硼药物选择性地聚集在肿瘤细胞中时,搭配适当的中子射源,便能在不对正常组织造成太大伤害的前提下,达到精准杀死肿瘤细胞的目的。
无论硼中子捕获治疗的中子源来自核反应堆或带电粒子与靶材的核反应,产生的皆为混 合辐射场,即射束包含了低能至高能的中子、光子;对于深部肿瘤的硼中子捕获治疗,除了超热中子外,其余的辐射线含量越多,造成正常组织非选择性剂量沉积的比例越大,因此这些会造成不必要剂量沉积的辐射应尽量降低。为更了解中子在人体中的剂量分布,除了空气射束品质因素之外,本发明的实施例中使用人体头部组织假体进行剂量分布计算,并以假体射束品质因素来作为中子射束的设计参考。
国际原子能机构(IAEA)针对临床硼中子捕获治疗用的中子源,给定了五项空气射束品质因素建议,此五项建议可用于比较不同中子源的优劣,并供以作为挑选中子产生途径、设计射束整形体时的参考依据。这五项建议分别如下:
超热中子射束通量Epithermal neutron flux>1 x 10 9n/cm 2s
快中子污染Fast neutron contamination<2 x 10 -13Gy-cm 2/n
光子污染Photon contamination<2 x 10 -13Gy-cm 2/n
热中子与超热中子通量比值thermal to epithermal neutron flux ratio<0.05
中子电流与通量比值epithermal neutron current to flux ratio>0.7
注:超热中子能区在0.5eV到40keV之间,热中子能区小于0.5eV,快中子能区大于40keV。
1、超热中子射束通量:
中子射束通量和肿瘤中含硼药物浓度共同决定了临床治疗时间。若肿瘤含硼药物浓度够高,对于中子射束通量的要求便可降低;反之,若肿瘤中含硼药物浓度低,则需高通量超热中子来给予肿瘤足够的剂量。IAEA对于超热中子射束通量的要求为每秒每平方厘米的超热中子个数大于10 9,此通量下的中子射束对于目前的含硼药物而言可大致控制治疗时间在一小时内,短治疗时间除了对病人定位和舒适度有优势外,也可较有效利用含硼药物在肿瘤内有限的滞留时间。
2、快中子污染:
由于快中子会造成不必要的正常组织剂量,因此视之为污染,此剂量大小和中子能量呈正相关,因此在中子射束设计上应尽量减少快中子的含量。快中子污染定义为单位超热中子通量伴随的快中子剂量,IAEA对快中子污染的建议为小于2 x 10 -13Gy-cm 2/n。
3、光子污染(γ射线污染):
γ射线属于强穿辐射,会非选择性地造成中子射束路径上所有组织的剂量沉积,因此降低γ射线含量也是射束设计的必要要求,γ射线污染定义为单位超热中子通量伴随的γ射线剂量,IAEA对γ射线污染的建议为小于2 x 10 -13Gy-cm 2/n。
4、热中子与超热中子通量比值:
由于热中子衰减速度快、穿透能力差,进入人体后大部分能量沉积在皮肤组织,除黑色素细胞瘤等表皮肿瘤需用热中子作为硼中子捕获治疗的中子源外,针对脑瘤等深层肿瘤应降低热中子含量。IAEA对热中子与超热中子通量比值建议为小于0.05。
5、中子电流与通量比值:
中子电流与通量比值代表了射束的方向性,比值越大表示射束前向性佳,高前向性的中自射束可减少因中子发散造成的周围正常组织剂量,另外也提高了可治疗深度及摆位姿势弹性。IAEA对中子电流与通量比值建议为大于0.7。
利用假体得到组织内的剂量分布,根据正常组织及肿瘤的剂量-深度曲线,推得假体射束品质因素。如下三个参数可用于进行不同中子射束治疗效益的比较。
1、有效治疗深度:
肿瘤剂量等于正常组织最大剂量的深度,在此深度之后的位置,肿瘤细胞得到的剂量小于正常组织最大剂量,即失去了硼中子捕获的优势。此参数代表射束的穿透能力,有效治疗深度越大表示可治疗的肿瘤深度越深,单位为cm。
2、有效治疗深度剂量率:
即有效治疗深度的肿瘤剂量率,亦等于正常组织的最大剂量率。因正常组织接收总剂量为影响可给予肿瘤总剂量大小的因素,因此参数影响治疗时间的长短,有效治疗深度剂量率越大表示给予肿瘤一定剂量所需的照射时间越短,单位为Gy/mA-min。
3、有效治疗剂量比:
从大脑表面到有效治疗深度,肿瘤和正常组织接收的平均剂量比值,称之为有效治疗剂量比;平均剂量的计算,可由剂量-深度曲线积分得到。有效治疗剂量比值越大,代表该射束的治疗效益越好。
为了使射束整形体在设计上有比较依据,除了五项IAEA建议的空气中射束品质因素和上述的三个参数,本发明实施例中也利用如下的用于评估射束剂量表现优劣的参数:
1、照射时间≤30min(加速器使用的质子电流为10mA)
2、30.0RBE-Gy可治疗深度≥7cm
3、肿瘤最大剂量≥60.0RBE-Gy
4、正常脑组织最大剂量≤12.5RBE-Gy
5、皮肤最大剂量≤11.0RBE-Gy
注:RBE(Relative Biological Effectiveness)为相对生物效应,由于光子、中子会造成的生物效应不同,所以如上的剂量项均分别乘上不同组织的相对生物效应以求得等效剂量。
如图3所示,实现中子捕获治疗的中子捕获治疗设备100具备中子束产生组件1、用于向被照射体,例如患者,照射中子束的照射室2、用于进行照射前准备工作的准备室3、连通照射室2与准备室3的联络室4、用于实施照射控制的管理室5、用于对患者进行定位的定位装置(未图示)、用于载置患者的在准备室3和照射室2内移动的载置台6及用于对治疗过程进行控制、管理的控制系统7。
中子束产生组件1构成为在照射室2外产生中子束并能够向放置于照射室2内的患者照射中子束,照射室2内设有准直器20。准备室3为用于实施向患者照射中子束前所需的准备的工作的房间,准备室3内设有模拟准直器30,准备工作包括将患者固定于载置台6、对患者的肿瘤进行定位并做好三维定位标记等。管理室5为用于管理、控制硼中子捕捉疗法设备100实施的整体治疗工序的房间,例如,管理人员从管理室5的室内肉眼确认准备室3中的准备工作的状况、管理人员操作控制系统7来控制中子束的照射的开始、停止、载置台6的位置调整等,载置台6用于承载患者一起做旋转、平移和升降运动。所述控制系统7在此处仅是一个总称,其可以是一套总的控制系统,即中子束的照射的开始、停止、载置台6的位置调整等都由一套系统控制,也可以是多套控制系统,即中子束的照射的开始、停止、载置台6的位置调整等分别由一套控制系统进行控制。
参图4所示,在进行硼中子捕获治疗之前,管理人员需要明确中子束从何种角度照射患者能最大限度的杀死肿瘤细胞并尽可能能的降低辐射线对周围正常组织的损伤,确定最佳照射点和照射角度之后将载置患者的载置台6调整到对应位置。具体地,控制系统7包括选取可实施的最佳照射点和照射角度的照射参数选取装置71、将可实施的最佳照射点和照射角度的参数转换为载置台6的坐标参数的转换部72、将载置台6调整到从转换部72得到的坐标位置的调整部73及控制中子束的照射的开始、停止的启停部74。
继续参图4所示,每一组照射参数包括中子束的照射点和照射角度,照射参数选取装置71包括取样部711、计算部712和择优部713,首先,取样部711选取多组照射点和照射角度,接下来,计算部712计算出每组照射点和照射角度对应的评价值,然后,择优部713根据计算部712计算出的评价值,在所有取样的照射点和照射角度中选取一组最佳的可实施的照射参数,具体地,择优部713剔除在实际治疗过程中不可实施的照射参数并选取一组最优的可实施的照射参数。取样部711对照射点和照射角度的选取可以是随机的,也可以是有规 律的,评价值的计算则计算中子束通过的患者的器官径迹,即计算部712计算出中子束进入人体后入射的深度和所经过的器官的种类,然后根据中子束通过人体的径迹信息则判断肿瘤是否落于该组照射参数对应的最大可治疗深度范围内,若是,则以此径迹信息为依据配合用户设定的器官含硼浓度、器官辐射敏感因数及中子束特性信息等数据计算该组照射点和照射角度对应的评价值;若否,则给予该照射点和照射角度一个特别的评价值,重新进行中子束的照射点与照射角度的取样、计算。在对若干组照射点和照射角度对应的评价值计算之后,根据评价值能够直观的对每一组照射点和照射角度的优劣进行排序。因准直器20的位置是固定的且照射室2内还设置定位装置等设备,存在患者的某些摆位无法实现和治疗床的某些运动位置受干涉的情况,另外,患者某些部位,例如眼睛等器官,不能被照射,因此某些照射点和照射角度是无法实施照射的,在实际治疗过程中,需要择优部713剔除这些无法实施的照射点和照射角度。
结合图5、图6所示,下面将详述照射参数选取装置71的使用方法,该方法包括以下步骤:取样部711读取患者CT/MRI/PET-CT等具有明确人体解剖的影像,逐一定义各个器官、组织及肿瘤的轮廓,并给设定的材料种类及密度,在完成轮廓、材料及密度的定义后,选取中子束的照射点及照射角度,照射点与照射角度的选取,可以是顺向选取或逆向选取,顺向选取是将照射点决定于人体外的位置并可按照固定的角度或距离间隔依序取样,也可以透过随机取样的方式进行取样;中子束角度则可设定为照射点至肿瘤质心或肿瘤最深处的向量方向;逆向选取则是将照射点决定于肿瘤范围内,其照射点可以是肿瘤质心或最深处,而中子束角度则可以利用随机取样或依预定的间隔角度取样的方式进行;在决定完中子束的照射点与照射角度后,计算部712则计算中子束所通过的器官的径迹,即计算出中子束进入人体后所经过的器官的种类及其厚度,在取得中子束通过人体的径迹信息后,则判断肿瘤是否落于最大可治疗深度范围内,若是,则以此径迹信息为依据结合用户设定的器官含硼浓度、器官辐射敏感因数及中子束特性等信息,计算该照射点和照射角度对应的评价值;若否,则给予一个特别的评价值,重新进行中子束的照射点与照射角度的取样,完成评价值的计算后,对照射点、照射角度及对应的评价值进行纪录。重复进行上述取样和计算达一定数量后,输出报表;择优部713在所有取样的照射参数中选取一组最优的可实施的照射参数。计算部712可以将照射点和照射角度及其对应的评价值的数据以3D或2D图像的形式输出,这种情况下,医生或物理师可以更直观地判断出照射点、照射角度的优劣。
优选的,择优部713将每一组照射点和照射角度的优劣的进行排序之后,从优到劣依次验证每一组照射点和照射角度是否可实施,直到找出一组可实施的最优的照射点和照射角度为止。当然,择优部713也可以在进行评价值的计算之后,先找出所有的不可实施的照射点 和照射角度,然后剔除这些不可实施的照射点和照射角度,最后,在留下的照射点和照射角度中选取最优的一组实施中子捕获治疗;择优部713还可以在进行评价值的计算之前,预先排除不可实施的照射点和照射角度,则计算完成之后即可选取最优的一组照射点和照射角度进行中子捕获治疗。
择优过程可以是完全由相关设备自动进行,也可以部分穿插人工手动,也可以完全由人工执行,即不设置择优部713,例如:不可实施的照射点和照射角度可由经验丰富的医生罗列出来,也可以由相关设备模拟确定,评价值的优劣排序及在排除不可实施照射点和照射角度之后选取最优照射点和照射角度的动作亦是如此。在得到可实施的最佳照射点和照射角度之后,转换部72结合患者的CT/MRI/PET-CT信息、摆位信息、载置台6的结构信息等将该照射点和照射角度的参数转换为在照射过程中载置台6需要移动到位的坐标参数,然后调整部73根据从转换部72得到的坐标信息将载置台6调整到预定位置。调整部73将载置台6调整到预定位置之后,定位装置进一步确认中子束相对于患者肿瘤的照射点和照射角度是否与预先选取的可实施的最佳照射点和照射角度相同,若否,采用人工手动调整患者摆位或载置台6位置以确保中子中子束以最佳照射点和照射角度照射患者肿瘤,或驱动调整部73调整载置台6位置以确保中子中子束以最佳照射点和照射角度照射患者肿瘤。
为防止照射室2内的辐射散射到照射室2外,照射室2与联络室4之间设有第一屏蔽门21、联络室4与准备室3之间设有第二屏蔽门31。在其他实施方式中,可以采用设置迷道的屏蔽墙代替第一屏蔽门21和第二屏蔽门31,所述迷道的形状包括但不限于“Z”形、“弓”形、“己”形。
下面详述计算部712计算评价值的具体实施例,当然,不限于此实施例,也可以采用其他方法和公示计算评价值。评价值是基于中子束特性、器官辐射敏感因数及器官含硼浓度所进行计算的,对应某照射点及照射角度,器官i的权重因数(W(i))计算如公式一所示,式中I(i)、S(i)及C(i)分别为中子强度、器官i的辐射敏感因数及器官i的含硼浓度。
W(i)=I(i)×S(i)×C(i)  (公式一)
其中,I(i)乃根据所用中子束于模拟人体的深度强度或剂量曲线积分而得,如公式二所示,式中,i(x)为治疗用中子束于近似人体中的深度强度或剂量曲线函数,x 0-x为器官i于中子束径迹中的深度范围。
Figure PCTCN2020117285-appb-000004
通过上述算法,依序完成器官径迹中各器官的权重因数计算后,并取其加总,即可求得 该中子束对应的评价值,如公式三所示,于此计算中,肿瘤的权重因数应不列入计算。
Figure PCTCN2020117285-appb-000005
根据上述的评价值高低,可以更直观地判断治疗时对正常组织所受到的危害程度。除了利用评价值进行照射位置及角度的评价外,也可利用评价比因数来进行评价,其定义为评价值对肿瘤权重因数的比值,如公式四所示,如此可以更充分地显现照射位置与角度的预期治疗效果。
Figure PCTCN2020117285-appb-000006
以上实施例中涉及到这些步骤——“读取患者CT/MRI/PET-CT等具有明确人体解剖的影像,逐一定义各个器官、组织及肿瘤的轮廓,并给设定材料种类及密度。”可以参照本申请人于2015年11月17日递交到国家知识产权局、申请号为201510790248.7、发明名称为“基于医学影像数据的几何模型建立方法”的专利申请,在此全文引入。
本领域技术人员熟知的,上述公式一至公式四中的一些简单变换,仍然在本发明要求保护的范围之内,如I(i)、S(i)及C(i)由相乘变换为相加;I(i)、S(i)及C(i)分别乘以n次方,n根据情况而定,可以为1的整数倍也可以是其他倍数;i(x)可以是x 0-x间的平均数或中间数乘上(x 0-x),或任何可以达到与强度积分计算结果相符的计算方法。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,都在本发明要求保护的范围之内。

Claims (15)

  1. 一种中子束的照射参数选取装置,所述照射参数包括照射点和照射角度,其特征在于:所述照射参数选取装置包括:
    取样部,选取多组照射点和照射角度;
    计算部,计算出每组照射点和照射角度对应的评价值;及
    择优部,根据计算部计算出的评价值,在所有取样的照射点和照射角度中选取一组最佳的可实施的照射点和照射角度。
  2. 根据权利要求1所述的照射参数选取装置,其特征在于:所述计算部计算出中子束进入患者后入射的深度和所经过的器官的种类,然后根据中子束通过人体的径迹信息则判断肿瘤是否落于该组照射点和照射角度对应的最大可治疗深度范围内,若是,则以此径迹信息为依据配合用户设定的器官含硼浓度、器官辐射敏感因数及中子束特性信息等数据计算该组照射点和照射角度对应的评价值。
  3. 根据权利要求1所述的照射参数选取装置,其特征在于:所述择优部在所有取样的照射点和照射角度中剔除在实际照射过程中不可实施的照射点和照射角度并选取一组最优的可实施的照射点和照射角度。
  4. 如权利要求1-3项中任意一项所述的照射参数选取装置的使用方法,其特征在于:包括以下步骤:
    取样部读取患者如CT或MRI或PET-CT具有明确人体解剖的影像,逐一定义各个器官、组织及肿瘤的轮廓,并给设定的材料种类及密度,在完成轮廓、材料及密度的定义后,选取中子束的照射点及照射角度;
    计算部计算中子束所通过的器官的径迹,即计算出中子束进入人体后所经过的器官的种类及其厚度,在取得中子束通过人体的径迹信息后,则判断肿瘤是否落于最大可治疗深度范围内,若是,则以此径迹信息为依据结合用户设定的器官含硼浓度、器官辐射敏感因数及中子束特性等信息,计算该照射点和照射角度对应的评价值;若否,则给予最差的评价值,完成评价值的计算后,对照射点、照射角度及对应的评价值进行纪录;
    择优部在所有取样的照射参数中选取一组最优的可实施的照射参数。
  5. 根据权利要求4所述的照射参数选取装置的使用方法,其特征在于:所述照射点与照射角度的选取,可以是顺向选取或逆向选取,顺向选取是将照射点决定于人体外的位置并可按照固定的角度或距离间隔依序取样,也可以透过随机取样的方式进行取样;逆向选取则是将照射点决定于肿瘤范围内,其照射点可以是肿瘤质心或最深处,而照射角度则可以利用随机取样或依预定的间隔角度取样的方式进行;中子束角度则可设定为照射点至肿瘤质心或肿 瘤最深处的向量方向。
  6. 根据权利要求4所述的照射参数选取装置的使用方法,其特征在于:所述择优部将每一组照射点和照射角度的优劣的进行排序之后,从优到劣依次验证每一组照射点和照射角度是否可实施,直到找出一组可实施的最优的照射点和照射角度。
  7. 根据权利要求4所述的照射参数选取装置的使用方法,其特征在于:在进行评价值的计算之后,所述择优部先找出所有的不可实施的照射点和照射角度,然后剔除这些不可实施的照射点和照射角度,最后,在留下的照射点和照射角度中选取最优的一组。
  8. 根据权利要求4所述的照射参数选取装置的使用方法,其特征在于:所述择优部在进行评价值的计算之前,预先排除不可实施的照射点和照射角度,则计算完成之后选取最优的一组。
  9. 根据权利要求4所述的照射参数选取装置的使用方法,其特征在于:所述计算部将照射点、照射角度及对应的评价值的数据以3D或2D图像的形式输出。
  10. 根据权利要求4-8项中任意一项所述的照射参数选取装置的使用方法,其特征在于:所述择优部择优过程可以是完全由相关设备自动进行,也可以部分穿插人工手动。
  11. 一种用于控制中子捕获治疗设备的控制系统,所述中子捕获治疗设备包括用于载置患者的载置台,所述控制系统包括:
    如权利要求1-3项中任意一项所述的照射参数选取装置;
    转换部,将可实施的最佳照射点和照射角度的参数转换为载置台需要移动到位的坐标参数;及
    调整部,将载置台调整到从转换部得到的坐标位置。
  12. 根据权利要求11所述的控制系统,其特征在于:所述转换部结合患者的CT/MRI/PET-CT信息、摆位信息、载置台的结构信息等将可实施的最佳照射点和照射角度的参数转换为在照射过程中载置台需要移动到位的坐标参数。
  13. 根据权利要求11或12所述的控制系统的使用方法,其特征在于:包括以下步骤:
    照射参数选取装置选取可实施的最佳照射点和照射角度;
    转换部将可实施的最佳照射点和照射角度的参数转换为载置台需要移动到位的坐标参数;
    调整部将载置台调整到从转换部得到的坐标位置。
  14. 根据权利要求13所述的控制系统的使用方法,其特征在于:所述照射参数选取装置的使用方法如下:首先,取样部选取多组照射点和照射角度,接下来,计算部计算出每组照 射点和照射角度对应的评价值,然后,择优部根据计算部计算出的评价值,在所有取样的照射点和照射角度中选取一组最佳的可实施的照射点和照射角度。
  15. 根据权利要求14所述的控制系统的使用方法,其特征在于:所述计算部将每组照射点和照射角度及其对应的评价值的数据以3D或2D图像的形式输出。
PCT/CN2020/117285 2019-09-25 2020-09-24 照射参数选取装置及其使用方法、含该装置的控制系统及其使用方法 WO2021057828A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3150365A CA3150365C (en) 2019-09-25 2020-09-24 Irradiation parameter selection apparatus and usage method thereof and control system comprising said apparatus and usage method thereof
EP20867547.0A EP4035731A4 (en) 2019-09-25 2020-09-24 IRRADIATION PARAMETER SELECTION APPARATUS AND METHOD OF USE AND CONTROL SYSTEM COMPRISING SUCH APPARATUS AND METHOD OF USE
JP2022518985A JP7437491B2 (ja) 2019-09-25 2020-09-24 照射パラメータ選択装置及びその使用方法、該装置を含む制御システム及びその使用方法
AU2020355832A AU2020355832B2 (en) 2019-09-25 2020-09-24 Irradiation parameter selection apparatus and usage method thereof and control system comprising said apparatus and usage method thereof
US17/690,134 US20220193452A1 (en) 2019-09-25 2022-03-09 Irradiation parameter selection apparatus and usage method thereof and control system comprising the apparatus and usage method thereof
AU2024200068A AU2024200068A1 (en) 2019-09-25 2024-01-04 Irradiation parameter selection apparatus and usage method thereof and control system comprising said apparatus and usage method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910908127.6 2019-09-25
CN201910908127.6A CN112546455B (zh) 2019-09-25 2019-09-25 照射参数选取装置及其使用方法
CN201910908121.9A CN112546454A (zh) 2019-09-25 2019-09-25 中子捕获治疗设备及照射参数选取装置的使用方法
CN201910908121.9 2019-09-25
CN201910908146.9 2019-09-25
CN201910908146.9A CN112546456B (zh) 2019-09-25 2019-09-25 用于中子捕获治疗的控制系统及其使用方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/690,134 Continuation US20220193452A1 (en) 2019-09-25 2022-03-09 Irradiation parameter selection apparatus and usage method thereof and control system comprising the apparatus and usage method thereof

Publications (1)

Publication Number Publication Date
WO2021057828A1 true WO2021057828A1 (zh) 2021-04-01

Family

ID=75166738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117285 WO2021057828A1 (zh) 2019-09-25 2020-09-24 照射参数选取装置及其使用方法、含该装置的控制系统及其使用方法

Country Status (7)

Country Link
US (1) US20220193452A1 (zh)
EP (1) EP4035731A4 (zh)
JP (1) JP7437491B2 (zh)
AU (2) AU2020355832B2 (zh)
CA (1) CA3150365C (zh)
TW (3) TWI791390B (zh)
WO (1) WO2021057828A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116046516B (zh) * 2023-04-03 2023-06-09 四川中科高能科技发展有限责任公司 一种基于辐照参数自动筛选的食品质量提升方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014383A (zh) * 2003-12-02 2007-08-08 福克斯·彻斯癌症中心 调制用于放射治疗的激光-加速质子的方法
WO2011042819A1 (en) * 2009-10-06 2011-04-14 Koninklijke Philips Electronics, N.V. Combination of vmat and standard imrt
CN104353195A (zh) * 2010-03-05 2015-02-18 三菱电机株式会社 驱动式患者台
CN106853272A (zh) * 2015-12-08 2017-06-16 南京中硼联康医疗科技有限公司 射束的照射角度评价方法
CN107292075A (zh) * 2016-04-06 2017-10-24 南京中硼联康医疗科技有限公司 增进放射治疗系统计算效益的方法
CN107666940A (zh) * 2015-05-28 2018-02-06 皇家飞利浦有限公司 选择射束几何结构的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673450B1 (ja) * 2010-08-20 2011-04-20 三菱電機株式会社 粒子線照射装置及び粒子線治療装置
US20120226152A1 (en) * 2011-03-03 2012-09-06 Porikli Fatih M Tumor Tracking System and Method for Radiotherapy
JP6282562B2 (ja) * 2014-09-05 2018-02-21 住友重機械工業株式会社 中性子線捕捉療法システム
EP3316665B1 (en) * 2014-12-08 2019-10-09 Neuboron Medtech Ltd. Beam shaping assembly for neutron capture therapy
CN105457172B (zh) * 2015-12-25 2019-04-23 上海联影医疗科技有限公司 放射治疗中照射角度的设置方法及装置
CN108815721B (zh) * 2018-05-18 2021-06-25 山东省肿瘤防治研究院(山东省肿瘤医院) 一种照射剂量确定方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014383A (zh) * 2003-12-02 2007-08-08 福克斯·彻斯癌症中心 调制用于放射治疗的激光-加速质子的方法
WO2011042819A1 (en) * 2009-10-06 2011-04-14 Koninklijke Philips Electronics, N.V. Combination of vmat and standard imrt
CN104353195A (zh) * 2010-03-05 2015-02-18 三菱电机株式会社 驱动式患者台
CN107666940A (zh) * 2015-05-28 2018-02-06 皇家飞利浦有限公司 选择射束几何结构的方法
CN106853272A (zh) * 2015-12-08 2017-06-16 南京中硼联康医疗科技有限公司 射束的照射角度评价方法
CN107292075A (zh) * 2016-04-06 2017-10-24 南京中硼联康医疗科技有限公司 增进放射治疗系统计算效益的方法

Also Published As

Publication number Publication date
JP2022550727A (ja) 2022-12-05
US20220193452A1 (en) 2022-06-23
TW202126346A (zh) 2021-07-16
AU2020355832B2 (en) 2023-10-05
TWI791390B (zh) 2023-02-01
TW202224718A (zh) 2022-07-01
TWI761966B (zh) 2022-04-21
JP7437491B2 (ja) 2024-02-22
TW202123993A (zh) 2021-07-01
TWI760862B (zh) 2022-04-11
AU2020355832A1 (en) 2022-04-21
CA3150365A1 (en) 2021-04-01
EP4035731A1 (en) 2022-08-03
CA3150365C (en) 2024-03-19
EP4035731A4 (en) 2022-11-16
AU2024200068A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
TWI610086B (zh) 射束的照射角度評價方法
CN111803803B (zh) 基于医学影像数据的几何模型建立方法
TWI647657B (zh) Method for establishing smooth geometric model based on medical image data
WO2022037468A1 (zh) 放射线照射系统及其控制方法
AU2024200068A1 (en) Irradiation parameter selection apparatus and usage method thereof and control system comprising said apparatus and usage method thereof
WO2022001594A1 (zh) 放射治疗系统及其治疗计划生成方法
US20230111230A1 (en) Radiotherapy system and treatment plan generation method therefor
CN112546454A (zh) 中子捕获治疗设备及照射参数选取装置的使用方法
CN112546455B (zh) 照射参数选取装置及其使用方法
CN112546456B (zh) 用于中子捕获治疗的控制系统及其使用方法
WO2021249038A1 (zh) 照射参数选取装置及其使用方法
RU2808369C2 (ru) Оборудование для нейтронозахватной терапии и способ применения устройства выбора параметров облучения
RU2790515C1 (ru) Устройство для выбора параметров облучения, способ его применения, и система управления, содержащая указанное устройство, и способ ее применения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3150365

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022518985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020355832

Country of ref document: AU

Date of ref document: 20200924

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020867547

Country of ref document: EP

Effective date: 20220425